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THE MAXIMAL CURVES AND HEAT FLOW

IN FULLY AFFINE GEOMETRY

YUN YANG

Abstract. In Euclidean geometry, the shortest distance between two
points is a straight line. Chern made a conjecture (cf. [10]) in 1977
that an affine maximal graph of a smooth, locally uniformly convex
function on two dimensional Euclidean space R

2 must be a paraboloid.
In 2000, Trudinger and Wang completed the proof of this conjecture
in affine geometry (cf. [47]). (Caution: in these literatures, the term

“affine geometry” refers to “equi-affine geometry”.) A natural problem
arises: Whether the hyperbola is a fully affine maximal curve in R

2?
In this paper, by utilizing the evolution equations for curves, we obtain
the second variational formula for fully affine extremal curves in R

2, and
show the fully affine maximal curves in R

2 are much more abundant and
include the explicit curves y = xα

(

α is a constant and α /∈ {0, 1, 1
2
, 2}

)

and y = x log x. At the same time, we generalize the fundamental theory
of curves in higher dimensions, equipped with GA(n) = GL(n) ⋉ R

n.
Moreover, in fully affine plane geometry, an isoperimetric inequality is
investigated, and a complete classification of the solitons for fully affine
heat flow is provided. We also study the local existence, uniqueness, and
long-term behavior of this fully affine heat flow. A closed embedded
curve will converge to an ellipse when evolving according to the fully
affine heat flow is proved.

1. Introduction

Following the general spirit in the Erlangen program of Klein, fully affine
differential geometry is based on the Lie group GA(n,R) = GL(n,R) ⋉ R

n

consisting of affine transformations x 7−→ Ax + b, A ∈ GL(n,R), b ∈ R
n

acting on x ∈ R
n. In this geometry a key issue of study is the resulting

invariants associated with submanifolds M ⊂ R
n (see Nomizu and Sasaki

[35] and Simon [44] for details). Note that, in most of the literatures , “affine
geometry” actually means “equi-affine geometry”, in which one restricts to
the subgroup SA(n,R) = SL(n,R) ⋉ R

n of volume-preserving affine trans-
formations. In this paper, we restrict our attention to fully affine differential
geometry. The main points of discussion and conclusions can be highlighted
in four parts: (1) fully affine maximal curves, (2) fully affine isoperimetric
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2 Y. YANG

inequality, (3) fully affine arc length in higher dimensions, (4) heat flow in
fully affine geometry.

1.1. Fully affine maximal curves. Around 1977 Chern [10] conjectured
that an affine maximal graph of a smooth, locally uniformly convex function
on two dimensional Euclidean space, R2, must be a paraboloid. Trudinger
and Wang [47] proved the validity of this conjecture in affine geometry and
showed the corresponding result holds in higher dimensions. Furthermore,
they studied the Plateau problem for affine maximal hypersurfaces, which
is the affine invariant analogue of the classical Plateau problem for minimal
surfaces [48]. Wang stated in [49] the concept of affine maximal surface
in affine geometry corresponds to that of minimal surface in Euclidean ge-
ometry (Calabi [7] suggested using the terminology affine maximal as the
second variation of the affine area functional is negative). The affine Bern-
stein problem and affine Plateau problem, as proposed in [7, 8, 10], are two
fundamental problems for affine maximal submanifolds.

Recently Kobayashi and Sasaki [31] investigated the first variational for-
mula and found some extremal curves on plane with the fully affine group
GA(2) = GL(2) ⋉ R

2. However, the second variational formula is still a
remaining problem. In the present paper, by employing the evolution equa-
tions of curve flow, we obtain the second variational formula and further
study the local stability of the extremal curves with respect to fully affine
arc length (see Section 5 for details). It is noteworthy that the fully affine
maximal curves in R

2 produce a more abundant category, which contains

not only the explicit curves y = xα (α is a constant and α /∈ {0, 1, 1
2
, 2})

and y = x log x, but also these implicit curves with the fully affine curvature

ϕ =
3
√
2

2
tanh

(√
2

3
ξ

)
, ϕ =

3
√
2

2
coth

(√
2

3
ξ

)
, or ϕ = ±

√
2

2
+

9

2ξ
, where ξ

is the fully affine arc length parameter.

1.2. Fully affine isoperimetric inequality. The solution to the classical
isoperimetric problem can be represented in the form of an inequality which
usually relates the length L of a closed curve and the area A of the planar
region that it encloses. On Euclidean plane, the isoperimetric inequality is
expressed by

L2 ≥ 4πA,

and that the equality holds if and only if the curve is a circle. In equi-affine
geometry, the equi-affine isoperimetric inequality related all ovals with an
area A and equi-affine perimeter L̄ , is (cf. [45])

L̄3 ≤ 8π2A, (1.1)

and equality holds only for the ellipse. Note that the inequality sign flips,
which is a little similar to the concept of affine maximal in affine geome-
try corresponding to that of minimal in Euclidean geometry. In addition,
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Sapiro and Tannenbaum [43] presented an equi-affine isoperimetric inequal-
ity formed as

2

∮
µdσ ≤ L̄2

A
, (1.2)

where µ is equi-affine curvature and σ is equi-affine arc length parameter. It
is worth mentioning that the area A of the planar region that a curve encloses
is variant under fully affine transformation, and one would feel uncertain
whether there is an analogous formula in fully affine geometry. Inspired by
the work of Gage [19] on the isoperimetric inequality with applications to
curve shortening, and the work of Brendle [6] on the isoperimetric inequality
for a minimal submanifold, we obtain, in the current paper, by employing
the evolution process of equi-affine heat flow, a fully affine isoperimetric
inequality (see Section 6 for details)

∮
dξ ≤ 6π,

for any convex smooth embedded closed curve in R
2, and equality holds

only for the ellipse, where ξ is fully affine arc length parameter and

∮
dξ is

the fully affine perimeter of the closed curve. In particular, the fully affine
isoperimetric inequality plays a crucial role in the proof of Theorem 1.3.

1.3. Fully affine arc length in higher dimensions. Klein considered a
geometry as being the study of a certain class for figures in a space of these
properties which are left invariant with respect to same transitive group
of transformations. The space is a homogeneous space G/H with G a Lie
group, H a closed subgroup, and with the group of transformations being
the left action of G. The figures to be considered in this paper are smooth

curves [a, b]
x−→ G/H. The natural objects of study are known classically

as differential invariants, that is, local expressions in x and its derivatives
invariant under the action of G (cf. [27]). They generalize arc-length, curva-
ture and torsion for curves in Euclidean R

3, which are differential invariants
of orders 1, 2 and 3 respectively. For the case of higher dimensional space Rn,
the arc length, curvatures (the invariants under reparametrization and tran-
sitive group of transformations) related to Euclidean group SE(n), similarity
group Sim(n), centro-equi-affine group SL(n), centro-affine group GL(n) and
equi-affine group SA(n) have been well developed (see Section 2 for details).
To the author’s knowledge, the arc length and curvatures of curves in fully
affine transformation group are only presented in two and three dimensional
space [31]. In this paper, we extend the fully affine invariant theories of
curves into the general dimensional space R

n. It comes as a surprise to the
author that, there is a sharp distinction in the expressions for fully affine
arc length between different dimensional space (see the following examples
and theorem for details), which is not as straightforward as these appearing
in Section 2. Let us first observe the fully affine arc length element in R

2
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and R
3 (the notation xpn represents

dnx

dpn
and [v1, · · · , vn] is denoted as a

determinant form in R
n, where the columns v1, · · · , vn are the vectors in

R
n).

Example 1.1. Consider the fully affine group GA(2) = GL(2) ⋉ R
2 act-

ing on x : p → x(p) ∈ R
2. Assume xp, xp2 are linearly independent and

3[xp, xp2][xp, xp4] − 5[xp, xp3]
2 + 12[xp, xp2][xp2 , xp3] 6= 0. Then the corre-

sponding function

f(p) =

√
ǫ
3[xp, xp2][xp, xp4]− 5[xp, xp3]2 + 12[xp, xp2][xp2 , xp3]

[xp, xp2]
2

satisfies the conditions in Section 2.1, and the fully affine arc length element
for plane curves in R

2 is given by

ds =

√
ǫ
3[xp, xp2][xp, xp4]− 5[xp, xp3]

2 + 12[xp, xp2][xp2 , xp3]

[xp, xp2]
2

dp,

where ǫ = sgn
(
3[xp, xp2][xp, xp4]− 5[xp, xp3]

2 + 12[xp, xp2][xp2 , xp3]
)
.

Example 1.2. Consider the fully affine group GA(3) = GL(3)⋉R
3 acting

on x : p → x(p) ∈ R
3. Assume xp, xp2 and xp3 are linearly independent, and

A−B+C 6= 0, where A = 24[xp, xp2 , xp5][xp, xp2 , xp3], B = 35[xp, xp2 , xp4]
2

and C = 60[xp, xp3 , xp4][xp, xp2 , xp3]. One can verify that the fully affine

arc length element in R
3 can be defined as ds =

√
ǫ A−B+C
[xp,xp2 ,xp3 ]

2dp, where

ǫ = sgn (A−B + C) .

According to Example 1.1 and Example 1.2, we will prove the following
relation under the assumption that xp, xp2 , · · · , xpn are linearly independent
for the purpose of obtaining the fully affine arc length element of the curve
x : p → x(p) ∈ R

n (see Section 3 for details).

Theorem 1.1. Under the reparametrization r = r(p), we have

α
[xpn+2 , xpn−1 , · · · , xp2 , xp]
[xpn , xpn−1 , · · · , xp2 , xp]

− β

(
[xpn+1 , xpn−1 , · · · , xp2 , xp]
[xpn , xpn−1 , · · · , xp2 , xp]

)2

+ γ
[xpn+1 , xpn , xpn−2 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]

=

(
dr

dp

)2
(
α
[xrn+2 , xrn−1 , · · · , xr2 , xr]
[xrn , xrn−1 , · · · , xr2 , xr]

− β

(
[xrn+1 , xrn−1 , · · · , xr2 , xr]
[xrn , xrn−1 , · · · , xr2 , xr]

)2

+ γ
[xrn+1 , xrn , xrn−2 , · · · , xr2 , xr]

[xrn , xrn−1 , · · · , xr2 , xr]

)
,

where α = n(n+1)(n−1)
ω , β = (n−1)(n+2)(2n+1)

2ω , γ = n(n+1)(n+2)
ω , and ω is the

greatest common divisor of n(n+1)(n−1), (n−1)(n+2)(2n+1)
2 and n(n+1)(n+

2).
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1.4. Heat flow in fully affine geometry. The term “invariant subman-
ifold flow” is conceived of as the motion of one submanifold governed by
a prescribed partial differential equation that admits an underlying trans-
formation group as a symmetry group, e.g. the Euclidean group of rigid
motions (translations and rotations). There have been a number of achieve-
ments contributing to invariant geometric flows for curves and surfaces in
Euclidean geometry and in affine geometry, specially about geometric heat
flow. The curve shortening flow (CSF) is one of the simplest and well-
studied models, which was introduced firstly by Mullins [34] as a model for
the motion of grain boundaries. Later Gage and Hamilton [20] proved that
a convex curve embedded in R

2 shrinks to a point when evolving under CSF.
In the sequel, the evolution of non-convex embedded curves was studied by
Grayson [24, 25], and it was proved that if the initial curve is any embedded
curve in R

2, then the corresponding curve first becomes convex and finally
shrinks to a point in finite time while becoming asymptotically circular,
often referred to as a “circular point”. The higher dimensional analogue
of CSF is the mean curvature flow (MCF), which was first investigated by
Brakke [5], in the context of geometric measure theory. Huisken [30] proved
a smooth, compact and convex hypersurface without boundary converge to
a round sphere after appropriate rescaling when evolving under MCF. The
Ricci Flow (RF) was introduced by Hamilton [28], which deforms an initial
metric in the direction of its Ricci tensor. MCF shares many characteristics
with CSF, and they are called geometric heat flows. Geometric heat flow
means that we consider a family of submanifolds F : M × (0, T ) → N which
solves the partial differential equation

∂

∂t
F = ∆F,

with initial condition F (·, 0) = F0 : M → N , where ∆ is the Laplace-
Beltrami operator on (M,g), g denotes the metric on M . The Ricci flow is
the analogue of the heat equation on a Riemannian manifold [15], which was
extended by Perelman to in his famous solution to the Poincaré conjecture.
In 2003, Perelman [40, 41, 42] completed Hamilton’s Ricci flow programme
[29] with the aim of settling Thurston’s geometrization conjecture [46] for
closed 3-manifolds. This conjecture had predicted such manifolds to be
decomposable into pieces with locally homogeneous geometry.

There are some analogical extensions of the geometric heat flow in affine
geometry. The corresponding affine curve shortening flow (ACSF) was firstly
introduced by Sapiro, and Tannenbaum [43], and was further investigated
by Angenent, Sapiro, and Tannenbaum [4]. It was shown that any convex
smooth embedded curve when evolves according to ACSF converges to an
elliptical point [4, 14]. Andrews [3] studied an affine-geometric, fourth-order
parabolic evolution equation for closed convex curves in the plane and proved
the evolving curve remains strictly convex while expanding to infinite size
and approaching a homothetically expanding ellipse. More recently, similar
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results were obtained for the heat flow in centro-equi-affine geometry [52]
and in centro-affine geometry [38]. Interestingly, the heat flow for the centro-
affine curvature is equivalent to the well-known inviscid Burgers’ equation.
In contrast with the heat flows in Euclidean, equi-affine, and centro-equi-
affine geometries, those yield second order nonlinear parabolic equations
for the associated invariant curvature. Heat flows in more general Klein
geometries were investigated [36, 39].

Some special solutions are vital for the detailed analysis of geometric flow.
For instance, the grim-reapers were used by Grayson [26], Altschuler [2] and
Hamilton [29] for examining the behaviour of CSF. The self-similar solutions
and spiral wave solutions of CSF were served to study the formation of sin-
gularity of CSF [4, 29]. The Abresch-Langer curves were classified in [1],
and the group-invariant solutions for CSF were classified in [12]. The notion
of solitons of the flow, which means the surprising emergence of special evo-
lutions which retain a fixed profile for all time, is intimately connected with
the set of possible singularities. The classification of solitons to geometric
flow is a central problem with important implications for the analysis of
singularities.

Thus another part of this paper is to study fully affine heat flow, which is
a fully affine analogue of CSF and MCF in Euclidean geometry, and ACSF
in equi-affine geometry. We find the heat flow for the fully affine curvature
generates a fourth order nonlinear parabolic equation. A complete classifi-
cation of solitons for this heat flow is provided. Moreover, we investigate the
local existence, uniqueness, and long-term behavior of this fully affine heat
flow. Chou in [11] used energy method to study the fourth order nonlinear
parabolic equation on Euclidean plane. By utilizing the similar technique
and fully affine isoperimetric inequality we show that a closed embedded
curve may converge to an ellipse when evolving according to the fully affine
heat flow. The main results of this part are the followings:

Theorem 1.2. Under fully affine heat flow (7.1), the expanding, translating
and shrinking solitons are composed of

(1) the curves with constant fully affine curvature;

(2) the curves with the fully affine curvature ϕ = −3

ξ
, ϕ = A tan

(
A

3
ξ

)
,

ϕ = −A cot

(
A

3
ξ

)
, ϕ = −A tanh

(
A

3
ξ

)
or ϕ = −A coth

(
A

3
ξ

)
,

where ξ is the fully affine arc length parameter and A is an arbitrary
nonzero constant.

In particular, the closed solitons for (7.1) are the ellipses.

Theorem 1.3. Assume C(·, t) is a solution of fully affine heat flow (7.1)
in a maximal interval [0, ω), ω ≤ ∞, where C0 is a closed smooth embedded
curve. Then the solution exists as long as the L2-norm of the curvature ϕ
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of C(·, t) is finite. Furthermore, when ω is finite,
∮

C(·,t)
ϕ2dξ ≥ D(ω − t)−1/4

for some constant D. When ω is infinity, the curvature ϕ of C(·, t) converges
smoothly to zero, that is, C(·, t) converges to an ellipse.

1.5. Organization of the paper. This paper is organized as follows. In
Section 2, we recall the relevant definitions, notions and basic facts for curves
related to Euclidean group SE(n), similarity group Sim(n), centro-equi-affine
group SL(n), centro-affine group GL(n) and equi-affine group SA(n). In
Section 3, we study fully affine differential invariants in R

n based on the
Lie group GA(n) = GL(n)⋉R

n. In Section 4, under the motions of planar
curve, the evolution formulas of fully affine differential invariants are derived.
In Section 5, we obtain the second variation formula of planar curves in
fully affine space R

2 and determine the stability of the extremal curves. In
Section 6, the fully affine isoperimetric inequality is investigated. In Section
7, we provide a complete classification of solitons for fully affine heat flow,
and the local existence, uniqueness, and long-term behavior of this heat
flow are discussed. In Appendix, we derive the motions of curves in equi-
affine setting, and list a theorem in [23] of local existence for a fourth-order
parabolic equation.

1.6. Acknowledgements. Y. Yang was supported by the Fundamental Re-
search Funds for the Central Universities under grant-N2104007, and he
would also like to express his deep gratitude to Professor Peter J. Olver
for his encouragement and help during his stay in School of Mathematics,
University of Minnesota as a Visiting Professor, while part of this work
was completed. This paper is dedicated to Professor Peter J. Olver on the
occasion of his 70th birthday.

2. Arc length and differential invariants related to group

Fully affine differential geometry is based on the Lie group GA(n) =
GL(n)⋉ R

n consisting of affine transformations x 7−→ Ax + b, A ∈ GL(n),
b ∈ R

n acting on x ∈ R
n. Before discussing the fully affine geometry, let

us make a digression to review some notions and basic facts in its sub-
geometries (Euclidean geometry, similarity geometry, centro-equi-affine ge-
ometry, centro-affine geometry and equi-affine geometry).

2.1. Group-invariant arc length element. Assume throughout this sec-
tion that all of our mappings are sufficiently smooth, so that all the relevant
derivatives are well-defined. In the following, [v1, · · · , vn] is denoted as a
determinant form in R

n, where the columns v1, · · · , vn are the vectors in
R
n. v · w or 〈 v ,w 〉 represents the inner product of vectors v,w ∈ R

n,

‖v‖ :=
√

〈 v , v 〉, and xpn :=
dnx

dpn
.
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Let G be a Lie group acting on a curve x : p → x(p) ∈ R
n. Note that

the order of a differential invariant or a function is the order of the highest
derivative that occurs in the local expression for it. The arc length element
with respect to G can be determined by finding a differential 1-form f(p)dp,
whose invariance indicates that

(a) f(p) is invariant under the transformation x̄ = g ◦ x, ∀g ∈ G,
(b) with a parametrization r = r(p), f(p)dp = f̄(r)dr (invariance of the

tensor under a change of the basis
∂

∂p
).

Note that without loss of generality, we may assume
dr

dp
> 0. Then the arc

length element can be represented as

ds := f(p)dp, (2.1)

which guarantees the integral

∫ a

b
f(p)dp is invariant of reparametrization

and group of transformations. Here are some examples to clarify this point.

Example 2.1. As a most simple one illustrating our concern, we consider
the Euclidean group SE(n) = SO(n)⋉ R

n (a group consisting of the orien-

tation preserving rigid motions of Rn) acting on x(p). Assume

∥∥∥∥
dx

dp

∥∥∥∥ 6= 0.

Obviously, the function f(p) =

∥∥∥∥
dx

dp

∥∥∥∥ satisfies the conditions (a) and (b),

and it is well known that the Euclidean arc length element is denoted as

ds =

∥∥∥∥
dx

dp

∥∥∥∥ dp.

Example 2.2. Any similarity F : Rn → R
n can be expressed in the form

F (x) = λAx + b, where x ∈ R
n is an arbitrary point, A is an orthogonal

n × n matrix, b is a translation vector, and the real constant λ 6= 0. The
group Sim(n) consists of all orientation-preserving similarities of Rn. The
arc length element for group Sim(n) acting on x(p) has been studied in

[13] and [18]. Suppose that

∥∥∥∥
dx

dp

∥∥∥∥ 6= 0 and

∥∥∥∥xp2 −
〈xp , xp2 〉
〈xp , xp 〉

xp

∥∥∥∥ 6= 0. It

is easy to verify the function

∥∥∥xp2 −
〈xp ,xp2 〉
〈xp ,xp 〉 xp

∥∥∥
‖xp‖

meets the conditions (a)

and (b). Thus in similarity geometry, we have the arc length element ds =∥∥∥xp2 −
〈 xp ,xp2 〉
〈xp ,xp 〉 xp

∥∥∥
‖xp‖

dp, which is coincident with the definition of similarity

arc length in [13] and [18].

Example 2.3. The differential geometry invariant to the action of special
linear group SL(n) is called centro-equi-affine differential geometry. Con-
sider the group SL(n) acting on x(p), and suppose that x, xp, xp2 , · · · , xpn−1
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are linear independent. The corresponding function f(p) occurring in (2.1)

can be obtained by
(
[x, xp, xp2 , · · · , xpn−1]

) 2
n(n−1) , and it is easy to see that

ds =
(
[x, xp, xp2 , · · · , xpn−1]

) 2
n(n−1) dp is defined as the centro-equi-affine arc

length element (also see [22, 37]).

Example 2.4. Centro-affine differential geometry refers to the geometry
induced by the general linear group x 7−→ Ax, A ∈ GL(n), x ∈ R

n, which is
the subgroup of the affine transformation group that keeps the origin fixed.
Consider the the general linear group GL(n) acting on x(p), and suppose
[x, xp, · · · , xpn−1] 6= 0, [xp, xp2 , · · · , xpn] 6= 0. The corresponding function

f(p) occurring in (2.1) can be expressed by

(
ǫ
[xp, xp2 , · · · , xpn]
[x, xp, · · · , xpn−1]

) 1
n

, where

ǫ = sgn

(
[xp, xp2 , · · · , xpn]
[x, xp, · · · , xpn−1]

)
, and the centro-affine arc length element (also

see [21]) is ds =

(
ǫ
[xp, xp2 , · · · , xpn]
[x, xp, · · · , xpn−1]

) 1
n

dp.

Example 2.5. Equi-affine differential geometry refers to volume-preserving
affine differential geometry in which one restricts to the subgroup SA(n) =
SL(n) ⋉ R

n. Consider the group SA(n) acting on x(p), and let us assume
[xp, xp2 , · · · , xpn] 6= 0. By [9, 16, 50, 51], we find the corresponding function

f(p) occurring in (2.1) can be obtained though
(
[xp, xp2 , · · · , xpn]

) 2
n(n+1) ,

and ds =
(
[xp, xp2 , · · · , xpn]

) 2
n(n+1) dp is considered as the equi-affine arc

length element.

2.2. The curvatures of a curve related to the group. All others dif-
ferential invariants can be found by differentiation with respect to a group-
invariant arc length element. In particular, once defining the group-invariant
arc length parameter for a curve, the curvatures (or differential invariants)
can be generated by the successive derivatives of the curve x with respect
to the arc length parameter and the linearly dependent coefficients. We still
provide some examples to demonstrate its validity.

2.2.1. Euclidean differential invariants. Let I ⊂ R and consider a curve x :
I → R

n parametrized by Euclidean arc length s defined as in Example 2.1.
The tangent vector field V1 can be defined as the unit vector in the direction

of
dx

ds
. The second basic unit vector field V2 lies in the subspace spanned

by the vector fields

{
dx

ds
,
d2x

ds2

}
, is perpendicular to V1 and together with V1

spans an area of 1. The third basis vector, V3, is in the subspace spanned

by

{
dx

ds
,
d2x

ds2
,
d3x

ds3

}
, is of unit length, is perpendicular to V1 and V2 and

together with V1 and V2 spans a volume of 1. Proceeding in this fashion, the
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(k+1)st basis vector is in the space spanned by

{
dix

dsi
: i = 1, 2, · · · , k + 1

}
,

is of unit length, is perpendicular to {Vi : i = 1, 2, · · · , k}, and together with
{Vi : i = 1, 2, · · · , k} spans a volume of 1.

Given a smooth curve parametrized by Euclidean arc length s, the Eu-

clidean curvature is given by κ =
dV1

ds
·V2 and the higher Euclidean torsions

are given by τi =
dVi+1

ds
· Vi+2, i = 1, · · · , n − 2. As shown in [16], the

Frenet-Serret formulas are described by

dx

ds
= V1,

dV1

ds
= κV2,

dV2

ds
= −κV2 + τ1V3,

· · · , · · ·
dVn−1

ds
= −τn−3Vn−1 + τn−2Vn,

dVn

ds
= −τn−2Vn−1.

2.2.2. Similarity differential invariants. Assume the curve x : I → R
n is

parametrized by similarity arc length s defined as in Example 2.2. We

define the tangent V1 as
dx

ds
. The second basic vector V2 is in the subspace

spanned by

{
dx

ds
,
d2x

ds2

}
, and is perpendicular to V1. The third basis vector,

V3, is in the subspace spanned by

{
dx

ds
,
d2x

ds2
,
d3x

ds3

}
, and is perpendicular

to V1 and V2 . Proceeding in this fashion, the (k + 1)st basis vector is in

the space spanned by

{
dix

dsi
: i = 1, 2, · · · , k + 1

}
, and is perpendicular to

{Vi : i = 1, 2, · · · , k}.
Hence, given a smooth curve parametrized by similarity arc length s, the

similarity curvatures are generated by α1 = −
dV1
ds · V1

V1 · V1
and αi =

dVi
ds · Vi+1

Vi+1 · Vi+1
,

i = 2, · · · , n − 1. In [13], the following Frenet-Serret formulas for curves in
similarity geometry have been established

dx

ds
= V1,

dV1

ds
= −α1V1 + V2,

dV2

ds
= −V1 − α1V2 + α2V3,

dV3

ds
= −α2V2 − α1V3 + α3V4,
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· · · , · · ·
dVn−1

ds
= −αn−2Vn−2 − α1Vn−1 + αn−1Vn,

dVn

ds
= −αn−1Vn−1 − α1Vn.

2.2.3. Centro-equiaffine differential invariants. For the curve x : I → R
n, by

choosing the centro-equi-affine arc length parameter s defined as in Example
2.3, we can see

[x, xs, · · · , xsn−1 ] = ǫ, ǫ = 1 or − 1.

Differentiating with respect to s yields

[x, xs, · · · , xsn−2 , xsn ] = 0.

Hence it follows

xsn = µ0x+ µ1xs + µ2xs2 + · · ·+ µn−2xsn−2 .

The functions

µ0 = ǫ[xsn , xs, · · · , xsn−1 ], µi = ǫ[x, xs, · · · , xsi−1 , xsn , xsi+1 , · · · , xsn−1 ],

are called the centro-equi-affine curvatures of x (see [22, 37] for details),
where i = 1, 2, · · · , n− 2.

2.2.4. Centro-affine differential invariants. Let x : I → R
n be a curve

parametrized by centro-affine arc length s defined as in Example 2.4. Ac-
cording to Example 2.4, it is easy to see

[xs, xs2 , · · · , xsn]
[x, xs, · · · , xsn−1]

= ǫ, ǫ = 1 or− 1.

A direct computation shows

xsn + (−1)n−1ǫx = µ1xs + µ2xs2 + · · ·+ µn−1xsn−1 .

Then the centro-affine differential invariants are given by

µi =
[x, xs, · · · , xsi−1 , xsn , xsi+1 , · · · , xsn−1]

[x, xs, · · · , xsn−1]
, i = 1, 2, · · · , n − 1,

which are called centro-affine curvatures (see [21] for details).

2.2.5. Equi-affine differential invariants. Let x : I → R
n be parametrized

by equi-affine arc length s defined as in Example 2.5, so that

[xs, xs2 , · · · , xsn] = ǫ, ǫ = 1 or− 1.

Differentiating with respect to s then gives

[xs, xs2 , · · · , xsn−1 , xsn+1] = 0.

Therefore, it follows

xsn+1 = µ1xs + µ2xs2 + · · ·+ µn−1xsn−1 .

The functions

µi = ǫ[xs, · · · , xsi−1 , xsn+1 , xsi+1 , · · · , xsn], i = 1, 2 · · · , n− 1
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are called the equi-affine curvatures of x (see [9, 16, 50, 51] for details).

3. The fully affine arc length in higher dimensional space

Now, we utilize the approach mentioned in Section 2 to determine the arc
length element and differential invariants in fully affine geometry. In fact,
the fully affine arc length element and differential invariants for plane curves
and space curves have been achieved in [31]. Example 1.1 and Example
1.2 describe the fully affine arc length element for plane curves and space
curves expressed by the same fashion as in Section 2. However, it is not as
straightforward as those appearing in Section 2 to derive the fully affine arc
length element in higher dimensional space R

n (for details see Example 1.1,
Example 1.2 and Theorem 1.1).

Let us begin to deduce the expressions of the fully affine arc length pa-
rameter and curvatures for the curves in R

n under the fully affine group
GA(n) = GL(n)⋉R

n.
Suppose that x : p → x(p) ∈ R

n is a curve in n-dimensional affine space
R
n with parameter p. For another parameter r = r(p), we have

xp = xr

dr

dp
,

xp2 = xr2

(
dr

dp

)2

+ xr

d2r

dp2
,

xp3 = xr3

(
dr

dp

)3

+ 3xr2
dr

dp

d2r

dp2
+ xr

d3r

dp3
,

xp4 = xr4

(
dr

dp

)4

+ 6xr3

(
dr

dp

)2
d2r

dp2

+ xr2

(
3

(
d2r

dp2

)2

+ 4
dr

dp

d3r

dp3

)
+ xr

d4r

dp4
,

(3.1)

where xpk = dkx
dpk

and xrk = dkx
drk

for a positive integer k.

Note that in the following we use the representation

(
n

k

)
to denote the

binomial coefficient
n!

(n− k)!k!
. Then, a direct computation shows

Lemma 3.1. For a positive integer k > 4, we have the following iterations

xpk = xrk

(
dr

dp

)k

+ xrk−1

(
k

2

)(
dr

dp

)k−2
d2r

dp2

+ xrk−2

(
Ak

(
dr

dp

)k−4 (
d2r

dp2

)2

+Bk

(
dr

dp

)k−3
d3r

dp3

)

mod
(
xrk−3 , · · · , xr

)
,
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where A4 = 3, B4 = 4, Ak = Ak−1 + (k − 3)

(
k − 1

2

)
and Bk = Bk−1 +

(
k − 1

2

)
. Moreover, we have

Ak =
k(k − 1)(k − 2)(k − 3)

8
, Bk =

k(k − 1)(k − 2)

6
.

Lemma 3.2. Take Ak and Bk as in the previous lemma. The solutions to
the system of equations with respect to α, β and γ





α

(
n+ 2

2

)
− 2β

(
n+ 1

2

)
+ γ

(
n

2

)
= 0,

αBn+2 − γBn+1 = 0,

αAn+2 − β

(
n+ 1

2

)2

+ γ

((
n+ 1

2

)(
n

2

)
−An+1

)
= 0,

are α = ωn(n + 1)(n − 1), β = ω (n−1)(n+2)(2n+1)
2 , γ = ωn(n + 1)(n + 2),

where ω is an arbitrary constant.

In the following, for the curve x : p → x(p) ∈ R
n, assume xp, xp2 , · · · , xpn

are linear independent.

Proof of Theorem 1.1. According to (3.1) and Lemma 3.1, one can see

xpn+1 = xrn+1

(
dr

dp

)n+1

+ xrn

(
n+ 1

2

)(
dr

dp

)n−1
d2r

dp2

+ xrn−1

(
An+1

(
dr

dp

)n−3(
d2r

dp2

)2

+Bn+1

(
dr

dp

)n−2
d3r

dp3

)

mod
(
xrn−2 , · · · , xr

)
,

and

xpn = xrn

(
dr

dp

)n

+ xrn−1

(
n

2

)(
dr

dp

)n−2
d2r

dp2
mod (xrn−2 , · · · , xr).

Thus, it is not hard to verify the following several relations.

[xpn , xpn−1 , · · · , xp2 , xp] =

(
dr

dp

)n(n+1)
2

[xrn , xrn−1 , · · · , xr2 , xr].
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[xpn+2 , xpn−1 , · · · , xp] =

(
dr

dp

)n(n−1)
2

[xpn+2 , xrn−1 , · · · , xr2 , xr]

=

(
dr

dp

)n(n+1)
2 +2

[xrn+2 , xrn−1 , · · · , xr2 , xr]

+

(
n+ 2

2

)(
dr

dp

)n(n+1)
2 d2r

dp2
[xrn+1, xrn−1 , · · · , xr2 , xr]

+

(
dr

dp

)n(n+1)
2 −2

(
An+2

(
d2r

dp2

)2

+Bn+2
dr

dp

d3r

dp3

)

× [xrn , xrn−1 , · · · , xr2 , xr].

[xpn+1 , xpn−1 , · · · , xp] =

(
dr

dp

)n(n−1)
2

[xpn+1 , xrn−1 , · · · , xr2 , xr]

=

(
dr

dp

)n(n+1)
2 +1

[xrn+1, xrn−1 , · · · , xr2 , xr]

+

(
dr

dp

)n(n+1)
2 −1

d2r

dp2

(
n+ 1

2

)
[xrn , xrn−1 , · · · , xr2 , xr].

[xpn+1 , xpn , xpn−2 , · · · , xp] =

(
dr

dp

) (n−2)(n−1)
2

[xpn+1 , xpn , xrn−2 , · · · , xr2 , xr]

=

(
dr

dp

)n(n+1)
2 +2

[xrn+1, xrn , xrn−2 , · · · , xr2 , xr]

+

(
n

2

)
d2r

dp2

(
dr

dp

)n(n+1)
2

[xrn+1 , xrn−1 , · · · , xr2 , xr]

+

((
d2r

dp2

)2((
n+ 1

2

)(
n

2

)
−An+1

)
− dr

dp

d3r

dp3
Bn+1

)

×
(
dr

dp

)n(n+1)
2 −2

[xrn , xrn−1 , xrn−2 , · · · , xr].

A trivial computation shows

α
[xpn+2 , xpn−1 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]
− β

(
[xpn+1 , xpn−1 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]

)2

+ γ
[xpn+1 , xpn , xpn−2 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]

=

(
dr

dp

)2
(
α
[xrn+2, xrn−1 , · · · , xr2 , xr]

[xrn , xrn−1 , · · · , xr2 , xr]
− β

(
[xrn+1, xrn−1 , · · · , xr2 , xr]

[xrn , xrn−1 , · · · , xr2 , xr]

)2

+ γ
[xrn+1 , xrn , xrn−2 , · · · , xr2 , xr]

[xrn , xrn−1 , · · · , xr2 , xr]

)
+ P1 + P2,
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where

P1 =

(
α

(
n+ 2

2

)
− 2β

(
n+ 1

2

)
+ γ

(
n

2

))
d2r

dp2
[xrn+1 , xrn−1 , · · · , xr2 , xr]

[xrn , xrn−1 , · · · , xr2 , xr]
,

P2 =

(
αAn+2 − β

(
n+ 1

2

)2

+ γ

((
n+ 1

2

)(
n

2

)
−An+1

))(
dr

dp

)−2(
d2r

dp2

)2

+ (αBn+2 − γBn+1)

(
dr

dp

)−1
d3r

dp3
.

Lemma 3.2 implies P1 = 0 and P2 = 0, and then we complete the proof of
Theorem 1.1. �

From now on, we denote

F : = α
[xpn+2 , xpn−1 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]
− β

(
[xpn+1 , xpn−1 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]

)2

+ γ
[xpn+1 , xpn , xpn−2 , · · · , xp2 , xp]

[xpn , xpn−1 , · · · , xp2 , xp]
,

and assume F 6= 0 for the curve x(p) ∈ R
n, where

α =
n(n+ 1)(n − 1)

ω
, β =

(n− 1)(n + 2)(2n + 1)

2ω
, γ =

n(n+ 1)(n + 2)

ω
,

and ω is the greatest common divisor of n(n + 1)(n − 1), n(n + 1)(n + 2)

and
(n− 1)(n + 2)(2n + 1)

2
. Then we can define the fully affine arc length

element in R
n.

Definition 3.3. The fully affine arc length element for the curve x : p →
x(p) ∈ R

n is defined as

dξ =
√
ǫFdp, ǫ = sgn(F ).

Remark 3.4. This definition for the fully affine arc length parameter in R
n

is in accordance with the definitions in Example 1.1 and Example 1.2.

With the fully affine arc length parameter ξ, we have

α
[xξn+2 , xξn−1 , · · · , xξ2 , xξ]
[xξn , xξn−1 , · · · , xξ2 , xξ]

− β

(
[xξn+1 , xξn−1 , · · · , xξ2 , xξ]
[xξn , xξn−1 , · · · , xξ2 , xξ]

)2

+ γ
[xξn+1 , xξn , xξn−2 , · · · , xξ2 , xξ]

[xξn , xξn−1 , · · · , xξ2 , xξ]
= ǫ. (3.2)

Assume

xξn+1 = ϕ1xξn + λxξn−1 + ϕ3xξn−2 + · · ·+ ϕnxξ. (3.3)

It follows from (3.2) that

(α− β)ϕ2
1 + α

dϕ1

dξ
+ (α− γ)λ = ǫ,
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that is,

λ = ω
(α− β)ϕ2

1 + αdϕ1

dξ − ǫ

3n(n + 1)
. (3.4)

Furthermore, by (3.3), we have

ϕ1 =
[xξn+1 , xξn−1 , · · · , xξ]
[xξn , xξn−1 , · · · , xξ]

,

ϕ3 =
[xξn , xξn−1 , xξn+1 , xξn−3 , · · · , xξ]

[xξn , xξn−1 , · · · , xξ]
,

· · · , · · ·

ϕn =
[xξn , xξn−1 , · · · , xξ2 , xξn+1]

[xξn , xξn−1 , · · · , xξ]
.

Definition 3.5. ϕ1, ϕ3, ϕ4, · · · , ϕn in (3.3) are called the fully affine curva-
tures of the curve in R

n.

By the existence and unique of the ordinary differential equation system
and using the similar proof to that of Theorem 2.5 in [31], one can deduce

Theorem 3.6. Given functions ϕi(ξ), i = 1, 3, 4, · · · , n of a parameter ξ
and ǫ = ±1 with the relations (3.3) and (3.4), there exists a curve x(ξ) in
R
n for which ξ is a fully affine length parameter, and ϕi(ξ), i = 1, 3, 4, · · · , n

are the fully curvature functions uniquely up to a fully affine transformation.

4. Evolutions of the fully affine differential invariants

For a curve x : p → x(p) ∈ R
2, if [xp, xp2] 6= 0 on the whole curve, we

call this curve x is non-degenerate. A point where F = 0 is called a fully
affine inflection point. Note that in this paper, we assume all curves are
non-degenerate without fully affine inflection point.

Consider a family of smooth curves parameterized by C : I1 × I2 → R
2,

where t ∈ I2 ⊂ R can be viewed as the time parameter and p ∈ I1 ⊂ R is
a free parameter of each individual curve in the family. Then by Definition
3.3, we have

g(p, t) :=

√
ǫ
3[Cp, Cp2 ][Cp, Cp4 ]− 5[Cp, Cp3 ]2 + 12[Cp, Cp2 ][Cp2 , Cp3 ]

[Cp, Cp2 ]2
, (4.1)

and the fully affine arc length along the curve is given by

ξ =

∫ p

0
g(p, t)dp,

and we may use either {p, t} or {ξ, t} as coordinates of a point on the curve.
According to Definition 3.5, the fully affine differential invariants ϕ and λ
are given by

ϕ(ξ, t) = − [Cξ, Cξ3]

[Cξ, Cξ2]
, λ(ξ, t) = − [Cξ3 , Cξ2]

[Cξ, Cξ2]
, (4.2)
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where

λ =
2ϕ2 + 3ϕξ + ǫ

9
, (4.3)

and ϕ is called fully affine curvature in R
2. According to (3.3), we have the

following equations,

Cξ3 = −λCξ − ϕCξ2 ,

Cξ4 = (ϕλ − λξ)Cξ + (ϕ2 − λ− ϕξ)Cξ2 .
(4.4)

Note that in the subsequent calculations, (4.4) shall be repeatedly applied
to remove the higher derivatives Cξi , i ≥ 3. Assume that the curve C(p, t)
evolves according to the curve flow

∂C

∂t
= WCξ + UCξ2 , (4.5)

and the motion is said to be fully affine invariant if {W,U} depend only on
local values of {ϕ} and its ξ derivatives, that is , W and U are fully affine
invariants.

4.1. The evolutions of arc length and curvature. The evolution in
time of the other variables is determined by requiring

∂

∂t

∂

∂p
=

∂

∂p

∂

∂t
,

∂

∂p
= g

∂

∂ξ
,

∂

∂t

∂

∂ξ
=

∂

∂t

(
1

g

∂

∂p

)
= −gt

g

∂

∂ξ
+

∂

∂ξ

∂

∂t
.

(4.6)

Let us compute the fully affine metric evolution. According to (4.1), we
form the expression

ǫ
∂g2

∂t
= 3E − 10F + 12G, (4.7)

where

E =

(
[Cpt, Cp4 ]+ [Cp, Cp4t]

)
[Cp, Cp2 ]− [Cp, Cp4 ]

(
[Cpt, Cp2 ]+ [Cp, Cp2t]

)

[Cp, Cp2 ]2
,

F =
[Cp, Cp3 ]

[Cp, Cp2 ]
×

(
[Cpt, Cp3 ]+ [Cp, Cp3t]

)
[Cp, Cp2 ]− [Cp, Cp3 ]

(
[Cpt, Cp2 ]+ [Cp, Cp2t]

)

[Cp, Cp2 ]2
,

G =

(
[Cp2t, Cp3 ]+ [Cp2 , Cp3t]

)
[Cp, Cp2 ]− [Cp2 , Cp3 ]

(
[Cpt, Cp2 ]+ [Cp, Cp2t]

)

[Cp, Cp2 ]2
.

(4.8)
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In fact, by (4.4) and (4.6), one easily verifies that

Cp = gCξ, Cp2 = ggξCξ + g2Cξ2 ,

Cp3 =
(
− g3λ+ gg2ξ + g2gξ2

)
Cξ +

(
− ϕg3 + 3g2gξ

)
Cξ2 ,

Cp4 =
(
g4(ϕλ − λξ) + g3(gξ3 − 6λgξ) + 4g2gξgξ2 + gg3ξ

)
Cξ

+
(
g4(ϕ2 − λ− ϕξ) + g3(4gξ2 − 6ϕgξ) + 7g2g2ξ

)
Cξ2 .

Recalling (4.6), we find, in view of (4.4) and (4.5)

Cpt = (WCξ + UCξ2)p

= g(WξCξ +WCξ2 + UξCξ2 + UCξ3)

= g
(
Wξ − Uλ

)
Cξ + g

(
W + Uξ − Uϕ

)
Cξ2 ,

Cp2t =
(
g2(Wξ2 − Uλξ − 2λUξ −Wλ+ Uϕλ) + ggξ(Wξ − Uλ)

)
Cξ

+
(
g2
(
2Wξ + Uξ2 − 2ϕUξ + U(ϕ2 − ϕξ − λ)−Wϕ

)

+ ggξ(Uξ +W − Uϕ)
)
Cξ2 ,

Cp3t =

(
g3
(
Wξ3 − 3λWξ +W (ϕλ− λξ) + U(λ2 − ϕ2λ+ ϕλξ + 2λϕξ − λξ2)

+ 3Uξ(ϕλ − λξ)− 3λUξ2

)

+ g2
(
Wξgξ2 + 3gξWξ2 + (3ϕλgξ − λgξ2 − 3gξλξ)U − 3(2Uξ +W )λgξ

)

+ gg2ξ

(
Wξ − Uλ

))
Cξ

+

(
g3
(
Uξ3 − 3ϕUξ2 + 3Wξ2 − 3ϕWξ + (3Uξ +W )(ϕ2 − λ− ϕξ)

+ U(2ϕλ+ 3ϕϕξ − 2λξ − ϕ3 − ϕξ2)
)

+ g2
(
3gξUξ2 + 6Wξgξ + Uξ(gξ2 − 6ϕgξ)

+ U(3ϕ2gξ − ϕgξ2 − 3gξϕξ − 3λgξ) +W (gξ2 − 3ϕgξ)
)

+ gg2ξ

(
W + Uξ − Uϕ

))
Cξ2 ,
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Cp4t =

(
g4
(
Wξ4 − 4λUξ3 − 6λWξ2 + 6Uξ2(ϕλ− λξ)

+ 4Uξ(λ
2 − ϕ2λ+ ϕλξ + 2λϕξ − λξ2)

+ U(ϕ3λ− ϕ2λξ − 2ϕλ2 − 5ϕλϕξ

+ 3ϕξλξ + 4λλξ + ϕλξ2 + 3λϕξ2 − λξ3)

+ 4Wξ(ϕλ − λξ) +W (λ2 − ϕ2λ+ ϕλξ + 2λϕξ − λξ2)
)

+ g3
(
6gξWξ3 − 18gξλUξ2 + 4gξ2Wξ2 + 2Uξ(9gξλϕ − 9gξλξ − 4gξ2λ)

+ U(6gξλ
2 − 6gξλϕ

2 + 12gξλϕξ

+ 6gξλξϕ+ 4gξ2λϕ− gξ3λ− 6gξλξ2 − 4gξ2λξ)

+Wξ(gξ3 − 18gξλ) +W (6gξλϕ− 6gξλξ − 4gξ2λ)
)

+ g2
(
7g2ξWξ2 + 4gξgξ2Wξ − 7g2ξλW

− 14g2ξλUξ + U(7g2ξλϕ− 7g2ξλξ − 4gξgξ2λ)
)

+ gg3ξ

(
Wξ − λU

))
Cξ

+

(
g4
(
Uξ4 + 4Wξ3 − 4ϕUξ3 − 6ϕWξ2 + 6Uξ2(ϕ

2 − λ− ϕξ)

+ 4Wξ(ϕ
2 − λ− ϕξ) +W (2λϕ− ϕ3 + 3ϕϕξ − 2λξ − ϕξ2 )

+ 4Uξ(2λϕ− ϕ3 + 3ϕϕξ − 2λξ − ϕξ2)

+ U(ϕ4 − 3λϕ2 − 6ϕ2ϕξ + λ2

+ 4λϕξ + 5λξϕ+ 4ϕϕξ2 + 3ϕ2
ξ − 3λξ2 − ϕξ3)

)

+ g3
(
6gξUξ3 + 18gξWξ2 + 2(2gξ2 − 9gξϕ)Uξ2 + 2Wξ(4gξ2 − 9gξϕ)

+ Uξ(18gξϕ
2 − 8gξ2ϕ− 18gξλ− 18gξϕξ + gξ3)

+W (6gξ(ϕ
2 − λ− ϕξ)− 4gξ2ϕ+ gξ3) + U

(
4gξ2(ϕ

2 − λ− ϕξ)

+ 6gξ(2λϕ− ϕ3 + 3ϕξϕ− 2λξ − ϕξ2)− gξ3ϕ
))

+ g2
(
7g2ξUξ2 + 14g2ξWξ +W (4gξgξ2 − 7g2ξϕ) + 2Uξ(2gξgξ2 − 7g2ξϕ)

+ U(7g2ξϕ
2 − 7g2ξϕξ − 7g2ξλ− 4gξgξ2ϕ)

)

+ gg3ξ

(
W + Uξ − Uϕ

))
Cξ2 .

Then from above equations, a direct computation yields

[Cpt, Cp4 ]

[Cξ, Cξ2 ]
= g5

(
U(λ2 + ϕξλ− λξϕ) + Uξ(λξ − ϕλ)

+Wξ(ϕ
2 − λ− ϕξ) +W (λξ − ϕλ)

)

+ g4
(
6gξ(Wλ+ Uξλ−Wξϕ) + 4gξ2(Wξ − Uλ)
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+ gξ3(Uϕ−W − Uξ)
)

+ g3
(
7g2ξ(Wξ − Uλ) + 4gξ2gξ(Uϕ−W − 4Uξ)

)

+ g2g3ξ

(
Uϕ−W − Uξ

)
,

and

[Cp, Cp4t]

[Cξ, Cξ2 ]
= g5

(
Uξ4 + 4Wξ3 − 4ϕUξ3 − 6ϕWξ2 + 6Uξ2(ϕ

2 − λ− ϕξ)

+ 4Wξ(ϕ
2 − λ− ϕξ) +W (2λϕ− ϕ3 + 3ϕϕξ − 2λξ − ϕξ2)

+ 4Uξ(2λϕ− ϕ3 + 3ϕϕξ − 2λξ − ϕξ2)

+ U(ϕ4 − 3λϕ2 − 6ϕ2ϕξ + λ2

+ 4λϕξ + 5λξϕ+ 4ϕϕξ2 + 3ϕ2
ξ − 3λξ2 − ϕξ3)

)

+ g4
(
6gξUξ3 + 18gξWξ2 + 2(2gξ2 − 9gξϕ)Uξ2 + 2Wξ(4gξ2 − 9gξϕ)

+ Uξ(18gξϕ
2 − 8gξ2ϕ− 18gξλ− 18gξϕξ + gξ3)

+W (6gξ(ϕ
2 − λ− ϕξ)− 4gξ2ϕ+ gξ3)

+ U
(
4gξ2(ϕ

2 − λ− ϕξ)− gξ3ϕ
)

+ 6gξ(2λϕ− ϕ3 + 3ϕξϕ− 2λξ − ϕξ2)
)

+ g3
(
7g2ξUξ2 + 14g2ξWξ +W (4gξgξ2 − 7g2ξϕ) + 2Uξ(2gξgξ2 − 7g2ξϕ)

+ U(7g2ξϕ
2 − 7g2ξϕξ − 7g2ξλ− 4gξgξ2ϕ)

)

+ g2g3ξ

(
W + Uξ − Uϕ

)
.

Furthermore, we have

[Cp, Cp4]

[Cξ, Cξ2]
= g5(ϕ2 − λ− ϕξ) + 2g4(2gξ2 − 3gξϕ) + 7g3g2ξ ,

[Cpt, Cp2]

[Cξ, Cξ2]
= g3(Wξ − Uλ) + g2gξ(Uϕ−W − Uξ),

[Cp, Cp2t]

[Cξ, Cξ2]
= g3

(
U(ϕ2 − λ− ϕξ)− ϕ(W + 2Uξ) + 2Wξ + Uξ2

)

+ g2gξ(W + Uξ − Uϕ).

By [Cp, Cp2] = g3[Cξ, Cξ2] and (4.8), one can see

E = g2
(
Uξ4 + 4Wξ3 − 4ϕUξ3 − 6ϕWξ2 + (5Uξ2 + 2Wξ)(ϕ

2 − ϕξ − λ)

+W (2ϕξϕ− ϕξ2 − λξ)

+ U(−4ϕξϕ
2 + 2ϕ2

ξ + 2ϕξλ+ 4ϕϕξ2 + 4ϕλξ − ϕξ3 − 3λξ2)

+ Uξ(5ϕλ− 2ϕ3 + 10ϕξϕ− 4ϕξ2 − 7λξ)

)
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+ 6ggξ

(
Uξ3 + 3Wξ2 − 2ϕUξ2 − ϕWξ − ϕξW

+ Uξ(ϕ
2 − 3ϕξ − 2λ) + U(2ϕξϕ− ϕξ2 − 2λξ)

)
. (4.9)

At the same time, it is not hard to verify

[Cp, Cp3]

[Cp, Cp2]
= 3gξ − gϕ,

[Cpt, Cp3]

[Cξ, Cξ2]
= g4

(
λ(W + Uξ)−Wξϕ

)
+ g2g2ξ (ϕU − Uξ −W )

+ g3
(
3gξ(Wξ − λU) + (Uϕ− Uξ −W )gξ2

)
,

[Cp, Cp3t]

[Cξ, Cξ2]
= g4

(
Uξ3 + 3Wξ2 − 3ϕUξ2 + (W + 3Uξ)(ϕ

2 − λ− ϕξ)

− 3ϕWξ + U(2ϕλ− ϕ3 + 3ϕϕξ − ϕξ2 − 2λξ)

)

+ g3
(
3gξ(Uξ2 − 2Uξϕ+ 2Wξ −Wϕ) + (Uξ +W )gξ2

+ U
(
3gξ(ϕ

2 − λ− ϕξ)− ϕgξ2
))

+ g2g2ξ

(
Uξ +W − Uϕ

)
.

Thus, it follows by (4.8)

F =g(gϕ− 3gξ)

(
− Uξ3 + 2ϕUξ2 − 3Wξ2 + ϕWξ + ϕξW

+ Uξ(2λ− ϕ2 + 3ϕξ) + U(2λξ − 2ϕϕξ + ϕξ2 )

)
. (4.10)

Again, by

[Cp2t, Cp3 ]

[Cξ, Cξ2 ]
= g5

(
λUξ2 − ϕWξ2 + 2λWξ + U(λξϕ− λ2 − λϕξ)

)

+ g4
(
3gξWξ2 − gξ2Uξ2 + Uξ(2ϕgξ2 − 5λgξ) +Wξ(−gξϕ− 2gξ2)

+ U
(
3gξ(λϕ− λξ) + gξ2(λ + ϕξ − ϕ2)

)
+W (ϕgξ2 − 2λgξ)

)

+ g3gξ

(
gξ(Wξ − Uξ2) + Uξ(2gξϕ− gξ2) +W (gξϕ− gξ2)

+ U
(
gξ(ϕξ − ϕ2 − 2λ) + ϕgξ2

))

+ g2g3ξ

(
Uϕ− Uξ −W

)
,
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[Cp2 , Cp3t]

[Cξ, Cξ2 ]
= g5

(
−Wξ3 + 3λUξ2 + 3λWξ + U(ϕ2λ− ϕλξ − λ2 − 2λϕξ + λξ2)

+ (3Uξ +W )(λξ − ϕλ)

)

+ g4
(
gξ(Uξ3 − 3ϕUξ2) +Wξ(−3gξϕ− gξ2) + 3Uξgξ(ϕ

2 + λ− ϕξ)

+Wgξ(ϕ
2 + 2λ− ϕξ)

+ U(−gξϕ
3 − λgξϕ+ 3gξϕϕξ + gξλξ − gξϕξ2 + λgξ2)

)

+ g3gξ

(
3gξUξ2 + Uξ(−6gξϕ+ gξ2) + 5gξWξ +W (−3gξϕ+ gξ2)

+ U
(
gξ(3ϕ

2 − 2λ− 3ϕξ)− ϕgξ2
))

+ g2g3ξ

(
W + Uξ − Uϕ

)
,

and

[Cp2 , Cp3]

[Cξ, Cξ2]
= g5λ+ g4(−gξϕ− gξ2) + 2g2ξg

3,

in view of (4.8), one can obtain

G = ggξ

(
Uξ3 + 3Wξ2 − ϕ(2Uξ2 +Wξ)

+ Uξ(ϕ
2 − 2λ− 3ϕξ)− ϕξW + U(2ϕϕξ − 2λξ − ϕξ2)

)

+ g2
(
−Wξ3 + 3λUξ2 − ϕWξ2

+ Uξ(3λξ − ϕλ) + 2λWξ + λξW + U(λξ2 − 2λϕξ)

)
. (4.11)

Hence, combining of (4.7), (4.9), (4.10) and (4.11) leads to

2ǫg
∂g

∂t
= g2

(
3Uξ4 − 2ϕUξ3 + Uξ2(21λ− 5ϕ2 − 15ϕξ)

+ Uξ(4ϕ
3 − 17ϕλ+ 15λξ − 12ϕξ2)

+ 2Wξ(9λ− 2ϕ2 − 3ϕξ) +W (9λξ − 4ϕϕξ − 3ϕξ2)

+ U(8ϕ2ϕξ − 18λϕξ − 8ϕλξ + 2ϕϕξ2 + 6ϕ2
ξ + 3λξ2 − 3ϕξ3)

)
,

or, substituting (4.3) into this equation, equivalently,

ǫ
∂g

∂t
=

g

18

(
27Uξ4 − 18ϕUξ3 + Uξ2(21ǫ− 3ϕ2 − 72ϕξ)

+ Uξ(2ϕ
3 + 9ϕϕξ − 17ǫϕ− 63ϕξ2)

+ 18ǫWξ + U(4ϕ2ϕξ + 6ϕϕξ2 + 12ϕ2
ξ − 18ǫϕξ − 18ϕξ3)

)
. (4.12)
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To make further progress, we now come to a crucial computation, namely
the fully affine curvature evolution. By (4.2), we get

∂ϕ

∂t
= − ∂

∂t

[Cξ, Cξ3 ]

[Cξ, Cξ2 ]

= −
(
[Cξt, Cξ3 ]+ [Cξ, Cξ3t]

)
[Cξ, Cξ2 ]− [Cξ, Cξ3]

(
[Cξt, Cξ2 ]+ [Cξ, Cξ2t]

)

[Cξ, Cξ2 ]2
.

(4.13)

Again recalling (4.6), we have, in view of (4.4) and (4.5)

Cξt = Ctξ −
gt
g
Cξ

= (WCξ + UCξ2)ξ −
gt
g
Cξ

= (Wξ + Uλ− gt
g
)Cξ + (W + Uξ − Uϕ)Cξ2 ,

Cξ2t = Cξtξ −
gt
g
Cξ2

=
(
−
(gt
g

)
ξ
−Wλ+ U(ϕλ − λξ)− 2λUξ +Wξ2

)
Cξ

+
(
− 2

gt
g

+ U(ϕ2 − λ− ϕξ)− (W + 2Uξ)ϕ+ 2Wξ + Uξ2

)
Cξ2 ,

Cξ3t = Cξ2tξ −
gt
g
Cξ3

=
(
Wξ3 − 3λUξ2 + 3Uξ(ϕλ− λξ) + U(λ2 − λξ2 − ϕ2λ+ ϕλξ + 2λϕξ)

− 3λWξ +W (ϕλ− λξ) + 3
gt
g
λ−

(gt
g

)
ξ2

)
Cξ

+
(
Uξ3 − 3ϕUξ2 + 3Uξ(ϕ

2 − ϕξ − λ) + U(2ϕλ− ϕ3 − 2λξ + 3ϕϕξ − ϕξ2)

+ 3Wξ2 − 3ϕWξ +W (ϕ2 − λ− ϕξ) + 3
gt
g
ϕ− 3

(gt
g

)
ξ

)
Cξ2 .

Thus, by (4.4), (4.13) can be represented as

∂ϕ

∂t
=

9

2
ǫUξ5 −

9

2
ǫϕUξ4 + Uξ3

(63
2
ǫλ− 13

2
ǫϕ2 − 51

2
ǫϕξ − 1

)

+ Uξ2

(17
2
ǫϕ3 + 2ϕ− 36ǫϕλ+ 54ǫλξ −

15

2
ǫϕϕξ −

81

2
ǫϕξ2

)

+ Uξ

(
− 2ǫϕ4 − ϕ2 +

17

2
ǫϕ2λ+ 3ϕξ + 2λ+ 9ǫϕ2

ξ + 30ǫϕ2ϕξ − 45ǫϕλξ

− 105

2
ǫλϕξ + 9ǫϕϕξ2 + 27ǫλξ2 −

45

2
ǫϕξ3

)

+ U
(
− 39ǫϕξλξ + 9ǫϕλϕξ + 21ǫϕϕ2

ξ − 4ǫϕ3ϕξ + 4ǫϕ2λξ + 2λξ

− 2ϕϕξ + ϕξ2 + 21ǫϕξϕξ2 −
27

2
ǫϕλξ2 − 27ǫλϕξ2

+ 11ǫϕ2ϕξ2 +
9

2
ǫϕϕξ3 +

9

2
ǫλξ3 −

9

2
ǫϕξ4

)

+W
(
ϕξ − 6ǫϕ2

ξ −
9

2
ǫϕλξ + 2ǫϕ2ϕξ +

27

2
ǫλξ2 −

9

2
ǫϕϕξ2 −

9

2
ǫϕξ3

)
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+Wξ

(
2ǫϕ3 + ϕ− 9ǫϕλ+

81

2
ǫλξ − 15ǫϕϕξ −

27

2
ǫϕξ2

)

+Wξ2

(
27ǫλ− 3− 6ǫϕ2 − 9ǫϕξ

)
.

Substituting (4.3) into above equation generates

∂ϕ

∂t
= Wϕξ +

9

2
ǫUξ5 −

9

2
ǫϕUξ4 + Uξ3

( ǫ
2
ϕ2 − 15ǫϕξ +

5

2

)

+ Uξ2

( ǫ
2
ϕ3 − 2ϕ+

9

2
ǫϕϕξ −

45

2
ǫϕξ2

)

+ Uξ

(
− ǫ

9
ϕ4 +

7

18
ϕ2 +

2

9
ǫ+

7

6
ǫϕ2ϕξ −

13

6
ϕξ +

7

2
ǫϕ2

ξ + 6ǫϕϕξ2 −
27

2
ǫϕξ3

)

+ U
(
− 2

9
ǫϕ3ϕξ +

2

3
ǫϕϕ2

ξ −
1

9
ϕϕξ +

ǫ

3
ϕ2ϕξ2

+ 5ǫϕξϕξ2 −
4

3
ϕξ2 + 2ǫϕϕξ3 − 3ǫϕξ4

)
. (4.14)

4.2. The evolution of higher order derivatives. By (4.12) and (4.14),
we can calculate the evolutions of the higher order derivatives for the cur-
vature ϕ with respect to the fully affine arc length parameter ξ.

ϕξt = ϕtξ −
gt
g
ϕξ

= ϕξ2W +
9

2
ǫ(Uξ6 − ϕUξ5) + Uξ4

(ǫϕ2

2
− 21ǫϕξ +

5

2

)

+ Uξ3
ϕ(ǫϕ2 + 13ǫϕξ − 4)− 75ǫϕξ2

2

+ Uξ2

(
− 36ǫϕξ3 +

21ǫϕϕξ2

2
+ 12ǫϕ2

ξ

+ (3ǫϕ2 − 16

3
)ϕξ −

2ǫϕ4 − 7ϕ2 + 4ǫ

18

)

+ Uξ

(
− 33

2
ǫϕξ4 + 8ǫϕϕξ3

+
3ǫϕ2 + 43ǫϕξ − 7

2
ϕξ2 +

45ǫϕξ − 14ǫϕ2 + 29

18
ϕϕξ

)

+ U
(
− 3ǫϕξ5 + 2ǫϕϕξ4 +

ǫϕ2 + 24ǫϕξ − 4

3
ϕξ3

+
−2ǫϕ2 + 15ǫϕξ − 1

9
ϕϕξ2 + 5ǫϕ2

ξ2 −
8

9
(ǫϕ2 − 1)ϕ2

ξ

)
. (4.15)

ϕξ2t = ϕξtξ −
gt
g
ϕξ2

= ϕξ3W +
9

2
ǫ(Uξ7 − ϕUξ6) + Uξ5

ǫϕ2 − 51ϕξ + 5

2

+ Uξ4

(
ǫϕ2 + 15ǫϕξ − 4

2
ϕ− 60ǫϕξ2

)

+ Uξ3

(
− 147ǫϕξ3

2
+ 18ǫϕϕξ2
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+
37ǫϕ2

ξ

2
+

13ǫϕ2 − 22

3
ϕξ −

2ǫϕ4 − 7ϕ2 − 4ǫ

18

)

+ Uξ2

(
− 105

2
ǫϕξ4 +

37

2
ǫϕξ3

+
9ǫϕ2 + 120ǫϕξ − 20

2
ϕξ2 −

22ǫϕ2 − 147ǫϕξ − 43

18
ϕξϕ

)

+ Uξ

(
− 39

2
ǫϕξ5 + 10ǫϕϕξ4 +

33ǫϕ2 + 675ǫϕξ − 87

18
ϕξ3 + 30ǫϕ2

ξ2

+
−20ǫϕ2 + 165ǫϕϕξ + 44

18
ϕϕξ2 +

45ǫϕξ − 58ǫϕ2 + 45

18
ϕ2
ξ

)

+ U

(
− 3ǫϕξ6 + 2ǫϕϕξ5 +

ǫϕ2 + 30ǫϕξ − 4

3
ϕξ4

+
−4ǫϕ3 + 21ǫϕϕξ + 171ǫϕξ2 − ϕ

9
ϕξ3

+
4

3
ǫϕϕ2

ξ2 +
3ǫϕξ − 8ǫϕ2 + 8

3
ϕξϕξ2 −

16

9
ǫϕϕ3

ξ

)
. (4.16)

ϕξ3t = ϕξ2tξ −
gt
g
ϕξ3

= ϕξ4W +
9

2
ǫ(Uξ8 − ϕUξ7) + Uξ6

ǫϕ2 − 60ǫϕξ + 5

2

+ Uξ5
ϕ(ǫϕ2 + 17ǫϕξ − 4)− 171ǫϕξ2

2

+ Uξ4

(
− 135ǫϕξ3 +

51

2
ǫϕϕξ2 + 26ǫϕ2

ξ +
35ǫϕ2 − 56

6
ϕξ

− 2ǫϕ4 − 7ϕ2 − 4ǫ

18

)

+ Uξ3

(
− 126ǫϕξ4 +

75

2
ǫϕϕξ3 +

53ǫϕ2 + 690ǫϕξ − 104

6
ϕξ2

− 10ǫϕ2 − 101ǫϕξ − 19

6
ϕϕξ

)

+ Uξ2

(
− 72ǫϕξ5 +

57

2
ǫϕϕξ4 +

39ǫϕ2 − 96 + 720ǫϕξ

6
ϕξ3 + 90ǫϕ2

ξ2

+
32

3
ǫϕ3

ξ +
−14ǫϕ2 + 207ǫϕξ + 29

6
ϕϕξ2 +

44− 62ǫϕ2

9
ϕ2
ξ

)

+ Uξ

(
− 45

2
ǫϕξ6 + 12ǫϕϕξ5 +

13ǫϕ2 + 345ǫϕξ − 37

6
ϕξ4 +

21

2
ǫϕϕ2

ξ2

+
−26ǫϕ3 + 264ǫϕϕξ + 2160ǫϕξ2 + 58ϕ

18
ϕξ3

+
159ǫϕξ − 112ǫϕ2 + 91

9
ϕξϕξ2 −

74

9
ǫϕϕ3

ξ

)

+ U

(
− 3ǫϕξ7 + 2ǫϕξ6 +

ǫϕ2 + 36ǫϕξ − 4

3
ϕξ5 + 20ǫϕ2

ξ3 −
32

3
ǫϕϕ2

ξϕξ2
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+
−2ǫϕ3 + 27ǫϕϕξ + 261ǫϕξ2 − ϕ

9
ϕξ4 −

16

9
ǫϕ4

ξ

+
−8ǫϕ2 + 10ǫϕξ + 8

3
ϕ2
ξ2

+
42ǫϕϕξ2 + 24ǫϕ2

ξ + 32(1− ǫϕ2)ϕξ

9
ϕξ3

)
. (4.17)

5. The stability of the extremal curves on fully affine plane

The fully affine length of a curve C : [0, 1] → R
2

l :=

∫ 1

0
gdp

can be calculated. It is of interest to consider how the functional l varies
when C is deformed smoothly.

Assume C = C(ξ, t), 0 ≤ ξ ≤ 1, 0 ≤ t < T, is a smooth deformation
of C0 = C(·, 0) such that

Ct = WCξ + UCξ2 , (5.1)

where W and U are arbitrary smooth functions of ξ and t. Clearly, the first
variation of fully affine arc length is

l′(t) =
∫ 1

0
gtdp.

By (4.12), if W (1) = W (0) = 0, Upi(1) = Upi(0) = 0, i = 1, 2, 3, U(1) =
U(0) = 0, then the first variation formula can be written as

l′(t) =
ǫ

18

∫ 1

0

(
27Uξ4 − 18ϕUξ3 + Uξ2(21ǫ− 3ϕ2 − 72ϕξ)

+ Uξ(2ϕ
3 + 9ϕϕξ − 17ǫϕ− 63ϕξ2) + 18ǫWξ

+ U(4ϕ2ϕξ + 6ϕϕξ2 + 12ϕ2
ξ − 18ǫϕξ − 18ϕξ3)

)
gdp

=
ǫ

18

∫ 1

0

U

(
18ϕξ3 − (6ϕ2

ξ + 6ϕϕξ2 + 72ϕξ3)

− (6ϕ2ϕξ + 9ϕ2
ξ + 9ϕϕξ2 − 17ǫϕξ − 63ϕξ3)

+ (4ϕ2ϕξ + 6ϕϕξ2 + 12ϕ2
ξ − 18ǫϕξ − 18ϕξ3)

)
gdp

= − ǫ

2

∫ 1

0

U

(
ϕξ3 + ϕϕξ2 +

2ϕ2 + 3ϕξ + ǫ

9

)
gdp. (5.2)

Owing to the arbitrariness of function U , we have the following result (this
result was also mentioned in [31] and [33]).

Theorem 5.1. A plane curve is fully affine extremal relative to the length
functional if and only if

ϕξ3 + ϕϕξ2 +
2ϕ2 + 3ϕξ + ǫ

9
ϕξ = 0
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holds. In particular, any curves of constant fully affine curvature are ex-
tremal.

We now turn to the main task at hand — calculating the second variation
formula. If the curve is extremal at t = t0, we have

ϕξ3(ξ, t0) + ϕ(ξ, t0)ϕξ2(ξ, t0) +
2ϕ(ξ, t0)

2 + 3ϕξ(ξ, t0) + ǫ

9
ϕξ(ξ, t0) = 0.

(5.3)

It is worth pointing out that in the subsequent calculations, (5.3) shall be
repeatedly applied to remove the higher derivatives ϕξi , i ≥ 3 at t = t0.
Then by using (4.14), (4.15), (4.16), (4.17), (5.2) and (5.3), we find

l′′(t0) = − ǫ

2

∫ 1

0
U

(
ϕξ3t + ϕtϕξ2 + ϕϕξ2t +

2ϕ2 + 3ϕξ + ǫ

9
ϕξt

+
4ϕϕt + 3ϕξt

9
ϕξ

)
gdp.

= −1

2

∫ 1

0
U
(9
2
Uξ8 + f6Uξ6 + f5Uξ5 + f4Uξ4 + f3Uξ3

+ f2Uξ2 + f1Uξ + f0U
)
gdp. (5.4)

where

f0 =
2

27
ϕ2
ξ + 6ϕ4

ξ +
196

27
ǫϕ3

ξ − 2ǫϕ2
ξ2 +

8

9
ϕ4ϕ2

ξ − 100ϕξϕ
2
ξ2 +

152

3
ϕ2
ξ2ϕ

2 +
16

27
ǫϕ2

ξϕ
2

+
152

9
ϕ2ϕ3

ξ +
112

9
ǫϕϕξ2ϕξ +

88

3
ϕϕ2

ξϕξ2 +
176

9
ϕξ2ϕξϕ

3,

f1 =
4

9
ϕξ2 −

8

27
ϕ5ϕξ − 190ϕϕ2

ξ2 − 200ϕξ2ϕ
2
ξ −

122

3
ϕ3
ξϕ+

136

9
ϕ2
ξϕ

3 − 8

9
ϕξ2ϕ

4

+
116

9
ǫϕϕ2

ξ −
2

27
ϕϕξ −

8

27
ǫϕ3ϕξ − 24ǫϕξϕξ2 +

4

9
ǫϕ2ϕξ2 − 16ϕ2ϕξϕξ2 ,

f2 =
8

9
ϕξ +

2

27
ǫϕ4 − 76

3
ǫϕ2

ξ −
2

81
ϕ6 +

5

54
ϕ2 +

375

2
ϕ2
ξ2 −

136

3
ϕ3
ξ +

28

3
ϕξ2ϕ

3

− 145

2
ϕ2
ξϕ

2 +
26

9
ϕ4ϕξ +

47

9
ǫϕ2ϕξ +

2

3
ǫϕϕξ2 − 176ϕϕξϕξ2 +

2

81
ǫ,

f3 = −5ǫϕξ2 − 43ϕξ2ϕ
2 + 285ϕξϕξ2 −

46

3
ϕ3ϕξ + 59ϕϕ2

ξ −
41

3
ǫϕϕξ,

f4 = 5ǫϕξ − ǫϕ2 + 57ϕ2
ξ +

ϕ4

2
+ 96ϕϕξ2 + 37ϕ2ϕξ +

1

2
,

f5 = −9(2ϕϕξ + 9ϕξ2),

f6 = −3(ϕ2 + 9ϕξ − ǫ).
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Recalling Upi(1) = Upi(0) = 0, i = 1, 2, 3, U(1) = U(0) = 0, integration by
parts generates

9

2

∫ 1

0
UUξ8gdp =

9

2

∫ 1

0
U2
ξ4gdp,

∫ 1

0
f6UUξ6gdp =

∫ 1

0

(
− f6U

2
ξ3 +

9

2
(f6)ξ2U

2
ξ2

− 3(f6)ξ4U
2
ξ +

1

2
U2(f6)ξ6

)
gdp,

∫ 1

0
f5UUξ5gdp =

∫ 1

0

(
− 5

2
(f5)ξU

2
ξ2 +

5

2
(f5)ξ3U

2
ξ − 1

2
(f5)ξ5U

2
)
gdp,

∫ 1

0
f4UUξ4gdp =

∫ 1

0

(
f4U

2
ξ2 − 2(f4)ξ2U

2
ξ +

1

2
(f4)ξ4U

2
)
gdp,

∫ 1

0
f3UUξ3gdp =

∫ 1

0

(3
2
(f3)ξU

2
ξ − 1

2
(f3)ξ3U

2
)
gdp,

∫ 1

0
f2UUξ2gdp =

∫ 1

0

(
− f2U

2
ξ +

1

2
(f2)ξ2U

2
)
gdp,

∫ 1

0
f1UUξgdp =

∫ 1

0

(
− 1

2
(f1)ξU

2
)
gdp.

Hence, it is easy to check directly that,

l′′(t0) = −1

2

∫ 1

0

(9
2
U2
ξ4 + P3U

2
ξ3 + P2U

2
ξ2 + P1U

2
ξ + P0U

2
)
gdp, (5.5)

where

P0 =
1

2

(
(f6)ξ6 − (f5)ξ5 + (f4)ξ4 − (f3)ξ3 + (f2)ξ2 − (f1)ξ

)
+ f0,

P1 = −3(f6)ξ4 +
5

2
(f5)ξ3 − 2(f4)ξ2 +

3

2
(f3)ξ − f2,

P2 =
9

2
(f6)ξ2 −

5

2
(f5)ξ + f4,

P3 = −f6.

Obviously, we arrive at

Proposition 5.2. If P0, P1, P2 and P3 all are non-negative, then the ex-
tremal curve is stable maximal. Otherwise, the extremal curve is unstable.
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Furthermore, in view of (5.3) and the representations for fi, i = 0, 1, · · · , 6
right behind (5.4), we have

P0 =
2

3
ϕ2
ξ2(76ϕ

2 − 3ǫ− 150ϕξ) +
8

9
ϕϕξ2ϕξ(22ϕ

2 + 33ϕξ + 14ǫ) + 6ϕ4
ξ

+
4

27
(114ϕ+ 49ǫ)ϕ3

ξ +
2

27
(12ϕ4 + 8ǫϕ2 + 1)ϕ2

ξ ,

P1 = − 117

2
ϕ2
ξ2 −

1

3
(2ϕ2 + 7ǫ− 219ϕξ)ϕϕξ2 +

88

3
ϕ3
ξ +

5

6
(39ϕ2 + 8ǫ)ϕ2

ξ

+
1

9
(2ϕ4 + 25ǫϕ2 − 4)ϕξ +

1

162
(ϕ2 − 4ǫ)(2ϕ2 + ǫ)2,

P2 = 33ϕξ2ϕ+ 48ϕ2
ξ + (19ϕ2 − 4ǫ)ϕξ +

ϕ4

2
− ǫϕ2 +

1

2
,

P3 = 3(ϕ2 + 9ϕξ − ǫ).

Now let us investigate the stability for the concrete extremal curves through
calculating the values of P0, P1, P2 and P3.
Case 1. If the fully affine curvature ϕ of the extremal curve is constant,
that is, ϕξi = 0, i = 1, 2, · · · , then

P0 = 0, P1 =
1

162
(ϕ2 − 4ǫ)(2ϕ2 + ǫ)2, P2 =

ϕ4

2
− ǫϕ2 +

1

2
, P3 = 3(ϕ2 − ǫ),

and

l′′(t0) = −1

2

∫ 1

0

(
9

2
U2
ξ4 + 3(ϕ2 − ǫ)U2

ξ3 +
(ϕ2 − ǫ)2

2
U2
ξ2

+
(ϕ2 − 4ǫ)(2ϕ2 + ǫ)2

162
U2
ξ

)
gdp.

It immediately follows that

Proposition 5.3. (1) The curves with constant fully affine curvature and
ǫ = −1 are stable fully affine maximal curves. (2) The curves with constant
fully affine curvature and ǫ = 1 and ϕ2 ≥ 4 are stable fully affine maximal
curves.

Remark 5.4. It is obvious that the curves y = xα
(
α /∈ {0, 1, 12 , 2}

)
and

y = x log x are stable maximal curves, and the logarithmic spiral with polar
coordinates ρ = exp(θ tanϕ) (0 ≤ ϕ < π/2) is unstable (see [31] for a
classification of plane curves with constant fully affine curvature).

Case 2. In [31], we can find that the following ϕ(ξ) are solutions of (5.3),

ϕ(ξ) =
3
√
2

2
tanh(

√
2

3
ξ − c) , ϕ(ξ) =

3
√
2

2
coth(

√
2

3
ξ − c),

for ǫ = 1, and

ϕ(ξ) =
3
√
2

2
tan(c−

√
2

3
ξ), ϕ(ξ) =

3
√
2

2
cot(

√
2

3
ξ−c), ϕ(ξ) =

9

2(ξ − c)
±
√
2

2

for ǫ = −1. Without loss of generality, in the following, we assume c = 0.
Let us calculate stabilities of these extremal curves.
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1. If ϕ(ξ) = −3
√
2

2 tan(
√
2
3 ξ) and ǫ = −1, a direct computation yields

P3 = 3(ϕ2 + 9ϕξ − ǫ) = −
3
(
7 cos(

√
2
3 ξ)2 + 9

)

2 cos(
√
2
3 ξ)2

< 0.

Hence, the corresponding extremal curve is unstable.

2. If ϕ(ξ) = 3
√
2

2 cot(
√
2
3 ξ) and ǫ = −1, by calculation, we get

P3 = 3(ϕ2 + 9ϕξ − ǫ) = −3

(
9

2
cot(

√
2

3
ξ)2 + 8

)
< 0.

Therefore, this corresponding extremal curve also is unstable.

3. If ϕ =
√
2
2 + 9

2ξ and ǫ = −1, we can obtain

P0 =
81
(
4
√
2ξ(ξ2 − 81)− 6ξ2 + 2475

)

4ξ8
,

P1 =
27
(√

2ξ(93− 2ξ2) + 3ξ2 − 603
)

2ξ6
,

P2 =
9
(
12

√
2ξ(2ξ2 − 43) + 4ξ4 − 36ξ2 + 2781

)

32ξ4
,

P3 =
9(6

√
2ξ + 2ξ2 − 27)

4ξ2
.

To proceed further, we need to calculate the sign of P0, P1, P2 and P3.

• P0 ≥ 0 if and only if ξ ≥ ξ1, where ξ1 =
√
2
4 − (9250

√
2+24

√
155171)1/3

4 −
217

2(9250
√
2+24

√
155171)1/3

≈ −10.55;

• P1 ≥ 0 if and only if ξ ≤ ξ2, where ξ2 =
√
2
4 − (4450

√
2+100

√
2398)1/3

4 −
217

2(4450
√
2+100

√
2398)1/3

≈ −8.03;

• P2 ≥ 0;

• P3 ≥ 0 if and only if ξ ∈ (−∞,−9
√
2

2 ] ∪ [3
√
2

2 ,+∞).

In fact, we can find ξ1 < ξ2 < −9
√
2

2 ≈ −6.36. Thus, when ξ ∈ [ξ1, ξ2], the

extremal curve with ϕ =
√
2
2 + 9

2ξ and ǫ = −1 is a stable maximal fully affine
curve.

If ϕ = −
√
2
2 + 9

2ξ and ǫ = −1, by a trivial computation, we have

P0 =
81
(
− 4

√
2ξ(ξ2 − 81)− 6ξ2 + 2475

)

4ξ8
,

P1 =
27
(
−
√
2ξ(93− 2ξ2) + 3ξ2 − 603

)

2ξ6
,

P2 =
9
(
− 12

√
2ξ(2ξ2 − 43) + 4ξ4 − 36ξ2 + 2781

)

32ξ4
,
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P3 =
9(−6

√
2ξ + 2ξ2 − 27)

4ξ2
.

We discuss this in some detail.

• P0 ≥ 0 if and only if ξ ≤ ξ3, where ξ3 = (9250
√
2+24

√
155171)1/3

4 +
217

2(9250
√
2+24

√
155171)1/3

−
√
2
4 ≈ 10.55;

• P1 ≥ 0 if and only if ξ ≥ ξ4, where ξ4 = (4450
√
2+100

√
2398)1/3

4 +
217

2(4450
√
2+100

√
2398)1/3

−
√
2
4 ≈ 8.03;

• P2 ≥ 0;

• P3 ≥ 0 if and only if ξ ∈ (−∞,−3
√
2

2 ] ∪ [9
√
2

2 ,+∞).

We can see ξ3 > ξ4 >
9
√
2

2 . Thus, when ξ ∈ [ξ4, ξ3], the extremal curve with

ϕ = −
√
2
2 + 9

2ξ and ǫ = −1 is a stable maximal fully affine curve.

4. If ϕ(ξ) = 3
√
2

2 coth(
√
2
3 ξ) and ǫ = 1, one can verify that

P0 =
20
(
28 cosh4

(√
2ξ
3

)
+ 119 cosh2

(√
2ξ
3

)
+ 18

)

27 sinh8
(√

2ξ
3

) ,

P1 =
25 cosh6

(√
2ξ
3

)
+ 15 cosh4

(√
2ξ
3

)
− 4398 cosh2

(√
2ξ
3

)
− 2878

81 sinh6
(√

2ξ
3

) ,

P2 =
49 cosh4

(√
2ξ
3

)
− 96 cosh2

(√
2ξ
3

)
+ 356

8 sinh4
(√

2ξ
3

) ,

P3 =
3
(
7 cosh2

(√
2ξ
3

)
− 16

)

2 sinh2
(√

2ξ
3

) .

Let us present the details in a more concrete form.

• P0 > 0;
• P1 ≥ 0 if and only if ξ ∈ (−∞,−ξ5] ∪ [ξ5,+∞), where

ξ5 =
3
√
2

2
arccosh




√
30

√
163 cos

((
arccos 185

√
163

26569

)
/3
)
− 5

5


 ≈ 4.17;

• P2 ≥ 0;
• P3 ≥ 0 if and only if

ξ ∈ (−∞,−
3
√
2arccosh

(
4
√
7

7

)

2
] ∪ [

3
√
2arccosh

(
4
√
7

7

)

2
,+∞).
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It shows ξ5 >
3
√
2arccosh

(

4
√

7
7

)

2 ≈ 2.06. Thus, when ξ ∈ (−∞,−ξ5]∪ [ξ5,+∞),

the extremal curve with ϕ(ξ) = 3
√
2

2 coth(
√
2
3 ξ) and ǫ = 1 is a stable maximal

fully affine curve.

5. If ϕ(ξ) = 3
√
2

2 tanh(
√
2
3 ξ) and ǫ = 1, we can obtain

P0 =
20
(
28 cosh4

(√
2ξ
3

)
− 175 cosh2

(√
2ξ
3

)
+ 165

)

27 cosh8
(√

2ξ
3

) ,

P1 =
25 cosh6

(√
2ξ
3

)
− 90 cosh4

(√
2ξ
3

)
− 4293 cosh2

(√
2ξ
3

)
+ 7236

81 cosh6
(√

2ξ
3

) ,

P2 =
49 cosh4

(√
2ξ
3

)
− 2 cosh2

(√
2ξ
3

)
+ 309

8 cosh4
(√

2ξ
3

) ,

P3 =
3
(
7 cosh2

(√
2ξ
3

)
+ 9
)

2 cosh2
(√

2ξ
3

) .

By a direct computation, we find

• P0 ≥ 0 if and only if ξ ∈ (−∞,−ξ6] ∪ [−ξ7, ξ7] ∪ [ξ6,+∞), where

ξ6 =
3
√
2

2
arccosh

√
175 +

√
12145

56
≈ 3.08,

and

ξ7 =
3
√
2

2
arccosh

√
175−

√
12145

56
≈ 0.82;

• P1 ≥ 0 if and only if ξ ∈ (−∞,−ξ8] ∪ [−ξ9, ξ9] ∪ [ξ8,+∞), where

ξ8 =
3
√
2

2
arccosh

√√√√√6

5


√

163 cos



π − arccos

(
185

√
163

26569

)

3


+ 1


 ≈ 4.25,

and

ξ9 =
3
√
2

2
arccosh

√√√√√6

5


√

163 cos



π + arccos

(
185

√
163

26569

)

3


+ 1


 ≈ 1.57;

• P2 ≥ 0;
• P3 > 0.

Thus, when ξ ∈ (−∞,−ξ8] ∪ [−ξ7, ξ7] ∪ [ξ8,+∞), this extremal curve with

ϕ(ξ) = 3
√
2

2 tanh(
√
2
3 ξ) and ǫ = 1 is a stable maximal fully affine curve.
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6. Isoperimetric inequality in fully affine geometry

In this section, we mainly focus on closed curves on plane. According to
the assumption in the first paragraph of Section 4, we have [Cp, Cp2] 6= 0,
which implies the Euclidean curvature κ 6= 0. Thus, in this paper, a closed
curve is convex. The isoperimetric inequality for a domain in R

n is one of
the most beautiful results in geometry. For example, in Euclidean geometry
R
2, the isoperimetric inequality states, for the length L of a closed curve

and the area A of the planar region that it encloses, that

L2 ≥ 4πA,

and that equality holds if and only if the curve is a circle. However, the area
A is variant under fully affine transformations, and then a natural question
arises: What is the isoperimetric inequality in fully affine geometry. Firstly,
we state one lemma that will help with our subsequent argument.

Lemma 6.1. If the curve C is closed, then

∮

C
ϕdξ = 0 and ǫ = 1.

Proof. By (4.2), it is obvious to see

∮

C
ϕdξ = 0 for a closed curve C. Let σ

and µ be equi-affine arc length parameter and equi-affine curvature. Let s
and κ be the Euclidean arc length parameter and Euclidean curvature. It
is well known that (cf. [43])

dσ

ds
= κ1/3 > 0, µ = κ4/3 − 5

9
κ−8/3κ2s +

1

3
κ−5/3κss.

Note that since [Cp, Cp2] 6= 0, a suitable parameter choice can guarantee
[Cp, Cp2] > 0.

In equi-affine setting, it is not hard to verify

ǫ = sgn(µ),
dξ

dσ
= 3

√
ǫµ, ϕ =

ǫ

2
(ǫµ)−3/2µσ.

Using integration by parts, we have
∮

C
µds =

∮

C

(
κ4/3 − 5

9
κ−8/3κ2s +

1

3
κ−5/3κss

)
ds

=

∮

C

(
κ4/3 − 5

9
κ−8/3κ2s

)
ds−

∮

C

(1
3
κs

)
d
(
κ−5/3

)

=

∮

C
κ4/3ds > 0.

Based on
dξ

dσ
= 3

√
ǫµ 6= 0, one can obtain µ > 0, which implies ǫ = 1.

Hence, we complete the proof. �

By [4, 43], we see any convex smooth embedded curve converges to an
elliptical point when evolving according to equi-affine heat flow, that is,
α = 0, β = 1 in (A.3). Now we find
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Lemma 6.2. In equi-affine setting, for any convex smooth embedded closed
curve C, ∮

C

√
µdσ ≤ 2π,

and that equality holds if and only if the curve is an ellipse.

Proof. A direct computer shows that if C is an ellipse,

∮

C

√
µdσ = 2π. Under

the equi-affine heat flow, (A.4) and (A.5) can be represented as

ḡt
ḡ

= −2

3
µ, µt =

4

3
µ2 +

1

3
µσ2 .

In particular, by [43], if µ(·, 0) > 0, then µ(·, t) > 0. Hence, if the initial
curve is not an ellipse, integration by parts gives

d

dt

∮

C

√
µdσ =

∮

C

(
µt

2
√
µ
+

√
µ
ḡt
ḡ

)
dσ

=

∮

C

1

6
√
µ
µσ2dσ

=
1

12

∮

C
µ−3/2µ2

σdσ > 0,

which implies

∮

C

√
µdσ is strictly monotone increasing with respect to the

time t. Since any convex smooth embedded curve converges to an elliptical
point when evolving according to equi-affine heat flow, and then we complete
the proof. �

Remark 6.3. An alternative proof of Lemma 6.2 is to apply (1.1) and (1.2),
which imply

2

∮

C
µdσ ≤

(∮

C
dσ

)2

A−1 ≤ 8π2

(∮

C
dσ

)−1

.

The Cauchy–Schwarz inequality leads to

(∮

C

√
µdσ

)2

≤
∮

C
dσ

∮

C
µdσ ≤

4π2, then we achieve the desired result.

According to

∮

C
dξ = 3

∮

C

√
µdσ, we obtain the fully affine isoperimetric

inequality.

Theorem 6.4. In fully affine geometry, for any convex smooth embedded
closed curve C, the fully affine perimeter of the curve

L =

∮

C
dξ ≤ 6π,

and that equality holds if and only if the curve is an ellipse.
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In view of

∮

C
dξ =

∮

C

√
9κ4 + 3κκss − 5κ2s

κ2
ds, we have

Corollary 6.5. In Euclidean geometry, for any convex smooth embedded
closed curve C, we have

∮

C

√
9κ4 + 3κκss − 5κ2s

κ2
ds ≤ 6π,

and that equality holds if and only if the curve is an ellipse.

7. Fully affine heat flow

The fully affine heat evolution equation is given by

∂C(p, t)

∂t
= Cξ2(p, t), C(·, 0) = C0(·). (7.1)

This implies U = 1 and W = 0 in (4.5). Then (4.12) and (4.14) can be
rewritten as

gt
g

=
ǫ

9
(2ϕ2ϕξ + 3ϕϕξ2 + 6ϕ2

ξ − 9ǫϕξ − 9ϕξ3), (7.2)

ϕt = −2

9
ǫϕ3ϕξ +

2

3
ǫϕϕ2

ξ −
1

9
ϕϕξ +

ǫ

3
ϕ2ϕξ2 + 5ǫϕξϕξ2

− 4

3
ϕξ2 + 2ǫϕϕξ3 − 3ǫϕξ4 . (7.3)

7.1. Solitons of the heat flow. In general, a soliton is defined as a solution
of an evolution equation that evolves along symmetries of the equation. Let
us illustrate what we mean by “evolving along symmetries”. Taking the
ordinary one-dimensional heat equation ft = fxx as an example, we can see
that the following vector fields are infinitesimal symmetries of this equation,
that is, each one generates a one-parameter group of transformations which
transform solutions to solutions:

X1 =
∂

∂x
, translation in space

X2 =
∂

∂t
, translation in time

X3 = f
∂

∂f
, scaling in f

X4 = x
∂

∂x
+ 2t

∂

∂t
, scaling in space and time.

Another evolution equation is CSF,
∂C

∂t
= κN , where C(p, t) is a one-

parameter family of immersed plane curves with curvature κ and unit normal
vector N . It is well known that the symmetries of this flow are the rigid
motions of the plane, translation in time, and simultaneous dilation in space
and time. Among the soliton solutions are Abresch-Langer curves, which
evolve by rotation and dilation, and the “Grim Reaper” cos x = exp(−y),
which evolves by translation in the y-direction.
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Analogously, the symmetries of heat flow (7.1) are the fully affine motions
of the plane, translation and simultaneous dilation in time. Then the soliton

of heat flow (7.1) is a family of curves Ĉ of the form

Ĉ(p, t) = l(t)A(t)C(p) +H(t), (7.4)

where I is an interval containing 0, l : I → R, A : I → R
2×2, H : I → R

2 are
differentiable and the determinant of A(t) is 1 such that l(0) = 1,H(0) = 0,

A(0) is the identity matrix, and hence Ĉ(p, 0) = C(p). The function l
determines the scaling, A determines the area-preserving deformation and
H is the translation term.

By (4.1), (4.2) and (7.4), we find

g(p, t) = g(p, 0), ϕ(p, t) = ϕ(p, 0), ∀t
which implies

∂g

∂t
≡ 0,

∂ϕ

∂t
≡ 0. (7.5)

According to (7.2) and (7.3), we find the solutions for (7.5) include the case
ϕ is constant. In the following examples, we list the motions of the curves
with constant fully affine curvature under the flow (7.1). Throughout the
paper the superscript “T” represents the transpose of a vector or matrix.

Example 7.1. For ϕ ≡ 0 and ǫ = 1, the initial curve C0 should be an
ellipse. Assume C0 = (a0 cos θ, b0 sin θ)

T + (x0, y0)
T. The solution for (7.1)

is

C(θ, t) = exp(−t/9)(a0 cos θ, b0 sin θ)
T + (x0, y0)

T.

This is a shrinking soliton.

Example 7.2. If the initial curve C0 is hyperbola (a0 cosh θ, b0 sinh θ)
T +

(x0, y0)
T, which implies ϕ ≡ 0 and ǫ = −1. Then we have

C(θ, t) = exp(t/9)(a0 cosh θ, b0 sinh θ)
T + (x0, y0)

T,

and it is an expanding soliton.

Example 7.3. Assume the initial curve C0 = (2θ, θ log(θ))T + (x0, y0)
T,

that is, ϕ ≡ 2 and ǫ = 1. The solution for (7.1) is

C(θ, t) = exp(t)(2θ, 2tθ + θ log(θ))T + (x0, y0)
T,

which is an expanding soliton.

Example 7.4. For ϕ ≡ |α+1|
|α−1|1/2|2α−1|1/2 and ǫ = −sgn

(
(2α− 1)(α− 2)

)
, we

have the solution

C(θ, t) =

(
θ exp

(
t

|2α2 − 5α+ 2|

)
, θα exp

(
α2t

|2α2 − 5α+ 2|

))T

+ (x0, y0)
T,

where θ > 0, α is a constant and α /∈ {0, 1
2
, 1, 2}, with the initial curve

C0 = (θ, θα)T + (x0, y0)
T.
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Example 7.5. For ϕ ≡ 2 sin β (β ∈ (0, π/2)) and ǫ = 1, we have the solu-
tion

C(θ, t) = exp

(
αθ +

α2 − 1

α2 + 9
t

)(
sin

(
θ +

2αt

α2 + 9

)
,− cos

(
θ +

2αt

α2 + 9

))T

,

where α = 3 tan β, with the initial curve C0 = exp (αθ) (sin θ,− cos θ)T.

The proof of Theorem 1.2. By [32], C = C(ξ) is a local embedding of a
soliton which moves away from a central point P or moves along a vector A
at a given point in time if and only if

∂tC = Cξ2 = a(C − P ) + f(ξ)Cξ (7.6)

or
∂tC = Cξ2 = A+ f(ξ)Cξ (7.7)

where a is a constant and f(ξ)Cξ is a tangent vector field. If a > 0 (or
a < 0) in (7.6), then it is called expanding (or shrinking) soliton. It is called
translating soliton for (7.7).

By differentiating both sides with respect to ξ, (7.6) and (7.7) lead to

Cξ3 = aCξ + fξCξ + fCξ2.

Comparing with (4.4), we see that

f = −ϕ, a+ fξ = −λ = −2ϕ2 + 3ϕξ + ǫ

9
,

which generate an ordinary differential equation

2ϕ2 − 6ϕξ + 9a+ ǫ = 0.

If ϕ is constant, then we have ϕ2 = −9a+ ǫ

2
. Let A2 =

∣∣∣∣
9a+ ǫ

2

∣∣∣∣. If

ϕ is not constant, by solving the ordinary differential equation, we have

ϕ = −3

ξ
, ϕ = A tan

(
A

3
ξ

)
, ϕ = −A cot

(
A

3
ξ

)
, ϕ = −A tanh

(
A

3
ξ

)
or

ϕ = −A coth

(
A

3
ξ

)
.

On the other hand, substituting U = 1,W = ϕ into (4.12) and (4.14)
generates

gt
g

=
ǫ

9
(−9ϕξ3 + 3ϕϕξ2 + 6ϕ2

ξ + 2ϕ2ϕξ),

ϕt = −3ǫϕξ4 + 2ǫϕϕξ3

+
ǫϕ2 + 15ǫϕξ − 4

3
ϕξ2 −

2ϕ(ǫϕ2 − 3ǫϕξ − 4)

9
ϕξ.

(7.8)

If gt ≡ 0 in (7.8), we obtain

ϕξ3 =
1

9
(3ϕϕξ2 + 6ϕ2

ξ + 2ϕ2ϕξ),

ϕξ4 =
ϕ2 + 5ϕξ

3
ϕξ2 +

2ϕ(ϕ2 + 9ϕξ)

27
ϕξ.
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By substituting these two equations into the above representation of ϕt in
(7.8), we obtain

ϕt = −4

3

(
ϕξ2 −

2

3
ϕϕξ

)
.

Substituting ϕξ2 =
2

3
ϕϕξ into (7.8) gives gt ≡ 0 and ϕt ≡ 0.

A direct integration shows ϕξ2 =
2

3
ϕϕξ is equivalent to ϕ is constant,

ϕ = −3

ξ
, ϕ = A tan

(
A

3
ξ

)
, ϕ = −A cot

(
A

3
ξ

)
, ϕ = −A tanh

(
A

3
ξ

)
or

ϕ = −A coth

(
A

3
ξ

)
for some nonzero constant A.

If a soliton is closed, for U = 1 and arbitrary W , (4.12) and (4.14) produce

gt
g

=
1

9
(2ϕ2ϕξ + 3ϕϕξ2 + 6ϕ2

ξ − 9ϕξ − 9ϕξ3) +Wξ,

ϕt = −2

9
ϕ3ϕξ +

2

3
ϕϕ2

ξ −
1

9
ϕϕξ +

1

3
ϕ2ϕξ2 + 5ϕξϕξ2

− 4

3
ϕξ2 + 2ϕϕξ3 − 3ϕξ4 +Wϕξ.

Then integrating
gt
g

on a closed curve C gives

∫

C

gt
g
dξ =

1

3

∫

C
ϕ2
ξdξ.

Hence, gt ≡ 0 and ϕt ≡ 0 imply ϕ is constant, that is, this closed soliton is
an ellipse. The proof of Theorem 1.2 is completed. �

7.2. Energy estimates for the heat flow. In the following, we proceed to
derive some energy inequalities for a family of closed curves C(p, t) evolving
according to the heat flow (7.1). According to Lemma 6.1, it is easy to see
ǫ = 1. Then according to Section 2, by a trivial computation, we have

Cξ2 =
1

9µ
Cσ2 − µσ

18µ2
Cσ, (7.9)

where σ and µ are equi-affine arc length parameter and equi-affine curvature.
Similarly, a direct computation yields

Cσ2 = κ1/3N − κs

3κ5/3
T,

where s and κ are Euclidean arc length parameter and Euclidean curvature.
The tangential component of the velocity vector affects only the parametriza-
tion of the family of curves in the evolution, not their shape. So the existence
of the family of curves is determined by the normal component of the velocity
in Euclidean setting

Ct =
1

9κ− 5κ−3κ2s + 3κ−2κss
N, C(·, 0) = C0(·).
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Now we discuss the local existence and uniqueness for (7.1) in equi-affine
setting. In view of (7.9), (7.1) can be rewritten as

∂C(p, t)

∂t
=

1

9µ
Cσ2 − µσ

18µ2
Cσ, C(·, 0) = C0(·),

which is equivalent to choosing β =
1

9µ
, α =

σ2 − 9βσ
27

in (A.3). Thus,

(A.4) and (A.5) can be represented as

ḡt = 0

and

µt =− 1

27µ2
µσ4 +

8

27µ3
µσµσ3 +

2

9µ3
µ2
σ2 −

4

27µ4

(
9µ2

σ + µ3
)
µσ2

+
8µ4

σ

9µ5
+

2µ2
σ

9µ2
+

2

27
(σµσ + 2µ). (7.10)

This implies, in (7.10),
∂

∂t

∂

∂σ
=

∂

∂σ

∂

∂t
. According to Theorem A.1, there

exists a unique solution of (7.10) in some [0, t1), t1 > 0 where t1 depends on
the H4-norm of µ0. The equi-affine curvature µ defines, up to an equi-affine
transformation, a unique curve [35]. Hence,

Theorem 7.1 (Local existence and uniqueness). For the curve flow (7.1)
with ǫ = 1, there exists a unique solution in an interval [0, t1), t1 > 0, where
t1 depends on the H4-norm of the equi-affine curvature of the initial curve
C0.

Assume that Pn
m(ϕ) is any linear combination of terms of the type ∂i1ϕ ∗

· · · ∗ ∂imϕ with universal constant coefficients, and n = i1 + · · · + im is the
total number of derivatives. With these notations, we could rewrite the
evolution equation of the curvature ϕ and metric g as

gt
g

= P 3
1 (ϕ) + P 2

2 (ϕ) + P 1
3 (ϕ) + P 1

1 (ϕ),

ϕt = −3ϕξ5 + P 3
2 (ϕ) + P 2

3 (ϕ) + P 2
1 (ϕ) + P 1

4 (ϕ) + P 1
2 (ϕ).

Utilizing (4.14), (4.15), (4.16), (4.17) and

(
∂kϕ

∂ξk

)

t

=

(
∂k−1ϕ

∂ξk−1

)

tξ

− gt
g

∂kϕ

∂ξk
,

we find

Lemma 7.2. The evolutions of ϕkξ are given by

(ϕkξ)t = −3ϕξk+4 + P k+3
2 (ϕ) + P k+2

3 (ϕ) + P k+2
1 (ϕ) + P k+1

4 (ϕ) + P k+1
2 (ϕ).
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Then, by (7.2) and (7.3) we have

d

dt

∮

C

ϕ2dξ =

∮

C

(
2ϕϕt + ϕ2 gt

g

)
dξ

= −2

9

∮

C

ϕ
(
27ϕξ4 −

27

2
ϕϕξ3 − 3(

3

2
ϕ2 + 15ϕξ − 4)ϕξ2

+ (ϕ2 − 9ϕξ +
11

2
)ϕϕξ

)
dξ

= −2

9

∮

C

9ϕϕ2
ξ + 27ϕ2

ξ2 + 9ϕ3
ξ − 12ϕ2

ξ − 9ϕ2ϕ2
ξdξ

= −6

∮

C

ϕ2
ξ2dξ − 2

∮

C

ϕϕ2
ξdξ − 2

∮

C

ϕ3
ξdξ + 2

∮

C

ϕ2ϕ2
ξdξ +

8

3

∮

C

ϕ2
ξdξ.

Since

∮

C
ϕdξ = 0, we shall use the interpolation inequalities: For periodic

function u with zero mean,

||u(j)||Lr ≤ D||u||1−θ
Lp · ||u(k)||θLq , θ ∈ (0, 1),

where r, q, p, j and k satisfy p, q, r > 1, j ≥ 0,

1

r
= j + θ(

1

q
− k) + (1− θ)

1

p
,

and
j

k
≤ θ ≤ 1.

Here the constant D depends on r, p, q, j and k only. Using this interpolation
inequality, we have

( ∮

C
ϕ4dξ

) 1
2 ≤ D1

( ∮

C
ϕ2dξ

) 7
8
( ∮

C
ϕ2
ξ2dξ

) 1
8
,

and ( ∮

C
ϕ4
ξdξ
) 1

2 ≤ D2

( ∮

C
ϕ2dξ

) 3
8
( ∮

C
ϕ2
ξ2dξ

) 5
8
.

Therefore,
∮

C

ϕ2ϕ2
ξdξ ≤

( ∮

C

ϕ4dξ
) 1

2
( ∮

C

ϕ4
ξdξ
) 1

2

≤ D3

( ∮

C

ϕ2dξ
) 5

4
( ∮

C

ϕ2
ξ2dξ

) 3
4

≤ η1

∮

C

ϕ2
ξ2dξ +

27

256
D4

3η
−3
1

(∮

C

ϕ2dξ
)5

.

∣∣∣∣
∮

C

ϕϕ2
ξdξ

∣∣∣∣ ≤
(∮

C

ϕ2dξ
) 1

2
(∮

C

ϕ4
ξdξ
) 1

2

≤ D4

(∮

C

ϕ2dξ
) 7

8
(∮

C

ϕ2
ξ2dξ

) 5
8

≤ η2

∮

C

ϕ2
ξ2dξ +

3

8

(
5

8

) 5
3

D
8
3
4 η

− 5
3

2

( ∮

C

ϕ2dξ
) 7

3

.
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∮

C

ϕ2
ξdξ ≤ D5

( ∮

C

ϕ2dξ
) 1

2
( ∮

C

ϕ2
ξ2dξ

) 1
2

≤ η3

∮

C

ϕ2
ξ2dξ +

1

4
D2

5η
−1
3

∮

C

ϕ2dξ.

∣∣∣∣
∮

C

ϕ3
ξdξ

∣∣∣∣ ≤
(∮

C

ϕ2
ξdξ
) 1

2
( ∮

C

ϕ4
ξdξ
) 1

2

≤ D2D
1
2
5

( ∮

C

ϕ2dξ
) 5

8
( ∮

C

ϕ2
ξ2dξ

) 7
8

≤ η4

∮

C

ϕ2
ξ2dξ +

77

88
D8

2D
4
5η

−7
4

(∮

C

ϕ2dξ
)5

.

Hence, we obtain

d

dt

∮

C
ϕ2dξ ≤ (2η1 + 2η2 +

8

3
η3 + 2η4 − 6)

∮

C
ϕ2
ξ2dξ + p(E),

where

p(E) =
27

128
D4

3η
−3
1 E5+

3

4

(
5

8η2

) 5
3

D
8
3
4 E

7
3 +

2

3
D2

5η
−1
3 E+

1

4

(
7

8η4

)7

D8
2D

4
5E

5,

and

E =

∮

C
ϕ2dξ.

By choosing ηi, i = 1, 2, 3, 4 so that 2η1 + 2η2 +
8
3η3 + 2η4 = 6, we see

dE

dt
≤ C1(E + E5), (7.11)

where C1 is a constant. Using the similar proof to that of Proposition 2.5
in [17], we may deduce

Lemma 7.3. Let C : I → R
2 be a smooth closed curve. For any Pµ

ν (ϕ)
with ν ≥ 2 which includes only derivatives of ϕ of order at most l − 1 and
γ = (µ+ 1

2ν − 1)/l < 2, one has, ∀η > 0
∮

C
|Pµ

ν (ϕ)|dξ ≤ η

∮

C
|∂l

ξϕ|2dξ+ cη−
γ

2−γ

(∮

C
ϕ2dξ

) ν−γ
2−γ

+ c2

(∮

C
ϕ2dξ

)ν+µ−1
,

where c and c2 are constant and depend only l, µ and ν.

By Lemma 7.2, it follows

d

dt

∮

C

(
dnϕ

dξn

)2

dξ =

∮

C

2ϕξn (ϕξn)t + ϕ2
ξn

gt
g
dξ

= −6

∮

C

(
ϕξn+2

)2
dξ +

∮

C

(
P 2n+3
3 (ϕ) + P 2n+2

4 (ϕ)

+ P 2n+2
2 (ϕ) + P 2n+1

5 (ϕ) + P 2n+1
3 (ϕ)

)
dξ.
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Let l = n+ 2, by Lemma 7.3, we have the estimates
∮

C
|P 2n+3

3 (ϕ)|dξ ≤ η

∮

C

(
ϕξn+2

)2
dξ + (cη−4n−7 + c2)

( ∮

C
ϕ2dξ

)2n+5
,

∮

C
|P 2n+2

4 (ϕ)|dξ ≤ η

∮

C

(
ϕξn+2

)2
dξ + (cη−2n−3 + c2)

( ∮

C
ϕ2dξ

)2n+5
,

∮

C
|P 2n+2

2 (ϕ)|dξ ≤ η

∮

C

(
ϕξn+2

)2
dξ + cη−n−1

∮

C
ϕ2dξ + c2

(∮

C
ϕ2dξ

)2n+3
,

∮

C
|P 2n+1

5 (ϕ)|dξ ≤ η

∮

C

(
ϕξn+2

)2
dξ + (cη−

4n+5
3 + c2)

(∮

C
ϕ2dξ

)2n+5
,

∮

C
|P 2n+1

3 (ϕ)|dξ ≤ η

∮

C

(
ϕξn+2

)2
dξ + cη−

4n+3
5

( ∮

C
ϕ2dξ

) 2n+9
5

+ c2

(∮

C
ϕ2dξ

)2n+3
.

Using the similar procedure as the previous part, we may derive

Proposition 7.4. For the fully affine heat flow, the following inequality
holds.

d

dt

∮

C

(
dnϕ

dξn

)2

dξ ≤ D(E + E2n+5), (7.12)

for some constant D.

Proof of Theorem 1.3. It is similar to the proof of Proposition A in [11].
For reader’s convenience, we present the key arguments below. If E(t) is
uniformly bounded in [0, T ) for some T . By integrating (7.12), we obtain
that it implies a uniform bound on the L2-norm of the all derivatives of the
curvature ϕ with respect to the fully affine arc length ξ. Hence the local
existence of Theorem 7.1 can be employed to extend the flow beyond T . If
we take T to be ω, it can be concluded that E(t) must become unbounded
as a finite ω is approached.

When ω is finite and t is close to ω, which implies E(t) > 1, by integrating
(7.11) from t to ω, we have

E4(t) ≥ 1

8D
(ω − t)−1.

This gives the desired lower bound for the blow-up rate.
By (7.2) we have

dL(t)

dt
=

d

dt

∮

C

gt
g
dξ =

1

3

∮

C
ϕ2
ξdξ > 0,

and

1

3

∫ t

0

∮

C
ϕ2
ξdξdt = L(t)− L(0). (7.13)
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When ω is infinity, according to Theorem 6.4, we have L(t) is uniformly
bounded. Then it follows∫ ∞

0

∮

C
ϕ2
ξ(ξ, τ)dξdτ ≤ L0,

for some constant L0. According to Wirtinger inequality, we have
∫ ∞

0

∮

C
ϕ2(ξ, τ)dξdτ ≤ L1,

for some constant L1. Hence for any η > 0, there exists j0 such that we can
find, by the mean value theorem, tj ∈ [j, j + 1] satisfying Etj ≤ η for all
j ≥ j0. From (7.11) it is clear that we can find a sufficiently small η such
that E(t) is less than 1 for all t in [tj , tj+2]. It means that E(t) is uniformly
bounded in [j0 + 1,∞). It follows from (7.12) and parabolic regularity that
all spatial and time derivatives of ϕ are uniformly bounded. In view of
(7.13), any sequence {ϕ(·, tj)} contains a subsequence {ϕ(·, tji)} converging

smoothly to a constant as tji → ∞. Since

∮

C
ϕdξ = 0, the constant must be

zero. By Example 7.1, the ellipse is the static solution for heat flow (7.1),
and then the proof of Theorem 1.3 is completed. �

Appendix A

A.1. Motions of plane curves in equi-affine setting. Let C(p, t) : I1×
I2 → R

2 be a family of curves where p ∈ I1 ⊂ R parameterizes each curve
and t ∈ I2 ⊂ R parameterizes the family. According to Example 2.5, setting

ḡ(p, t) = [Cp, Cp2]
1/3, (A.1)

and the equi-affine arc length σ is explicitly given by

σ(p, t) =

∫ p

0
ḡ(p, t)dp.

If a plane curve C(p) parametrized by equi-affine arc length σ, we have

[Cσ , Cσ2 ] = 1.

By Section 2.2.5, the equi-affine curvature is given by

µ = [Cσ2 , Cσ3 ], (A.2)

which implies Cσ3 = −µCσ. Assume that the curve C(p, t) evolves according
to the curve flow

∂C

∂t
= αCσ + βCσ2 , (A.3)

where {α, β} depend only on local values of µ and its σ derivatives. It is
easy to check

Cp = ḡCσ, Cp2 = ḡḡσCσ + ḡ2Cσ2 ,
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and

Cpt = ḡ(ασ − βµ)Cσ + ḡ(α+ βσ)Cσ2 ,

Cp2t =
(
ḡ2(ασ2 − 2βσµ− µσβ − αµ) + ḡḡσ(ασ − µβ)

)
Cσ

+
(
ḡ2(2ασ + βσ2 − βµ) + ḡḡσ(α+ βσ)

)
Cσ2 .

In view of (A.1), we have

∂g3

∂t
= [Cpt, Cp2]+ [Cp, Cp2t],

which generates
ḡt
ḡ

= ασ − 2

3
βµ+

1

3
βσ2 . (A.4)

Proceed further, we have

Cσt = Ctσ − ḡt
ḡ
Cσ

= −1

3
(µβ + βσ2)Cσ + (α+ βσ)Cσ2 ,

Cσ2t = Cσtσ − ḡt
ḡ
Cσ2

= −1

3

(
4µβσ + µσβ + αµβσ3

)
Cσ +

1

3
(βσ2 + µβ)Cσ2 ,

and

Cσ3t = Cσ2tσ − ḡt
ḡ
Cσ3

= −1

3

(
βµσ2 + 4µβσ2 + 3βµ2 + 5βσµσ + 3αµσ + βσ4

)
Cσ

− µ
(
α+ βσ

)
Cσ2 .

Hence,

µt = [Cσ2t, Cσ3 ]+ [Cσ2 , Cσ3t]

=
1

3

(
βσ4 + 5µβσ2 + 5βσµσ + 4βµ2 + αµσ + µσ2β

)
. (A.5)

A.2. Local existence of a fourth-order parabolic equation. In [23],
the equation
{
ut + a(x, u, ux)uxxxx + b(x, u, ux, uxx)uxxx + c(x, u, ux, uxx) = 0,

u(x, 0) = u0(x),
(A.6)

for t > 0 and x ∈ T = R/(ωZ) with ω > 0 was considered. For (A.6),
assume:

(a) The function a(x, α0, α1) is positive;
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(b) Let M > 0 be given. The functions a(x, α0, α1), b(x, α0, α1, α2) and
c(x, α0, α1, α2) are smooth in their all arguments but restricted for
|α0| ≤ 2µM and ω-periodic in x, where µ = µ(T ) > 0 denote a
number in Sobolev inequality

‖f‖L∞(T ) ≤ µ‖f‖H1(T ) for f ∈ H1(T ).

Theorem A.1 (Local existence for (A.6), [23]). Let M > 0. Assume (a) and
(b). Then for any u0 ∈ H4(T ) with ‖u0‖H4(T ) ≤ M , there is a T0(M) > 0
such that there exists a unique solution u(x, t) of (A.6) satisfying

u ∈ L2(0, T0(M);H6(T )), ut ∈ L2(0, T0(M);H2(T )), ‖u‖H4(T )(t) ≤ 2M,

for t ∈ [0, T0(M)].
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