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C*-ALGEBRAS OF GENERALIZED BOOLEAN DYNAMICAL
SYSTEMS AS PARTIAL CROSSED PRODUCTS

GILLES G. DE CASTRO AND EUN JI KANG

ABSTRACT. In this paper, we realize C*-algebras of generalized Boolean dynam-
ical systems as partial crossed products. Reciprocally, we give some sufficient
conditions for a partial crossed product to be isomorphic to a C*-algebra of a
generalized Boolean dynamical system. As an application, we show that gauge-
invariant ideals of C*-algebras of generalized Boolean dynamical systems are
themselves C*-algebras of generalized Boolean dynamical systems.

1. INTRODUCTION

Ever since the work of Cuntz-Krieger [§], there has been an interest in study-
ing C*-algebras associated with dynamics on totally disconnected locally compact
Hausdorff spaces. Usually, there is a combinatorial object associated with the dy-
namics, such as a square matrix of 0-1 in the case of Cuntz-Krieger algebras. In [2],
Bates and Pask initiated the study of C*-algebras associated with labeled graphs
and showed how several of the generalization of Cuntz-Krieger algebras fitted in
their framework. As a different approach to study these algebras, Carlsen, Ortega
and Pardo introduced C*-algebras of Boolean dynamical systems in [7]. The main
point is that totally disconnected locally compact Hausdorff spaces is completely
characterized by the Boolean algebra of compact-open sets via Stone duality. How-
ever, due to some hypothesis needed in [7], not all C*-algebras of labeled spaces
were included in their work. This was achieved later by Carlsen and the second
named author in [6] with generalized Boolean dynamical systems.

When studying C*-algebras, it is important and fruitful to realize C*-algebras
using different models as one can benefit from the established theory about these
models. Two of them are groupoids C*-algebras [18] and partial crossed products
[11]. In a previous work [9], the authors have given several groupoid models for the
C*-algebras of generalized Boolean dynamical systems.

The first goal of this paper is to realize C*-algebras of generalized Boolean dy-
namical systems as partial crossed products. Given a generalized Boolean dynam-
ical system (B, L,60,Z,), the boundary path space OF arising from a topological
correspondence E associated with the generalized Boolean dynamical system was
introduced in [9]. To achieve our goal, we construct a semi-saturated orthogonal
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partial action of the free group F generated by £ on dF. We then prove that the
groupoid obtained from the partial action is isomorphic to the Renault-Deaconu
groupoid I'(OF, og), where o is a shift map on OE. As a consequence of this iso-
morphism and the results of [9], we have that the partial crossed product C*-algebra
obtained from the partial action is isomorphic to the C*-algebra of the generalized
Boolean dynamical system.

The second goal of the paper is to give sufficient conditions for a partial crossed
product to be modeled using generalized Boolean dynamical systems similar to
what is done for labeled graphs in [5]. For that, we need a partial action that is
similar to the one obtained for generalized Boolean dynamical systems, namely a
semi-saturated orthogonal partial action of the free group on a totally disconnected
locally compact Hausdorff space with an extra condition. The C*-algebraic ver-
sion of this model is then obtained by observing that the algebras of continuous
functions on totally disconnected locally compact Hausdorff spaces are exactly the
class of commutative C*-algebras generated by projections. As an application of
this construction, we show that gauge-invariant ideals of C*-algebras of general-
ized Boolean dynamical systems are themselves C*-algebras of generalized Boolean
dynamical systems.

This paper is organized as follows. In Section 2, we provide the necessary def-
initions and results. In Section Bl we recall the definition of the boundary path
space OF arising from a generalized Boolean dynamical system and present some
of properties of OE. We then define a partial action on 0F (Proposition B.16) and
characterize the associated partial crossed products (Proposition B:220]). In Section
[, we prove that the transformation groupoid of the partial action is isomorphic to
the boundary path groupoid of the generalized Boolean dynamical system (Theorem
[4.4]) and as a consequence, we show that the partial crossed product given in the
previous section is isomorphic to C*-algebra of the generalized Boolean dynamical
system (Corollary [.5]). In Section [5] we give sufficient conditions for a partial ac-
tion to be modeled by a generalized Boolean dynamical system (Theorem [5.1]) and
we prove that certain partial crossed products are isomorphic to the C*-algebras
of Boolean dynamical systems (Corollary 5.5]). Finally, in Section [6] we apply the
results of Section [ to study gauge-invariant ideals of C*-algebras of generalized
Boolean dynamical systems (Corollary [6.2)).

2. PRELIMINARIES

2.1. Filters and characters. A filter in a partially ordered set P with least ele-
ment 0 is a non-empty subset & of P such that
(i) 0 ¢¢,
(i) if z € £ and = < y, then y € &,
(iii) if z,y € &, there exists z € £ such that z <z and z < y.
If P is a (meet) semilattice, condition (iii) may be replaced by x Ay if x,y € £. An
ultrafilter is a filter that is not properly contained in any filter.
For a given x € P, we define

te={yeP:z<y}and x={yeP:y<uz}
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and for subsets X,Y of P, we define T X = {y € P: 2z <y for some z € X} and
Ty X =YN 1T X. The sets Ty z, ly =, | X and |y X should have their obvious
meaning.

We mean by E a semilattice with 0. A character on F is a nonzero function ¢
from F to the Boolean algebra {0,1} such that

¢(0) = 0 and ¢(ef) = d(e)d(f)

for all e, f € E. We denote by Ej the set of all characters on E. We view Ej as a

topological space equipped with the product topology inherited from {0,1}¥. It is

easy to see that Ey is a locally compact totally disconnected Hausdorff space.
Given a filter n in E, the map

¢n: E — {0,1} given by ¢,(e) = {
is a character. Conversely, for a character ¢ on F, the set

ng ={e € E:¢(e) =1}
is a filter. These correspondences are mutually inverses.
A character ¢ of E is called an ultra-character if the corresponding filter £y is an

1 ifeen,
0 otherwise

ultrafilter. We denote by E. the set of all ultra-characters.
Given x € F, a set Z C| x is a cover for z if for all non-zero y €] z, there exists
z € Z such that z Ay # 0. A character ¢ of F is tight if for every x € E and every
finite cover Z for x, we have
\ ¢(x) =

z2€Z
The set of all tight characters is denoted by Etzghty and called the tight spectrum of
E. 1t is a closed subspace of E, containing E. as a dense subspace [10, Sect. 12].

2.2. Boolean algebras. A Boolean algebra is a set B with a distinguished element
) and maps N: Bx B — B, U: Bx B — Band )\ : Bx B — B such that (B,Nn,U)
is a distributive lattice, ANQ = () for all A € B, and (ANB)U (A\ B) = A and
(ANB)N(A\ B) =0 for all A,B € B. The Boolean algebra B is called unital if
there exists 1 € B such that 1UA =1and 1N A = A for all A € B (often, Boolean
algebras are assumed to be unital and what we here call a Boolean algebra is often
called a generalized Boolean algebra).

We call AU B the union of A and B, AN B the intersection of A and B, and
A\ B the relative complement of B with respect to A. A subset B’ C B is called
a Boolean subalgebra if ) € B’ and B’ is closed under taking unions, intersections
and relative complements. A Boolean subalgebra of a Boolean algebra is itself a
Boolean algebra.

We define a partial order on B as follows: for A, B € B,

A C Bifand only if AN B = A.

Then (B, C) is a partially ordered set, and AU B and AN B are the least upper-
bound and the greatest lower-bound of A and B with respect to the partial order
C. If A C B, then we say that A is a subset of B.

A non-empty subset Z of B is called an ideal [7, Definition 2.4] if
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(i) if A,B€Z, then AUB €T,
(ii) if A€ Z and B € B, then ANB € 7.

An ideal T of a Boolean algebra B is a Boolean subalgebra. For A € B, the ideal
generated by A is defined by Z4 := {B € B: B C A}.

A filter in B is prime if for every B, B’ € B with BU B’ € £, we have that either
B € £ or B’ € £&. We note that £ is an ultrafilter if and only if it is a prime filter,
and we use this equivalence throughout tAhe paper without further mention.

Given a Boolean algebra B, we write B for the set of all ultrafilters of 5. Notice
that if A € B\ {0}, then {B € B: A C B} is a filter, and it then follows from Zorn’s
Lemma that there is an ultrafilter n € B that contains A. For A € B, we let

Z(A):={¢ceB:Ac¢}

and we equip B with the topology generated by {Z(A): A € B}. Then B is a totally
disconnected locally compact Hausdorff space, {Z(A) : A € B} is a basis for the
topology, and each Z(A) is compact and open.

2.3. Boolean dynamical systems. A map ¢ : B — B’ between two Boolean
algebras is called a Boolean homomorphism ([7, Definition 2.1]) if ¢(A N B) =
H(A)NG(B), H(AUB) = (A)UG(B), and 6(A\ B) = ¢(A)\ é(B) for all A, B € B.

A map 0 : B — B is called an action ([7, Definition 3.1]) on a Boolean algebra B
if it is a Boolean homomorphism with 6(() = (.

Given a set £ and any n € N, we define £ := {(ay,...,a,) : a; € L}, L' =
Up>1 L™ and L* := Up>0L", where L0 := {0}. For o € L, we write |a| := n. For
a = (a1,...,ap),8 = (B1,...,Bm) € L*, we will usually write ay ..., instead
of (a1,...,a;,) and use aff to denote the word ag---a,f1...0m (if @« = 0, then
af = f; and if § = 0, then af := a). For 1 <1i < j < |a|, we also denote by «; ;
the sub-word ;- --a; of o = ayap - - - QAals where o;; = . If j <i, set oy ; = 0.

We also let £°° denote the set of infinite sequences with entries in £. If x =
(x1,22,...) € L>® and n € N, then we let 1, denote the word z1x2- -z, € L.

A Boolean dynamical system is a triple (B, L,0) where B is a Boolean algebra, £
is a set, and {0, }acr is a set of actions on B. For a = oy - -- o, € L2}, the action
0o : B — B is defined as 0, :=0,, o---00,,. We also define 0 := Id.

For B € B, we define

ABED — (o e £:0,(B) #0} and AT = |AEED),

We will often just write Ap and Ap instead of Ag’ﬁ’e) and )\f’ﬁ’e).
We say that A € B is regular ([7, Definition 3.5]) if for any () # B € Z4, we have
0 < Ap < . If A € B is not regular, then it is called a singular set. We write

Bﬁff’e) or just B4 for the set of all regular sets. Notice that 0 e Breg.

2.4. Generalized Boolean dynamical systems and their C*-algebras. Let
(B, L,0) be a Boolean dynamical system and let

RBLI) .— {A e B:AC 0,uB) for some B € B}
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for each o € L. Note that each R&B’E’e) is an ideal of B. We will often, when it is
clear which Boolean dynamical system we are working with, just write R, instead

of REED)

Definition 2.1. ([0, Definition 3.2]) A generalized Boolean dynamical system is a
quadruple (B, L, 0,Z,) where (B, L, ) is a Boolean dynamical system and {Z, : « €
L} is a family of ideals in B such that R, C Z, for each o € L.

Definition 2.2. Let (B,L,0,Z,) be a generalized Boolean dynamical system. A
(B, L,0,1,)-representation (or Cuntz—Krieger representation of (B,L,0,Z,)) is a
family of projections {P4 : A € B} and a family of partial isometries {So 5 : o €
L, B € I,} in a C*-algebra A such that for A, A’ € B, a,o/ € L, B € Z,, and
B’ e Lo,
(i) Pp =0, Panar = PaPy, and Payar = Pa + Par — Panar;

(ii) PaSa,B = Sa,BPs,(4);

(111 S;;BSOCI,BI = 5a,a’PBﬂB’;

(iv) Pa=3 nea, Soe,ea(A)S;ea(A) for all A € Bey.

Given a (B, L,0,Z,)-representation {Py, Sy g} in a C*-algebra A, we denote by
C*(Pa, Sa,B) the C*-subalgebra of A generated by {Pa, S p}. It is shown in [6]
that there exists a universal (B, L,6,Z,)-representation {pa,sa.p : A € B,a €
L and B € Z,,} in a C*-algebra. We write C*(B, L, 0,Z,) for C*(pa, sq,p) and call
it the C*-algebra of (B, L,0,Z,). When (B,L,0) is a Boolean dynamical system,
then we write C*(B, L, 0) for C*(B,L,0,R,) and call it the C*-algebra of (B, L,0).

For a = ajag - - - o, € L2, we define

Zo ={A€eB:AC0..q,(B) for some BeZ,,}.
For oo = (), we define Z := B.

Definition 2.3. ([6, Definition 3.6]) Let {Pa, Sap: A€ B, a € L, B€1,} bea
(B, L,0,T,)-representation. For a = ajag---a, € LZ! and A € T, we define

Sa, A 7= Sa1,B505,00, (B)as,0ayay (B) " San,As
where B € I, is such that A C 0q,...q, (B). For a =0, we also define Sy 4 := Pj.
Remark 2.4. Let {Pa, Sap : A € B,aw € L and B € I,} be a (B,L,0,1,)-
representation.
(1) For o, B € L*, A€ I, and B € Zg, we have the equality
PAOB if o = /87
SZ',Anea,(B) if o = B,

Sgrrog(a) if B=af
0 otherwise.

* —
(X,AsﬁvB -

We then have that
C*(Pa, Sa,B) =8pan{Sa,aS5p: o, B € L and A € 1,, B € Ig}
= span{Sa,495 4 : o, B € L™ and A € T, N Lg}.
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(2) It follows from the universal property of C*(B, L,0,Z,) = C*(pa, sa,B) that
there is a strongly continuous action v : T — Aut(C*(B, L,0,Z,)), which
we call the gauge action, such that

Y2(pa) = pa and 7:(sa,B) = 28a,B
for Ae B,a€ L and B € Z,.

2.5. An inverse semigroup. Let (B,L,60,Z,) be a generalized Boolean dynamical
system and let

SB,c01.) = (a0, A,8) :a,8 € L and § # A € T, NIz} U{0}.

To simplify the notation, we write S = S5 1 9,7,) when it is clear which generalized
Boolean dynamical system we are working with.

A binary operation on S is defined as follows: s-0=0-s =0 for all s € § and
for (o, A, ) and (v, B,d) in S,

(a, AN B, §) if 3=~ and ANB# 0,
) (Y, 0, (A)NB,§) ify=py and 0, (A) N B # 0,
(047./475) . (77375) - (a,AﬁVHB/(B),éB’) lf,B — ,.YB/ and fiyﬂ HBI(B) 7& @7
0 otherwise.

If for a given s = (a, A, 8) € S we define s* = (3, A, ), then the set S, endowed
with the operation above, is an inverse semigroup with zero element 0 ([4, Sect.
2.3]), whose semilattice of idempotents is

E(S) :={(a,A,a): € L and ) # A € T,} U{0}.

The natural order in the semilattice E(S) is given as follows: for o, € L*,
Ac1, and B € I3, we have

(a, A, ) < (B, B, B) if and only if a = B’ and A C 0,/ (B)
([9 Lemma 3.1]).

2.6. Filters in E(S). From now on, we define W=! = {a € £2! : T, # {0}},
W ={a e LT, #{0}}, W® ={a € L®: a1, € W=t forall n > 1} and
WS® = W* U W™,

Let @ € W= and {F; }g<;<|o| be a family such that 7, is a filter in Z,, , for
every n > 0 and Fy is either a filter in B or Fo = ). The family {F, }o<p<|q| is said
to be complete for a if

Fn={A€B: 64, ,(A) € Fnp}
for all 0 <n < |af.

Theorem 2.5. ([9, Theorem 3.12]) Let (B, L,0,Z,) be a generalized Boolean dy-
namical system and S be its associated inverse semigroup. Then there is a bijective
correspondence between filters in E(S) and pairs (o, {Fn}o<n<|a|)s where a € WS
and {Fn}o<n<|a| 15 a complete family for a.
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Filters are of finite type if they are associated with pairs (a,{Fn}o<p<|al) for
which |a| < oo, and of infinite type otherwise.

In view of this, a filter ¢ in E(S) with associated o € L5 is denoted by £ to
stress «; in addition, the filters in the complete family associated with £¢ will be
denoted by £ (or simply &,,). Specifically,

&y ={AeB: (a1, A a1,) €7}
We denote by T the set of tight filters on E := E(S) and we equip T with the
topology induced from the topology of pointwise convergence of character, via the

bijection between tight characters and tight filters given in subsection [ Note
then that T is (homeomorphic to) the tight spectrum FE;gp; of E.

Remark 2.6. Using the bijection between filters and characters as well as the topol-
ogy on characters given by pointwise convergence, we see that a basis of compact-
open sets for the induced topology on T is given by sets of the form

‘/6:61...767L :{§€TZ€€§,€1 ¢§7---7en¢§}7

where e € F and {ejy,--- ,e,} is a finite (possibly empty) subset of E. See [17), Sect.
2.2] for more details.

Theorem 2.7. (|9, Theorem 3.27]) Let (B,L,0,Z,) be a generalized Boolean dy-
namical system and S be its associated inverse semigroup. Then the tight filters in
E(S) are :
(i) The ultrafilters of infinite type.
(ii) The filters of finite type £ such that |y is an ultrafilter and A ¢ Byey for
all A € §q-

For each o € W*, we write X, instead of f; for the set of all ultrafilters in Z,, to
match our notations with [9]. Note that X denotes the set of ultrafilters in Zy = B.
For A € Z,, we let

Z(a,A) ={FeXy:Aec F}
and equip X, with the topology generated by {Z(«, A) : A € Z,,}. We also consider
the set Xy U {0} with a suitable topology. If B is unital, the topology is such that
{0} is an isolated point. If B is not unital, then @) plays the role of the point at
infinity in the one-point compactification of Xj.

Given a, B € W=!, since the action

95 : Ia — Iag
is a proper Boolean homomorphism ([9, Lemma 3.21]), there is its dual morphism
falp) : Xap = Xa

given by fu5(F) = {A € Zo : 03(A) € F}. When a = 0, if 7 € X, then
{A € B:03(A) € F} is either an ultrafilter in Zy(= B) or the empty set. We can
therefore consider fyi3 : X5 — Xy U {0}. Notice that for « € W* and 8 € w=t,
fajg) is continuous ([9, Lemma 3.23]), and that fq(g, = fajs) © fagpy for all « € W*
and 3,7 € W=! such that oy € W21,

For o € £2! and 3 € L* such that a8 € W*, consider an open subspace

X(a)B = {f S Xﬁ : fﬂzag # (Z)}
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of Xg. Then there is a continuous map g(q)g : X(a)g — Xap defined by
g(a)g(}") = fﬂzag
for each F € X(4)5 ([9, Lemm 4.6]). For a = 0, define X(p)3 = X and let gg)s

denote the identity function on Xg.
Also, for o € £2! and 8 € £* such that a8 € W*, there is a continuous map

hiags : Xag = X)s
defined by
hia)p(F) =175 F
for each ultrafilter 7 € X,3. We note that hjys : Xap = X(a)p and g(a)s : X(a)g =
Xop are mutually inverses ([9, Lemma 4.8]).

2.7. Partial actions.

Definition 2.8. A partial action of a group G on a topological space X is a pair
® = ({Ui e, {ét }1eq) consisting of a collection {U;}ie of open subsets of X and
a collection {¢;}1ec of homeomorphisms,

¢t : Ut—l — Ut,
such that
(1) U =U,-1 = X and ¢, is the identity on X,
(2) (Zss(Us*l N Ut) = Us N U,
(3) ¢s(pe(x)) = dst(w) for every x € Uy N Upgpy-1.

If the partial action is given by the free group F on a set of generators, then the
partial action is semi-saturated if

Gs 0 Ot = Gst
for every s,t € F such that |st| = |s| + [t], and orthogonal if U, N U, = ) for a,b in
the set of generator with a # b.
We refer the reader to [11] for more details on partial actions and the construction
of the partial crossed product.
We describe the groupoid of a partial action as in [I]. Let ® = ({U;heq, {¢t Hea)
be a partial action of G on X. Then,

Gx, X ={(z,t,y) e X xGx X :yeU-1and v = ¢ (y)}
is a groupoid with products and inverses given by
(z,t,9)(y,s,2) = (x,ts,2) and (z,t,9) "' = (y,t 71, z).
We give G x, X the topology inherited from the product topology on X x G x X.

3. A PARTIAL ACTION ON JF AND THE ASSOCIATED PARTIAL CROSSED PRODUCT

In this section, we define a partial action from a generalized Boolean dynamical
system (B, L,0,Z,). The group that acts is the free group generated by £ and
the space where it acts is the boundary path space of a topological correspondence
defined previously in [9]. We then prove that the partial crossed product associated
with this partial action is generated by an appropriate set of characteristic functions
and the generators corresponding to the elements of the free group.



C*-ALGEBRAS OF GBDS AS PARTIAL CROSSED PRODUCTS 9

3.1. The boundary path space 0F. Let (B,L,0,Z,) be a generalized Boolean

dynamical system. Recall that Xy = Bis equipped with the topology generated by

{Z(A) : A € B}, where Z(A) = {¢ € B: A € ¢}, and that X, = T, is equipped with

the topology generated by {Z(«, A) : A € Z,}, where Z(a, A) = {£ € To:Ac ¢}
We let

E?B,E,G,Ia) = Xy and F(OB,K,G,ZQ) = Xy U {0}
as topological spaces. We also let
E(IBL(%%) = {eg ca€Ll, neE Xy}
and equip E(IB £.0T) with the topology generated by
V= |J{Z'(e,B): B 1.},
acl
where Z'(a, B) := {eg : 1 € X4, B € n}. Note that E(IBL(%%) is homeomorphic to
the disjoint union of the family { X, }aer-

Proposition 3.1. ([9, Proposition 7.1]) Let (B, L,0,Z,) be a genemlz’zed Boolean
dynamical system and let BV := E?B,E,G,Ia)’ FO .= F(OB,E,G,Za) and E* E(B£ 0,.7.)
be as above. If we define the maps d: E' — E° and r : E* — F° by

d(ey) = hiajp(n) and r(ey) = fofa) (n);
then (E',d,r) is a topological correspondence from E° to F°.

0 0 0 ._ 10 1
Remark 3.2. Let EY = E(Bﬁ@Za) FY = F(B’QG’IQ) and E! := E(Bﬁ@Z ) be as

above. Define a map d : B! — E? by d(ey) = hiajo(n). Put
dom(r) :={ej :a € L, nNR, # 0} C E*,
where dom(r) = U,er aepnr. Z'(a, A) is an open subset of E', and define a contin-

uous map 7 : dom(r) — E9 by r(ey) = fola)(n).- Then, d is a local homeomorphism
and the map 7 : E' — FO defined by

if e € dom(r),

- r(e)
7(e) = { oo if e ¢ dom(r)

is continuous by [9, Proposition 7.1]. Thus, (E°, E',d,r) is a partially defined
topological graph in the sense of [I5 Definition 8.2].

Given a topological correspondence E = (E',d,r) from E° to F°, we define the
following subsets of F° ([T4] Section 1]):

Fyee := FO \my
F})m .= {v € F°: 3V neighborhood of v such that ~(V) is compact},
E) = Fp, \
Fo =F\F,
We also consider the sets Egg = FT,Og N EY and Egg =F, Sog N E°.

SCG’
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For n > 2, we denote by E™ the space of paths of length n, that is,
E":={(e1,...,e EI_IE1 i) =r(eit1)(1 <i<n)}

which we regard as a subspace of the product space []7"; E'. Define the finite path
space B* = 122 E™ with the disjoint union topology. Deﬁne the infinite path space
as

E* :={(e)ien € HEl =r(ei+1)(i € N)}.

For an element (ey)}_, € E", we let d((er)r—y) = d(en) and 7((er)}_,) = r(e1)
if n > 1. For v € EY, we let 7(v) = d(v) = v. For infinite paths, we only define the
range, namely, if (e;)?2, € E*°, we define 7((ex)32,) = r(e1).

We denote the length of a path p € E* U E* by |u|. For convenience, we will
usually write ey - - - e, for (e1,--- ,e,) € E™. Forey---e, € E™ and p € E* 1 E*,
we write e; - - - e, for the concatenation of e;---e, and p in E* LI E®°. For 1 <
i < j < ||, we also denote by p; ; the sub-path p; - - - pj of pp = pypa--- ), where
Wi = i 1§ <4, set p;; =0.

Lemma 3.3. Let p=ep!---epr € E", where 1 < n. Then, we have

T(:u) = f@[a1~~~an] (g(al---anfl)an (nn)) :

Proof. We use induction on |pu| = n. The result is immediate if |u| = 1. Suppose
that for some integer n > 2, the result is true for paths p with |u| = n — 1. Let

po=epl-- “en” fegn € E™ and put « = a1 ---«,. First, since h[ 30(M—1) =
foran) (), We have nn,—1 = g(a,_1)0(Pla,_110(Mn-1)) = Y(an_1)0(fojan](nn))- We then
see that

r(p) = rle - eprl)
= folarn-1] (gam 2an_1 (Th— 1))
= fojr,n-1) (9(@1,0-2)an-1 G(an-1)0 fojan] (7))
:f@[al,nfﬂ(g(m,n )0 (foran) (17n)) )

= f@[al,n] (g(al,nfl)an (Tln))7

where the second equality follows from the induction hypothesis, the forth equality
follows from [9, Lemma 4.6 (iii)], and the last equality follows from [9, Lemma 4.6
(iv)]. O

Definition 3.4. (]9 Definition 7.5]) Let (B, L, 6,Z,) be a generalized Boolean dy-
namical system and E = (E',d,r) be the associated topological correspondence.
The boundary path space of E is defined by

O := E™ U {(er)y—1 € E" : d((ex)i—1) € Egg

We denote by og : OF \ Egg — OF the shift map that removes the first edge for
paths of length greater or equal to 2. For elements p of length 1, op(n) = d(u).
For a subset S C E*, denote by

Z(S)={p € OF : eitherr(u) € S, or there exists 1 <14 < |u|such that py ---p; € S}.
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We endow OF with the topology generated by the basic open sets Z(U) N Z(K)¢,
where U is an open set of E* and K is a compact set of E*.

Note that OF is a locally compact Hausdorff space and that og is a local home-
omorphism ([I6, Lemma 6.1]).
The following two results are frequently used throughout the paper.

Lemma 3.5. ([9, Lemma 7.8]) Let (ep*)i_; € E*, where 1 <n. Then ay---an €
W*. Moreover for all 1 < m < n, we have that nm N 7Ly, ,, s an ultrafilter in Z,, ,, .

Theorem 3.6. ([9, Theorem 7.10]) Let (B, L,0,Z,) a generalized Boolean dynam-
ical system, T the tight spectrum of its inverse semigroup and OF the boundary
path space of its topological correspondence. Then, there exists a homeomorphism

¢: T — OF defined by
a 60 ZfOé = ®7
(b(é. ) = an el .
(en; )n:l Zf|05| 2 17

where m = &1 and Np = hi, ,,_1)a, (&n) for 2 <n <|al.
Remark 3.7. Tt follows immediately from Theorem and Remark 2.6 that OF
has a basis of compact-open sets.

By Lemma[3.5] we have a map P : 0F — W= that sends a path (e?}f){f:l, where
1 < N < oo, to (ag)Y_; and an element of EY to §. For a = ay - o) € W= and
A € T,,, we then define the cylinder set by

N(a, A) = {(eﬁ:) € OF : P((e,‘?z))ua‘ =aand A € 7}
= {(eﬁ;’) €OE: f1- flo) = a and A € )4}
Also, for A € B, we define
N(@@,A):={pe€dFE:Acr(u}.
Note that if « € W* and A = {), then N(a, A) = 0.

Lemma 3.8. For a € W* and A € I, the sets N'(a, A) are compact-open sets in
OF.

Proof. Let ¢ : T — OF be the homeomorphism defined in Theorem Then for
a € W* and A € Z,, \ {0}, one can see that ¢(V(a,4,a)) = N(, A). Thus, N(a, A)
is a compact open set in OF. If A =), then N («, A) = ) is compact-open. O

Lemma 3.9. For o, € W* and A € T, \ {0}, B € Zg \ {0}, we have

N(a,0(B)NA) if a=pd,
N(B,05(A)NB) if =af,
Nenxtss = | G 152
0 otherwise.
Proof. If a = B/, then for pu = (e})}) € OF such that P(i)yq| = o, we have

higyo (1) = fow1(9iay oy 1ol (Mpar)))
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by Lemma [3.3l So, for B € I, one can see that B € ng <= 0 (B) € ngu|-
Then, since 7, is a filter, 4,0,/ (B) € 14 if and only if 0,(B) N A € 14. Thus,
we can conclude that N («, A) NN (B, B) = N(«, 0, (B) N A). Similarly, we have
the others. g

Lemma 3.10. For « € W* and Ay,..., A, € Ty \ {0}, we have

CJN(@,AZ-) =N <0z,CJAZ-> )
i=1

1=1

Proof. This follows immediately from the fact that for an ultrafilter  of Z,, ,, we
have that (J;-; 4; € n if and only if A; € n) for some i =1,...,n. O

3.2. A partial action on OF. Let IF be the free group generated by £. We identify
the identity of F with () and note that we can see W* as a subset of F. To define a
partial action of F on OF, we first define the following sets:

o Uy =0L;

e for a, 3 € W= such that T, N Zz # 0, let

Uag—1 = {(e))i21 € OE : 71+ 7o = @ and nq N T # 0};

o for a € W21, let
Ua = Uqsp = {(e])121 €OE 1 71+ o) = a};
o for f € W21, let
Ug-1 1= Upg-1 = {n € OF : r(u) NI # 0};
e for all the other elements v € F, let U, = ().

Lemma 3.11. For o, 8 € W*, the set Uyg-1 is an open set in OF.

Proof. Uy = OF is open. For o, 8 € W=1| it is easy to see that Upp-1 = UAGIB N(a, A),
Ua = Uy = UpepN(, A), and Ug—1 = Upg—1 = UAEIB N(0,A). Thus, U,p-1 is
an open set in OF for «, f € W*. O

Lemma 3.12. For a € W*, U, is closed in OF.

Proof. Uy = OF is closed. For a € W2!, we show that OF \ U, is open. Let
uw € OE\ U, and 8 = P(u). Suppose first that there exists 1 < i < |a| such
that 8; # «;. Recall that u; = e,ﬁh? for some ultrafilter n; in Zg,. In this case
for B € n;, we have that u € N(f1,,B) C OF \ U,. The second and final case
is when 8 = ay,, for some 0 < n < |a|. Let B be such that y € N(ay,,B). By
LemmalB.8, N (a5, B)\N (1,041, 00, (B)) is open and note that i € N'(ayp, B)\
N(a1n41,0a,,,(B)) € OFE \ U,. In all cases, we have proved that p is an interior
point of OF \ U, so that U, is closed. O
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Lemma 3.13. Let £ € Xy such that ENZ, # O for some o € W*. Define
M i=ENZL,,,
-1 = f@[an} (77n) NZa,_;;
Mn—2 = fofan_1)(Mn—1) N Loy, s,

n2 = f@[ag} (773) N Zay,

m = f@[ag} (772) NZa,.
Then we have ) #n; € Xq, fori=1,--- n.
Proof. Since éNZy, # ), we have 0, ,, (A) € £ for some A € Z,,,. Thus, 04, (0a,.,_,(A)) €
§NZy, = M. Thus, 0 # 0, € Xq, by [9) Proposition 4.2]. From g, (0a,,,_, (A)) €
Nn, it also follows that Ou,,,_, (A) = Oa,_y (Oay,_2(A)) € fojan (M) N Za,_,- Thus,
0 # 1n—1 € Xa,_,. Continuing this process, we have that 0, ,(A) = O, (0a,,_, (A)) €
folis)(iv1) 0 Lo, (= m) for i@ = 1,---,n — 2. Thus, § # 7 € X, for all
i=1,--,n. U

We now define the following maps:

e for the identity () of F, we define ¢y : Uy — Uy as the identity map;

o for a € W21 and B € W* such that ™! is in reduced form in F and
Ugo-1 # 0, we define a map ¢,g-1 : Uga-1 — U,p-1 that sends a path
W= (egi)i]\il € Upg,—1 that removes the first [3| coordinates of p and adds

at the beginning (ep?,...,epm) (n = |a), where
M = (a0 (P 500 (818)))
N1 = Y(an_1)0 (So[an] (),
Nn-2 = Y(an_2)0 Sojan_](Mn-1));

12 = G(az)0 (foas] (13)),
M = G(a)0 (fofaz] (12)),
that is,
Pap-1 (1) = €pl - €T G111 Ju;
e for 3 € W=, we define a map @g-1 : Ug — Ug-1 that removes the first |3

coordinates;
e for all the other elements v € F, define ¢, : U,-1 — U, as the empty map.

We then see in the following Lemma, that for o, € W*, ¢,5-1(1) is a well-
defined path on the topological correspondence (E*, d,r) from E° to F© and Pap-1 (n) €
Upp-1-

Lemma 3.14. Let n; be defined as in the second point above fori=1,--- ,n. Then
we have
(i) eni € E' fori=1,--- ,n,
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1

(ii) d(e%ﬁjl) = r(e%i) fori=2,--- n, and d(ey") = (e
(i) 7o N Zs # 0.
Proof. (i) First note that if u = (eg“)N1 € Ugy-—1, then NIy # 0. So,

i=

h[ﬁm\]@(g\ﬁl) NZ, # 0. Now, by the definition of the map gy for a € L, we
see that

H\/J‘Hl
E\B\H

);

M = G(an)d(Ps 510(&181)) = higs10(€8) N Zay,
and
N = g(ai)@(f@[ai+1](ni+l)) = f@[aprl](ni—i-l) N Iai
forall i = 1,--- ,n— 1. Then, by LemmaBI3 0 # n;, € Xo, i = 1,--- ,n. So,

ent €cE'fori=1,---,n
(ii) Since g(q,_,)p and hj,, ] are mutually inverse for each i = 2,--- ,n, we have
(€2 ) = hiay 10(Mi-1) = hias 1109010 Fofa 1)) = fora (1) = 7(€25)
for i =2,.--,n. Also, since g(q,)p and h,, )9 are mutually inverse, we have
any B B plBl+t
d(en) = Tia,10(n) = hia,10(9(n)o (g g 10(E18) = higi0(§e) = rleg, ., )-

(ili) Since 5N Zs # 0 by Lemma BB hig,10(§5) N Zs # 0. Also, since {5 N
T, # 0, we have h[gw]@(é‘m‘) NZ, # (. Note that if A € h[ﬁ\ﬁ\]@(é‘m‘) N Z, and
B e h[ﬁ\m}@(g\ﬁl) NZg, then ANB € h[ﬁ‘m]@(ﬁg\) NZ,NZg. Then, since h[g‘m]@(fm\) N
ToNZIg # (0 and Z, C Z,,,, it follows that 1, NZz = (h[ﬁ‘m]@(gw)ﬂlan) NZg#0. O

Proposition 3.15. For each o € L, the maps ¢q : Uy-1 — Uy and @o-1 : Uy —
U,-1 are homeomorphisms with o' = @ 1.

Proof. Fix aw € L. For p = (egi)fil € Uy-1, we have @,(p) = epu, where n =

908 (fopn)(€1)) = fopu)(€1) N Za, and for v = ()X} € Uy, we have g1 (v) =
(e;ii)f\!z. Thus, va-19a(1) = pa-1(e5p) = p for each p € U,-1. Also, we see that

(10049001*1(”) = Soa(( Xl)i\/é) = €¢ (6 )iV/27
where & = g(a)0(fop,)(x2)). On the other hand, Since hip(x1) = fop,(X2), it
follows that x1 = g(a)o(fos) (X2)) = & Thus, eg (e}’ )N2 = v. So, we conclude that
Pa-1a =1dy__, and VaPo-1 = idy,, and hence, p,1 = @, ! for each a € L.
Note that ¢,-1 = og|y,, where og is as in Definition B4l Since op is a local

homeomorphism, and ¢,-1 is a bijection between open subsets, we have that ¢ -1
is a homeomorphism, and so is its inverse . O

Proposition 3.16. ® = ({U}ier, {1 }ier) is a semi-saturated orthogonal partial
action of F on OF.

Proof. Let & = a1 -+-a, € W21 and p = (eg?) € Uy—1. We then have oo (u) =

et - - e, where

M = 9(an)0(Fopu) (€1))

and
M = 9(as)0(fojas, ) (Mi+1))
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foralli=1,--- ,n— 1. Also, we see that

(e7%) (0773

Pay - -+ Pan (B) = oy -+ Pap_y (Eqrp) = = @a, (€77 ... €pp) =€l ... epmp.
We prove by induction that dom(pqa, © -0 ¢4, ) = Uy—1. This is immediate for
n = 1. For n > 1, suppose that dom(¢a, 00 ¢4, ) = Uagl . On the one hand, if

ft € Uy-1, then @q, 0 -+ 0 g, (1) € dom(gq,) by Lemma 313 On the other hand
if p e Uagl and v := @4, 0+ 0 g, (1) € dom(pa, ), then r(v) NZ,, # 0. We also

have
r(v) =r(ens . ..epr )
=r(ens .- epr)

= f@[aln] (9(012,7L—1)04n (Tln))
= f@[c"?,’rl] (g(CVZ,nfl)an (g(an)@(fm[ﬂl] (é‘l))))

= folas ] (9(as,0(r(1))),
where the third equality follows from Lemma B.3] and the last equality follows from
[9, Lemma 4.6(iii)] and the definition of r(u). So, there is A € r(v) NZ,, such that
O, (A) € 7(p) N Ly,,,. Since A € Z,,, we have 0, (A) € Zo N (1), and hence
i € Uy—1. Thus, we have ¢, = @4, 0+ 0 @q,, -
Let 6 == 61 . Bm S Wzl and m = (62?)7,21 S Uﬁ Then, (,06—1 (/L) = (e/g;)zz‘BH‘l
Also,

Pg L. 905;1(#) = Pgt- -9052*1((egii)i22) == @ﬁ;nl((egi)iz\ﬁo = (eg)iz\ﬁl—i—l-
It is clear that dom(p4-10.. 'O(’Dﬁfl) = Up. Thus, we see that ¢g-1 = @g-i0.. 0Pyt

Now, for ¢ = aB~! € F in reduced form, where & = a1 ---an, B8 = B1---fm €
W=L as above we see that

Pg = Poy © 7" O Pay, OPg 1 ... 0Pt

Note also that for o, 8 € £, with a # 3, p,-1¢g is the empty function. We have
proved that if s =z --- 2, € F is in reduced form, then s = ¢, o--- 0, . Thus,
by [11l, Propositions 4.7 and 4.10], ® = ({U; }+er, {¢: }1er) is a partial action of F on
OE.

For o, f € L, if a # f3, then we clearly see that U, N Uz = (). So, the action is
orthogonal. d

3.3. The partial crossed product Cy(90F)x,F. Let (B,L,0,Z,) be a generalized
Boolean dynamical system and let ® = ({U; }1er, {¢: }ter) be the partial action of F
on OF associated with (B, L,60,Z,). We in this section how to describe the partial
crossed product C*-algebra Co(OF) x5 F. For t € F, the set U; is an open set in
OE. So, any f € Cy(U;) can be viewed as a function in Cy(OF) by declaring that
f(u) =0if p & U;. In fact, Cy(Uy) is a closed two-sided ideal in Cyp(OF) and thus
a C*-subalgebra.

For t € IF, put

Dt = Co(Ut) and thl = CO(Utfl).
Define ¢y : D;—1 — Dy by
@i(f) = fopi.
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Then, ({Di}ier, {¢t}er) is a C*-algebraic partial dynamical system. Hence, we
may consider the partial crossed product

Co(OF) % F = span{ thét : ft € Dy and f; # 0 for finitely many ¢ € IF'},
teF
where the closure is with respect to the universal norm. Note that J; has no meaning
in itself and merely serves a place holder. Recall that multiplication and involution
in Cy(OF) x, F are given by

( )(b(st) = @s(@sfl(a)b)(sst, and
(a8,)" = By (@)d,1.

For « € W* and A € Z,, we let 1y/(q,4) denote the characteristic function on
N(a, A). We first show that Cy(OF) is generated by these characteristic functions.

Lemma 3.17. The C*-algebra Co(OF) is generated by the set
{In(a,4) s e € W™ and A € T}

Proof. Choose p1 = (eg)lgiSN € OF, with |u| > 1. Then p; € W* and §&NZ,, (# 0)
is an ultrafilter in Z,,, by Lemma Choose ) # A € & NZ,,. Then, we have
p € N(p1,A), and hence, 1y, 4)(#) = 1. On the other hand for u € OE N E° u
is an ultrafilter and for A € p, we have p € N (0, A), so that 1yp a)(u) = 1. So,
the set {1pr(q,4) : @ € W* and A € Z,} vanishes nowhere.

Let p # v € OF and say p = (e;’) and v = (eyi). If P(u) # P(v), then the
two points are clearly separated by the set {1 N(a,A4) - @ € Wrand A € To}. If
P(pn) = P(v), then pu; = v; for all ¢ > 1 and there is n > 1 such that &, # n,.

Since &, = h[ﬂl"'ﬂnfl}ﬂn(g(ﬂl"'ﬂnfl)ﬂn(gn)) =17, & N Lyy..p, and also n, =Tz,
M O Ly » it follows that &, NZ,,...u, # M N Ly, Choose A € B such that
Ac& NIy p,, but A¢n, NI, .., Then

1N(u1v~un,A)(,u) =1#0= 1N(/le'”,un,A)(V)7
which shows that the set {1pr(s,4) : @ € W* and A € 7, } separates points. So, the

Stone-Weierstrass Theorem gives the result. O

Lemma 3.18. Let C*({1x9,4)00; In(a,B)0a}) € Co(OF) xg F denote the C*-
subalgebra generated by {1prp )00, Ln(a,B)00 : A € B,a € L and B € T,}. Then,
we have, for a = ay -+ a, € W21 and A € T, is such that A C 04,...,, (B) for some
BeT,,,

(1) Pa- 1(1/\/(a 4)) = Iv@,.4) and @a(Inr0,4)) = In(a,4)5

(i) In(a,4)0a = (In(a1,B)001) (1N (02,00 (B)) Oaz ) (LN (a5.0ayas (B)) 9as) - (LN (an,4)00n )

)
(iif) (1/\/(aA a)" = 1y (0,4) 0015

(iv) (Inr(a,4)00) (Iar(a,4)00)" = 1nr(a,4)00, and

(v) for a, B € W21 such that o=t € F is in reduced form and A € I, N Zg,

In(a,4)008-1 = (Inr(a,4)00) (Lar@,4)05-1),
(vi) for all A€ B, a € W2 and B € 1,

(Iar(0,4)90) (Inr(a,B)0a) = (Inr(a,B)00) (Iar(0,00 (4))00)-
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Proof. (i) Let o € W2! and A € Z,,. We first claim that
Pa-1(N(a, A)) = N (0, A).

For pu = (e )i>1 € N(a, A), since A € {,), wehave A € by, 10(€ja)) = fopuya 1) (Elaf+1)-

Thus, o1 (k) = (eg)i>ja)+1 € N(D, A). Hence, g1 (N (a, A)) € N(0, A). For the

converse, note first that N'(0, A) C Uy—1. If p € N'(0, A), then o (1) = el -+ - epr i,

where n = T(N) N Ianﬂ?n—l = f@[an} (Tln) N Ianfp e, = f@[az} (772) N Ial' Since
A€ T(:u) ﬂIa - T(:u) mICVn? we have @a(ﬂ) € N(OZ,A) SO7 B = Pa-1 (Qpa(lu)) €
Pa—1 (N(Q7A)) Hence, N(®7A) c (1004*1('/\/’(0[7 A)).
Then, we have that
Pa—1(IN(a,4)) = IN(a,4) © Pa = Lo (N (a,4)) = LN (0,4)-

Since ¢,-1 and @, are inverse of each other, we also have P (1x7g,4)) = Iar(a,4)-
(ii) Let @« = a1 -+ - a,, and A € Z,, such that A C 0,,...q, (B) for some B € Z,,.
We first claim that
1N(O¢1,B)5al 1N(O¢2~~~an,A)5a2"'an = 1N(a,A)5a'

The left-hand side is

1N(a1 ,B)5a1 1N(a2v~an,A)6a2---an = @al ((ﬁa;l (1N(a1 ,B))lN(agvvvan,A))éoe
= @a1 (Lyv(0,8) LN (as-an,4) )0ars

where the last equality follows from (i). Here, for a p := e?ll et w € Uy,

Doy In@,8) I (az--an,4)) (1)
= 1N @,8) IV (az-an,4) (Po-1 (1)
= In0.8) I (g ) (€er - ee7 1)

_ [ 1 if B € fpja,)(&2) and A € &,
1 0 otherwise.

On the other hand, for a u = e?ll e e?:,u’ € Uy,

1 if Aeg,,
0 otherwise.

I (a,4) (1) = {
Since &, 2 A C Ouya,, (B)(€ Zayga, C Za,), We have Ony..0,, (B) € & N Layvany s
and hence, we see that B € fg[a,)(§2) = r(eg‘; . e?:) = fojas--an] (I(az-an_1)an (&n))
by Lemma [3.3] Thus, we conclude that

(:5061 (1N(@,B) 1N(a2v~an,A)) = 1N(a,A) .

Hence, it follows that

1N(a1,B)5a1 1N(a2~~~an,A) 5052“‘0Cn = 1N(a,A)5a’
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Now, for a = a;---a,, € W2l and A € Z,, such that A C ,,...., (B) for some
B € 1,,, applying the preceding argument pairwise from right to left yields
(1N(o¢1,B)5a1)(1N(a2,0a2(B))5a2) e (1/\/(01”,1,0&2...,1”71(B))éan,1)(1/\/(amA)5an)
= (In(ar,B)%1) (AN (2 80y (B))Oa2) = (AN (an—1c0m,4) ) Ot

= (1N(a1,B)5a1)(1N(a2---an,A)5az~~an)
= 1N(o¢,A)5a7
completing the proof of (ii).
(iii) We have (1./\/’(a,A)5a)* = @a—l(lN(a’A))(sa—l = 1/\/’(@7/4)5&71 by (i).
(iv) Applying (i), we have that
(Inr(a,4)00) (1ar(a,4)00) " = (1N(a )0a)(n(0,4)00-1)
PalPa-1 (In(a,4)) I 0,4)) 5

= 95 (Inv0,4) Lar(0,4)) 00
= @a(lnr@,4))0p
=1 (aA)6@

(v) Applying (i) again, we see that

PalPa1(Inr(a,4)) 1N (@,4))0ap1
a(lN 0,4) LA (0,4)) 0051
‘ﬁa(l./\/' ) aBf~1
1 ( )606671.

(vi) Let A € B, « € W=! and B € Z,,. Note first that

(In(a,4)00) (Lpr(p,4)08-1) =

(Iar0,4)90) (Iar(a, B)0a) = (Iar@,4) N (a,B) )da-
We claim that
Iy (@,4) 1N (0,B) = Pa(ln(0.Br0a(4)))-
For a yu = (e;’) € OF, we have that

1 ifp=a, A€ fy(&1) and B € &1,
0 otherwise

1 ifm =, 6(A)NBE,
1 0 otherwise,

I @,4) 1N (a,B) (1) = {

and that

Do (L0, Bn0a (4))) (1) = 1nr(0,Bn0a () (Pa—1(12))
_ { 1 if BNOa(A) € fojum)(S2),

0 otherwise.

Here, since hiqp(&1) N Za = 9oy (Magp(€1)) = &1, one can see that B N 0,(A) €
f@[uz](&)(: h[a]@(fl)) if and only if QQ(A)QB € &. Thus, we have 1./\/'((2),A) 1'/\/(0673) =
Pa(Lnr(0,Bn6.(4)))-
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Then it follows that

(N (0, B)00) (AN (0,60(4))00) = Pa(Pa—1 (Lnr(a,B)) LN (0,04 (A)) )
= Ga(ln(0,8) IN(0,0(4)))da
= Ga(ln(0,Br0a(4)))a
= (Ln(0,4) I\ (o, B) ) O
= (Ln0,4)%0) (1n/(a,B)00)-
O

Lemma 3.19. Fora, 8 € W*, {1yr(a,4) } Acz, 18 an approzimate identity for Co(Uyg-1)-

Proof. Note that g is a directed set with the order given by inclusion. To show
that {1x/(,4)}acz, 18 an approximate identity for Co(Uyg-1), let g € Co(Upyp—1)
and € > 0 be given. Take h € C.(Uyp-1) such that ||g — h|| < e. Put K :=
supp(h). Since K is compact, there exist N («, A1), -+ ,N(a, A,,) such that K C
Ui N(a, 4;) = N, U, A;), where the last equality follows from Lemma 3101
Take Ay := |J; A; € Zg. Then if A > Ay, then N(«, Ag) C N(a, A), and hence,

we have

19 = 9Inr(a,a)ll < llg = Bl + [[h = PInra,a)ll + 1h1nr(a,4) — 917, 4) I
<e+[h=gllltaa,all
< 2e.

So, we are done. O

Proposition 3.20. Let C*({1z,4)00; In(a,B)0a}) € Co(OF) x4 F denote the C*-
subalgebra generated by {1pnrp.4)00; In‘(a,B)00 : A € B and a € L, B € Ly} Then

Co(OF) xp F = C*({1n(9,4)00: 1n'(a,B)0a})-

Proof. Let Cy(OF)dp denote the canonical image of Co(0F) in Co(OF) x4 F. We
first claim that Co(OE)dy C C*({1a9,4)00; Lar(a,B)0a}). To prove this, it is enough
to show that 1xr(a, 40 € C*({1n9,4)00 In(a,B)0a}) for &« € W21 and A € 7, by
Lemma B.I7l Let o = oy -~y and B € Z,,, such that A C 0y,...q,,(B). Then, by
Lemma [B.18(ii),(iv) we have

In(a,4)00 = (Iar(a,4)90) (Iar(a,4)0a)"
= (In(a1,B) 001 LN (02,00 (B)) Oz " LN, 4)Ocrr)
(Inr(a1,B) 00 LN (020 (B)) Oz * ** TN (e, 4) B )

completing the proof.

Next we show that Co(OF) %3 F = C*({1n9,4)00; Ia7(a,B)0a}). It is clear that
C*({1n70,4)90, In(a,B)0a}) S Co(OF) xp F. To show the reverse inclusion, let
ft(st S CQ((?E) X F with ft e Dy = C()(Ut) and t € F. If t = @, then f@é@ S
C*({1n(0,4)0> 1n7(a,B)0a }) by Lemma BT If t # (), we may assume that t = a3~
with o, 8 € W*. Since {1x/(a,4)}aez, is an approximate identity for Co(Uyz-1) by
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Lemma BT, we have lim 4 s g1y(a.a) = g for g € Co(Uns—1). Thus, we have
fap-10ap—1 = ( lim fop-11x7(a,4)) dap1
(faﬁ 11 (a,4)00-1)
im_(fap-100) (1n(a,4)00p-1)
m_(fag-190) (In(a.)00) (Lv0.4)05-1)
= Algnoo (fas-100) (L. )0a) (Lav(5.4)98) "

where the fourth equality follows from Lemma[3.18|(v), and the fifth equality follows
from Lemma [BI8|(iii). We then can conclude, using the case t = () above, that
fap—10a5-1 € C*({1n70,4)00; LA (a,B)0a }). SO, We are done. O

4. PARTIAL ACTIONS AND GENERALIZED BOOLEAN DYNAMICAL SYSTEM
GROUPOIDS ARE ISOMORPHIC

Let (B,L,0,T,) be a generalized Boolean dynamical system, £ = (E',d,r) be
the associated topological correspondence and ® = ({U, }er, {1 }er) be the partial
action of F on OF. In this section, we show that the groupoid associated with the
partial action is isomorphic to the boundary path groupoid I'(OF, op) associated
with the topological correspondence as studied in [9, Sect. 7]. As a result, we have
that the partial crossed product C*-algebras obtained from the partial action is
isomorphic to the C*-algebra of the generalized Boolean dynamical system.

We first recall the boundary path groupoid I'(OFE, o). To easy notation, put
0O . =0F.

Definition 4.1. Let (B,L,0,Z,) be a generalized Boolean dynamical system and
E = (E',d,r) be the associated topological correspondence. We define the boundary
path groupoid T'(OF, o) to be the Renault-Deaconu groupoid, that is,

I':=T(0FE,oE)
= {(u,k —1,v) € OE X Z x OE : p € dom(c¥),v € dom(c'),o"(n) = o' (v)}.

The unit space is defined by T© := {(11,0,p) : u € dE}. For (u,n,v),(v,m,d) €
I'(OF,0E), we define the multlphcatlon and the inverse by

(p,n,v)(v,m,0) = (u,n +m,J),
(:uv n, V)_l = (V’ -n, N))
and the range map and the source map by
re(p,n,v) == (u,0, 1), sp(p,n,v):=(v,0,v).
Define the topology on I'(OF, o) to be generated by the basic open set
UU, k1 ko, V) i={(i, k1 — ko, v) s pe Uyv € V, o™ (n) = o*2 (1)}, (1)

where U C dom(o*), V' C dom(c*?) are open in OF, o* is injective on U and o2
is injective on V.
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We note that I'(OF, o) is a locally compact Hausdorff ample groupoid and that
the unit space I'®© is identified with OE.
Now consider the groupoid

G:=Fx,0F ={(u,t,v) € 0OE xF x OF : v € Up—1 and p = ¢(v)}

associated to the partial action ® = ({U; }er, {¢t }ter) of F on OF as in Section 2.7
The unit space G0 is also identified with OF.

The following characterization of elements in G is used throughout this section
without reference.

Lemma 4.2. We have that (u,t,v) € G if and only if (u,t,v) is such that P(i); |o| =
o and P(v)y g = B for some o, € W*, t = ™! and po-1(1) = pp-1(v).

Proof. If (u,t,v) € G, then v € U,-1, and hence, U; # 0. Thus, t = af~ ! for
some «, 3 € W*. Since U1 = Ugy-1 C Up, we have P(V)Hm = B. Also, since
= (paﬁfl(V% we have ,P(:u')l,kx\ = a and po-1(p) = po-1 ((paﬁfl (v)) = 905*1(1/)‘
Let (u,t,v) be such that P(u); o) = @ and P(v); 5 = B for some o, € W*, t =
af™! and @,-1(p) = @g-1(v). Then, p = @a(ps-1(v)) = Pag-1(v) and v € Ugy-1.
So, (u,t,v) € G. O

Lemma 4.3. The groupoid G = F x, OF is an ample groupoid.

Proof. We first show that G is étale. Let (u,aB871,v) € G. Let W = p,-1(Uy) N
©w3-1(Up), and put Wy = (W) and Wg = @g(W). Then

U:= Wy x{af '} xWs) NG

is an open neighborhood of (1,871, v)(= (¢ap-1(V), B, pa-1(p))) such that
rg|u is just the projection onto the first coordinate, and is thus a homeomorphism.
Thus, G is étale. Since then F is discrete and OF has a basis of compact-open sets
by Remark[B.7] it follows that G has a basis of compact open sets. So, G is an ample
groupoid. O

Theorem 4.4. The map © : F x,0FE — I'(OF,0g) defined by
O((,ap™,v)) = (]l — |B],v)

18 a groupoid isomorphism.

Proof. We first show that © is well-defined. For t = (ad)(86)~! such that t = a3~*
is in reduced form. Then |ad| — |Bd| = |a| — |5]. Since © only changes the second
coordinate, it follows that © is well-defined.

Clearly, © is onto. To show that © is injective, let ©((u, a7, v)) = O((v,st™1,9)).
Then p = v and v = 6, and hence, P(u) = P(y) and P(v) = P(§). Say P(u) = ag,
P(v) = B¢, P(y) = snp and P(0) = tn. Then, o = sn and B¢ = tn. We may
assume that o = s (if not, then s = as’ and the same arguments holds). Then,
al = sa/¢ = sn, implying that n = o/¢. Then, 3¢ = ta/(, which implies that
B = ta/. Then we compute in F:

aft =sd/(ta’) 7t = st7L.

Thus, O is injective.
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We next note that it is clear that (O x ©)(G®®) C T'®. Now, to show that ©
preserves multiplication, let (u, a8 %, v), (v,st71,6) € G. If B = s/’ (if not, then
s = s’ and the same arguments holds), then

O((n, B~ v) (v, 5t71,8)) = O((p, a(sB) " 'st ™, 4))
= O((u, a(tp)~",9))
= (:uv ‘a’ - ‘tﬁ/‘75)7
and
@((M,Oéﬂ_l, V))@((V7 St_la 5)) = (,U,, ‘Oé’ - ’/8‘7 V)(Va ‘S‘ - ‘t‘75)
= (, laf = [s| = 18| + |s| = [¢]. 9)
= (,U,, ‘Oé’ - ’tﬂ/laé)
Thus, O((u, B~ v) (v, 5t71,0)) = O((u, B, )0 ((v, st71, ).

Lastly, to show that © is a homeomorphism, since both I'(OFE,opg) and G are

ample groupoids, it suffices to show that their unit spaces are homeomorphic. But,

this follows from the fact that both G© and I'® are homeomorphic to dE. So, we
are done. ]

Corollary 4.5. Let (B,L,0,Z,) be a generalized Boolean dynamical system. Then
we have
O*(B, E, Q,Ia) = C(](@E) Xp F.
Proof. By [1], we have Cy(0F) x5 F = C*(F x, OF). Hence, we have that
C*(B,L,0,1,) = C*(I'(0F,0E)) = C*(F x, OF) = Cy(0F) x, F,
where the first isomorphism follows from [9, Corollary 7.11]. O

Remark 4.6. By [12, Theorem 4.3], if N : £ — (0,00) is any function, then there
exists a unique strongly continuous one-parameter group o of automorphism of
Co(OF) g I such that

01(f0a) = N(@)" foo and a1(gdp) = gy

forallt €e R, a € L, f € D, and g € Dy. If we let N(a) = exp(1l) for every
a € L, then we obtain a strongly continuous action (using the same notation)
o: T — Aut(Co(9F) x4 F) such that

0.(f0a) = 2fda and o,(gdp) = gdy

forallte R, a € L, f € D, and g € Dy.
Then, one also can directly show that there is a *-isomorphism v from C*(B, L, 6,Z,,)
onto Co(OF) x4 F such that

Y(pa) = In(p,4)00 and ¥ (sa,8) = Inr(a,B)0a
for A€ B, a € £ and B € Z, by showing that
{1N([/),A)5(/)7 1N(a,B)5a cAeB,ae Land B € Ia}

isa (B, L,0,1,)-representation in Cy(0E) x4 and using the gauge-invariant unique-
ness theorem.
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5. PARTIAL ACTIONS OF THE FREE GROUP ON STONE SPACES

In this section, we show how we can model certain partial actions of the free group
using Boolean dynamical systems. We then consider the C*-algebraic version of this
result by looking at partial actions of the free group on commutative C*-algebras
generated by projections.

Theorem 5.1. (c¢f. [5, Theorem 7.10]) Let X be a Stone space, that is, a dual of
a Boolean algebra, and let p = ({Vi}ier, {pt}ter) be a semi-saturated, orthogonal
topological partial action of a free group F on X such that V, is clopen for all
generators « of F. Then there exist a Boolean dynamical system (B,L,0) and a
homeomorphism f: X — OF, such that [ is equivariant with respect to the actions
p and p, where OF is the boundary path space associated with (B,L,0,R,) and ¢
is the partial action given in Section 8. In particular, F x, X and F x, OF are
isomorphic as topological groupoids.

Proof. Let L be the set of generators of F and B the set of compact open subsets of
X. For each a € L, define 6, : B — B by 0,(A) = po-1(ANV,). Then, we clearly
have 6,,(0) = po-1(0) = 0 and 6,(AU B) = 0,(A) UB,(B). Since p,-1 is bijective
for each o € £, we have
0(ANDB) =p-1((ANB)NV,)

= pa-1((ANV,)N(BNV,))

= pa-1(ANV,) N pa-1(BNVy)

= 0,(A) N0, (B).
Also, since we have 0,(A\ B) N6,(B) = 6,(0) = § and

ea(A \ B) U ea(B) = 901(14 U B) = ea(A) U ea(B) = (HQ(A) \ea(B)) U Ha(B)a

it follows that 0,(A\ B) = 04(A) \ 6(B). Thus, 6, is an action for each a € L,
and hence, (B, L, ) is a Boolean dynamical system. Note that « € As(={a € L:
0o (A) = pa-1(ANV,) # 0}) if and only if ANV, # 0.

For each a € £, we claim that

Roa={A€B:ACp,-1(BNV,) for some B € B}
:{AGBZAQVQ71}.

It is clear that R, C {A € B: A C V,-1}. For the converse inclusion, choose A € B
such that A C V-1 and take B = po(A) C V,. Then A = p,-1(B) € Ra.

Notice that we have X = (X \ |U,cr Vo) U (Uaer Va) since the partial action
p is orthogonal. We first associate an element of W< with a given z € X as
follows: given z € X, there is either a unique letter a; € £ such that x € V,, or

r € X\ Uper Voo In the first case, the same dichotomy applies to pa;1(x), and
so either there is a unique letter ap € L such that pa;1(a:) € Vg, or pa;1(a:) €
X\ Uper Voo We note here that pa;1(pa;1(a:)) = P(araz)-1(7) since the partial
action is semi-saturated, and that z € V,,,4,. This process might either stop and
we get a finite word ag - - -, (possibly the empty word) or it does not stop and
we get an infinite word ajas---. We denote by a := a, this word and observe
that z € Vi, , for all 1 < i < |a,| (understanding that i < [a,| means i < oo if
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|az| = 00). Since p(azyi)q(Va;l NVay) # 0, we have Ry, ; # {0} for all 1 <i < ey,
and hence, we have a path a, € W=,

Now, if |az| = 0, we define n = {A € B: a2 € A}. If |ay| > 1, we define
ni = {A € Ra, : p5.,(x) € A} for each 1 < i < |ag|. Then, n and 7; are ultrafilters
for all 1 <i < |ay]| and we have

forai 1) (Mis1)
= {A €eB: 60&i+1 (A) € 77i+1}
={AehB: Pai?,, x) € paall(Aﬂ Vais1)}
={AeB: pa;;(m) e AnVy .}
= hia,10(ni)
for 1 <i < |ay| . We then define a map f: X — OF by

Fa) = {n if o | =0,

Then f is well-defined and it is easy to see that the map f is injective.

To show that f is surjective, let p = (e?i") € OF. We first note that we cannot
have [P(u)] > 1 and fy(a,)(§1) = 0, because if A € &1, then fu, (pa, (A)) = A so that
Par (A) € fpan)(§1)- So, r(u) # B for any given p. Now, let z, € X be the element
corresponding to 7(x) via Stone duality. We then claim that f(x,) = u. Suppose
first that P(u) = 0. So, p € EY,. If z;, € | |,p Va, then there exits a € £ such that
x;, € V,. Choose A € B such that z, € A. Then, z, € ANV,(€ B), and hence,
ANV, € u. On the other hand, since A gny, = {a} and (AﬂVa)ﬂ(X\uaeﬁ Va) =0,
we have ANV, € Byeg, which contradicts to [9, Lemma 7.9]. Hence, in this case,
oz, = 0 and f(x,) = p. Suppose next that |P(u)] > 1. We prove that, for
1 < i < [P(u)], ®p € Va,, and §&; is the ultrafilter in R,, corresponding to the
point p a;}(xu). For i = 1, we must have z, € V,,, because otherwise we would find
A€ f@[ai](ﬁl) such that 6,,(A) = 0 which does not exist. Next, suppose that &
corresponds to a point y € X different from pa;1(:17“). We then have an element
B € & such that y € B but pa;1(:17“) ¢ B. Then A := p,,(B) € B is such that
0y (A) = B so that A € fy(a,(§1), but z, ¢ A, which is a contradiction. Using
induction and repeating the same argument we conclude that &; is the ultrafilter in
Ra, corresponding to pafg(xu). Now, if |a| is finite, as for the case of the empty
word, we have that pa—l(:'lfu) € X\ Uneg Var and hence, oz, = o and f(z,) = p.
On the other hand, if |a| = oo, then pafg(az) ¢ X\ yer Va for all ¢ and again we
have o, = a and f(z,) = p. ’

To show that f is continuous, observe that if « € £ and A € Ry, then A C V1
and A’ = p,(A) is such that f(A’) = NM(a, A). More generally, for « € W=! and
A € Ra, we have A C V-1, and one then also can see that A’ = po(A) is such that
f(A") = N(a, A). Lastly, for A € B, we have

f(A) = N0, A). (2)
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Then, for « € W*, A € Ry, a1,--- ,an, € W* and A; € Ry, for i =1,--- ,n, we
have

SN (0 A\ (U N (o, A40)) ) = A7\ (U, 4) € B,

where A" = p,o(A) and A, = p,,(A;) for i = 1,--- ,n. Now, by the observation in
the proof of Lemma [3.8 and Remark 2.6, we have a basis of OF consisting of sets
of the form N (a, A) \ (U1 N (i, A;)). Thus, f is continuous. Also, By (2]), we see
that f is an open map. Hence, f is a homeomorphism.

To prove that f is equivariant, it is enough to prove that

f(pa-1(2)) = @a-1(f(2)) (3)
for all @ € £ and all = € V,, since p and ¢ are semi-saturated. To show (3)), we only
need to check that r(yp,-1(f(x))) is the ultrafilter in B corresponding to p,-1(z).
Now, if f(z) = (e)?)1<i<|a,|, Where a1 = o and 11 = {A € Ry : po-1(z) € A}, then
we have @,-1(f(2)) = (€57 )2<i<|a,|- It thus easily follows that

r(pa-1(f(2))) = hiajo(m)
={AeB:p,1(x) € A}

Lastly, since f is an equivariant homeomorphism, it is straightforward to check
that the map F' : F x, X — F x, OF given by F((z,t,y)) = (f(z),t, f(y)) is an
isomorphism of topological groupoids. O

We now look at the C*-algebraic version of Theorem 5.l For that, we prove a
few lemmas first.

Lemma 5.2. Let A be a commutative C*-algebra and {p1,--- ,pn} a family of pro-
jections. Then, there exists a family of mutually orthogonal projections {q1, - ,qm}
such that for all i =1,...,n, there is I; C {1,...,m} such that p; = Zjell- ;-

Proof. This follows a usual disjointification of sets. See for instance [3, Lemma
4.1]. O

Lemma 5.3. Let A be a commutative C*-algebra generated by its projections and
B the set of all projections of A. Then B is a Boolean algebra with operations given

A~

by pNq = pq, pUq = p+q—pq and p\q = p—pq for p,q € B. Moreover A= Cy(B),
where B is the Stone dual of B.

Proof. Let Ag be the *-subalgebra generated by the projections of A. By Lemma
(.2 an non-zero element of a € Aj can be written as linear combination of non-zero
orthogonal projections. Suppose that a = Y1 | \ip; € Ao, where pip; = 0if i # j
and \; # 0 for all 4, and let f, : B — C be the function given by fo => 1, Ailzp,)-
Note that
lall = max [A] = || fall (4)
i=1,...,n

since Z(p;) N Z(p;) = 0 if i # j. We claim that f, does not depend on the choice
of decomposition for a. Suppose then that a = Z;”Zl 0jq;, where g;q; = 0 if i # j,
and o; # 0 for all j. We apply Lemma in the family {p1,...,pn,q1,-..,qm} to
find a new family of non-zero mutually orthogonal projections {ri,...,r:}, which
is such that for each i = 1,...,n, there is [; C {1,...,t} such that p; = > . 7,



26 GILLES G. DE CASTRO AND E. J. KANG

and for each j = 1,...,m, there is J; C {1,...,t} such that ¢; = Zke}j r,. Note
that if ¢ # 4/, then I, N I = () because p;py = 0. We can also assume that
Ui, L = {1,...,t}, for if there is k such that k ¢ I; for all ¢, then rip; = 0 for all
i, and hence ary, = 0. This would imply that r,g; = 0 for all j and we can simply
remove 7 from the list. Similarly J; N Jy =0 if j # j' and UL, J; = {1,...,t}.
Moreover if I; N J; # 0, then A\; = 0;. For each k =1,...,¢t, if we let (; := \; = 0
for the unique 4, j such that £ € I; N J;, we see that

n t m
Z )‘le(pz) = Z CklZ(rk) = Z Ujlz(Qj)’
i=1 k=1 J=1

proving the claim.

The map &g : Ay — C’o(g) given by ®g(a) = f, is then well-defined. It is
easy to see that @ is linear and preserves involution. Equation () shows that
®( is an isometry, and an argument using Lemma as above shows that @ is

A~

multiplicative. Since the set {17, : p € B} generates Cy(B), ®o extends to a
*_isomorphism from A onto Cy(B). O

Lemma 5.4. Suppose that A = Cy(X) for some locally compact Hausdorff space
X and let U be an open subset of X. Then, U is closed if and only if there is an
ideal J of A such that A= Cy(U) & J.

Proof. Suppose first that U is closed and let V"= X\U. Then V is clopen and clearly
Co(U)NCy(V) ={0}. Given f € Cy(X), if we define fiy : X — C by fy(z) = f(x)
if x € U and fy(z) =0if = ¢ U, then, because U is clopen, fir € Cy(U). Similarly
we define fy so that f = fy + fy. It follows that A = Cy(U) ® Co(V).

Suppose now that A = Cy(U)@®J for some ideal J. It is well-know that J = Cy(V')
for some open subset V of X. Note that if U NV # (), then there is f € Cy(U) N
Co(V), and if X \ (UUV) # 0, then there is f € Co(X) \ (Co(U) & Co(V)), both
being contradictions. Hence U = X \ V and U is closed. 0

Corollary 5.5. Let A be a commutative C*-algebra generated by its projections and
p = ({Diher, {Tt her) be a semi-saturated, orthogonal topological partial action of
a free group F on A such that for every generator a of F, we have A = D, & C,, for
some ideal Cy, of A. Then, there exists a Boolean dynamical system (B, L,0) such
that Ax,F = C*(B,L,0).

Proof. As discussed above, A = Cy(X) for some Stone space. The result then
follows from Lemmas [5.3] and [5.4], the Gelfand duality, Corollary and Theorem
61l O

6. GRADED AND GAUGE-INVARIANT IDEALS

As an application of the results of Section Bl we prove that if (B, £, 6,7, is a gen-
eralized Boolean dynamical system and I is a gauge-invariant ideal of C*(B, L, 0,Z,),
then I itself is a C*-algebra of a generalized Boolean dynamical system. In order
to prove this result, we first prove that gauge-invariant ideals are graded ideals for
some suitable gradings.
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Let B be a C*-algebra and let G be a discrete group. We say that B is G-graded
if there is a linearly independent family {By}sec of closed linear subspaces of B
such that, for all g,h € G,

(1) ByBp C By,
(2) B = By-1, and
(3) @geG By is dense in B.

Let B be a G-graded C*-algebra with grading subspaces {Bg}4ec. An ideal J of
B is said to be G-graded ideal if J = @ ¢ Jy where each J, = J N By.

By Corollary 4.3, there is a F-grading on C*(B, L, 0,Z,), since Cy(OF) %, F has a
natural F-grading given by the partial action. Namely, for ¢ € F, we set (C’o(@E) X
IE‘) , = Co(Ut)dr. There is also a Z-grading that comes from the isomorphism of
[, Corollary 7.11]. More specifically, this grading is given by C*(B, L,0,Z,), =
span{Sa,455 4t o, B € L*, |a|—[B] =n and A € T,NZz}, where n € Z. Because of
Theorem[£.4] we see that C*(B, L, 0,Z,), is the closure of EBtE]FM:n C*(B,L,0,Z,):.

Proposition 6.1. Let J be an ideal of C*(B, L,0,Z,). The following are equivalent:

(1) J is a F-graded ideal.
(2) J is a Z-graded ideal.
(3) J is a gauge-invariant ideal.

Proof. Note that the (-component with respect to the F-grading is contained in the
0-component with respect to the Z-grading so that (1) implies (2).

Suppose that J is a Z-graded ideal. For each n € Z, z € T and x € J N
C*(B,L,0,Z,), we have that v,(x) = 2"z € JNC*(B, L,0,Z,),. It follows that

vs <@ JNC*(B, L, e,za)n> cPincH(B,L,0,To)n.

nez nez

Since J is Z-graded and 7, is continuous, we conclude that v,(J) C J and hence J
is gauge-invariant.

Finally, if J is gauge-invariant. By [6, Proposition 7.3|, J is generated by elements
of the (-component of J and hence J is F-graded. g

Corollary 6.2. Let (B,L,0,Z,) be a generalized Boolean dynamical system and
J be a gauge-invariant ideal of C*(B,L,0,Z,). Then, there exists a generalized
Boolean dynamical system (B?,L£7,07,T)) such that J = C*(B’,L£7,07,17).

Proof. By Proposition [6.1] J is F-graded. By Corollary [.5], we can see Cy(OF) as
a subalgebra of C*(B,L,0,Z,). Then, for I = J N Cy(OF) we obtain an ideal of
Cy(OF) which is ¢-invariant by [11, Proposition 23.11] and such that J = (I) by
[T, Proposition 23.1]. By [13| Proposition 3.1], we have that J = I x4 F. Also,
there is an open set U of OF such that I = Cy(U), which is y-invariant because I
is ¢-invariant. Moreover, by [I], I x4 F = C*(F x, U). We note that U is a Stone
space because it is a open subset of the Stone space OE. By Lemmas B.ITl and
B.12 the sets U, NU are clopen with respect to U for all o € £. By Theorem (.1
we obtain a generalized Boolean dynamical system (B7,L£7,67,T/) modelling the
partial action of F on U. By Corollary 5] we obtain J = C*(B7,£7,67,77). O
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