THE PERFECTOID COMMUTANT OF LUBIN-TATE POWER SERIES

by

Laurent Berger

Abstract. **— Let LT** be a Lubin-Tate formal group attached to a finite extension of \mathbf{Q}_p . By a theorem of Lubin-Sarkis, an invertible characteristic *p* power series that commutes with the elements $Aut(LT)$ is itself in $Aut(LT)$. We extend this result to perfectoid power series, by lifting such a power series to characteristic zero and using the theory of locally analytic vectors in certain rings of *p*-adic periods. This allows us to recover the field of norms of the Lubin-Tate extension from its completed perfection.

Introduction

Let F be a finite extension of \mathbf{Q}_p , with ring of integers \mathcal{O}_F and residue field k. Let $q = \text{Card}(k)$ and let π be a uniformizer of \mathcal{O}_F . Let LT be the Lubin-Tate formal \mathcal{O}_F module attached to π . Let $F_{\infty} = F(\mathrm{LT}[\pi^{\infty}])$ denote the extension of F generated by the torsion points of LT, and let $\Gamma_F = \text{Gal}(F_{\infty}/F)$. The Lubin-Tate character χ_{π} gives rise to an isomorphism $\chi_{\pi} : \Gamma_F \to \mathcal{O}_F^{\times}$.

The field of norms ([**[Win83](#page-5-0)**]) \mathbf{E}_F of the extension F_{∞}/F is a local field of characteristic *p*, endowed with an action of Γ_F , that can be explicitly described as follows. We choose a coordinate *T* on LT, so that for each $a \in \mathcal{O}_F$ we get a power series $[a](T) \in \mathcal{O}_F[T]$. We then have $\mathbf{E}_F = k(\mathbf{Y})$, on which Γ_F acts via the formula $\gamma(f(Y)) = f([\chi_{\pi}(\gamma)](Y)).$ In *p*-adic Hodge theory, we consider the field \mathbf{E}_F , which is the *Y*-adic completion of the maximal purely inseparable extension $\cup_{n\geq 0} \mathbf{E}_F^{q^{-n}}$ of \mathbf{E}_F inside an algebraic closure. The action of Γ_F extends to the field \mathbf{E}_F . If $f \in \mathbf{E}_F$ and $\gamma \in \Gamma_F$, we still have $\gamma(f(Y))$ = $f([\chi_{\pi}(\gamma)](Y))$. The question that motivated this paper is the following.

²⁰²⁰ *Mathematics Subject Classification***. —** 11S; 12J; 13J.

*Key words and phrases***. —** Lubin-Tate group; field of norms; *p*-adic period; locally analytic vector; *p*-adic dynamical system; perfectoid field.

2 LAURENT BERGER

 $\boldsymbol{Question.}$ — *Can we recover* \mathbf{E}_F *from the data of the valued field* \mathbf{E}_F *endowed with the action of* Γ_F ?

If $a \in \mathcal{O}_F^{\times}$, then $u(Y) = [a](Y)$ is an element of \mathbf{E}_F of valuation 1 that satisfies the functional equation $u \circ [g](Y) = [g] \circ u(Y)$ for all $g \in \mathcal{O}_F^{\times}$. Conversely, we prove the following theorem, which answers the question, as it allows us to find a uniformizer of \mathbf{E}_F from the data of the valued field \mathbf{E}_F endowed with the action of Γ_F .

<i>Theorem A. — If $u \in \widetilde{\mathbf{E}}_F$ is such that $\text{val}_Y(u) = 1$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$, *then there exists* $a \in \mathcal{O}_F^{\times}$ *such that* $u(Y) = [a](Y)$ *.*

In particular, $\mathbf{E}_F = k(u)$ for any *u* as in theorem A. The main difficulty in the proof of theorem A is to prove that if *u* is as in the statement of theorem A, then there exists $n \geq 0$ such that $u \in \mathbf{E}_F^{q^{-n}}$ F_F^q . If $F = \mathbf{Q}_p$ and $\pi = p$, namely in the cyclotomic situation, this follows from the main result of [**[BR22](#page-5-1)**]. However, a crucial ingredient in that paper does not generalize to $F \neq \mathbf{Q}_p$. In order to go beyond the cyclotomic case, we instead use a result of Colmez ([[Col02](#page-5-2)]) to lift *u* to an element \hat{u} of a ring \tilde{A}^+_F (the Witt vectors over the ring of integers of $\mathbf{\tilde{E}}_F$, as well as a completion of $\cup_{n\geq 0}\varphi_q^{-n}(\mathcal{O}_F[\hat{Y}])$, where $\varphi_q(\hat{Y}) = [\pi](\hat{Y})$), that will satisfy a similar functional equation. In particular, \hat{u} is a locally analytic element of a suitable ring of *p*-adic periods. By previous results of the author ([**[Ber16](#page-5-3)**]), \hat{u} belongs to $\varphi_q^{-n}(\mathcal{O}_F[\![\hat{Y}]\!])$ for a certain *n*. This allows us to prove that there exists $n \geqslant 0$ such that $u \in \mathbf{E}_F^{q^{-n}}$ $\int_{F}^{q^{-n}}$. By replacing *u* with u^{p^k} for a well chosen *k*, we are led to the study of elements of $Y \cdot k[[Y]]$ under composition. We prove that *u* is invertible for composition, and to conclude we use a theorem of Lubin-Sarkis ([**[LS07](#page-5-4)**]) saying that if an invertible series commutes with a nontorsion element of Aut(LT), then that series is itself in Aut(LT). We finish this paper with an explanation of why the "Tate traces" on \mathbf{E}_F used in $[\mathbf{BR22}]$ $[\mathbf{BR22}]$ $[\mathbf{BR22}]$ don't exist if $F \neq \mathbf{Q}_p$.

1. Locally analytic vectors

We use the notation that was introduced in the introduction. In order to apply lemma 9.3 of [**[Col02](#page-5-2)**], we assume that the coordinate *T* on LT is chosen such that $[\pi](T)$ is a monic polynomial of degree *q* (for example, we could ask that $[\pi](T) = T^q + \pi T$).

Let $F_0 = \mathbf{Q}_p^{\text{unr}} \cap F$. Let $\tilde{\mathbf{E}}_F^+$ denote the ring of integers of $\tilde{\mathbf{E}}_F$ and let $\tilde{\mathbf{A}}_F^+ = \mathcal{O}_F \otimes_{\mathcal{O}_{F_0}}$ $W(\widetilde{\mathbf{E}}_F^+)$ be the \mathcal{O}_F -Witt vectors over $\widetilde{\mathbf{E}}_F^+$.

Proposition 1.1. — *If* $u \in \tilde{\mathbf{E}}_F^+$ *is such that* $\gamma(u) = [\chi_{\pi}(\gamma)](u)$ *for all* $\gamma \in \Gamma_F$ *, then u has a lift* $\hat{u} \in \tilde{\mathbf{A}}_F^+$ *such that* $\gamma(\hat{u}) = [\chi_\pi(\gamma)] \circ \hat{u}$ *for all* $\gamma \in \Gamma_F$ *.*

Proof. — By lemma 9.3 of [**[Col02](#page-5-2)**], there is a unique lift $\hat{u} \in \tilde{A}_F^+$ of *u* such that $\varphi_q(\hat{u}) =$ $[\pi](\hat{u})$ (in ibid., this element is denoted by $\{u\}$). If $\gamma \in \Gamma_F$, then both $\gamma(\hat{u})$ and $[\chi_{\pi}(\gamma)](\hat{u})$ are lifts of *u* that are compatible with Frobenius as above. By unicity, they are equal. \Box

Let $\log_{LT}(T)$ and $\exp_{LT}(T)$ be the logarithm and exponential series for LT. Write $\exp_{LT}(T) = \sum_{n\geqslant 1} e_n T^n$ and $\exp_{LT}(T)^j = \sum_{n\geqslant j} e_{j,n} T^n$ for $j \geqslant 1$.

Lemma 1.2. — *We have* $\text{val}_{\pi}(e_{j,n}) \geqslant -n/(q-1)$ *for all* $j, n \geqslant 1$ *.*

Proof. — Fix $\varpi \in \overline{\mathbf{Q}}_p$ such that $\text{val}_{\pi}(\varpi) = 1/(q-1)$ and let $K = F(\varpi)$. Recall that $\log_{LT}(T) = \lim_{n \to +\infty} [\pi^n](T) / \pi^n$. If $z \in \mathbb{C}_p$ and $\text{val}_{\pi}(z) \geq 1/(q-1)$, then $\text{val}_{\pi}([\pi](z)) \geq$ $\text{val}_{\pi}(z) + 1$. This implies that $1/\varpi \cdot \log_{LT}(\varpi T) \in T + T^2 \mathcal{O}_K[[T]]$. Its composition inverse $1/\varpi \cdot \exp_{LT}(\varpi T)$ therefore also belongs to $T + T^2 \mathcal{O}_K[[T]]$. This implies the claim for $j = 1$. The claim for $j \geq 1$ follows easily. \Box

We use a number of rings of *p*-adic periods in the Lubin-Tate setting, whose construction and properties were recalled in §3 of [**[Ber16](#page-5-3)**]. Proposition 1.1 gives us an element $\hat{Y} \in \tilde{\mathbf{A}}_F^+$ (denoted by *u* in ibid.). Let $\tilde{\mathbf{B}}_F^+ = \tilde{\mathbf{A}}_F^+[1/\pi]$. Given an interval $I = [r; s] \subset [0; +\infty[$, a valuation $V(\cdot, I)$ on $\tilde{\mathbf{B}}_F^+[1/\hat{Y}]$ is constructed in ibid., as well as various completions of that ring. We use $\tilde{\mathbf{B}}_F^I$, the completion of $\tilde{\mathbf{B}}_F^+[1/\hat{Y}]$ for $V(\cdot, I)$ and $\widetilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r} = \varprojlim_{s \geq r} \widetilde{\mathbf{B}}_F^{\lceil r;s \rceil}$. Inside $\widetilde{\mathbf{B}}_{\mathrm{rig},F}^{\dagger,r}$, there is the ring $\mathbf{B}_{\mathrm{rig},F}^{\dagger,r}$ of power series $f(\hat{Y})$ with coefficients in F , where $f(T)$ converges on a certain annulus depending on r .

Lemma 1.3. — *If s* > 0*, then* **B** †*,s* rig*,F* ∩ **A**˜ ⁺ *^F* = **A**⁺ *F .*

Proof. — Take $f(\hat{Y}) \in \mathbf{B}^{\dagger,s}_{\text{rig},F}, t \geqslant s$ and let $I = [s; t]$. We have $V(f, I) \geqslant 0$, so that f is bounded by 1 on the corresponding annulus. This is true for all *t*, so that $f \in \mathbf{B}_F^{\dagger,s}$ \mathfrak{f}^{s}_{F} . We now have $f \in \mathbf{B}_F^{\dagger,s} \cap \tilde{\mathbf{A}}_F^+ = \mathbf{A}_F^+$. \Box

Let *W* be a Banach space with a continuous action of Γ_F . The notion of locally analytic vector was introduced in [**[ST03](#page-5-5)**]. Recall (see for instance §2 of [**[Ber16](#page-5-3)**]; the definition given there is easily seen to be equivalent to the following one) that an element $w \in W$ is locally *F*-analytic if there exists a sequence $\{w_k\}_{k\geq 0}$ of *W* such that $w_k \to 0$, and an integer $n \ge 1$ such that for all $\gamma \in \Gamma_F$ such that $\chi_{\pi}(\gamma) = 1 + p^n c(\gamma)$ with $c(\gamma) \in \mathcal{O}_F$, we have $\gamma(w) = \sum_{k \geq 0} c(\gamma)^k w_k$. If $W = \varprojlim_i W_i$ is a Fréchet representation of Γ_F , we say that $w \in W$ is pro-*F*-analytic if its image in W_i is locally *F*-analytic for all *i*.

Proposition 1.4. — *If* $r \ge 0$ *and* $x \in \tilde{A}^+_F$ *is such that* $val_Y(\overline{x}) > 0$ *and* $\gamma(x) =$ $[\chi_{\pi}(\gamma)](x)$ *for all* $\gamma \in \Gamma_F$ *, then x is a pro-F*-analytic element of $\widetilde{\mathbf{B}}_{\mathrm{rig},F}^{^{\dagger,r}}$.

4 LAURENT BERGER

Proof. — We prove that for all $s \geq r$, *x* is a locally *F*-analytic vector of $\tilde{\mathbf{B}}_F^{[r;s]}$. The proposition then follows, since $\widetilde{\mathbf{B}}_{\text{rig},F}^{\dagger,r} = \varprojlim_{s \geq r} \widetilde{\mathbf{B}}_{F}^{[r;s]}$ as Fréchet spaces.

Let $S(X,Y) = \sum_{i,j} s_{i,j} X^i Y^j \in \mathcal{O}_F[[X,Y]]$ be the power series that gives the addition in LT. We have $\log_{LT}(x) \in \widetilde{\mathbf{B}}_F^{[r;s]}$. Take $n \geq 1$ such that $V(p^{n-1} \log_{LT}(x), [r;s]) > 0$. We have $[a](T) = \exp_{LT}(a \log_{LT}(T))$, so that $[1 + p^n c](T) = S(T, \exp_{LT}(p^n c \log_{LT}(T)))$. If $\chi_{\pi}(\gamma) = 1 + p^{n}c(\gamma)$, then

$$
\gamma(x) = \sum_{k \geq 0} c(\gamma)^k \sum_{j \leq k} p^{nk} e_{j,k} \log_{LT}(x)^k \sum_{i \geq 0} s_{i,j} x^i
$$

=
$$
\sum_{k \geq 0} c(\gamma)^k \sum_{j \leq k} p^k e_{j,k} \cdot (p^{n-1} \log_{LT}(x))^k \cdot \sum_{i \geq 0} s_{i,j} x^i.
$$

We have $p^k e_{j,k} \in \mathcal{O}_F$ by lemma 1.2, $V(p^{n-1} \log_{LT}(x), [r; s]) > 0$ by hypothesis, $s_{i,j} \in \mathcal{O}_F$ and $V(x,[r;s]) > 0$. This implies the claim. \Box

Proposition 1.5. — *If* $r > 0$ *and* $x \in \tilde{A}_F^+$ *is a pro-F*-*analytic element of* $\tilde{B}_{\text{rig},F}^{\dagger,r}$ *, then there exists* $n \geqslant 0$ *such that* $x \in \varphi_q^{-n}(\mathbf{A}_F^+)$ *.*

Proof. — By item (3) of theorem 4.4 of [[Ber16](#page-5-3)] (applied with $K = F$), there exists $n \geq 0$ and $s > 0$ such that $x \in \varphi_q^{-n}(\mathbf{B}_{\text{rig},F}^{\dagger,s})$. The proposition now follows from lemma 1.3 applied to $\varphi_q^n(x)$. \Box

2. Composition of power series

Recall that a power series $f(Y) \in k[[Y]]$ is separable if $f'(Y) \neq 0$. If $f(Y) \in Y \cdot k[[Y]]$, we say that *f* is invertible if $f'(0) \in k^{\times}$, which is equivalent to *f* being invertible for composition (denoted by \circ). We say that $w(Y) \in Y \cdot k[[Y]]$ is nontorsion if $w^{\circ n}(Y) \neq Y$ for all $n \geq 1$. If $w(Y) = \sum_{i \geq 0} w_i Y^i \in k[[Y]]$ and $m \in \mathbb{Z}$, let $w^{(m)}(Y) = \sum_{i \geq 0} w_i^{p^m} Y^i$. Note that $(w \circ v)^{(m)} = w^{(m)} \circ v^{(m)}$.

Proposition 2.1. — Let $w(Y) \in Y + Y^2 \cdot k[Y]$ be an invertible nontorsion series, and *let* $f(Y) \in Y \cdot k[[Y]]$ *be a separable power series. If* $w^{(m)} \circ f = f \circ w$ *, then f is invertible.*

Proof. — This is a slight generalization of lemma 6.2 of [**[Lub94](#page-5-6)**]. Write

$$
f(Y) = fnYn + O(Yn+1)
$$

\n
$$
f'(Y) = gkYk + O(Yk+1)
$$

\n
$$
w(Y) = Y + wrYr + O(Yr+1),
$$

with $f_n, g_k, w_r \neq 0$. Since *w* is nontorsion, we can replace *w* by $w^{\circ p^{\ell}}$ for $\ell \gg 0$ and assume that $r \geq k + 1$. We have

$$
w^{(m)} \circ f = f(Y) + w_r^{(m)} f(Y)^r + O(Y^{n(r+1)})
$$

= $f(Y) + w_r^{(m)} f_n^r Y^{nr} + O(Y^{nr+1}).$

If $k = 0$, then $n = 1$ and we are done, so assume that $k \geq 1$. We have

$$
f \circ w = f(Y + w_r Y^r + O(Y^{r+1}))
$$

= $f(Y) + w_r Y^r f'(Y) + O(Y^{2r})$
= $f(Y) + w_r g_k Y^{r+k} + O(Y^{r+k+1}).$

This implies that $nr = r + k$, hence $(n - 1)r = k$, which is impossible if $r > k$ unless $n = 1$. Hence $n = 1$ and f is invertible. \Box

We now prove theorem A. Take $u \in \mathbf{E}_F$ such that $\text{val}_Y(u) = 1$ and $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$. By proposition 1.1, *u* has a lift $\hat{u} \in \tilde{\mathbf{A}}_F^+$ such that $\gamma(\hat{u}) = [\chi_{\pi}(\gamma)] \circ \hat{u}$ for all $\gamma \in \Gamma_F$. By proposition 1.4, \hat{u} is a pro-*F*-analytic element of $\tilde{\mathbf{B}}_{\text{rig},F}^{\dagger,r}$. By proposition 1.5, there exists $n \geq 0$ such that $\hat{u} \in \varphi_q^{-n}(\mathbf{A}_F^+)$. This implies that $u \in \varphi_q^{-n}(\mathbf{E}_F^+)$. Hence there is an $m \in \mathbb{Z}$ such that $f(Y) = u(Y)^{p^m}$ belongs to $Y \cdot k[[Y]]$ and is separable. Note that $\text{val}_Y(f) = p^m$. Take $g \in 1 + \pi \mathcal{O}_F$ such that *g* is nontorsion, and let $w(Y) = [g](Y)$ so that $u \circ w = w \circ u$. We have $f \circ w = w^{(m)} \circ f$. By proposition 2.1, f is invertible. This implies that $val_Y(f) = 1$, so that $m = 0$ and u itself is invertible. Since $u \circ [g] = [g] \circ u$ for all $g \in \mathcal{O}_F^{\times}$, theorem 6 of [[LS07](#page-5-4)] implies that $u \in Aut(LT)$. Hence there exists $a \in \mathcal{O}_F^{\times}$ such that $u(Y) = [a](Y)$.

3. Tate traces in the Lubin-Tate setting

If $F = \mathbf{Q}_p$ and $\pi = p$ (namely in the cyclotomic situation) the fact that, in the proof of theorem A, there exists $n \geq 0$ such that $u \in \varphi_q^{-n}(\mathbf{E}_F^+)$ follows from the main result of [**[BR22](#page-5-1)**]. We now explain why the methods of ibid don't extend to the Lubin-Tate case. More precisely, we prove that there is no Γ_F -equivariant *k*-linear projector $\mathbf{E}_F \to \mathbf{E}_F$ if $F \neq \mathbf{Q}_p$. Choose a coordinate *T* on LT such that $\log_{LT}(T) = \sum_{n\geqslant 0} T^{q^n}/\pi^n$, so that $\log'_{LT}(T) \equiv 1 \mod \pi$. Let $\partial = 1/\log'_{LT}(T) \cdot d/dT$ be the invariant derivative on LT.

Lemma 3.1. — *We have* $d\gamma(Y)/dY \equiv \chi_{\pi}(\gamma)$ *in* \mathbf{E}_F *for all* $\gamma \in \Gamma_F$ *.*

Proof. — Since $\log_{LT}' \equiv 1 \mod \pi$, we have $\partial = d/dY$ in \mathbf{E}_F . Applying $\partial \circ \gamma = \chi_\pi(\gamma) \gamma \circ \partial$ to *Y* , we get the claim. \Box *Lemma 3.2.* **–** *If* $\gamma \in \Gamma_F$ *is nontorsion, then* $\mathbf{E}_F^{\gamma=1} = k$ *.*

Proposition 3.3. **—** *If* $F \neq \mathbf{Q}_p$ *, there is no* Γ_F **-equivariant map** $R : \mathbf{E}_F \to \mathbf{E}_F$ **such** *that* $R(\varphi_q(f)) = f$ *for all* $f \in \mathbf{E}_F$ *.*

Proof. — Suppose that such a map exists, and take $\gamma \in \Gamma_F$ nontorsion and such that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$. We first show that if $f \in \mathbf{E}_F$ is such that $(1 - \gamma)f \in \varphi_q(\mathbf{E}_F)$, then $f \in \varphi_q(\mathbf{E}_F)$. Write $f = f_0 + \varphi_q(R(f))$ where $f_0 = f - \varphi_q(R(f))$, so that $R(f_0) = 0$ and $(1 - \gamma)f_0 = \varphi_q(g) \in \varphi_q(\mathbf{E}_F)$. Applying *R*, we get $0 = (1 - \gamma)R(f_0) = g$. Hence $g = 0$ so that $(1 - \gamma)f_0 = 0$. Since $\mathbf{E}_F^{\gamma=1} = k$ by lemma 3.2, this implies $f_0 \in k$, so that $f \in \varphi_q(\mathbf{E}_F)$.

However, lemma 3.1 and the fact that $\chi_{\pi}(\gamma) \equiv 1 \mod \pi$ imply that $\gamma(Y) = Y + f_{\gamma}(Y^p)$ for some $f_{\gamma} \in \mathbf{E}_F$, so that $\gamma(Y^{q/p}) = Y^{q/p} + \varphi_q(g_{\gamma})$. Hence $(1 - \gamma)(Y^{q/p}) \in \varphi_q(\mathbf{E}_F)$ even though $Y^{q/p}$ does not belong to $\varphi_q(\mathbf{E}_F)$. Therefore, no such map R can exist. \Box

Corollary 3.4. — If $F \neq \mathbf{Q}_p$, there is no Γ_F -equivariant *k*-linear projector $\varphi_q^{-1}(\mathbf{E}_F) \to$ \mathbf{E}_F . A fortiori, there is no Γ_F -equivariant *k*-linear projector $\mathbf{E}_F \to \mathbf{E}_F$.

Proof. — Given such a projector *T*, we could define *R* as in prop 3.3 by $R = T \circ \varphi_q^{-1}$.

Acknowledgements. I thank Juan Esteban Rodríguez Camargo for asking me the question that motivated both this paper and [**[BR22](#page-5-1)**].

References

- [Ber16] L. BERGER – "Multivariable (φ, Γ) -modules and locally analytic vectors", *Duke Math. J.* **165** (2016), no. 18, p. 3567–3595.
- [BR22] L. Berger & S. Rozensztajn – "Decompletion of cyclotomic perfectoid fields in positive characteristic", preprint, 2022.
- [Col02] P. Colmez – "Espaces de Banach de dimension finie", *J. Inst. Math. Jussieu* **1** (2002), no. 3, p. 331–439.
- [LS07] J. Lubin & G. Sarkis – "Extrinsic properties of automorphism groups of formal groups", *J. Algebra* **315** (2007), no. 2, p. 874–884.
- [Lub94] J. Lubin – "Nonarchimedean dynamical systems", *Compositio Math.* **94** (1994), no. 3, p. 321–346.
- [ST03] P. SCHNEIDER & J. TEITELBAUM – "Algebras of p -adic distributions and admissible representations", *Invent. Math.* **153** (2003), no. 1, p. 145–196.
- [Win83] J.-P. Wintenberger – "Le corps des normes de certaines extensions infinies de corps locaux; applications", *Ann. Sci. École Norm. Sup. (4)* **16** (1983), no. 1, p. 59–89.

February 7, 2022

Laurent Berger, UMPA de l'ENS de Lyon, UMR 5669 du CNRS

E-mail : laurent.berger@ens-lyon.fr • *Url :* perso.ens-lyon.fr/laurent.berger/