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Abstract

Drug-loaded hydrogels provide a means to deliver pharmaceutical agents to specific sites
within the body at a controlled rate. The aim of this paper is to understand how controlled
drug release can be achieved by tuning the initial distribution of drug molecules in a hydro-
gel. A mathematical model is presented for a spherical drug-loaded hydrogel. The model
captures the nonlinear elasticity of the polymer network and thermodynamics of swelling.
By assuming that the drug molecules are dilute, the equations for hydrogel swelling and
drug transport partially decouple. A fast optimisation method is developed to accurately
compute the optimal initial drug concentration by minimising the error between the nu-
merical drug-release profile and a target profile. By taking the target drug efflux to be
piecewise constant, the optimal initial configuration consists of a central drug-loaded core
with isolated drug packets near the free boundary of the hydrogel. The optimal initial drug
concentration is highly effective at mitigating the burst effect, where a large amount of drug
is rapidly released into the environment. The hydrogel stiffness can be used to further tune
the rate of drug release. Although stiffer gels lead to less swelling and hence reduce the
drug diffusivity, the drug-release kinetics are faster than for soft gels due to the decreased
distance that drug molecules must travel to reach the free surface.

Keywords: drug delivery, hydrogels, optimisation, burst effect

1 Introduction

A hydrogel is a two-component system consisting of a deformable polymer network that is
saturated with water. The hydrophilic nature of the polymers creates an energetic incentive for
water molecules to enter the network via diffusion. In order for the network to accommodate
the volume of the water molecules, the polymers must stretch. Imbibition of water therefore
continues until the energy cost of elastically deforming the polymer network balances the energy
gain of mixing water and polymer. At equilibrium, the volume of a swollen hydrogel can be tens
or even thousands of times greater than the volume of the dry polymer network. The ability to
precisely control the degree of swelling via stimuli such as temperature, pH, and electric fields
has led to hydrogels finding use in a diverse range of applications [1].

Drug-loaded hydrogels have emerged as important systems for the controlled and targetted
delivery of pharmaceutical agents [2, 3]. Controlled delivery means that drug molecules are
released at a prescribed rate; targetted delivery means that the drug molecules are released
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at specific locations within the body. The ability to tune the water content and stiffness of
hydrogels leads to excellent biocompatibility as they are able to mimic a wide range of biological
tissues [4]. In addition, the polymer network provides mechanical and chemical shielding that
prevents the degradation of drug molecules before they are released into the body.

Hydrogels provide a pathway to controlled and targetted drug delivery through their tunable,
multi-scale architecture and ability to swell when subjected to a stimulus [5]. Hydrogels possess
a macroscopic length scale associated with their overall size, which can range from microns to
millimetres, and a nanometric length scale associated with the mesh size of the polymer network.
Both length scales play key roles in the kinetics of drug release: the gel size controls the distance
that drug molecules must travel to reach the gel surface and be released into the environment,
whereas the mesh size controls the rate of drug diffusion through the polymer network. If
the mesh size is much greater than the hydrodynamic radius of a drug molecule, then drug
diffusion is uninhibited by the presence of the polymer network. However, as the mesh size
approaches the hydrodynamic radius, drug molecules become increasingly immobilised by the
polymer network. Drug molecules that are larger than the mesh size are effectively entrapped by
the network and diffusion is completely suppressed. Hydrogel swelling increases the mesh size of
the network, thus mobilising drug molecules and initiating their release into the surroundings.
By programming a hydrogel to swell in response to specific environmental cues, it is possible to
deliver drug payloads to target sites within the body. For example, environmentally responsive
hydrogels have been used to target tumours [6] and breast cancer cells [7] by exploiting local
increases in pH and temperature relative to healthy tissue.

Due to the increasingly widespread use of hydrogel-based drug-delivery systems, there is
a need for broadly applicable methods that can sensitively control drug-release profiles [8].
Although the various length scales in a hydrogel can be harnessed to alter the drug-release
kinetics, achieving a desired drug-release profile remains a major challenge. The onset of swelling
can drastically change the time scale of drug diffusion by simultaneously increasing the drug
diffusivity and the distance that drug molecules must travel to reach the free surface. Moreover,
a common problem with drug-delivery systems is the so-called “burst effect”, where a significant
proportion of the drug is released in a short initial time frame [9], a phenomenon that can have
potentially dangerous effects [10]. While many advances in tunable release kinetics have been
made in recent years [11], there is still significant scope for improvement.

The objective of this work is to employ mathematical modelling to explore the potential
of tuning the drug-release profile by varying the initial drug concentration in drug-loaded hy-
drogels. The mathematical model will utilise the theory of nonlinear elasticity to capture the
large deformations of the polymer network that occur during swelling and the resulting elastic
stresses. The generation of mechanical stress is a particularly important feature to resolve as it
enhances the transport of water molecules through the hydrogel via stress-assisted diffusion. An
optimisation theory will be developed for computing the initial distribution of drug molecules
that leads to the best approximation of a target drug-release profile. The immobility of the
drug when the hydrogel is unswollen means that a non-uniform initial concentration can be
experimentally achieved in a variety of ways [12] and thus has significant relevance as a control
method.

Extensive research on the mathematical modelling of drug-delivery systems has led to a
plethora of literature which has been reviewed by Siepmann and Siepmann [13] and Siepmann
and Peppas [14]. Caccavo [15] compiled a comprehensive overview of models that have been
specifically developed for hydrogel-based drug-delivery systems; these include simple empiri-
cal expressions for data fitting, detailed physical models based on continuum mechanics, and
statistical and neural-network models. The idea to control the drug-release kinetics via the
initial drug concentration was first proposed by Lee [16]. Subsequent developments by Lu et
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al. [17, 18] involved calculating the optimal initial concentration profile, with drug concentration
modelled by the constant-coefficient diffusion equation. Georgiadis and Kostoglou [19] further
extended these works to consider the case of a spatially non-uniform diffusion coefficient as well
as allowing this diffusion coefficient to be a free variable. However, the models used in these
optimisation approaches did not account for the time-dependent swelling of the hydrogel and
its subsequent mechanical response.

The key novelty of this paper therefore arises from combining optimisation theory with the
use of a fully coupled chemo-mechanical model of a hydrogel based on nonlinear elasticity. Our
results reveal that a piecewise-linear drug-release profile is best approximated if the initial drug
concentration consists of a central drug-loaded core and a discrete number of drug “packets” near
the gel surface, the latter of which are highly localised regions in the gel that are concentrated
in drug molecules and which are separated by wide drug-free zones. Moreover, we find that
the hydrogel stiffness can be used in tandem with the optimal loading to further tune the
drug-release profile and mitigate the burst effect over a wide range of dosage intervals.

The paper is organised as follows. In Sec. 2, we present a model of a drug-loaded hydrogel.
In Sec. 3, the equilibrium degree of swelling is computed and its impact on the drug mobility is
assessed. We also explore the drug-release profiles for a uniform loading of drug molecules. A
theory for the optimal drug loading is developed in Sec. 4 and applied to specific scenarios in
Sec. 5. The paper concludes in Sec. 6.

2 Mathematical modelling

We consider the evolution of a spherical, drug-loaded hydrogel after it is placed in an aqueous
environment. The drug molecules are assumed to be too large to move through the polymer
network when the gel is in its initial, undeformed state. For simplicity, it is assumed that the
system remains axisymmetric during swelling and drug release.

Due to the large deformations that occur during swelling, the mechanical response of the
hydrogel is described using the framework of nonlinear elasticity. On sufficiently long time
scales, the polymers may rearrange to relax the elastic stress, resulting in a viscoelastic material
response [20, 21]. Moreover, the polymer network may degrade [22, 23]. Neither of these features
will be considered here.

Several thermodynamically consistent hydrogel models based on finite-strain elasticity have
been proposed [24–26]. These models typically assume that the polymer network is swollen
by a solute-free liquid and describe the evolution of the mixture towards a state of minimum
energy. The addition of a solute, such as drug molecules, can alter the energetic landscape of
the system and impact the transport of fluid via cross-diffusion, both of which require extended
models to capture [27]. In the context of drug-delivery systems, the volume (or mass) fraction
of drug molecules is often small [20]. Consequently, the chemo-mechanics of swelling will not be
strongly influenced by the presence of drug molecules [28] and cross-diffusion can be neglected.
In formulating the model below, we invoke the assumption that the drug molecules are dilute.
As a result, there will be a partial decoupling of the model: governing equations for the hydrogel
can be formulated and solved independently from those for the drug. This decoupling will be
the key to developing a fast algorithm for optimising the initial drug distribution.

2.1 Bulk equations for the hydrogel

The governing equations for the hydrogel have been derived using thermodynamic arguments
by Hennessy et al. [29]; here we specialise the results to a spherical geometry. The equations
are formulated in terms of Lagrangian coordinates X associated with the stress-free reference
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configuration, which is taken to be a dry hydrogel with radius R0. The use of Lagrangian
coordinates avoids the introduction of a free boundary into the problem. The Lagrangian
gradient operator is denoted by ∇X and is expressed in terms of the usual spherical coordinates.
The Eulerian coordinates associated with the current (swollen) configuration are denoted by x.
For the axisymmetric configurations considered here, we can write X = Rer and x = r(R, t)er,
where R and r are Lagrangian and Eulerian radial coordinates, respectively, and er is the
radial basis vector. The deformation gradient tensor F = ∇Xx describes the local distortion
of material elements, whereas its determinant, J = detF, describes the volumetric changes of
material elements. For axisymmetric deformations in spherical geometries, the appropriate form
of the deformation gradient tensor is readily calculated as

F = λrer ⊗ er + λθeθ ⊗ eθ + λϕeϕ ⊗ eϕ, (2.1)

where eθ and eϕ are the polar and azimuthal basis vectors, ⊗ denotes the dyadic product of
two vectors, and

λr =
∂r

∂R
, λθ = λϕ =

r

R
, (2.2)

are the principal stretches in the radial, polar, and azimuthal directions. The polymer network
and the imbibing fluid, assumed to be water, are treated as incompressible. This assumption,
in combination with the limit of a dilute drug, implies that volumetric changes in material
elements must be solely associated with the imbibition of water molecules. We therefore impose
a molecular incompressibility condition given by

J = λrλθλϕ = 1 + νwNw, (2.3)

where νw and Nw are the molecular volume and nominal concentration of water, respectively.
Nominal concentrations are expressed in terms of the number of molecules per unit reference
(undeformed) volume. The actual concentration of water, i.e. the number of molecules per
current (deformed) volume, is defined as nw = Nw/J . The volume fraction of water φw can
then be defined as φw = νwnw.

The conservation of water can be expressed as

∂Nw

∂t
+

1

R2

∂

∂R

(
R2Qw

)
= 0, (2.4)

where t is time and Qw is the nominal diffusive flux given by

Qw = −Mw ∂µ
w

∂R
. (2.5)

The water mobility Mw is defined as

Mw =
Nw

kBT

Dw(J)

λ2r
, (2.6)

with kB denoting Boltzmann’s constant, T the absolute temperature, Dw the diffusivity of water
in the polymer network, and µw the chemical potential of water. The factor of λ−2r in (2.6) is
a result of mapping Fick’s law in the current configuration to the reference configuration. The
water diffusivity is expressed as Dw = Dw

0 J
a, where a is a positive parameter that characterises

how strongly the rate of diffusion increases as the polymer network expands. Typically, a = 1.5;
see Bertrand et al. [30].
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The chemical potential of water can be expressed as

µw = µw0 + νw(Πw + p), (2.7)

where µw0 is the chemical potential of a pure bath of water, Πw is the osmotic pressure of water,
and p is the mechanical pressure. The osmotic pressure captures fluid transport that is driven
by concentration gradients and is given by

Πw =
kBT

νw

[
log

(
νwNw

1 + νwNw

)
+

1 + νwNw + χ

(1 + νwNw)2

]
. (2.8)

The Flory parameter χ describes the strength of energetically unfavourable interactions between
polymers and water molecules. Typically, a large value of χ corresponds to a low degree of
swelling, as it becomes energetically costly for fluid and polymers to mix. The dependence
of the chemical potential on the mechanical pressure captures transport of fluid down stress
gradients and leads to stress-assisted diffusion.

Conservation of linear momentum is given by

1

R2

∂

∂R

(
R2Sr

)
− 1

R
(Sθ + Sϕ) = 0, (2.9a)

Sθ − Sϕ = 0, (2.9b)

where Si are the principal first Piola–Kirchhoff stresses. The components of the stress can be
decomposed into elastic components Σi and a pressure component such that

Si = Σi − pJλ−1i . (2.10)

The hydrogel is assumed to be a hyperelastic material described by a neo-Hookean strain energy.
Consequently, the elastic components of the stress can be written as

Σr = G(λr − λ−1r ), Σθ = Σϕ = G(λθ − λ−1θ ), (2.11)

where G is the shear modulus of the polymer network.

2.2 Bulk equations for drug diffusion

As with the hydrogel model, the equations that govern the transport of drug molecules are
written in terms of Lagrangian coordinates. We let Nd represent the nominal concentration of
drug molecules, which must obey the conservation law

∂Nd

∂t
+

1

R2

∂

∂R

(
R2Qd

)
= 0. (2.12)

The volume fraction of drug φd is defined as φd = νdNd/J , where νd is the volume of a drug
molecule. The dilute-drug limit requires φd � 1. The diffusive flux of drug molecules, Qd, is
given by

Qd = −D
d(J)

λ2r

∂Nd

∂R
. (2.13)

Various forms of the drug diffusivity Dd appear in the literature. A common choice is a Fujita-
type expression, in which the drug diffusivity is assumed to exponentially increase with the water
concentration. Such forms are suitable for models that neglect the mechanics of the polymer
network [31] or which only consider small deformations [21] because the water concentration
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can serve as a proxy for the degree of swelling that occurs in each material element. Given
that our model explicitly captures finite deformations of the polymer network, we choose an
expression for the drug diffusivity based on free-volume theory [20]:

Dd(J) = Dd
∞ exp

[
− β

J − 1

]
. (2.14)

The fitting parameter β > 0 controls how strongly the drug diffusivity increases with the
volumetric expansion of the polymer network. The value of Dd

∞ describes the diffusivity of drug
molecules when they are uninhibited by the polymer network.

2.3 Boundary and initial conditions

At the centre of the hydrogel, R = 0, we impose

r(0, t) = 0, (2.15)

which ensures that the origin in the current state is mapped to the origin in the reference state.
In addition, we impose no-flux conditions on the water and drug molecules:

Qw(0, t) = 0, (2.16a)

Qd(0, t) = 0. (2.16b)

At the free surface of the hydrogel, R = R0, we impose continuity of the chemical potential of
water and a stress-free condition, which leads to

µw(R0, t) = µw0 , (2.17a)

Sr(R0, t) = 0. (2.17b)

In (2.17), we have set the pressure in the surrounding water to be zero. The surrounding
environment is assumed to be a perfect sink for the drug. Therefore, we impose that the
concentration of drug at the free surface of the hydrogel is zero:

Nd(R0, t) = 0. (2.18)

Consequently, the steady-state configuration will correspond to a swollen, drug-free hydrogel.
Initially, the hydrogel is in a dry state that does not contain water molecules but which is

loaded with drug molecules. The initial concentration of drug is denoted by d. Therefore, the
initial conditions for the model are

Nw(R, 0) = 0, Nd(R, 0) = d(R). (2.19)

Since the hydrogel is initially undeformed, the nominal and actual concentrations coincide at
t = 0. Thus, the initial volume fraction of drug is given by φd(R, 0) = νdd(R). The initial ratio
of the total drug volume to the total volume can be defined as

ε =
3

R3
0

∫ R0

0
νdd(R)R2 dR < 1. (2.20)

We will impose a value of ε� 1 to assist in defining the target drug-release profiles. Given that
both φd and ε represent volume fractions of drug, we will refer to φd as the local drug fraction
and ε as the global drug fraction.
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2.4 Drug efflux and target profiles

The flux of drug molecules out of the hydrogel, hereafter referred to as the efflux, is defined as

F (t) = − d

dt

[
4π

∫ R0

0
Nd(R, t)R2 dR

]
= 4πR2

0Q
d(R0, t). (2.21)

By integrating the first equality in (2.21) in time and using (2.20), we see that the efflux F
must satisfy the condition ∫ ∞

0
F (t) dt =

4πR3
0ε

3νd
. (2.22)

From this point forward, (2.22) will be used in place of (2.20). We now let A(t) denote a target
flux profile that is desirable to achieve in practical situations. We will be particularly concerned
with piecewise-constant target profiles of the form

A(t) =

{
A0, 0 ≤ t ≤ τ,
0, otherwise,

(2.23a)

where τ is referred to as the drug-release period and it describes the amount of time needed for
all of the drug molecules to be released from the hydrogel. The constant A0 is determined by
imposing the constraint in (2.22), which ensures that the actual efflux F and the target efflux
A lead to the same amount of drug being delivered. Therefore, we must have that

A0 =
4πR3

0ε

3τνd
. (2.23b)

The target profile given by (2.23) has significant physical meaning, as often the goal of drug
delivery through hydrogels is to steadily release the drug over a set period of time [32]. The
aim of this paper is to determine the initial concentration of drug molecules in the gel that
minimises the error between the efflux F (t) and the target profile A(t). The piecewise-constant
target profiles in (2.23) provide an excellent means of testing the robustness of our optimisation
approach because the discontinunity when t = τ is difficult to approximate.

2.5 Non-dimensionalisation

The governing equations are written in dimensionless form using the initial gel radius R0 as the
length scale andR2

0/D
w
0 as the time scale. Thus, we writeR = R0R̂, r = R0r̂, and t = (R2

0/D
w
0 )t̂,

where hats are used to denote non-dimensional quantities. The chemical potential of water is
written as µw = µw0 + kBT µ̂

w. The nominal concentrations, the diffusive fluxes, and the drug
efflux are written as

Nw =
1

νw
N̂w, Nd =

ε

νd
N̂d, Qw =

Dw
0

νwR0
Q̂w, Qd =

εDd
∞

νdR0
Q̂d, F =

εR0D
w
0

νd
F̂ . (2.24)

The elastic stresses and the pressure are non-dimensionalised according to Σr = GÊr, Σθ = GÊθ,
and p = Gp̂. In the dimensionless equations presented below, the hats on the variables will be
dropped.

The dimensionless equations for the hydrogel are as follows. The conservation of water reads
as

∂Nw

∂t
=

1

R2

∂

∂R

(
R2Mw ∂µ

w

∂R

)
, (2.25a)
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where the water mobility is given by Mw = NwJa/λ2r . The chemical potential of water in the
gel is given by

µw = log

(
Nw

1 +Nw

)
+

1 +Nw + χ

(1 +Nw)2
+ Gp, (2.25b)

where G = νwG/(kBT ) is a non-dimensional elastic modulus that characterises the energy
increase due to elastic deformations relative to the energy decrease of inserting a water molecule
into the polymer network. The radial stress balance can be reduced to

∂Σr

∂R
+

2(Σr − Σθ)

R
= λ2θ

∂p

∂R
. (2.26a)

The elastic components of the stress are written as

Σr = λr − λ−1r , Σθ = λθ − λ−1θ , (2.26b)

where the non-dimensional expressions for the radial and orthoradial stretches λr and λθ are
identical to those in (2.2). The molecular incompressibility condition can be formulated as

J = λrλ
2
θ = 1 +Nw. (2.27)

Equations (2.25)–(2.27) are solved with the following boundary and initial conditions:

r(0, t) = 0,
∂µw

∂R

∣∣∣∣
R=0

= 0, µw(1, t) = 0, Sr(1, t) = 0, Nw(R, 0) = 0, (2.28)

where the non-dimensional total radial stress Sr has the same form as in (2.10).
The diffusion equation that governs the transport of drug molecules through the hydrogel

can be written in dimensionless form as

∂Nd

∂t
=
D
R2

∂

∂R

(
R2D

d(J)

λ2r

∂Nd

∂R

)
, (2.29a)

where D = Dd
∞/D

w
0 . The diffusivity of drug molecules is given by

Dd = exp

(
− β

J − 1

)
. (2.29b)

The boundary and initial conditions for the drug concentration are

∂Nd

∂R

∣∣∣∣
r=0

= 0, Nd(1, t) = 0, Nd(R, 0) = d(R). (2.29c)

Due to the choice of non-dimensionalisation, the initial volume fraction of drug is given by
φd(R, 0) = εd(R). The dilute limit therefore requires that d = O(ε−1) as ε → 0. The non-
dimensional drug efflux is defined as and must satisfy

F (t) = − d

dt

(
4π

∫ 1

0
Nd(R, t)R2 dR

)
,

∫ ∞
0

F (t) dt =
4

3
π. (2.30)

Similarly, non-dimensionalising the piecewise-constant target profiles in (2.23) leads to

A(t) =

{
4π/(3τ), 0 ≤ t ≤ τ,
0, otherwise.

(2.31)
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2.6 Parameter estimation

The initial radius of the hydrogel is assumed to be 2 mm. Gels of this size would likely be
surgically implanted into the body or placed directly onto the skin for transdermal drug deliv-
ery [5]. Water has a molar volume of 18 · 10−6 m3 mol−1. Dividing by Avogadro’s number gives
a molecular volume of νw = 3.0 · 10−29 m3. The shear modulus of the gel, G, is taken to be a
control parameter. Typical values range from about 10 kPa to 1000 kPa. The Flory interaction
parameter χ depends on the specific type of polymers used to create the gel and is generally a
function of composition. However, its value often lies between 0 (for athermal mixtures) and 3.
For simplicity, we treat χ as a constant. Drozdov et al. [26] fitted a similar hydrogel model to
experimental data and reported a solvent diffusion coefficient of Dw

0 ∼ 10−9 m2 s−1. We follow
Caccavo et al. [20] and assume that β = 1.0 and that the drug diffusivity Dd

∞ lies in the range
10−12 m2 s−1 to 10−10 m2 s−1. For reference, the diffusivity of paracetamol in water is roughly
6.5 · 10−10 m2 s−1 [33]. The diffusivity of larger macromolecules such as proteins is expected to
be substantially smaller. The temperature is fixed at 293 K.

Using these parameter estimates, we find that the non-dimensional shear modulus, G, is
between 7·10−5 and 7·10−3, the smallness of which is characteristic of a soft solid. The diffusivity
ratio D lies between 10−3 to 10−1. The time scale of fluid diffusion, R2

0/D
w
0 , is roughly one

hour. Therefore, we assume that the non-dimensional drug-release period τ appearing in the
target flux profile (2.23) ranges from 6 to 24, corresponding to drug release over a 6- to 24-hour
window.

2.7 Finite-difference discretisation

The non-dimensional hydrogel model (2.25)–(2.28) is solved using a semi-implicit finite-difference
method with a staggered grid. The Lagrangian spatial domain, 0 ≤ R ≤ 1, is discretised into
cells of uniform width. The Eulerian radial coordinate r is solved for on cell edges whereas the
pressure p and the nominal fluid fraction Nw are solved for on cell midpoints. The conservation
equation for the fluid (2.25a) is discretised in time using Euler’s method. All quantities in the
dimensionless system (2.25)–(2.28) are treated implicitly, with the exception of the mobility Mw

in (2.25a), which is treated explicitly. This choice provides greater numerical stability during
the first few time steps, where large gradients in the fluid fraction and radial stretch develop.
The resulting nonlinear algebraic system is solved using Newton’s method at each time step.

Once the solution to the gel problem is obtained, the linear diffusion problem for the drug
(2.29) is solved using an implicit Euler method. The equations are discretised using the same
staggered grid for the hydrogel, with the drug concentration Nd found on cell midpoints.

3 Benchmarking

The equilibrium states provide valuable information about how swollen the gel becomes for
a given set of parameters. From this information, it is possible to assess the change in drug
diffusivity that occurs during the swelling process. The equilibrium states correspond to ho-
mogeneous gels with swelling ratio J = J∞. The radial and orthoradial stretches are therefore

equal and given by λr = λθ = J
1/3
∞ . The chemical potential of water µw and the radial compo-

nent of the first Piola–Kirchhoff stress Sr are both uniform and, from the boundary conditions
in (2.28), equal to zero. The latter can be used to obtain an expression for the pressure given

by p = J
−1/3
∞ − J−1∞ . Thus, by writing the nominal drug concentration in terms of the swelling

ratio J using the incompressibility condition (2.27) and eliminating the pressure in the chemical
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Figure 1: Equilibrium values of the (a) swelling ratio J∞, (b) drug diffusivity Dd(J∞), and (c) drug

mobility Dd(J∞)J
−2/3
∞ , plotted as functions of the Flory interaction parameter χ for different non-

dimensional gel stiffnesses G. The diffusivity Dd is given by (2.29b).

potential (2.25b), we find that the equilibrium states satisfy

log(1− J−1∞ ) + J−1∞ + χJ−2∞ + G(J−1/3∞ − J−1∞ ) = 0. (3.1)

Once the unique solution for J∞ is obtained from (3.1), the equilibrium drug diffusivity Dd
∞ =

Dd(J∞), which represents the maximum value of the drug diffusivity during swelling, can be
computed by evaluating (2.29b).

As the Flory interaction parameter χ increases, there is a marked decrease in the degree of
swelling that occurs for all gel stiffnesses; see Fig. 1 (a). Consequently, the equilibrium drug
diffusivity decreases as well; see Fig. 1 (b). The curves for the equilibrium swelling ratio and drug
diffusivity converge when χ > 0.7, indicating that elasticity no longer plays a role in determining
the equilibrium. For χ < 0.7, the degree of swelling becomes strongly dictated by the gel stiffness
G, with softer gels (smaller G) undergoing larger deformations. Correspondingly, the equilibrium
drug diffusivity increases with decreasing G as well. For the softest gels (G = 7 · 10−5), the
drug diffusivity Dd approaches unity, implying that drug diffusion becomes uninhibited by the
presence of the polymer network.

The increase in drug diffusivity due swelling is counteracted by the increase in distance
that drug molecules must travel to reach the free surface. This increase in distance is captured

by the factor of λ−2r in (2.29a), which is equal to J
−2/3
∞ at equilibrium. We can thus define

the equilibrium drug mobility as Dd(J∞)J
−2/3
∞ to capture the competing effects of increases

in diffusivity and gel size. For 0 < χ < 0.7, the equilibrium mobility increases with the gel
stiffness, as seen in Fig. 1 (c). Thus, stiffer gels are, in fact, more effective at releasing drug
molecules because the reduction in gel size completely offsets the smaller drug diffusivity. The
strong dependence of the drug mobility on the gel size underscores the importance of capturing
finite deformations in the model.

We explore the baseline drug-release dynamics for various gel stiffnesses by assuming that
the initial loading of the drug is uniform; that is, we take d(R) ≡ 1. The Flory parameter is set
to χ = 0.5 in order to capture changes in the equilibrium state with gel stiffness. By numerically
solving the governing equations, we compute the drug efflux F (t) according to (2.21) and the
fractional drug release defined as

R(t) = 1− M(t)

M(0)
, M(t) = 4π

∫ 1

0
Nd(R, t)R2 dR. (3.2)

The numerical results are shown in Fig. 2, where, for reference, we also plot a target profile
in which the drug efflux is constant over a 24-hour period, corresponding to a piecewise-linear
fractional drug release. We consistently observe a large initial “burst” where the drug efflux is
large, resulting in a rapid release of drug from the gel. In particular, half of the drug molecules
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(a) (b)

Figure 2: Drug-release dynamics with a uniform initial loading of drug molecules, d(R) ≡ 1. (a)
The efflux of drug molecules. (b) The fractional amount of drug released into the environment. The
parameter values are χ = 0.5 and D = 0.1.

are released within the first four hours. The softest gels have the slowest drug-release kinetics,
as expected from the equilibrium drug mobility seen in Fig. 1 (c), and thus provide the closest
approximation to the target profile.

4 Theory of optimal drug loading

The bursting observed in Fig. 2 is a generic phenomenon that occurs for all parameter values.
Achieving a uniform efflux, or a linear drug-release profile, simply by parameter variation is not
possible. Therefore, we explore how the initial drug concentration d(R) can be varied to bring
the efflux F (t) as close as possible to a prescribed target profile A(t).

4.1 Problem definition

The objective function that measures the difference between F (t) and A(t) is taken to be

H(d) :=

∫ ∞
0

(F (t)−A(t))2 dt, (4.1)

which penalises sustained deviations from the target profile; short periods of time where the
drug release is different from the desired profile are unimportant. A similar objective function
was used by Lu et al. [17], but here we ignore the cost of the drug, which is constant for a
fixed value of ε, corresponding to a fixed amount of drug. While (4.1) is a good measure of the
“closeness” of F (t) and A(t), it is also important to impose that the total drug delivered is the
same as the target total amount. This means∫ ∞

0
F (t) dt =

∫ ∞
0

A(t) dt =
4

3
π. (4.2)

The only other constraint on the function d(R) is that

d(R) ≥ 0, ∀R ∈ (0, 1). (4.3)

The endpoint value d(1) = 0, which is necessary for the boundary conditions, can be ignored as
it contributes zero volume of drug to the system. For the moment, we will consider an infinitely
dilute drug with ε → 0 and thus will not impose an upper bound on d. Thus, the aim is to
minimise (4.1) subject to (4.2) and (4.3).
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4.2 Impossibility of a perfect solution

It may seem that there is enough freedom in choosing d(R) to ensure that F (t) ≡ A(t) for each
possible choice of target profile A. However, the long-time behaviour of drug release means that
this is not the case. Recall that, at long times, the hydrogel expands to a uniform equilibrium,
as discussed in Sec. 3. Thus, by assuming the convergence to the equilibrium state is uniform,
then, to leading order, the diffusion equation for the drug becomes

∂Nd

∂t
∼ DD

d(J∞)J
−2/3
∞

R2

∂

∂R

(
R2∂N

d

∂R

)
as t→∞. (4.4)

By seeking a separable solution, it is straightforward to show that the leading behaviour in time
of the efflux is given by

F (t) = − d

dt

(
4π

∫ 1

0
R2Nd(R, t) dR

)
= O

(
exp

(
−DDd(J∞)J−2/3∞ πt

))
as t→∞. (4.5)

Thus, if the target profile A(t) has slower-than-exponential decay, for example, then it is im-
possible that F (t) = A(t) everywhere, so any optimal solution will have a non-zero value of
H.

4.3 Formulation of a discrete optimsation problem

The linearity of the drug-diffusion problem (2.29) can be exploited to derive a discrete optimisa-
tion problem that approximates the full problem given by (4.1)–(4.3). First suppose {Nd

i (R, t)}i
is a set of M functions satisfying (2.29a) and its boundary conditions (2.29c), with initial condi-
tions {ξi(R)}i. Moreover, let {fi(t)}i be the corresponding drug effluxes. Suppose further that
di are real constants. Then, by defining the initial drug concentration as

d(R) =
M∑
i=1

diξi(R), (4.6a)

the solution for the drug concentration Nd and the drug efflux F can be written as

Nd(R, t) =
M∑
i=1

diN
d
i (R, t), F (t) =

M∑
i=1

difi(t). (4.6b)

In light of (4.6b), we refer to each fi as a partial efflux. The initial drug concentration d(R) in
(4.6a) is now written as a sum of spherical delta functions that are centred at M distinct radial
coordinates 0 < Ri < 1 by defining

ξi(R) =
δ(R−Ri)

4πR2
. (4.7)

Each weight di in (4.6a) therefore corresponds to the number of drug molecules located at the
point Ri. The discrete optimisation problem will compute the optimal values for the M weights
d1, d2, . . ., dM . Since fi(t) denotes the drug efflux that is obtained from using ξi as an initial
condition, we have that ∫ ∞

0
fi(t) dt = 4π

∫ 1

0
ξi(R)R2 dR = 1, (4.8)
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which implies that ∫ ∞
0

F (t) dt =
M∑
i=1

di

∫ ∞
0

fi(t) dt =
M∑
i=1

di. (4.9)

By collecting the weights di into a vector d = (d1, d2, . . . , dM ), we can formulate the following
discrete optimisation problem:

min

{
H(d) : d ≥ 0 ,

M∑
i=1

di =

∫ ∞
0

A(t) dt

}
, (4.10)

where the objective function H is now

H(d) =

∫ ∞
0

(
M∑
i=1

difi(t)−A(t)

)2

dt, (4.11)

which is a quadratic function of the variables di. To practically calculate the integral in (4.11),
it is necessary to restrict the domain of integration to [0, T ] for some large T ; we find that
T = 50 is a sensible choice.

4.4 Convexity of the objective function

A useful property of the objective function H given by (4.11) is that it is a convex, quadratic
function of d. This can be seen by expanding the integrand to give

H(d) =
M∑
i=1

M∑
j=1

(
didj

∫ ∞
0

fi(t)fj(t) dt

)
− 2

M∑
i=1

(
di

∫ ∞
0

A(t)fi(t) dt

)
+

∫ ∞
0

A(t)2 dt, (4.12)

which can be concisely written as

H(d) =
1

2
dTSd− dTq +

∫ ∞
0

A(t)2 dt, (4.13)

where S ∈ RM×M and q ∈ RM are defined by

Sij = 2

∫ ∞
0

fi(t)fj(t) dt, qi = 2

∫ ∞
0

A(t)fi(t) dt. (4.14)

In particular, S is positive semi-definite as, for any v ∈ RM ,

vTSv = 2

∫ ∞
0

M∑
i=1

M∑
j=1

(vifi(t)fj(t)vj) dt = 2

∫ ∞
0

(
M∑
i=1

vifi(t)

)2

dt ≥ 0. (4.15)

Therefore, H is convex as S is the Hessian matrix of H. Using standard convex programming
results [34], we can prove that a constrained global minimum exists and that constrained local
and global minima are equivalent; details of the proofs are provided in Appendix A. Thus, the
global minimum can be calculated by simply finding a local minimum. For the remainder of
this paper, the optimal value of H will be denoted as H∗.
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4.5 Numerical implementation

The discrete optimisation problem (4.10)–(4.11) is numerically solved by discretising the govern-
ing equations using the finite-difference method described in Sec. 2.7. In particular, the radial
domain is discretised into M cells of width ∆R = 1/M . The radial coordinates Ri used to for-
mulate the discrete optimisation problem (see (4.7)) are chosen to coincide with the positions of
the M cell midpoints. The domain of each cell can then be defined as Ωi = {R : R−i < R < R+

i }
where R±i = Ri ±∆R/2 represent the cell edges. The spherical delta functions given by (4.7)
are replaced with step functions defined by

ξi(R) =

{
3
4π

[
(R+

i )3 − (R−i )3
]−1

, R ∈ Ωi,

0, otherwise,
(4.16)

where i = 1, 2, . . . ,M . The functions ξi in (4.16) can be interpreted as localised packets of drug
located at the i-th cell.

For a given set of parameter values, we first numerically solve the dimensionless hydrogel
equations. We then numerically solve the drug-diffusion problem using each initial condition
ξi in (4.16) to compute the drug concentration Nd

i and the partial efflux fi. The set of partial
effluxes {fi}i is then used in the discrete optimisation problem (4.10)–(4.11), which is solved
using MATLAB’s quadratic programming algorithm quadprog. The analytical results developed
in Sec. 4.4 and Appendix A ensure that quadprog will rapidly converge to a global minimum.
The ability to pre-compute the partial effluxes, which requires one solution to the nonlinear
hydrogel model and M solutions of the linear drug-diffusion model, results in a highly efficient
scheme for the numerical optimisation. After determining the optimal weights di, the total
efflux F and the drug concentration Nd can be constructed using (4.6b).

4.6 The partial effluxes from localised drug loadings

The partial effluxes fi(t) obtained from the localised drug packets given by (4.16) act as basis
functions in the construction of the total efflux F (t), as seen in (4.6b). Therefore, the key to
understanding the optimal solution lies in the time evolution of the partial effluxes fi(t). If a
drug packet is placed sufficiently close to the free boundary of the gel, then the correponding
efflux fi monotonically decreases from a large initial value; see Fig. 3. In this case, the large
initial efflux is driven by the incompatibility between the initial condition and the perfect sink
boundary condition, the latter of which forces the drug concentration to rapidly tend to zero.
If a drug packet is placed in the bulk of the gel, then the efflux first increases from zero to a
peak value, after which it exponentially decays. The transient increase in efflux is driven by
the increase in drug mobility that occurs due to swelling. As placement of the drugs moves
further from the outer boundary, the longer it takes for the efflux to reach its peak value, as
can be seen from Fig. 3. Eventually, all of the effluxes fi exponentially decay with the same
rate, highlighting the unavoidable long-term behaviour of the drug efflux discussed in Sec. 4.2.

From the observations made from Fig. 3, it follows that the drug concentration close to
the boundary can be utilised to capture the target profile A(t) at small times. The drug
concentration in the bulk of the gel enables the target profile to be captured at intermediate
times. Capturing the target profile after all of the effluxes fi have peaked is particularly difficult
and requires amplifying the drug concentration near the gel centre at the expense of potential
overshoots at intermediate times.
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Figure 3: Plots of the partial drug effluxes fi(t) for i = 1, i = 100, and i = 199 due to the packet-like
initial concentrations (4.16). The values of i correspond to R = 0, R = 0.5 and R = 1, respectively. The
parameter values are χ = 0.5, D = 0.1, and G = 7 · 10−4. The numerical simulations are based on using
M = 199 cells.

5 Case studies

We apply our theory of optimal drug loading to specific scenarios by considering non-dimensional
piecewise-constant target profiles with the same form as (2.31).

5.1 Optimal solutions for a 12-hour drug-release period

As a generic example, consider the optimal solution when τ = 12, corresponding to a constant
release of drug over a 12-hour period. The parameter values are set to χ = 0.5, G = 7 · 10−4,
and D = 0.1, which are the same as those used when computing the partial effluxes fi(t) in
Fig. 3.

The optimal initial drug distribution is formed of distinct, concentrated packets that are
separated by large drug-free regions; see Fig. 4 (a). The concentration in the packets decreases
as their distance from the gel centre increases. Such a distribution is expected on physical
grounds. Small concentrations of drug near the free boundary offset the initial largeness of the
corresponding partial effluxes seen in Fig. 3. The drug in the central packet at R = 0 sustains
the long-term drug efflux. However, to reach the free surface, the drug molecules in the central
packet much diffusively spread across the entire gel, resulting in a diminished concentration
gradient and hence diffusive flux. The largeness of the concentration in the central packet
offsets this behaviour.

The corresponding optimal drug efflux F (t) consists of a sequence of pulses of increasing
amplitude; see Fig. 4 (b). Each pulse is associated with one of the packets in the initial drug
concentration. The small quantity of drug in the packet near R = 1 is responsible for the first
pulse, which provides an approximation of the target profile A(t) for small times. Then, as the
pulse from this packet of drug diminishes, the pulse from the next packet begins, counteracting
this decrease. This pattern continues until the drug in the central packet nearest R = 0 is
released to create the largest pulse, which then exponentially decays. Due to the exponential
tail, the optimal efflux overshoots the target profile after the discontinuity at t = 12. The
overshoot is compensated by a substantial undershoot beforehand when 7 < t < 12. The
undershoot is itself compensated by an overshoot when 4 < t < 7, and the sequence repeats
until t = 0.

The gel stiffness G plays an important role in the optimal solution by modulating the equi-
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(a) (b)

Figure 4: The optimal (a) initial drug concentration d(R) and (b) corresponding drug efflux F (t). The
dashed line represents the piecewise-constant target profile. The parameter values are χ = 0.5, D = 0.1,
G = 7 · 10−4, and τ = 12.

librium drug mobility Dd(J∞)J
−2/3
∞ and hence the decay rate of the efflux F (t). When χ = 0.5,

the mobility increases with the gel stiffness; see Fig. 1 (c). For stiff gels with G = 7 · 10−3,
the faster decay rate leads to less overshoot after the discontinuity in the target profile, but
results in much larger undershoots and overshoots beforehand; see Fig. 5 (a). For soft gels with
G = 7 · 10−5, the slower decay rate leads to a greater overshoot after the discontinuity, which is
compensated by an efflux that is consistently below the target profile beforehand.

By computing the fractional drug release using (3.2), we find that the gel stiffness can be
combined with the optimal loading to tune the drug-release profile and, in particular, eliminate
the burst effect. For an intermediate stiffness of G = 7 · 10−4, the target drug-release profile
is perfectly captured during the first 7.5 hours, as shown in Fig. 5 (b), despite the sequence
of undershoots and overshoots that occur in the efflux. However, after 7.5 hours, there is a
sharp decrease in the release rate, resulting in a marked departure from the target profile and
a prolongation of the drug-release period. In particular, 19 hours are needed for 95% of the
drug to be released. By increasing the gel stiffness to G = 7 · 10−3, the release rate can be
accelerated, which leads to a temporary overshoot compared to the target release profile but
lessens the long-term undershoot; in this case, only 14 hours are required for 95% of the drug
to be released. Decreasing the stiffness to G = 7 ·10−5 leads to a slower drug-release profile that
is consistently below the target curve.

5.2 Tuning the drug-release profile

Motivated by the results in Fig. 5, we now explore how the gel stiffness can be used to further
optimise the drug-release profile. More specifically, we compute the optimal value of the objec-
tive function H, denoted by H∗, across a range of gel stiffnesses G and different combinations
of the drug diffusivity D and drug-release period τ .

We first consider the case when D = 0.1. For a 12-hour drug-release period with τ = 12, the
curve of H∗ as a function of G has a global, internal minimum at G = 7 · 10−4; see Fig. 6 (a).
Thus, the target profile is best approximated when the gel stiffness is 7 · 10−4, in agreement
with the results in Fig. 5. Hydrogels that are stiffer or softer would increase or decrease the
equilibrium drug mobility, respectively, and hence lead to drug molecules that are released
too quickly or slowly to be optimal. The increase in drug-release rate that occurs for stiffer
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(a) (b)

Figure 5: A comparison of optimal and target (a) effluxes and (b) fractional drug-release profiles for
different gel stiffnesses G in the case of χ = 0.5, D = 0.1, and τ = 12.

(a) (b) (c)

Figure 6: The variation in the optimal value of the objective function H∗ with the gel stiffness G for
different drug-release periods τ and non-dimensional drug diffusivities D. Here, we take χ = 0.5.

hydrogels can be advantageous for capturing target profiles with smaller drug-release periods.
Conversely, softer hydrogels, with their slower drug-release kinetics, will be better suited for
capturing target profiles with larger drug-release periods. Indeed, when the drug-release period
τ is decreased to 6 hours, the objective function H∗ monotonically decreases with G; when τ is
increased to 18 or 24 hours, the objective function monotonically increases with G.

Decreasing the drug diffusivity via the dimensionless parameter D leads to stiffer gels per-
forming better, as seen in Fig. 6 (b)–(c). In this case, the reduction in swelling and the smaller
radial extent of the hydrogel makes up for the decrease in the rate of drug diffusion. As a
final remark, the model can be simplified for small values of D by rescaling time as t = D−1t′
and then taking the limit D → 0. The resulting quasi-static model describes linear drug diffu-
sion throughout a uniformly swollen hydrogel that is in chemo-mechanical equilibrium with the
surrounding environment.

5.3 Optimal solution with finite drug diluteness

The numerical results in Sec. 5.1–5.2 are based on the assumption of an infinitely dilute drug,
as characterised by the limit ε → 0. However, in practice, the drug molecules can account for
roughly 10% (ε = 0.1) of the total initial volume [31]. Thus, when computing the optimum
initial volume fraction of drug, φd(R, 0) = εd(R), using the solution for d shown in Fig. 4 (a),
we see that it exceeds one. This unphysical result stems from not imposing upper bounds on
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(a) (b)

Figure 7: Optimal (a) initial drug concentrations d(R) and (b) effluxes F (t) for different maximal drug
dilutions, as measured through the global drug fraction ε defined by (2.20). The parameter values are
χ = 0.5, G = 7 · 10−4, D = 0.1.

the initial drug concentration when working in the infinitely dilute limit.
We now consider situations where the drug molecules have a finite diluteness. Thus, the

global drug fraction ε is taken to be a small but finite number. We assume that the initial volume
fraction of drug fraction satisfies 0 < φd(R, 0) < 0.2, which implies that 0 < d(R) < 0.2ε−1. The
optimisation theory developed in Sec. 4 still applies because the upper bound on d(R) translates
into upper bounds on each di in the discrete optimsation problem, which are straightforward
to accommodate; see Appendix A for full details. Thus, the newly constrained discrete optimi-
sation problem admits global minima that can be readily computed using Matlab’s quadprog

function.
As the global drug fraction ε is increased from zero, the optimal initial drug concentration

d(R) is found to retain a structure that consists of several drug-loaded packets near the free
boundary of the gel; see Fig. 7 (a). However, the central packet near R = 0 that was observed
in the infinitely dilute case (ε → 0) has been replaced with a uniformly loaded core in which
the local drug fraction takes on its maximum value. The radial extent of the drug-loaded core
increases with the global drug fraction ε. To explain these results, we recall that the initial drug
concentration becomes increasingly constrained as ε increases from zero. Thus, if the initial
drug concentration for the infinitely dilute case has any packets that exceed the maximum
allowable concentration, then the drug molecules in these packets are simply distributed over
a greater volume, that is, a over greater radial extent. Any packets that have concentrations
below the maximum are mostly unaffected by the constraint, although their position might shift
slightly. From the optimal initial drug concentrations, we can conclude that when increasing
the total drug load for a fixed drug-release period τ , it is advantageous to preferentially place
drug molecules at the centre of the hydrogel.

The similarities in the optimal initial drug profiles lead to optimal drug effluxes F (t) that
still consist of pulse sequences that overshoot and undershoot the target profile, as shown in
Fig. 7 (b). However, due to the increase in the radial extent of the drug-loaded core that occurs
as ε increases, the penultimate overshoot in the efflux, characterised by that which leads to
its maximum value, has a greater amplitude and occurs sooner in the drug-release process.
Consequently, the drug-release kinetics will be more prone to bursting when additional drug
molecules are loaded into the hydrogel and the drug-release period is held constant.

When considering finite values of the global drug fraction ε, the hydrogel stiffness G can still
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Figure 8: Optimised fractional drug-release profiles when the initial global drug fraction is fixed at
ε = 0.1. The other parameter values are χ = 0.5 and D = 0.1.

be used to further tune the drug-release profile. Specifically, stiffer and softer gels accelerate and
decelerate the release of drug molecules, respectively; see Fig. 8. However, compared to the case
of an infinitely dilute drug, as shown in Fig. 5 (b) for the same parameter set, we clearly see that
a finite value of ε generally leads to a more rapid release of drug, particularly at small times.
Thus, even the optimal drug-release profiles exhibit stronger burst-like characteristics when
more drug is loaded into the hydrogel. Tuning the hydrogel stiffness may be an effective means
of further mitigating the burst effect in real-world applications, where the initial drug volume
is indeed finite, and overcome limitations with simply optimising over the initial distribution of
drug molecules.

6 Conclusion

The goal of this paper is to explore the possibility of optimising the drug-release profile in
hydrogel-based drug-delivery systems by tuning the initial drug distribution. Thus, a model
of a spherical drug-loaded hydrogel that captures large elastic deformations due to swelling is
presented. By considering the limit of a dilute drug, the equations for the hydrogel decouple
from the equations for drug transport, the latter of which become linear in the drug concen-
tration. Using this model, a theory for optimising the drug-release profile via the initial drug
concentration is developed. The dilute-drug assumption paves the way towards a fast numerical
solver for the optimisation problem by enabling the partial drug effluxes fi(t) used as basis
functions to be pre-computed.

For target drug effluxes that are piecewise-constant functions, the optimal initial distribution
of drug molecules generally consists of a central drug-loaded packet or core with several isolated
packets near the hydrogel boundary. The radial extent of the central core increases with the
amount of drug that is loaded into the hydrogel. Numerical simulations reveal that the optimal
initial drug concentrations are highly effective at mitigating the burst effect and limiting the
initial release of drug into the surroundings. Moreover, the corresponding drug-release profiles
provide reasonable approximations to the target profiles for all times.

The hydrogel stiffness provides an additional parameter that can be used to tune the drug-
release profile. However, the stiffness plays a non-trivial role in the drug-release kinetics because
it affects both the drug diffusivity and the distance that drug molecules must travel to reach
the free surface. Softer hydrogels undergo a greater degree of swelling; as a result, the drug
diffusivity increases but so does the distance to the free surface. For the parameter range

19



considered here, we find that the rate of drug release is more strongly affected by variations in
the radial extent of the hydrogel than variations in the drug diffusivity. Consequently, softer
hydrogels lead to slower drug-release kinetics and are better suited for applications that require
the administration of drugs over long periods of time. Moreover, the strong dependence of drug
transport on the size of the hydrogel highlights the importance of capturing finite deformations
in the model.

The results presented here generate new questions about the impact of viscoelasticity and
network degradation on the optimal loading of hydrogels. A reduction in the elastic stress due
to viscous rearrangement of the polymers could trigger additional swelling and hence slow the
release of drug molecules. Bulk degradation of the hydrogel, which could be captured by a
decreasing gel stiffness in time, could have similar consequences. By working within the dilute-
drug limit, fast numerical methods can be developed to optimise drug-release profiles calculated
from extended models. A detailed study of the non-dilute limit would also be insightful by
capturing how the transport of drug molecules is affected by the mechanical response of the
hydrogel. Mathematical modelling will play a key role in understanding these points and thus
lead to finer control over the delivery of drug payloads using hydrogel carriers.
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A Existence and globality of local minima

In this appendix we prove that global minima exist and that local minima are equivalent to global
minima. To do so, it is helpful to recall that a definition of convexity (for twice continuously
differentiable functions) is that ∀v, w ∈ RM and α ∈ [0, 1],

αH(v) + (1− α)H(w)−H(αv + (1− α)w) ≥ 0. (A.1)

We now consider the discrete optimisation problem given by (4.10)–(4.11). The feasible set
for d is bounded as d ≥ 0 and

di =

∫ ∞
0

difi(t) dt ≤
∫ ∞
0

F (t) dt =

∫ ∞
0

A(t) dt <∞. (A.2)

Moreover, the feasible set is non-empty as all constraints are satisfied by, for example,

d1 =

∫ ∞
0

A(t) dt, d2, d3, . . . , dM = 0. (A.3)

Since H(d) is continuous, the Boundedness Theorem shows that H has a global minimum in
this feasible set.

Using standard convex programming results [34], we can prove that constrained local and
global minima are equivalent. To do so, we consider a more general convex programming
problem given by

min {H(d) : Ld ≤ b} , (A.4)

where L is a matrix and b a vector such that S := {d : Ld ≤ b} 6= ∅. Note that the constraint
Ld ≤ b can account for upper bounds on each di. In this constrained optimisation problem,
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local minima can be defined by first considering the set of “feasible directions” V (d∗) at a point
d∗ ∈ S. This is given by

V (d∗) = {v : ∃β > 0 such that d∗ + γv ∈ S ∀γ ∈ [0, β]} . (A.5)

The vectors v ∈ V (d∗) are the directions in which one could move a short distance from d∗

while remaining in the set S. A local minimum d∗ therefore satisfies

d

dα
(H(d∗ + αv))

∣∣∣∣
α=0

≥ 0, ∀v ∈ V (d∗). (A.6)

To prove the necessity of (A.6), suppose there exists a v ∈ V (d∗) such that

d

dα
(H(d∗ + αv))

∣∣∣∣
α=0

< 0. (A.7)

Then, by continuity, (A.7) implies that

∃β∗ such that ∀δ ∈ [0, β∗],
d

dα
(H(d∗ + αv))

∣∣∣∣
α=δ

< 0. (A.8)

Then, for sufficiently small η,

H(d∗ + ηv) = H(d∗) +

∫ η

0

d

dα
(H(d∗ + αv))

∣∣∣∣
α=δ

dδ < H(d∗) (A.9)

and
L(d∗ + ηv) ≤ b (A.10)

so d∗ is not a global minimum.
Thus, it remains to show that all points that are not global minima also do not satisfy (A.6).

Suppose d̃ is a feasible point that is not a global minimum and that d∗ is a global minimum
(which was proved to exist at the start of this section). Then,

H(d∗) < H(d̃). (A.11)

The convexity equation, (A.1), implies that

αH(d∗) + (1− α)H(d̃) ≥ H(αd∗ + (1− α)d̃). (A.12)

Now, at α = 0, the left- and right-hand sides are equal and so, for the inequality to hold,

d

dα

(
αH(d∗) + (1− α)H(d̃)

)
≥ d

dα

(
H(αd∗ + (1− α)d̃)

)
at α = 0. (A.13)

Thus, by using (A.11), we obtain

0 > H(d∗)−H(d̃) ≥ d

dα

(
H((d̃ + α(d∗ − d̃))

)∣∣∣∣
α=0

. (A.14)

Furthermore,

L
(
d̃ + α(d∗ − d̃)

)
= L

(
αd∗ + (1− α)d̃

)
≤ b ∀α ∈ [0, 1], (A.15)

by feasibility of d̃ and d∗ which means that v := d∗ − d is a feasible direction (by defining
β := 1). Together with (A.14) this shows that d̃ is not a local minimum as required and so
local and global minima are equivalent for this problem.
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