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Abstract

We consider the asymptotic expansion of the Humbert hyper-Bessel function ex-
pressed in terms of a 0F2 hypergeometric function by

Jm,n(x) =
(x/3)m+n

m!n!
0F2(−−;m+ 1, n+ 1;−(x/3)3)

as x → +∞, where m, n are not necessarily non-negative integers. Particular attention
is paid to the determination of the exponentially small contribution. The main approach
utilised is that described by the author (J. Comput. Appl. Math. 234 (2010) 488-
504); a leading-order estimate is also obtained by application of the saddle-point method
applied to an integral representation containing a Bessel function. Numerical results are
presented to demonstrate the accuracy of the resulting compound expansion.

Keywords: Humbert function, asymptotic expansion, inverse factorial expansion, saddle-
point method
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1. Introduction

In [2], P. Humbert introduced the function he termed a Bessel function of the third order
(and which we call a hyper-Bessel function) by

Jm,n(x) =
(x/3)m+n

m!n!
0F2(−−;m+ 1, n+ 1;−(x/3)3)

=
(x/3)m+n

m!n!

∞
∑

k=0

(−)k(x/3)3k

(m+ 1)k(n+ 1)kk!
(1.1)

in his development of operational calculus. Here 0F2 is a hypergeometric function with two
denominator parameters and (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol. He obtained
several properties of this function and, in particular, showed that

∞
∑

n=0

(−λx/3)n
n!

Jn,n(x) = J0,0(x(1 + λ)1/3);

when λ = −1, the right-hand side of this result reduces to J0,0(0) = 1.
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Further investigation into the convergence of infinite series involving the above Humbert
function was carried out by Varma [11]. He considered series of the type

∞
∑

n=1

anJm,n(x) and
∞
∑

n=1

anJαn+β,n(x),

where α and β are fixed positive constants. The convergence domains of these series were
obtained by determining the leading asymptotic behaviour of Jm,n(x) for large m and n. In
a footnote in Varma’s paper it was stated that the asymptotics of (1.1) for large x would be
determined, but a literature search has not revealed such a study.

An early paper by Wrinch [12] dealt with the asymptotics of the hypergeometric function

0Fn(z) with n denominator parameters. Using the assumed asymptotic form for the case of
n− 1 denominator parameters, she proceeded to employ an inductive argument to determine
the asymptotic form in the case of n parameters. Exponentially small contributions were
discarded. Finally, we mention the paper [9] which considered the hyper-Bessel differential
equation of order n

u(n) − zmu = 0

and expressed solutions in terms of a variety of integral representations, both single and
double.

The development of exponentially precise asymptotics during the past two decades has
shown that retention of exponentially small expansions, although negligible in the Poincaré
sense, can significantly improve the achievable numerical accuracy. A nice example that
illustrates the advantage of retaining such terms is given in Olver’s book [4, p. 76]. In
this paper we investigate the asymptotic expansion of the hyper-Bessel function Jm,n(x) for
x→ +∞ using the well-established asymptotic theory of integral functions of hypergeometric
type. We pay particular attention to the exponentially small contribution to (1.1), which we
present in Section 3 following the approach employed in [7]. An alternative approach using
the saddle-point method to derive the leading terms applied to an integral representation of

0F2 involving a Bessel function is given in Section 4.
A numerical section displays results that confirm the accuracy of the expansion for the

hyper-bessel function in (1.1). In Section 6, we present a summary of the asymptotic expan-
sions of the function

0Fn−1(−−; b1, . . . , bn−1;−(x/n)n) (x→ +∞)

for n = 4 and n = 5. In an appendix we give an algorithm for the determination of the
coefficients appearing in the different expansions.

2. The dominant asymptotic expansion

We replace m and n in (1.1) by a− 1 and b− 1 and consider the function

F (x) :=
1

Γ(a)Γ(b)
0F2(−−; a, b;−(x/3)3) =

∞
∑

k=0

(−)k(x/3)3k

Γ(k + a)Γ(k + b)k!
, (2.1)

where a, b are in general complex constants such that a, b 6= 0,−1,−2, . . . . The function in
(2.1) is a particular case of the general integral function of hypergeometric type given by

pΨq(z) =

∞
∑

n=0

g(n)
zn

n!
, g(n) :=

∏p
r=1 Γ(αrn+ ar)

∏q
r=1 Γ(βrn+ br)

, (2.2)

where p and q are non-negative integers, the parameters αr > 0, βr > 0 and ar and br are
arbitrary complex numbers. We also assume that the αr and ar are subject to the restriction

αrn+ ar 6= 0,−1,−2, . . . (n = 0, 1, 2, . . . ; 1 ≤ r ≤ p) (2.3)
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so that no gamma function in the numerator in (2.2) is singular.
We introduce the parameters associated1 with g(n) in (2.2) given by

κ = 1 +

q
∑

r=1

βr −
p

∑

r=1

αr, h =

p
∏

r=1

ααr
r

q
∏

r=1

β−βr
r ,

ϑ =

p
∑

r=1

ar −
q

∑

r=1

br +
1
2 (q − p), ϑ′ = 1− ϑ. (2.4)

If it is supposed that αr and βr are such that κ > 0 then pΨq(z) is uniformly and absolutely
convergent for all finite z. The parameter κ plays a critical role in the asymptotic structure of

pΨq(z) by determining the sectors in the z-plane in which its behaviour is either exponentially
large, algebraic or exponentially small in character as |z| → ∞.

The exponential expansion E(z) associated with pΨq(z) is given by the formal asymptotic
sum

E(z) := ZϑeZ
∞
∑

j=0

AjZ
−j, Z = κ(hz)1/κ, (2.5)

where the coefficients Aj are those appearing in the inverse factorial expansion of g(s)/s!
given by

g(s)

Γ(1 + s)
= κ(hκκ)s

{M−1
∑

j=0

Aj

Γ(κs+ ϑ′ + j)
+

ρM (s)

Γ(κs+ ϑ′ +M)

}

. (2.6)

Here g(s) is defined in (2.2) with n replaced by s, M is a positive integer and ρM (s) = O(1)
for |s| → ∞ in | arg s| < π. The leading coefficient A0 is specified by

A0 = (2π)
1

2
(p−q)κ−

1

2
−ϑ

p
∏

r=1

α
ar− 1

2

r

q
∏

r=1

β
1

2
−br

r . (2.7)

The coefficients Aj are independent of s and depend only on the parameters p, q, αr, βr,
ar and br. When p ≥ 1 there is also an algebraic expansion which we do not give here as
the function in (2.1) corresponds to p = 0 for which there is no algebraic expansion. The
asymptotic expansion of pΨq(z) when κ > 2 and p = 0 is given by (see, for example, [8, p, 58])

pΨq(z) ∼
P
∑

r=−P

E(ze2πir) (| arg z| ≤ π), (2.8)

where P is chosen such that 2P + 1 is the smallest odd integer satisfying 2P + 1 > 1
2κ.

For the function F (x) in (2.1) we have p = 0, q = 2 and the parameters

κ = 3, h = 1, ϑ = 1− a− b, ϑ′ = a+ b, A0 =
3−

1

2
−ϑ

2π
, (2.9)

and P = 1, with Z = xeπi/3 so that (2.8) yields

F (x) ∼
1

∑

r=−1

E(xe(2r+1)πi/3) (x→ +∞).

The dominant contribution results from the series with r = 0 and r = −1 to yield

E(xeπi/3) + E(xe−πi/3)

1Empty sums and products are to be interpreted as zero and unity, respectively.
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= (xeπi/3)ϑexe
πi/3

∞
∑

j=0

Aj(xe
πi/3)−j + (xe−πi/3)ϑexe

−πi/3
∞
∑

j=0

Aj(xe
−πi/3)−j

= 2A0x
ϑex/2

∞
∑

j=0

cjx
−j cos

(
√
3

2
x+

π

3
(ϑ− j)

)

. (2.10)

The first few normalised coefficients cj := Aj/A0 are given by (see the appendix)

c0 = 1, c1 = − 2
3 + ℘1 − ℘2 + ab,

c2 = 2
9 + 1

6{−4℘1 + ℘2 − 4℘3 + 3℘4 − 3ab(℘1 + 2℘2) + ab(17 + 9ab)}, (2.11)

c3 = 32
81 + 1

162{−72℘1 − 198℘2 + 45℘3 + 81℘4 + 27℘5 − 27℘6 + 3ab(120 + 135ab+ 63a2b2)

+27a2b2(℘1 − 6℘2) + 9ab(24℘1 − 63℘2 + 6℘3 + 9℘4)},
where, for brevity, we have put ℘n := an + bn. The rapidly increasing complexity of the
higher coefficients prevents their explicit representation. However, when dealing with specific
values of a and b it is possible to generate many coefficients; see Section 5. We observe that
these coefficients are symmetrical in a and b, which is necessary since the parameters a and
b may be interchanged in (2.1). It can be verified that c1 = c2 = c3 = 0 when a = 1

3 , b =
2
3

and a = 4
3 , b =

5
3 ; see (2.15), (2.16) and the appendix.

The expansion corresponding to r = 1, namely

E(xeπi) = A0e
πiϑxϑe−x

∞
∑

j=0

cj(−x)−j (2.12)

is an exponentially small contribution. However, this cannot be the correct form, since for
x > 0 and real values of a and b such that a + b is non-integer, (2.12) is complex-valued
whereas F (x) is real. It is tempting to add the expansion corresponding to r = −2 which
yields the conjugate of (2.12) to produce the exponentially small contribution

2A0 cosπϑx
ϑe−x

∞
∑

j=0

cj(−x)−j . (2.13)

The expression in (2.13) is also incorrect. This can be seen by inspecting the case a = 1
3 ,

b = 2
3 (ϑ = 0) to find by the triplication formula for the gamma function

Γ(3z) =
33z−

1

2

2π
Γ(z)Γ(z + 1

3 )Γ(z +
2
3 ) (2.14)

the evaluation

F (x) =

∞
∑

k=0

(−)k(x/3)3k

Γ(k + 1
3 )Γ(k +

2
3 )k!

=
31/2

2π

∞
∑

k=0

(−x)3k
Γ(3k + 1)

=
3−1/2

2π

(

2ex/2 cos

√
3

2
x+ e−x

)

. (2.15)

But (2.10) together with (2.13) in which cj = 0 (j ≥ 1) for a = 1
3 , b =

2
3 (see the appendix)

predict the result
3−1/2

2π

(

2ex/2 cos

√
3

2
x+ 2e−x

)

in which the subdominant term is twice the correct value. Similarly, if we take a = 4
3 , b =

5
3

(ϑ = −2) with cj = 0 (j ≥ 1) (see the appendix) we find

F (x) =
35/2

2π

∞
∑

k=0

(−x)3k
Γ(3k + 3)

=
33/2

2πx2

(

2ex/2 cos

(
√
3

2
x− 2

3
π

)

+ e−x

)

(2.16)
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and again the subdominant term in (2.13) is twice the correct value.
The treatment of the exponentially small contribution to the expansion of F (x) is pre-

sented in Section 3. This is based on the approach employed in [7], which we repeat here to
make the paper self-contained.

3. The exponentially small contribution to F (x)

We write F (x) in (2.1) as the Mellin-Barnes integral

F (x) =
1

2πi

∫

C

Γ(s)(x/3)−3s

Γ(a− s)Γ(b − s)
ds, (3.1)

where C denotes a loop described in the positive sense with endpoints at infinity in ℜ(s) < 0
that encloses all poles of Γ(s) at s = 0,−1,−2, . . . . Evaluation of the residues at these simple
poles yields the sum in (2.1). From Stirling’s formula Γ(z) ∼ (2π)1/2e−zzz−1/2 for large |z| in
| arg z| < π, the dominant behaviour of the modulus of the integrand as |s| → ∞ is controlled
by the factor exp[κℜ(s) log |s|], so that the integral in (3.1) converges without restriction on
x.

We rewrite the above integral as

F (x) =
π−2

2πi

∫

C

Γ(s)Γ(s+ 1− a)Γ(s+ 1− b)G(s)(x/3)−3sds, (3.2)

where
G(s) = sinπ(a− s) sinπ(b − s) = 1

2{cosπ(a− b)− cosπ(a+ b− 2s)}.
Since there are no poles to the right of C, we may displace the path as far to the right as we
please (but with endpoints at infinity still in ℜ(s) < 0), so that |s| is everwhere large on the
expanded loop. We can then employ the inverse factorial expansion [8, Lemma 2.2, p. 39]

Γ(s)Γ(s+1−a)Γ(s+1−b) = 31−3s

(2π)−2

{M−1
∑

j=0

(−)jAjΓ(3s+ϑ−j)+ρM (3s)Γ(3s+ϑ−M)

}

(3.3)

valid as |s| → ∞ in | arg s| < π, where M is a positive integer. The remainder function
ρM (3s) is analytic in ℜ(s) > 0 and satisfies ρM (3s) = O(1) as |s| → ∞ in | arg s| < π. The
coefficients Aj are the same as those appearing in (2.6) when p = 0 (see [8, p. 39]), with A0

given in (2.9). An algorithm for their determination is given in the appendix. Substitution
of (3.3) into (3.2) (after replacement of s by s/3) then leads to

F (x) = 2

M−1
∑

j=0

(−)j−1Aj
1

2πi

∫

C

x−sΓ(s+ϑ−j){cosπ(a+b− 2
3s)−cos π(a−b)} ds+RM , (3.4)

where the remainder

RM =
2

πi

∫

C

ρM (s)Γ(s+ ϑ−M)x−sG(13s) ds.

It is shown in [8, Lemma 2.8, p. 72] that an order estimate for the above remainder integral
is O(xϑ−Mex/2) for the part of G(s) containing cosπ(a + b − 2s) and O(xϑ−Me−x) for the
part containing cosπ(a− b).

We now make use of the Cahen-Mellin integral (see, for example, [8, p. 90])

1

2πi

∫

C

Γ(s+ α)z−sds = zαe−z (3.5)
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valid for all arg z when C is the same loop contour as in (3.1). Expressing cosπ(a+ b− 2
3s)

in exponentials, we have for the factors exp[∓πi(a+ b− 2
3s)] the result

e∓πi(a+b)
M−1
∑

j=0

(−)j−1Aj
1

2πi

∫

C

Γ(s+ ϑ− j)(xe∓2πi/3)−sds

= e∓πi(a+b)
M−1
∑

j=0

(−)j−1(xe∓2πi/3)ϑ−j exp[−xe∓2πi/3] = exp[xe±πi/3]

M−1
∑

j=0

Aj(xe
±πi/3)ϑ−j .

Thus we obtain the dominant contribution as x→ +∞ given by

2xϑex/2
{M−1
∑

j=0

Ajx
−j cos

(
√
3

2
x+

π

3
(ϑ− j)

)

+O(x−M )

}

, (3.6)

which is seen to correspond to (2.10) when we recall that the coefficients cj = Aj/A0.
The contribution to the integral in (3.4) from the factor cosπ(a− b) is

2 cosπ(a− b)

M−1
∑

j=0

(−)jAj
1

2πi

∫

C

x−sΓ(s+ ϑ− j) ds = 2 cosπ(a− b)xϑe−x
M−1
∑

j=0

(−)jAjx
−j .

Then we have the exponentially small component of F (x) given by

2A0 cosπ(a− b)xϑe−x

{M−1
∑

j=0

(−)jcjx
−j +O(x−M )

}

. (3.7)

From (3.6) and (3.7) we have the following theorem (see also [3, Eq. (16)], [7, p. 501]):

Theorem 1. Let ϑ = 1 − a − b, A0 = 3−
1

2
−ϑ/(2π) and M be a positive integer. Then the

following expansion holds

1

Γ(a)Γ(b)
0F2(−−; a, b;−(x/3)3) ∼ 2A0x

ϑex/2
{M−1
∑

j=0

cjx
−j cos

(
√
3

2
x+

π

3
(ϑ− j)

)

+O(x−M )

}

+2A0 cosπ(a− b)xϑe−x

{M−1
∑

j=0

(−)jcjx
−j +O(x−M )

}

as x→ +∞, where the first few coefficients cj are listed in (2.11).

From Theorem 1 and (1.1) we then obtain the main result of the paper:

Theorem 2. With ϑ = −m − n − 1, the Hunbert function Jm,n(x) = (x/3)m+nF (x) with
a = m+ 1, b = n+ 1 (where m, n are not necessarily integers). Then we have the expansion

Jm,n(x) ∼
31/2

πx
ex/2

∞
∑

j=0

cjx
−j cos

(
√
3

2
x+

π

3
(ϑ− j)

)

+
31/2

πx
cosπ(m− n) e−x

∞
∑

j=0

(−)jcjx
−j

as x→ +∞, where the first few coefficients cj are listed in (2.11).
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Figure 1: A plot of e−x/2Jm,n(x) when m = 1/2 and n = 2/3.

In Fig. 1 we show a plot of e−x/2Jm.n(x) for m = 1
2 and n = 2

3 . This is seen to possess
an oscillatory structure with an algebraic decay (given by x−1) superimposed. It is worth
remarking that if the factorials Γ(k+m+1) and Γ(k+n+1) in (2.1) are absent, there is an
extreme cancellation between the terms with the result that the sum equals exp [−(x/3)3].
The addition of a single gamma function in the denominator upsets this extreme cancellation
to produce a Bessel function, which is oscillatory with an algebraic decay. The appearance
of the second gamma function further destroys the cancellation between terms to result in
Jm,n(x) being an exponentially growing function controlled by ex/2. Other perturbations of
the negative exponential series to produce different behaviour have been considered in [6].

4. An alternative approach

In this section we give an alternative demonstration that the exponentially small contribution
to F (x) has the coefficient 2A0 cosπ(a− b) given in Theorem 1. We shall employ the saddle-
point method to an integral representation for F (x) and content ourselves with only the
leading terms of the expansion.

We employ the Hankel loop integral for the gamma function [5, (5.9.2)]

1

Γ(k + a)
=

1

2πi

∫ (0+)

−∞

et

ta+k
dt

in the series expansion for F (x) in (2.1) to obtain

F (x) =
1

2πi

∫ (0+)

−∞
t−aet

∞
∑

k=0

(−)k((x/3)3/2/
√
t)2k

Γ(k + b)k!
dt

=
(x/3)3(1−b)/2

2πi

∫ (0+)

−∞
t
1

2
(b−1)−aet Jb−1

(

2(x/3)3/2

t1/2

)

dt, (4.1)

where Jν(z) denotes the Bessel function of the first kind.
For x > 0, the argument of the Bessel function appearing in (4.1) is in the range [− 1

2π,
1
2π].

As |z| → ∞, we have the leading asymptotic behaviour [5, (10.17.3)]

Jν(z) ∼
√

2

πz
cos(z − 1

2πν − 1
4π) (| arg z| < π).
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Substitution of this asymptotic approximation into (4.1), followed by decomposition of the
cosine into exponentials and the change of variable t→ xτ/3, leads to the approximation

F (x) ∼ (x/3)ϑ+
1

2

2
√
π

{

e−
1

2
πi(b− 1

2
)I+ + e

1

2
πi(b− 1

2
)I−

}

,

where

I± =
1

2πi

∫ (0+)

−∞
τγ exp [(x/3)ψ±(τ)] dτ, ψ±(τ) = τ ± 2i√

τ
(4.2)

and γ = 1
2b − a − 1

4 . We shall find that the principal contributions to I± as x → +∞ arise
from a neighbourhood of the unit circle in the τ -plane (that is, of the circle of radius x in
the t-plane), thereby ensuring the validity of the use of the asymptotic approximation for the
Bessel function in (4.1) since its argument is O(x).

e-Π i

e
Π i / 3

O

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: The paths of steepest descent through the saddle points eπi/3 and e−πi for the phase
function ψ+(τ ). The path through e−πi coincides with the lower side of the branch cut on the
negative real τ -axis. The arrows indicate the direction of integration over the saddle at eπi/3.

We consider the integral I+. Saddle points of ψ+(τ) occur at τ3/2 = i; that is, at the
points τs1 = eπi/3 and τs2 = e−πi. The path of steepest descent through eπi/3 emanates
from the origin as shown in Fig. 2 and passes to infinity in the second quadrant; the steepest
descent path through e−πi lies on the lower side of the branch cut situated on the negative real
axis. The loop integral can be made to coincide with these two paths. Then a straightforward
application of the saddle-point method applied to the saddle τs1, with ψ+(τs1) = 3eπi/3 and
ψ′′
+(τs1) = (3/2)e−πi/3 (so that the direction of integration through τs1 is 2π/3), yields the

contribution

e
1

2
πi(b− 1

2
)

2πi
· 2

√

π

x
exp [xeπi/3] eπiγ/3 eπi/3 =

exp [xeπi/3]√
πx

eπiϑ/3.

A similar treatment for the integral I−, where the steepest descent paths in Fig. 2 are replaced
by the conjugate paths with the saddles now situated at e−πi/3 and eπi on the upper side of
the branch cut. This yields the conjugate expression, so that the leading form of the dominant
contribution to F (x) is

2A0x
ϑex/2 cos

(
√
3

2
x+

πϑ

3

)

(x→ +∞),

which agrees with that given in Theorem 1.
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Table 1: The normalised coefficients cj for 1 ≤ j ≤ 10 (with c0 = 1) for a = 2/3 and b = 5/6.

j cj j cj

1 +0.250000000000000 6 −2.249984741210938
2 +0.156250000000000 7 −9.259891510009766
3 +0.117187500000000 8 −33.11664164066314
4 +0.017089843750000 9 −90.94397798180580
5 −0.422973632812500 10 −18.51875754073262

Table 2: The absolute relative error in the computation of F (x) using the optimally truncated dominant
expansion in Theorem 1 for different x and parameters a and b.

a = 2/3, b = 5/6 a = 1, b = 1 a = 3/2, b = 1
x Relative Error Relative Error Relative Error

10 9.801× 10−07 2.328× 10−06 4.158× 10−09

15 1.363× 10−10 1.048× 10−08 7.850× 10−11

20 1.655× 10−13 5.425× 10−11 8.025× 10−13

25 5.649× 10−17 3.233× 10−13 2.214× 10−15

30 1.694× 10−19 1.135× 10−15 2.895× 10−16

A similar treatment for the saddle τs2 = e−πi, where ψ+(τs2) = −3 and ψ′′
+(τs2) = −3/2,

yields the contribution to e−
1

2
πi(b− 1

2
)I+ given by

e−
1

2
πi(b− 1

2
)

2πi
· 2

√

π

x
e−x−πiγ =

e−x

√
πx

eπi(a−b).

With the conjugate expression arising from the integral e
1

2
πi(b− 1

2
)I−, we therefore obtain the

leading-order subdominant contribution to F (x) given by

2A0 cosπ(a− b)xϑe−x (x→ +∞)

in accordance with the result stated in Theorem 1.

5. Numerical results

To compute the series in Theorem 1 to high accuracy necessitates the evaluation of the
normalised coefficients cj (j ≥ 1). An algorithm for the calculation of these coefficients is
summarised in the appendix, where in our calculations we have employed up to 25 coefficients.
We present in Table 1 the coefficients with 1 ≤ j ≤ 10 for the case of F (x) with a = 2/3 and
b = 5/6.

In Table 2 we show values of the absolute relative error in the computation of F (x) in
(2.1) using the optimally truncated2 exponentially large expansion in Theorem 1 for different
values of x. To detect the presence of the exponentially small expansion present in F (x), we
compare the values of

F(x) := F (x) − 2A0x
ϑex/2

j0
∑

j=0

cjx
−j cos

(
√
3

2
x+

π

3
(ϑ− j)

)

,

2Optimal truncation corresponds to truncation of the asymptotic series at, or near, the term of least
magnitude.
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where j0 denotes the optimal truncation index, with the values of the exponentially small
expansion

Es(x) := 2A0 cosπ(a− b)xϑe−x
∞
∑

j=0

(−)jcjx
−j .

The results in Table 3 appear to confirm the form of the exponentially small contribution to
F (x) in Theorem 1. We remark that when a− b equals half-integer values, Es(x) vanishes.

Table 3: Values of F(x) and Es(x) for different x and two values of the parameters a and b.

a = 2/3, b = 4/3 x = 10, j0 = 12 x = 15, j0 = 17 x = 20, j0 = 24

F(x) −4.43157× 10−06 −2.23785× 10−08 −1.24121× 10−10

Es(x) −4.21754× 10−06 −2.20456× 10−08 −1.24469× 10−10

a = 5/4, b = 1/4 x = 10, j0 = 13 x = 15, j0 = 15 x = 20, j0 = 24

F(x) −4.87509× 10−06 −2.57286× 10−08 −1.50868× 10−10

Es(x) −4.77620× 10−06 −2.59124× 10−08 −1.50113× 10−10

6. Extension of F (x)

In this section we present the expansions for n = 4 and n = 5 of the extended function

Fn(x) :=
1

∏n−1
j=1 Γ(bj)

0Fn−1(−−; b1, . . . , bn−1;−(x/n)n)

=
∞
∑

k=0

(−)k(x/n)nk

Γ(k + b1) . . .Γ(k + bn−1)k!
(6.1)

consisting of n− 1 denominator parameters b1, . . . , bn−1; when n = 3, this function is equiv-
alent to that in (2.1). The parameters associated with Fn(x) are

κ = n, ϑ =
n− 1

2
− σn, σn =

n−1
∑

j=1

bj , A0 =
n− 1

2
−ϑ

(2π)(n−1)/2
.

From (3.1) and (3.2) we have

Fn(x) =
1

2πi

∫

C

Γ(s)(x/n)−ns

∏n−1
j=1 Γ(bj − s)

ds

=
π1−n

2πi

∫

C

Γ(s)

n−1
∏

j=1

Γ(s+1−bj)Gn(s) (x/n)
−nsds, (6.2)

where

Gn(s) :=
n−1
∏

j=1

sinπ(bj − s).

As in Section 3, the contour C can be displaced as far to the right as we please (but with
endpoints still in ℜ(s) < 0) so that we can invoke the inverse factorial expansion [8, Lemma
2.2, p. 39]

Γ(s)

n−1
∏

j=1

Γ(s+1−bj) ∼
n1−nsA0

(2π)1−n

∞
∑

j=0

(−)jcjΓ(ns+ ϑ− j) (|s| → ∞, | arg s| < π) (6.3)
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where [7, Eq. (A.7)]

c0 = 1, c1 =
n

2

{n−1
∑

j=1

bj(1 − bj)−
ϑ(1− ϑ)

n
− (n2 − 1)

6n

}

.

The coefficients cj (j ≥ 2) can be obtained by the algorithm outlined in the appendix.

The case n = 4.

We have after some routine algebra

G4(s) =
3
∏

j=1

sinπ(bj − s) =
1

4

{

cosπ(ϑ+ 3s)−
3

∑

j=1

cosπ(ϑ+ 2bj + s)

}

.

Substitution of this expression into the integral in (6.2) together with the expansion (6.3)
then yields

F4(x) ∼ 2A0x
ϑex/

√
2

∞
∑

j=0

cjx
−j cos

(

x√
2
+
π

4
(ϑ− j)

)

−2A0x
ϑe−x/

√
2

∞
∑

j=0

cjx
−j

3
∑

r=1

cos

(

x√
2
+

3π

4
(ϑ− j) + 2πbr

)

(6.4)

as x→ +∞, where A0 = 4−
1

2
−ϑ/(2π)3/2, ϑ = 3

2 −σ4. The exponentially small expansion can
be written alternatively as

−2A0x
ϑe−x/

√
2

∞
∑

j=0

cjx
−j

{

cosφ
3

∑

r=1

cos 2πbr − sinφ
3

∑

r=1

sin 2πbr

}

, (6.5)

where φ := x/
√
2 + 3π(ϑ− j)/4, and is seen to agree with that given3 in [3, Eq. (18)].

In the special case bj = j/4 (1 ≤ j ≤ 3), the gamma functions in the denominator of (6.1)

combine to yield (2π)3/24−
1

2
−4kΓ(4k + 1) to produce the exact evaluation

F4(x) =
1

21/2π3/2

∞
∑

k=0

(−)kx4k

Γ(4k + 1)
= 4A0 cos

x√
2
cosh

x√
2
.

Since
∑3

r=1 cos 2πbr = −1,
∑3

r=1 sin 2πbr = 0, ϑ = 0 and cj = 0 (j ≥ 1), the right-hand side
of the expansion (6.4) yields

2A0e
x/

√
2 cos

x√
2
+ 2A0e

−x/
√
2 cos

x√
2
= 4A0 cos

x√
2
cosh

x√
2
.

The case n = 5.

We have (see [1, p. 50])

G5(s) =

4
∏

j=1

sinπ(bj−s) =
1

8

{

cosπ(ϑ+4s)−
4
∑

j=1

cosπ(ϑ+2bj+2s)+

3
∑

j=1

cosπ(ϑ+2bj+2b4)

}

with ϑ = 2−∑4
j=1 bj. Then the same procedure yields the expansion

F5(x) ∼ 2A0x
ϑex cos π/5

∞
∑

j=0

cjx
−j cos

(

x sin
π

5
+
π

5
(ϑ− j)

)

3There is an obvious misprint in [3, Eq. (18)].
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−2A0x
ϑex cos 3π/5

∞
∑

j=0

cjx
−j

{

cosφ

4
∑

r=1

cos 2πbr − sinφ

4
∑

r=1

sin 2πbr

}

+2A0

3
∑

r=1

cosπ(ϑ+ 2br + 2b4)x
ϑe−x

∞
∑

j=0

(−)jcjx
−j (6.6)

as x→ +∞, where φ := x sin 3π/5 + 3π(ϑ− j)/5, A0 = 5−
1

2
−ϑ/(2π)2 and ϑ = 2− σ5.

In the special case bj = j/5 (1 ≤ j ≤ 4), we have

F5(x) =
5−1/2

(2π)2

∞
∑

k=0

(−)kx5k

Γ(5k + 1)

=
5−1/2

(2π)2

{

2ex cosπ/5 cos(x sin π/5) + 2ex cos 3π/5 cos(x sin 3π/5) + e−x

}

. (6.7)

Since ϑ = 0, cj = 0 (j ≥ 1) and

4
∑

r=1

cos 2πbr = −1,

4
∑

r=1

sin 2πbr = 0,

3
∑

r=1

cosπ(ϑ + 2br + 2b4) =
1
2 ,

it is seen that the right-hand side of (6.6) correctly reduces to the exact expression (6.7).
In Table 4 we show the values of

F4(x) := F4(x) − 2A0x
ϑex/

√
2

∞
∑

j=0

cjx
−j cos

(

x√
2
+
π

4
(ϑ− j)

)

,

where the dominant expansion is optimally truncated at index j0, compared with the expo-
nentially small expansion in (6.5)

Es(x) := −2A0x
ϑe−x/

√
2

∞
∑

j=0

cjx
−j

{

cosφ

3
∑

r=1

cos 2πbr − sinφ

3
∑

r=1

sin 2πbr

}

,

where φ := x/
√
2 + 3π(ϑ− j)/4. It is seen that there is reasonable agreement between F4(x)

and Es(x) thereby lending support to the result stated in (6.4).

Table 4: Values of F4(x) and Es(x) for different x and two sets of values of the parameters.

a = − 1
4 , b =

1
2 , c =

5
8 a = 3

4 , b =
4
5 , c =

1
2

x = 15, j0 = 17 x = 18, j0 = 17

F4(x) +8.51145× 10−06 +1.65559× 10−07

Es(x) +8.56645× 10−06 +1.67468× 10−07

Appendix A: The coefficients cj

The coefficients Aj appearing in the inverse factorial expansion (3.3) are the same as those
in (2.6) when p = 0, q = 2 and the parameters β1 = β2 = 1, b1 = a, b2 = b in (2.2); see [8,
p. 39]. Thus, it is sufficient to consider the inverse factorial expansion

1

Γ(s+ a)Γ(s+ b)Γ(s+ 1)
= 33s+1

{M−1
∑

j=0

Aj

Γ(3s+ ϑ′ + j)
+

O(1)

Γ(3s+ ϑ′ +M)

}

(A.1)
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for positive integerM , where we recall that ϑ′ = a+b and A0 is given in (2.9). This expansion
may be rewritten as

Γ(3s+ ϑ′)

Γ(s+ a)Γ(s+ b)Γ(s+ 1)
= 33s+1A0

{M−1
∑

j=0

cj
(3s+ ϑ′)j

+
O(1)

(3s+ ϑ′)M

}

, (A.2)

where cj = Aj/A0. The algorithm based on (A.2) relies on the asymptotic expansion of the
gamma function to determine recursively the coefficients cj . This has been described in [7,
Appendix], [8, §2.2.4], and will not be repeated here.

In the special case a = 1
3 , b =

2
3 (ϑ′ = 1) we have from (2.14) that the left-hand side of

(A.1) equals 33s+
1

2 /(2πΓ(3s+1)), whence it follows that c0 = 1 and cj = 0 (j ≥ 1). Similarly,

when a = 4
3 , b = 5

3 (ϑ′ = 3), the left-hand side of (A.1) becomes 33s+
5

2 /(2πΓ(3s + 3)) and
again c0 = 1, cj = 0 (j ≥ 1).

An alternative method of determining the coefficients cj in the form of a recurrence relation
is given in [8, §2.2.2] based on the paper by Riney [10]. This takes the form

cj = − 1

27j

j−1
∑

k=0

ck e(j, k), e(j, k) =

3
∑

r=1

Dr
(ϑ′ − 3br)3+j

(ϑ′ − 3br)k
(A.3)

where b1 = a, b2 = b and b3 = 1 and the coefficients Dr are given by

D1 = − 1

(a− b)(1− a)
, D2 =

1

(a− b)(1− b)
, D3 =

1

(1 − a)(1− b)
.

A disadvantage of (A.3) is the fact that the coefficientsDr present singularities when a = b
and a (and/or b) = 1. This then requires a limiting procedure. The resulting coefficients cj ,
however, are non-singular; see the first few given in (2.11). This problem does not arise with
the algorithm based on (A.2).

Acknowledgement: The author wishes to acknowledge F. Mainardi for bringing to his
attention the paper by Humbert and for suggesting an investigation into the asymptotic
behaviour of Jm,n(x).
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