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We consider a space-time fractional parabolic problem. Combining a sinc-
quadrature based method for discretizing the Riesz-Dunford integral with
hp-FEM in space yields an exponentially convergent scheme for the initial
boundary value problem with homogeneous right-hand side. For the inhomo-
geneous problem, an hp-quadrature scheme is implemented. We rigorously
prove exponential convergence with focus on small times t, proving robustness
with respect to startup singularities due to data incompatibilities. fractional
diffusion, sinc-quadrature, Mittag-Leffler, Riesz-Dunford, hp-FEM

1 Introduction

The study of fractional partial differential equations has attracted a lot of interest in the
mathematical community in recent years. Motivated by processes in physics or finance,
it has become necessary to leave the realm of classical derivatives, and one encounters
new difficulties, most notably one introduces non-local aspects to the problems under
consideration [SZB+18].

In the context of numerical approximation, several different approaches have been pro-
posed to handle fractional diffusion problems, although often they focused on the station-
ary elliptic case. For the stationary case, we mention those based on a Caffarelli-Silvestre
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extension [NOS15, BMN+18, MPSV18], the integral fractional Laplacian [AB17, FMMS21]
and the Riesz-Dunford (also known as Riesz-Taylor and Dunford-Taylor) functional cal-
culus [BLP17b, BLP17a, BMS20]. See [BBN+18] for a summary of discretization meth-
ods for the elliptic fractional diffusion problem. Another recent approach for discretizing
both the fractional Laplace and heat equation is based on a reduced basis method [DS22,
DS21]. Further methods that are based on discretizing first and computing fractional
powers of the resulting stiffness matrix include [HHT08, GHK05, HLM+18, HLM+20];
see also the discussion in [Hof20].

For fractional ODE problems, the most common formulation is based on the Caputo
derivative due to its natural behavior with respect to initial conditions. As for numeri-
cal approximation, it is common to use time-stepping methods [NOS16], but especially
when already dealing with fractional operators in space, it is very natural to use a
Riesz-Dunford based formulation and apply an appropriate sinc-quadrature [BLP17b].
Recently, a slight modification of the sinc-quadrature scheme based on a double expo-
nential transformation has been proposed [Rie20]. This modified scheme can also be
combined with the hp-FEM techniques from this article to obtain a very fast numerical
scheme.

For the spatial discretization, finite element based-methods are popular. Most results
focus on the h-version, designing schemes which provide algebraic convergence rates, un-
der suitable compatibility conditions on the given data. Lately, hp-FEM based schemes
have started to appear. First, only for the extended variable in a Caffarelli-Silvestre
based discretization scheme [MPSV18], then for the full discretization of an elliptic frac-
tional problem [BMN+18, BMS20]. Unlike previous results, [BMN+18] also removed the
compatibility conditions on the initial data, relying instead on the fact that appropriately
designed hp-FEM spaces can resolve the developing singularities at the boundary.

In the context of time-dependent problems, hp-FEM based approaches have been pi-
oneered in [MR21], again focusing on an extension-based formulation for the fractional
Laplacian and restricted to the classical first order derivative in time. It is proven
for smooth data and geometries (but without compatibility assumption) that an hp-
discretization can deliver exponential convergence towards the exact solution. The
present work consists of transferring the methods from [MR21] to a functional calcu-
lus based discretization in the spirit of [BLP17b], generalizing the problem class to the
case of (Caputo) fractional time derivatives in the process. We prove that for smooth
geometries in 1D or 2D, one can design meshes and approximation spaces such that the
proposed method features exponential convergence to the exact solution, even in the
presence of startup singularities. Most of the paper is concerned with analyzing the
convergence in the pointwise-in-time H̃β(Ω) Sobolev-norm, which is the natural setting
for the model problem (2.1) and the considered numerical method. For small times t,
these estimates suffer from a degeneracy at small times t > 0. In order to remedy this,
we consider an appropriate space-time energy norm and prove that, given an additional
abstract assumption on the initial condition, one can expect robust convergence in this
weaker norm.

Compared to [BLP17a], we also improve the time dependence of the estimates for the
sinc-quadrature error from t−γ to t−γ/2. Similar behavior for the discretization errors
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was also observed in the γ = 1 case in [MR21] and is well established for discretizations
of the heat-equation [Tho06].

We close with a short comment on notation. We write a . b if there exists a constant
C > 0, which is independent of the main quantities of interest (for example the number
of quadrature points, the mesh size, polynomial degree employed or the time t) such that
a ≤ Cb. We write a ∼ b if a . b and b . a. The specific dependencies of the implied
constants are stated in the context.

2 Model Problem and notation

We consider the numerical approximation of the following time-dependent problem.
Working on a bounded Lipschitz domain Ω ⊆ R

d, we fix γ, β ∈ (0, 1] and a final time
T > 0. Given an initial condition u0 ∈ L2(Ω) and right-hand side f ∈ L∞((0, T ), L2(Ω))
we seek u : [0, T ] → R satisfying

∂γ
t u+ Lβu = f in Ω× [0, T ], u|∂Ω = 0, u(0) = u0 in Ω. (2.1)

The operator Lu := − div(A∇u)+ cu is linear, elliptic and self adjoint. We assume that
the given coefficients satisfy that A ∈ L∞(Ω,Rd×d) is uniformly symmetric, positive
definite and c ∈ L∞(Ω) satisfies c ≥ 0. The fractional power Lβ is given using the
spectral representation

Lβu :=

∞∑

j=0

λβ
j (u, ϕj)ϕj , (2.2)

where (λj , ϕj)
∞
j=0 are the eigenvalues and eigenfunctions of the operator L with homo-

geneous Dirichlet boundary conditions; as is standard, the eigenfunctions are L2(Ω)-
orthonormalized. The homogeneous Dirichlet boundary condition is to be understood
in the sense that u(t) ∈ dom(Lβ).

For γ ∈ (0, 1), the fractional time derivative is taken in the sense of Caputo, i.e.,

∂γ
t u(t) :=

1

Γ(1− γ)

∫ t

0

1

(t− r)γ
∂u(t)

∂r
dr,

whereas for γ = 1, ∂1
t := ∂t is the classical derivative.

As was shown in [BLP17b], the exact solution to (2.1) can be written in the following
form using the Mittag-Leffler function eγ,µ (see (2.6) for the precise definition):

u(t) = E(t)u0 +

∫ t

0
W (τ)f(t− τ) dτ := eγ,1

(
− tγLβ

)
u0 +

∫ t

0
τγ−1eγ,γ

(
− τγLβ

)
f(t− τ) dτ ,

where we used the following functional calculus based on the spectral decomposition:

eγ,µ
(
− tγLβ

)
v :=

∞∑

j=0

eγ,µ(−tγλβ
j )(v, ϕj)L2(Ω) ϕj ∀v ∈ L2(Ω).
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An alternative representation, which will prove more amenable to numerical discretiza-
tion is based on the Riesz-Dunford calculus:

eγ,µ
(
− tγLβ

)
v =

1

2πi

∫

C
eγ,µ(−tγzβ)

(
z − L

)−1
v dz ∀v ∈ L2(Ω), (2.3)

where the contour C is taken to be parameterized by

z(y) := b(cosh(y) + i sinh(y)) for y ∈ R. (2.4)

The parameter b > 0 is chosen sufficiently small so that z(y), y ∈ R, is in the sector S

given in Definition 2.1.
The natural spaces for formulating our results are given by two scales of interpolation

spaces, Hθ(Ω) and H̃θ(Ω). To that end, we define for θ ∈ [0, 1]:

H
θ(Ω) :=

{
u ∈ L2(Ω) :

∞∑

j=0

λθ
j |(u, ϕj)L2(Ω)|2 < ∞

}
.

Another way of introducing spaces between L2 and H1
0 is given by the real interpolation

method. That is, given two Banach spaces X1 ⊆ X0 with continuous embedding, we
define for θ ∈ (0, 1):

‖u‖2[X0,X1]θ,2
:=

∫ ∞

t=0
t−2θ

(
inf
v∈X1

‖u− v‖0 + t‖v‖1
)2 dt

t
,

[X0,X1]θ,2 :=
{
u ∈ X0 : ‖u‖[X0,X1]θ,2

< ∞
}
.

For θ = 0 and θ = 1 we take the convention that [X0,X1]θ,2 = Xθ. Using this notation,
we define the fractional Sobolev spaces:

Hθ(Ω) :=
[
L2(Ω),H1(Ω)

]
θ,2

, H̃θ(Ω) :=
[
L2(Ω),H1

0 (Ω)
]
θ,2

.

It is well known, that for θ ∈ [0, 1] the spaces H̃θ(Ω) and H
θ(Ω) coincide with equiv-

alent norms; see [Tar07]. We will therefore use whichever definition is more convenient.
Most notably we have

‖u‖2
H̃θ(Ω)

∼
∞∑

j=0

λθ
j |(u, ϕj)L2(Ω)|2.

We will need the following multiplicative interpolation estimate (see [Tri99, Sect. 1.3.3]):

‖u‖[X0,X1]θ,2
≤ Cθ ‖u‖1−θ

X0
‖u‖θX1

∀u ∈ X1, θ ∈ [0, 1]. (2.5)

Throughout, we take inner products to be antilinear in the second argument.
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2.1 The Mittag-Leffler function

Since it plays a major role in the numerical method, we briefly introduce the Mittag-
Leffler function and summarize its most important properties. See for example [KST06,
Sect. 1.8] for a more detailed treatment. Given parameters γ > 0, µ ∈ R, the Mittag-
Leffler function is analytic on C and given by the power series

eγ,µ(z) :=
∞∑

n=0

zn

Γ(nγ + µ)
. (2.6)

For 0 < γ < 1, µ ∈ R and γπ
2 < ζ < γπ, there exists a constant C only depending on

γ, µ, ζ such that

|eγ,µ(z)| ≤
C

1 + |z| for ζ ≤ |Arg z| ≤ π. (2.7)

For γ = µ = 1, the Mittag-Leffler function e1,1 is the usual exponential function. Esti-
mate (2.7) also holds in this case for π/2 < ζ < π.

The derivative of the Mittag-Leffler function can be expressed as:

d

dt
eγ,1(−tγλβ) = −λβ tγ−1eγ,γ(−tγλβ). (2.8)

2.2 Assumptions on the discretization in space

When considering the Riesz-Dunford representation of u, the contour lies in the set of
values for which L − z is invertible. Therefore we consider the set of complex numbers
up to a cone which contains an interval [a,∞) ⊆ R that in turn contains the eigenvalues
of L.

Definition 2.1. Let CP denote the Poincaré constant of Ω, i.e., the smallest constant
such that ‖u‖L2(Ω) ≤ CP ‖∇u‖L2(Ω) for all u ∈ H1

0 (Ω). With λmin(A) the smallest

eigenvalue of A and fixed 0 < ε0 < z0 ≤ min
(
λmin(A)
2CP

, 1
)2

, we define

S := C \
[{

z0 + z : |Arg(z)| ≤ π

8
,Re(z) ≥ 0

}
∪Bε0(0)

]
.

Remark 2.2. The set S is chosen in such a way that it contains the contour C used in
the functional calculus, given by z(y) := b

(
cosh(y) + i sinh(y)

)
. See Figure 2.1.

An important role will be played by the resolvent operator R(z) := (z −L)−1 and its
discrete counterpart, where we replace it with a Galerkin solver Rh(z). Let Vh ⊆ H1

0 (Ω)
be a closed subspace. Recalling that Lu = − div(A∇u) + cu, we define Rh(z)f := uh as
the solution uh ∈ Vh satisfying

(
(z − c)uh, vh

)
L2(Ω)

−
(
A∇uh,∇vh

)
L2(Ω)

= (f, vh)L2(Ω) ∀vh ∈ Vh. (2.9)

For z in the set S the following stability estimate holds for the resolvent operator:
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ε0

C

z0

Figure 2.1: Geometric configuration of Definition 2.1

Proposition 2.3. Let z ∈ S and u0 ∈ L2(Ω). Then, for α ∈ [0, 1]:

‖R(z)u0‖H̃α(Ω) . |z|−1+α
2 ‖u0‖L2(Ω) and ‖Rh(z)uh,0‖H̃α(Ω) . |z|−1+α

2 ‖uh,0‖L2(Ω) .

(2.10)

Proof. This is basically [MR21, Lem. A.2] with the substitution ζ = −z+ c. We include
the proof for completeness.

Writing u := Rh(z)u0, and testing in (2.9) with vh := βu for β ∈ C with |β| = 1 to be
chosen later, we can show

Re(β)
(
‖A1/2∇u‖2L2(Ω) + ‖c1/2u‖2L2(Ω)

)
−Re(βz) ‖u‖2L2(Ω)

.
∣∣(u0, u)L2(Ω)

∣∣ ≤
(
|z|−1/2 ‖u0‖L2(Ω)

)(
|z|1/2 ‖u‖L2(Ω)

)
. (2.11)

For small |z| < 2z0, we can use β = 1 and bound using the Poincaré estimate:

|z| ‖u‖2L2(Ω) ≤ 2z0C
2
P ‖∇u‖2L2(Ω) <

1

2
‖A∇u‖2L2(Ω),

to easily get the a priori estimate for α ∈ {0, 1}.
For larger |z| > 2z0, we may assume that |Arg(z)| ≥ δ > 0 for some δ > 0. (Graphi-

cally speaking, we exclude a slightly thinner cone starting at 0 instead of the cone start-
ing at z0.) It is then sufficient, if we can pick β such that Re(β) > 0 and Arg(−zβ) ∈
(−π/2, π/2). Just as in [MR21, Lem. A.2] one can check that if Im(z) ≤ 0, β := e−iπ−δ

2

satisfies the necessary conditions that Re(β) > 0 and −Re(βz) > 0. If Im(z) ≥ 0,

then β := ei
π−δ
2 does. This shows as before ‖Rh(z)u0‖H1(Ω) . |z|−1/2‖u0‖L2(Ω) and also

‖Rh(z)u0‖L2(Ω) . |z|−1‖u0‖L2(Ω).
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By interpolation, we deduce that for α ∈ [0, 1]:

‖Rh(z)u0‖H̃α(Ω) . |z|−1+α/2 ‖u0‖L2(Ω) . (2.12)

The discrete estimate follows verbatim.

Definition 2.4. A function f : [0, T ] → L∞(Ω) is said to be uniformly analytic if:

(i) For all t ∈ [0, T ], f(t) is analytic in a fixed neighborhood Ω̃ of Ω;

(ii) there exist constants Cf , γf > 0, the analyticity constants of f , such that for all
t ∈ [0, T ] and p ∈ N0,

‖∇pf(t)‖L∞(Ω̃) ≤ Cfγ
pp! ;

(iii) there exists an open set O ⊆ C, containing a positive sector {z ∈ C : z 6=
0, |Arg z| < δ} for some constant δ > 0, and there exists a constant Cf > 0 such
that, for each v ∈ L2(Ω), the function t 7→ (f(t), v)L2(Ω) has an analytic extension
to O and

sup
s∈O

|(f(s), v)L2(Ω)|
‖v‖L2(Ω)

≤ Cf < ∞.

The main assumption on the discretization space Vh is taken such that it approximates
the solutions to singularly perturbed problems exponentially well. The same assumption
has already been used in [MR21].

Assumption 2.5. A function space Vh is said to resolve down to the scale ε > 0 if for
all z ∈ S with |z|−1/2 ≥ ε and for all f ∈ L2(Ω) that are analytic on a fixed neighborhood
Ω̃ of Ω, the solutions to the elliptic problem

−z−1Lu+ u = f

can be approximated exponentially well from it. That is, there exist constants C(f), ω
and µ > 0 such that

inf
vh∈Vh

[
|z|−1 ‖∇u−∇v‖2L2(Ω) + ‖u− v‖2L2(Ω)

]
. C(f)e−ωNµ

Ω ,

where NΩ := dim(Vh). The constant C(f) may depend only on Ω̃, the analyticity con-
stants of f , on A, c, Ω, z0, and ε0, while the constants ω and µ may depend only on A,
c, Ω̃, Ω, z0 and ε0 Most notably the constants are independent of z, ε, and NΩ.

We state and prove all our results under the general assumption that Vh resolves
specific scales. In Section 6, we will give one construction of such a space using hp
finite elements; see also [BMN+18] and [BMS20] for similar constructions, focused on
real valued parameters z.
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3 The pure initial value problem

We first focus on discretizing the homogeneous problem, i.e., we only consider the case
f = 0. In this case, the exact solution can be written as

u(t) :=
1

2πi

∫

C
eγ,1(−tγzβ)

(
z − L

)−1
u0 dz. (3.1)

We discretize this function in two steps. First, we replace the contour integral with a
sinc-quadrature rule, analogous to what was done in [BLP17b]. For a fixed number of
quadrature points Nq ∈ N and grid size k > 0, we write, setting yn := nk:

uq(t) :=
k

2πi

Nq∑

n=−Nq

eγ,1
(
− tγz(yn)

β
)
z′(yn)

(
z(yn)− L

)−1
u0. (3.2)

As a second step, we replace the resolvent operator R(z) = (z − L)−1 by the discrete
counterpart Rh(z) as defined in (2.9). We obtain the fully discrete approximation

uq,h(t) :=
k

2πi

Nq∑

n=−Nq

eγ,1
(
− tγz(yn)

β
)
z′(yn)Rh

(
z(yn)

)
u0. (3.3)

Lemma 3.1. Assume that u0 is analytic on a neighborhood of the closure of Ω. Let
Nq ∈ N, k > 0 be given. Let ε0 < b < z0, with ε0 and z0 as defined in Definition 2.1 and

b as in (2.4). Then, if Vh resolves the scales down to ε = b−1/2e−
Nqk

2 , the error due to
the spatial discretization can be bounded by

∥∥∥uq(t)− uq,h(t)
∥∥∥
H̃β(Ω)

≤ Ct−γ/2Nqk e
−ωNµ

Ω . (3.4)

The constants C, ω, µ depend on the constants from Assumption 2.5 and on the initial
condition u0.

Proof. We note the following, easy to verify estimates, with the generic constants only
depending on b (as used in the definition of the contour C):

|z(yj)| ≤ be|j|k and |z(yj)| ∼
∣∣z′(yj)

∣∣ ∼ e|j|k. (3.5)

For fixed z ∈ S with |z|1/2 ≤
√
b eNqk/2, Assumption 2.5 gives using (2.5):

‖R(z)u0 −Rh(z)u0‖H̃β(Ω)
. |z|β/2−1 e−ωNµ

Ω .

Thus, using (2.7), as long as Vh resolves all the scales |z(yj)|−1/2, the error can be
estimated by

∥∥∥uq(t)− uq,h(t)
∥∥∥
H̃β(Ω)

. k

Nq∑

n=−Nq

∣∣eγ,1(−tγz(yn)
β)
∣∣ ∣∣z′(yn)

∣∣ |z(yn)|−1+β/2 e−ωNµ
Ω

. k

Nq∑

n=−Nq

1

1 + tγ |z(yn)|β
|z(yn)|β/2 e−ωNµ

Ω .
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The following simple calculation then concludes the proof:

1

1 + tγ |z(yn)|β
|z(yn)|β/2 =

(
1

1 + tγ |z(yn)|β

)1/2(
1

1 + tγ |z(yn)|β
|z(yn)|β

)1/2

.

(
1

|z(yj)|−β + tγ

)1/2

. t−γ/2.

(3.6)

Next, we consider the discretization error due to replacing the contour integral by the
sinc-quadrature formula. This can be done along the same lines as in [BLP17b]. We
take their definition for the class of functions which can be approximated well by the
sinc quadrature.

Definition 3.2. Given H > 0, we define S(BH) as the set of functions f , defined on
R, satisfying the following assumptions:

(i) f can be extended to an analytic function on the infinite strip

BH := {z ∈ C : |Im(z)| < H} (3.7)

that is also continuous on BH .

(ii) There exists a constant C > 0 independent of y ∈ R such that

∫ H

−H
|f(y + iw)| dw ≤ C ∀y ∈ R. (3.8)

(iii) We have

N(BH) :=

∫ ∞

−∞
|f(y + iH)|+ |f(y − iH)| dy < ∞. (3.9)

The following error estimate is proved in [LB92], and is also the basis for the conver-
gence result [BLP17b, Lem. 4.2].

Proposition 3.3 ([LB92, Thm. 2.20]). If f ∈ S(BH) and k > 0, then

∣∣∣∣∣

∫ ∞

−∞
f(x) dx− k

∞∑

n=−∞

f(k n)

∣∣∣∣∣ =
N(BH)

2 sinh(πd/k)
e−πd/k. (3.10)

The behavior of the exact solution, most notably the blowup of the energy norm
for small times is determined by the regularity and boundary conditions of the initial
condition u0, formalized using the spaces H̃θ(Ω). Even if the boundary conditions are
not met, u0 is slightly better than just L2(Ω). This is the content of the following
proposition.
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Proposition 3.4. For θ ∈ [0, 1/2), and u0 ∈ Hθ(Ω), we can bound

‖u0‖H̃θ(Ω)
≤ C ‖u0‖Hθ(Ω) .

Proof. For θ < 1/2, the two families of spaces Hθ and H̃θ coincide with equivalent
norms, see [Tri06, Sect. 1.11.6] or [McL00, Thms. 3.33, B.9, 3.40]).

Lemma 3.5. For λ ≥ λ1 > 0, we define the function

gλ(y, t) :=
1

2πi
eγ,1(−tγzβ)z′(y)(z(y) − λ)−1. (3.11)

Then, for H ∈ (0, π/4) and ε ∈ (0, β/2), we have the estimate

|gλ(y, t)| . t−γ/2λ−β/2+εe−εRe(y) ∀y ∈ BH , (3.12)

with implied constant depending on λ1, β , γ, and H.
Additionally, it holds that gλ ∈ S(BH) with

N(BH) ≤ C(β,H, b, ε, γ)t−γ/2λ−β/2+ε.

Proof. We begin by noting the following estimates for y ∈ BH , with implied constants
depending on λ1, b, and H:

|z(y)| +
∣∣z′(y)

∣∣ . e|Re(y)|, (3.13a)

Re(z(y)β) & eβ|Re(y)|, (3.13b)

|z′(y)(z(y)− λ)−1| . 1. (3.13c)

The first estimate follows from the definition, the others can be found in [BLP17b,
Lem. B.1] and were proven in the course of the proof [BLP17a, Thm.4.1].

We assert the following estimate for ε ∈ [0, β/2]:

λβ
∣∣∣z′(y) (z(y)− λ)−1

∣∣∣ . λ2εe(β−2ε)|Re(y)|.

To see this, we compute using estimates (3.13a) and (3.13c):

∣∣∣λ z′(y) (z(y)− λ)−1
∣∣∣ =

∣∣∣∣z
′(y)

(
−1 +

z(y)

z(y)− λ

)∣∣∣∣ .
∣∣z′(y)

∣∣+ |z(y)| . e|Re(y)|.

Interpolation with (3.13c) then gives the general estimate:

λβ
∣∣∣z′(y) (z(y)− λ)−1

∣∣∣ = λ2ε
(∣∣∣z′(y) (z(y)− λ)−1

∣∣∣
)1−β+2ε (

λ
∣∣∣z′(y) (z(y)− λ)−1

∣∣∣
)β−2ε

. λ2εe(β−2ε)|Re(y)|.
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To show (3.12), we use (2.7) to get

λβ/2 |gλ(y, t)| .
(
|gλ(y, t)|

)1/2(
λβ |gλ(y, t)|

)1/2

.
( 1

1 + tγeβ|Re(y)|

)1/2( 1

1 + tγeβ|Re(y)|
λ2εe(β−2ε)|Re(y)|

)1/2

. t−γ/2λεe−ε|Re(y)|.

From estimate (3.12), we easily deduce parts (ii) and (iii) of Definition 3.2. Part (i)
was already shown in [BLP17b].

Lemma 3.6. For Nq ∈ N and k ∼ N−1/2
q , the following estimate holds for 0 ≤ ε <

min
(β
2 ,

1
4

)
:

‖u(t)− uq(t)‖
H̃β(Ω)

. t−γ/2e−ωN
1/2
q ‖u0‖H2ε(Ω)

for some constant ω > 0, depending on ε, γ, β.

Proof. Using the error function

E(λ, t) :=
∫ ∞

−∞
gλ(y, t) dy − k

∞∑

n=−∞

gλ(n k, t)

and the spectral decomposition u0 =
∑∞

j=0 u0,jϕj , we can write the quadrature error as

u(t)− uq(t) =

∞∑

j=0

(
E(λj , t) + k

∑

|n|≥Nq+1

gλj
(n k, t)

)
u0,j ϕj .

For the error in the H̃β(Ω)-norm, this means:

‖u(t)− uq(t)‖2
H̃β(Ω)

.

∞∑

j=0

λβ
j |E(λj , t)|2 |u0,j|2 +

(
k

∑

|n|≥Nq+1

λ
β/2
j

∣∣gλj
(n k, t)

∣∣
)2

|u0,j |2.

The terms can be estimated by Proposition 3.3 and Lemma 3.5.

‖u(t)− uq(t)‖2
H̃β(Ω)

. t−γe−4πd/k ‖u0‖2H̃2ε(Ω)
+ t−γ ‖u0‖2H̃2ε(Ω)

(
k
∑

|n|≥Nq+1

e−εnk
)2

. t−γ ‖u0‖2H̃2ε(Ω)

(
e−4πd/k + e−2εNqk

)
.

Picking k ∼ N−1/2
q and using Proposition 3.4 gives the stated result.
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4 The inhomogeneous problem

In this section, we focus on the inhomogeneous problem with homogeneous initial con-
dition, i.e., (2.1) with u0 = 0 and general f . The representation formula in this case
reads

ui(t) =

∫ t

0
τγ−1eγ,γ(−τγLβ)f(t− τ) dτ , (4.1)

or, using the Riesz-Dunford calculus,

ui(t) =
1

2πi

∫ t

0
τγ−1

(∫

C
eγ,γ(−τγzβ)R(z)f(t− τ) dz

)
dτ . (4.2)

Our approximation scheme will be based on a sinc-type quadrature for the contour
integral and an hp-type quadrature for the convolution in time.

4.1 hp-quadrature

In this section, we briefly summarize the theory and notation for using hp-methods to
approximate integrals. Given an interval I = (a, b) and function g : I → C, we are
interested in approximating ∫

I
g(τ) dτ ,

where g may have an algebraic singularity at the left endpoint τ = a.
For a given degree p ∈ N0, we denote the Gauss quadrature points and weights on

(−1, 1) by (xpj , w
p
j ) ∈ (−1, 1) × R+. See [DR84, Sect. 2.7] for details. For I = (−1, 1),

the Gauss-quadrature approximation is then given by

Qp
Ig :=

p∑

j=0

wp
j g(x

p
j ).

For general I = (a, b), the approximation is obtained by an affine change of variables.
In order to get a method that adequately handles a singularity at the left endpoint,

we consider a mesh on the interval (0, 1) with a mesh grading factor σ ∈ (0, 1) and
parameter L ∈ N, L ≤ p given by

K0 := (0, σL), K1 := (σL, σL−1), . . . , KL := (σ, 1).

On each one of these elements, we apply a Gauss quadrature, reducing the order as we
approach the singularity, i.e.

∫

I
g(τ) dτ ≈ Qhp

I g :=

L∑

ℓ=0

Qp−L+ℓ
Kℓ

g.

For general intervals (a, b) we again apply an affine change of variables.
The main result on such composite Gauss-quadrature is the following proposition,

versions of which are well-known, see for example [Sch94, Sch92, CvPS11].
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Proposition 4.1. Fix T > 0. Assume that g : I := (0, T ) → C can be extended
holomorphically to a function g : O → C such that

(i) O contains a positive sector {z ∈ C : z 6= 0, |Arg z| < δ} for some constant δ > 0;

(ii) there exist constants α ∈ [0, 1) and Cg > 0 such that

|g(z)| ≤ Cg |z|−α ∀z ∈ O. (4.3)

Fix σ > 0 and consider the composite Gauss quadrature rule with L layers of re-
finement with degree p = L. Then there exist positive constants Cq, ω, and Cstab such
that

∣∣∣∣
∫ T

0
g(τ) dτ −Qhp

I g

∣∣∣∣ ≤ CqT
1−αe−ωp and

∣∣∣Qhp
I g
∣∣∣ ≤ Cstab T 1−α. (4.4)

Proof. To prove the estimate (4.4), we assume T = 1. The more general result follows
by an affine transformation. We distinguish two cases. On the element K0, we use the
bound on g and the fact that K0 is small to get

∣∣∣∣∣

∫ σL

0
g(τ) dτ −Q0

K0
g

∣∣∣∣∣ . Cg

∫ σL

0
τ−α dτ + σL|g(σL/2)| . Cgσ

(1−α)L.

For any other element KL−ℓ = (σℓ+1, σℓ), we map to the reference interval (−1, 1):

∣∣∣∣∣

∫ σℓ

σℓ+1

g(τ) dτ −Qp−ℓ
Kℓ

g

∣∣∣∣∣ ∼ σℓ

∣∣∣∣
∫ 1

−1
g̃(τ̃) dτ̃ −Qp−ℓ

(−1,1)g̃

∣∣∣∣ , (4.5)

where g̃ := g
(
σℓ

2 (1− σ)τ + (1 + σ)
)
is the pull-back of g to (−1, 1). By geometric con-

siderations, g̃ is analytic on an ellipse Eρ with semiaxis sum ρ > 1, where ρ depends on
σ and the opening angle of the sector. We apply standard results on Gauss-quadrature
(see [DR84, Eqn. (4.6.1.11)]) to estimate:

∣∣∣
∫ 1

−1
g̃(τ̃) dτ̃ −Qp−ℓ

(−1,1)g̃
∣∣∣ . ρ−2(p−ℓ) sup

z∈Eρ

|g̃(z)| . Cgρ
−2(p−ℓ)σ−αℓ,

where we used Assumption (4.3) to bound g̃. Going back to (4.5) we conclude

∣∣∣
∫ σℓ

σℓ+1

g(τ) dτ −Qhpg
∣∣∣ . Cg max(σ1−α, ρ−2)p.

For general intervals (0, T ) we note that Cg behaves like Cg ∼ T−α under affine trans-
formations.

We now show the stability estimate. On each subinterval Kℓ, for ℓ > 0 we have

σt < TσL−ℓ+1 ≤ t ≤ TσL−ℓ.
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Since all the weights of Gauss-methods are positive and the quadrature integrates con-
stants exactly, we can calculate

∣∣∣Qhp
I g
∣∣∣ . Qhp

(
τ−α

)
.
(TσL

2

)−α
+

L−1∑

ℓ=0

Qp−ℓ(Tσℓ+1)−α =
(TσL

2

)−α
+

L−1∑

ℓ=0

∫ Tσℓ

Tσℓ+1

(
Tσℓ+1

)−α
dτ

.
(TσL

2

)−α
+

L−1∑

ℓ=0

∫ Tσℓ

Tσℓ+1

(στ)−α dτ .
(
σ−αL + σ−α

)
T 1−α.

4.2 Analysis of the inhomogeneous problem

We are now in the position to define and analyze the discretization scheme for the
inhomogeneous problem. The discretization is done on multiple levels. We define the
operator-valued functions

W (τ) := τγ−1eγ,γ(−τγγLβ) = τγ−1 1

2πi

∫

C
eγ,γ(−τγzβ)R(z) dz,

W q(τ) := τγ−1 k

2πi

Nq∑

n=−Nq

eγ,γ(−τγzβ(n k))z′(n k)R(z(n k)),

W q,h(τ) := τγ−1 k

2πi

Nq∑

n=−Nq

eγ,γ(−τγzβ(n k))z′(n k)Rh(z(n k)).

We get the first layer of approximation by replacing the convolution in time with an
hp-quadrature:

uqi (t) := Qhp
(0,t)

[W (·)f(t− ·)] .

Instead of relying on the exact evaluation of Lβ we then switch to the sinc-quadrature
approximation of the Riesz-Dunford integral by defining

uq,qi (t) := Qhp
(0,t) [W

q(·)f(t− ·)] .

Finally, we do the discretization in space to obtain the fully discrete function

uq,q,hi (t) := Qhp
(0,t)

[
W q,h(·)f(t− ·)

]
.

We now step by step estimate the discretization errors, starting with the one in space.

Lemma 4.2. Assume that f : (0, T ) → L2(Ω) is uniformly analytic (cf. Definition 2.4),
and Vh resolves the scales down to ε = b−1/2e−Nqk/2. Then

∥∥∥uq,qi (t)− uq,q,hi (t)
∥∥∥
H̃β(Ω)

. tγ/2kNq e
−ωNµ

Ω .
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Proof. The proof is very similar to Lemma 3.1, we only have to account for the extra
quadrature step. Since the proof only relied on the analyticity of the right-hand side f
and the estimate (2.7), we can analogously estimate for all τ ∈ (0, t)

∥∥∥W q(τ)f(t− τ)−W q,h(τ)f(t− τ)
∥∥∥
H̃β(Ω)

. τγ/2−1Nqke
−ωNµ

Ω .

Using the stability estimate for hp-quadrature in (4.4), the stated result follows.

Next, we consider the error due to the sinc-quadrature:

Lemma 4.3. For 0 < ε < min
(β
2 ,

1
4

)
, Nq ∈ N and k ∼ N−1/2

q we can estimate

‖uqi (t)− uq,qi (t)‖
H̃β(Ω)

. tγ/2e−ωN
1/2
q sup

τ∈(0,t)
‖f(τ)‖H2ε(Ω). (4.6)

Proof. We again focus on pointwise estimates of W −W q, this time proceeding analo-
gously to Lemma 3.6. We get for τ ∈ (0, t):

‖W (τ)f(t− τ)−W qf(t− τ)‖
H̃β(Ω)

. τγ/2−1e−ωN
1/2
q ‖f(t− τ)‖H2ε(Ω) .

Using the stability of the hp-quadrature then gives (4.6).

The final step is analyzing the error due to hp-quadrature.

Lemma 4.4. Assume that f : [0, T ] → L2(Ω) is uniformly analytic. Assume we are
using an hp-quadrature with Nhp refinement layers and maximum order p = Nhp. Then
we can estimate

‖ui(t)− uqi (t)‖H̃β(Ω) . tγ/2e−ωNhp .

The constant depends on f and the mesh grading factor σ used for the hp-quadrature.

Proof. Using the notation Wλ(τ) := τγ−1eγ,γ(−τγλβ), we write via the spectral decom-
position

ui(t) =

∞∑

j=0

∫ t

0
Wλj

(τ)
(
f(t− τ), ϕj

)
L2(Ω)

dτ ϕj ,

uqi (t) =
∞∑

j=0

Qhp
(0,t)

(
Wλj

(·)
(
f(t− ·), ϕj

)
L2(Ω)

)
ϕj.

By Definition 2.4 (iii), the integrands are analytic on a set O containing a positive
sector. Using Proposition 4.1, it is sufficient to show for all τ ∈ O and λ > 0 that∣∣λβ/2Wλ(τ)

∣∣ ≤ |τ |γ/2−1 with a constant independent of λ. We note that −τγλβ is
always in the sector required for (2.7). This can be seen since −τγ is always in the
left-half plane with argument between −γπ/4 and γπ/4. Multiplying with λβ > 0 does
not change the argument of the complex number.

Therefore, we can estimate using (2.7):

∣∣∣λβ/2Wλ(τ)
∣∣∣ . |τ |γ−1 λβ/2

1 + |τ |γ λβ
. |τ |γ−1

(
1

1 + |τ |γ λβ

)1/2( λβ

1 + |τ |γ λβ

)1/2

. |τ |γ/2−1 .

Applying Proposition 4.1 then concludes the proof.
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5 The general result

Combining the approximations for the inhomogeneous and homogeneous scheme, we
define the fully discrete approximation as

ufd(t) := uq,h(t) + uq,q,hi (t).

The corresponding error analysis is then a simple combination of the individual error
estimates. Since we will use it later on, we also include a stability result with respect to
the initial data.

Theorem 5.1. Assume that u0 is analytic on a neighborhood of Ω and assume that f
is uniformly analytic (cf. Definition 2.4). Use Nq ∈ N quadrature points for the sinc-

quadrature with k := κN−1/2
q , Nhp ∼

√
Nq layers for the hp-quadrature. Assume that

Vh resolves the scales down to b−1/2 e−(κ/2)
√

Nq. Then, the following estimate holds:

∥∥∥u(t)− ufd(t)
∥∥∥
H̃β(Ω)

.
(
t−γ/2 + tγ/2

) (
e−ω

√
Nq +

√
Nq e

−ωNµ
Ω

)
.

In addition, the following stability estimate holds for any ε ∈ (0, 1/2):

‖ufd(t)‖H̃β(Ω) . C(ε) min
(√

Nq, t
−εγ
)(

t−γ/2 ‖u0‖L2(Ω) + tγ/2 max
0≤τ≤t

‖f(τ)‖L2(Ω)

)
.

(5.1)

Proof. For the convergence result, we just collect the different convergence results of
Sections 3 and 4.

To prove the stability result, we start with only the homogeneous contribution. By
an analogous computation to (3.6) we get from the definition of uq,h and the estimate
on the resolvent (2.10) for ε ∈ (0, 1/2):

∥∥∥uq,h(t)
∥∥∥
H̃β(Ω)

. k

Nq∑

n=−Nq

t−γ(1/2+ε) |z(yn)|−β(1/2+ε)
∣∣z′(yn)

∣∣ ‖Rh(yn)u0‖H̃β(Ω)

. t−γ(1/2+ε)‖u0‖L2(Ω).

From which the stated estimate follows readily via (3.5). If ε = 0, the same computa-
tion can be made, but we end up with an additional factor Nqk compensating for the
summation. The inhomogeneous contribution follows along the same lines, but using
the stability of the hp-Quadrature (4.4).

5.1 Space-time and time robust estimates

Up to now, we have looked at the error in the H̃θ-norm pointwise in time. While such an
approach is natural, the resulting estimates deteriorate for small times t close to zero like
O(t−γ/2). If the initial condition does not satisfy the boundary conditions, we cannot
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hope to derive t-robust estimates in the energy norm H̃β. In this section, we derive a
different estimate which does not suffer from this deterioration.

For the following results to hold, we have to make an additional assumption on Vh, a
version of which is also already present in [MR21]:

Assumption 5.2. There exists a fixed neighborhood Ω̃ of Ω and constants θ, ω, µ > 0
such that for all u0 that are analytic on Ω̃, there exists a function uh,0 ∈ Vh and constants
Cstab, Capprox > 0 (depending on u0) such that

‖uh,0‖Vθ
h
≤ Cstab and ‖u0 − uh,0‖L2(Ω) ≤ Capproxe

−ωNµ
Ω ,

where NΩ := dim
(
Vh

)
and V

θ
h :=

[(
Vh, L

2(Ω)
)
,
(
Vh,H

1(Ω)
)]

θ,2
.

We start by refining the estimates on the resolvent operator from Proposition (2.3),
establishing that if we insert more regularity than L2 in the argument, we get improved
damping properties.

Lemma 5.3. Let z ∈ S . Assume u0 ∈ H̃θ(Ω) and uh,0 ∈ V
θ
h for some θ ∈ [0, 1]. Then

the following estimates hold for α ∈ [θ, 1]:

‖R(z)u0‖H̃α(Ω) . |z|−1+α−θ
2 ‖u0‖H̃θ(Ω) and ‖Rh(z)uh,0‖H̃α(Ω) . |z|−1+α−θ

2 ‖uh,0‖Vθ
h
.

(5.2)

The implied constant depends on δ, A, c, and the constants in the definition of S .

Proof. We only consider the discrete case. The continuous one follows analogously, re-
placing Vh with H1

0 (Ω). We consider the function w := [Rh(z)−z−1]uh,0. By elementary
computations we get from (2.9) that w solves for all v ∈ Vh:

(
(z − c)w, vh

)
L2(Ω)

−
(
A∇w,∇vh

)
L2(Ω)

= z−1
(
(c uh,0, vh)L2(Ω) + (A∇uh,0,∇vh)L2(Ω)

)
.

Thus, w solves the same variational problem as Rh(z)uh,0 with modified right-hand side.
If uh,0 ∈ Vh, then w ∈ Vh is a valid test function, and we get fixing β ∈ C as in
Proposition 2.3 that

Re(β)‖A1/2∇w‖2L2(Ω) − Re(βz)‖w‖2L2(Ω)

. |z|−1
(
‖uh,0‖L2(Ω)‖w‖L2(Ω) + ‖∇uh,0‖L2(Ω)‖∇w‖L2(Ω)

)
.

From this and the already established bounds on Rh(z)uh,0 from (2.10), we readily get
the estimates

‖w‖H1(Ω) . |z|−1 ‖uh,0‖H1(Ω) and ‖w‖L2(Ω) . |z|−1 ‖uh,0‖L2(Ω).

By interpolation, this gives

‖w‖Hα(Ω) . |z|−1 ‖uh,0‖Vα
h
.
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From the definition of w and (2.10), we get the estimates:

‖Rh(z)uh,0‖H̃α(Ω) . |z|−1 ‖uh,0‖Vα
h
, and ‖Rh(z)uh,0‖H̃α(Ω) . |z|−1+α/2 ‖uh,0‖L2(Ω).

By the reiteration theorem [Tar07, Thm. 26.3], we can write V
θ
h = [L2(Ω),Vα

h ] θ
α
. Thus,

we further interpolate the previous estimates to get for θ ∈ [0, α]:

‖Rh(z)uh,0‖H̃α(Ω)
. |z|− θ

α
+(−1+α

2
)(1− θ

α
) ‖uh,0‖Vθ

h
,= |z|−1+α

2
− θ

2 ‖uh,0‖Vθ
h
.

We use this estimate to prove a time-robust estimate. We weaken the statement from
an estimate which is pointwise in time to a space-time Sobolev norm. Such norms were
also considered in [MR21].

Theorem 5.4. Let the Assumptions of Theorem 5.1 hold. In addition, let Assump-
tion 5.2 hold, and use uh,0 for the initial condition of the discrete method.

Use Nq ∈ N quadrature points for the sinc-quadrature with k := κN−1/2
q , Nhp ∼

√
Nq

layers for the hp-quadrature. Assume that Vh resolves the scales down to b−1/2 e−(κ/2)
√

Nq.
Then, the following estimate holds:

∫ T

0
tγ−1

∥∥u(t)− ufd(t)
∥∥2
H̃β(Ω)

dt . C(T )
(
e−ω

√
Nq +

√
Nq e

−ωNµ
Ω

)
.

The constants depends on the end time T , the domain Ω, the data u0 and f , the constants
from Assumption 2.5 and 5.2, and on the details of the discretization, i.e., mesh grading,
the factor κ, and the ratio Nhp/

√
Nq, but is independent of the accuracy parameters Nq,

k, Nhp or NΩ.

Proof. We only consider the homogeneous part, the other one is even simpler as the
singular behavior for small times is not present. In this setting we have ufd = uq,h. Let
t0 > 0 to be fixed later. In (5.1) we have seen that ufd depends continuously on the
initial condition like t−γ/2

√
Nq ‖uh,0‖L2(Ω). Replacing the discrete initial condition with

u0 allows us to apply Theorem 5.1 and we get:

∫ T

t0

tγ−1
∥∥u(t)− ufd(t)

∥∥2
H̃β(Ω)

dt . log(t0)
(
e−ω

√
Nq +

√
Nq ‖u0 − uh,0‖2L2(Ω) +

√
Nq e

−ωNµ
Ω

)
.

For t < t0, it is easy to derive the stability estimates

∥∥u(t)
∥∥
H̃β(Ω)

. t−γ/2+ε ‖u0‖H2ε(Ω) and
∥∥uq,h(t)

∥∥
H̃β(Ω)

. t−γ/2+ε ‖u0,h‖V2ε
h (Ω)

from their representation formulas and the stability estimates on the resolvents in Lemma 5.3.

Thus, the stated theorem follows if we pick t0 ∼ e−(ω/ε)min(
√

Nq,N
µ
Ω
) and absorb all

polynomial terms into the exponential.

Remark 5.5. In the case γ = 1, the requirement that uh,0 needs to be used for the
discrete initial condition can be dropped. This is because the space-time norm depends
continuously on the L2-norm of the initial condition.
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6 hp-FEM

In this section, we provide a construction for Vh that satisfies Assumption 2.5. It is
based on an hp-finite element method on a suitably refined grid towards the boundary
∂Ω. The construction is the same as in [MR21] and has similarly also already appeared
in [BMN+18] in the context of stationary elliptic problems. In [BMS20], the construction
of [BMN+18] is generalized to polygonal domains.

For this, we need to make the following simplifying assumption throughout this section:

Assumption 6.1. Let Ω ⊂ R
d for d = 1, 2 have analytic boundary. Assume that A and

c are analytic on a neighborhood Ω̃ ⊃ Ω.

Just as for the hp-quadrature in Section 4.1, the construction for Vh is based on a
geometric grid that is refined towards the lower-dimensional manifolds where singularities
are expected. In 1d, this means a geometric grid towards the end points, for 2d we make
the following definitions, following [MS98], see also [BMN+18] and [Mel02, Def. 2.4.4].

We first introduce the (shape regular) reference mesh, used to resolve the geometry of
Ω.

Definition 6.2 (reference mesh). Let Ŝ := (0, 1)2 be the reference square, and TΩ :={
Ki

}|TΩ|

i=0
a mesh of curved quadrilaterals with bijective element maps FK : Ŝ → K

satisfying

(M1) The elements Ki partition Ω, i.e.,
⋃

Ki∈T
Ki = Ω;

(M2) for i 6= j, Ki ∩Kj is either empty, a vertex or an entire edge;

(M3) the element maps FK : Ŝ → K are analytic diffeomorphisms;

(M4) the common edge of two neighboring elements Ki, Kj has the same parametrization
from both sides, i.e., if γij is the common edge with endpoints P1, P2, then for
P ∈ γi,j we have

dist(F−1
Ki

P,F−1
Ki

Pℓ)) = dist(F−1
Kj

P,F−1
Kj

Pℓ) for ℓ = 1, 2.

In order to be able to resolve boundary layers on small scales, we now refine the refer-
ence mesh geometrically towards the boundary. This is captured in the next definition.

Definition 6.3 (anisotropic geometric mesh). Let TΩ be a reference mesh, and assume
that Ki, i = 0, . . . , n < |TΩ| are the elements at the boundary. Also assume that the left
edge e := {0} × (0, 1) is mapped to ∂Ω, i.e., FKi(e) ⊆ ∂Ω and FKi(∂S \ e) ∩ ∂Ω = ∅ for
i = 0, . . . , n. The remaining elements are taken to satisfy Ki∩∂Ω = ∅, i = n+1, . . . , |TΩ|.

For L ∈ N and a mesh grading factor σ ∈ (0, 1), we subdivide the reference square

Ŝ0 := (0, σL)× (0, 1), Ŝℓ := (σℓ, σℓ−1)× (0, 1), ℓ = 1, . . . .L.
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The anisotropic geometric mesh T L
Ω is then given by the push-forwards of the refine-

ments in the boundary region, plus the unrefined interior elements:

T L
Ω :=

{
FKi(Ŝ

ℓ), ℓ = 0, . . . , L, i = 0, . . . , n
}
∪

|TΩ|⋃

i=n+1

{Ki}.

Definition 6.4. In one dimension, for Ω = (−1, 1), the reference mesh is given by the
single element TΩ := {(−1, 1)} and the anisotropic geometric mesh is given by the nodes

x0 := −1, xi := −1 + σL−i+1, i = 1, . . . , L,

xi := 1− σi−L, i = L+ 1, . . . , 2L, x2L+1 := 1.

For general Ω = (a, b) it is given by an affine transformation of the mesh on (−1, 1).

Using these meshes, we can now give an exemplary construction for Vh, which satisfies
Assumptions 2.5 and 5.2.

Definition 6.5 (Vh via hp-FEM). Let T L
Ω be an anisotropic geometric mesh refined

towards ∂Ω and fix p ∈ N. We write Qp := span0≤i1, ...,id≤p

{
xi11 . . . xidd

}
for the space of

tensor product polynomials and set

Vh := Sp,1
0 (T L

Ω ) :=
{
u ∈ H1

0 (Ω) : u ◦ FK ∈ Qp ∀K ∈ T L
Ω

}
. (6.1)

In [MR21], it was shown that such spaces are able to reliably resolve small scales. We
collect the result in the following proposition.

Proposition 6.6 ([MR21, Thm.3.33]). Let T L
Ω be an anisotropic mesh on Ω that is geo-

metrically refined towards ∂Ω with grading factor σ ∈ (0, 1) and L layers. Use polynomial
degree p ∼ L.

Then Vh defined in (6.1) resolves the scales down to σL, i.e., there exist constants

C,ω > 0, such that for z ∈ S with |z|−1/2 > σL and every f that is analytic on a
neighborhood Ω̃ of Ω, the solution uz to (L − z)u = zf can be approximated by vh ∈ Vh

satisfying

|z|−1 ‖∇u−∇vh‖2L2(Ω) + ‖u− vh‖2L2(Ω) ≤ Ce−ω′p ≤ C ′e−ωN
1

d+1
Ω .

The constant ω depends only on σ, Ω and Ω̃. The constants C, C ′ also depend on the
constants of analyticity of f .

If we are interested in the estimate from Section 5.1, we also need that the hp-FEM
space can approximate the initial condition in a way that is stable in the discrete inter-
polation norm V

θ
h. Again following what was done in [MR21], we split the construction

into two steps, first computing the H1-best approximation in a space without boundary
conditions (this can be done on the reference mesh) and then performing a cutoff pro-
cedure to correct the boundary conditions on the anisotropic geometric mesh. We first
recall the properties of the cutoff operator.
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Proposition 6.7 ([MR21, Lem. 3.35]). Let T L
Ω denote an anisotropic geometric mesh

with reference mesh TΩ. Given ℓ ∈ N0, ℓ ≤ L, there exists a linear operator Cℓ :
Sp,1(TΩ) → Sp,1

0 (T L
Ω ) such that for θ ∈ [0, 1/2)

‖Cℓv‖H1(Ω) . σ−ℓ/2 ‖v‖L2(Ω) + ‖∇v‖L2(Ω) and ‖v − Cℓv‖L2(Ω) . σθℓ ‖v‖Hθ(Ω) .

(6.2)

Lemma 6.8. Let u0 be analytic in a neighborhood Ω̃ ⊃ Ω, and let 0 ≤ θ < 1/2. Then
there exists a function uh,0 ∈ Vh :

‖uh,0‖Vθ
h
. ‖u0‖H1(Ω) and ‖uh,0 − u0‖L2(Ω) . e−ω′p. (6.3)

In other words, if the number of refinement layers L ∼ p, then Vh satisfies Assump-
tion 5.2 with µ := 1/(d + 1).

Proof. A similar result has appeared in [MR21, Lem. 3.36], although in a more compli-
cated setting. Let ΠH1 : H1(Ω) → Sp,1(TΩ) denote the best approximation operator in
the H1(Ω)-norm (note that we do not enforce boundary conditions). Set û0 := ΠH1u0.
We define uh,0 := CLû0 ∈ Vh and the piecewise constant function v(t) ∈ Vh as

v(t) :=





CLû0 t ∈ (0, σL),

Cℓû0 t ∈ (σℓ, σℓ−1), ℓ = 1, . . . , L,

0 t > 1.

For ε > 0 sufficiently small, we then estimate using (6.2):

‖uh,0‖2Vθ
h
≤
∫ 1

0
t−2θ

(
‖CLû0 − v(t)‖2L2(Ω) + t2 ‖v(t)‖2H1(Ω)

) dt
t
+

1

2θ
‖CLû0‖2L2(Ω)

(6.2)

.
(
1 +

L−1∑

ℓ=0

σ(1−ε)ℓ

∫ σℓ

σℓ+1

t−2θ−1dt
)
‖û0‖2H1/2− ε

2 (Ω)
+
( L−1∑

ℓ=0

σ−ℓ

∫ σℓ

σℓ+1

t−2θ+1dt
)
‖û0‖2H1(Ω)

.
(
1+

L−1∑

ℓ=0

σℓ−2θℓ−εℓ
)
‖û0‖2H1/2(Ω) +

( L−1∑

ℓ=0

σ−ℓ+2ℓ−2θℓ
)
‖û0‖2H1(Ω) . ‖û0‖2H1(Ω) ,

where in the last step we used the fact that 2θ < 1 and a geometric series.
The statement then follows from the fact that the space Sp,1(TΩ) can approximate

analytic functions exponentially fast (see for example [Mel02, Prop. 3.2.21]), and the
stability of the H1-best approximation operator ΠH1 .

Remark 6.9. The use of the H1-norm on the right hand side of (6.3) is mostly for
convenience. Using more involved results about interpolation spaces of polynomials, we
expect that this requirement can be lowered to the Hβ+ε(Ω)-norm.

Collecting the previous results, we arrive at the pointwise error estimate:
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Corollary 6.10. Assume that u0 is analytic on a neighborhood of Ω and assume that f
is uniformly analytic.

Use Nq ∈ N quadrature points for the sinc-quadrature with k ∼ 1/
√

Nq, Nhp ∼
√

Nq

layers and p = Nhp for the hp-quadrature. Let T L
Ω be an anisotropic geometric grid with

grading factor σ ∈ (0, 1) such that L &
√

Nq and use the polynomial degree p ∼ L for
Vh.

Then, the following estimate holds for a constant ω > 0:

∥∥∥u(t)− ufd(t)
∥∥∥
H̃β(Ω)

.
(
t−γ/2 + tγ/2

) (
e−ω

√
Nq + e−ωN

1
d+1
Ω

)
,

Proof. We apply Theorem 5.1. By Proposition 6.6, the space Vh satisfies the necessary
Assumption 2.5. The factor

√
Nq from Theorem 5.1 is absorbed into the exponential

for convenience.

The estimate for the space-time energy norm takes the following form:

Corollary 6.11. Fix T > 0, assume that u0 is analytic on a neighborhood Ω̃ of Ω and as-
sume that f is uniformly analytic. Use Nq ∈ N quadrature points for the sinc-quadrature
with k ∼ 1/

√
Nq, Nhp ∼

√
Nq layers and degree p ∼ Nhp for the hp-quadrature. Let T L

Ω

be an anisotropic geometric grid with grading factor σ ∈ (0, 1) such that L &

√
Nq

|ln(σ)| , and
use the polynomial degree p ∼ L for Vh.

Let uh,0 be given by uh,0 := CLΠH1u0 where CL is the cutoff operator from Proposi-
tion 6.7 and ΠH1 is the H1-orthogonal projection onto the space Sp,1(TΩ).

Then, the following estimate holds for a constant ω > 0:

∫ T

0
tγ−1

∥∥u(t)− ufd(t)
∥∥2
H̃β(Ω)

dt . C(T )
(
e−ω

√
Nq + e−ωN

1
d+1
Ω

)
.

The constants depends on the end time T , the domain Ω, Ω̃, O, the data u0 and f , the
constants from Assumption 2.5 and 5.2 and on the details of the discretization like mesh
grading or the ratio k/

√
Nq, but is independent of the accuracy parameters Nq, k, Nhp

or NΩ.

Proof. Follows from 5.4. The necessary assumptions on Vh and uh,0 are satisfied by
Proposition 6.6 and Lemma 6.8.

7 Numerical Results

In order to confirm our theoretical findings, we implemented the method using the
NGSolve software package [Sch14, Sch22] for the finite element discretization in Ω. The
geometric meshes in 2d were generated using the hp-refinement feature of Netgen, the
integrated mesh generator of NGSolve. A sample mesh can be seen in Figure 7.1. We
note that these meshes include geometric refinements towards each of the corners of the
domain.
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Figure 7.1: Example of a geometric mesh with 5 refinement layers.

Remark 7.1. When implementing the presented method in practice, the dominant cost
is to numerically solve the singularly perturbed problems (zj − L)−1. Observing that
these problems only depend on the quadrature point, and therefore appear several times
throughout the algorithm, most notably inside the hp-quadrature for the time convolution,
it is therefore beneficial to reorder the operations in order to minimize the number of
systems that need to be solved. This leads to a method which only requires Nq linear
system solves, making it very efficient.

Example 7.2. As a first example, we consider the unit square Ω = (0, 1)2 and fix
the end time t = 1. We set the parameters β := 0.75 and γ := 0.6. In order to
validate our implementation, we choose the initial condition and right-hand side in a
way that gives rise to a known exact solution. Namely, similarly to [BLP17b], we set
u(t, x, y) := eγ,1(−tγ(8π2)β) sin(2πx) sin(2πy) + t3 sin(πx) sin(πy). This means the data
are given by

u0(x, y) := sin(2πx) sin(2πy), and f(t, x, y) :=

(
Γ(4)

Γ(4− γ)
t3−γ + t3(2π2)β

)
sin(πx) sin(πy).

We look at the convergence of the L2(Ω)-error as we increase the polynomial degree p
used for our finite element discretization, the number of geometric refinements in the
underlying grid as well as our quadrature parameters Nq := 6 p2, k := π

√
1/(5βNq) ∼

1/p and Nhp := p. The grading factor σ := 0.125 is used for both the geometric mesh on
Ω and the hp-quadrature.

Since we are working in 2d and we are dealing with a geometry with corners that need
to be resolved, the number of degrees of freedom scale like NΩ ∼ p4. We plot the error

compared to N 1/4
Ω . As expected, we observe exponential convergence in this very simple

case of a known smooth exact solution; see Figure 7.2a.

Remark 7.3. The choice of k is motivated by [BLP17a, Rem. 4.1], where the optimal

choice is given by k =
√

πH
βN , where H < π/4 is determined by the region of analyticity

in Lemma 3.5. In our case, we used H := π
5 .

Example 7.4. We continue with the unit square as the computational domain. But now,
we take an initial condition and right-hand side that violates the boundary condition.
This will lead to the formation of singularities. Namely, we fix u0 :≡ 1 and f(x, y, t) :=
sin(t), and choose γ =

√
2/2 and β :=

√
3/3. We plot the convergence of the L2(Ω)-error

as we increase the polynomial degree p for different end times t. Again, we keep the other
discretization parameters proportional, this time using Nq := 6 p2, k := π

√
1/(5βNq) ∼

1/p, Nhp := p, and again setting σ := 0.125 for all geometric grids. Since the exact
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Figure 7.2: Convergence at t = 1 in the L2(Ω)-norm for compatible and incompatible
data

solution is not known, we used the approximation on the finest grid as our reference
solution.

As expected, we again observe exponential convergence with respect to N 1/3
Ω ∼ p,

confirming that our numerical method can resolve all the appearing singularities.
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N32 (A.R).

References

[AB17] G. Acosta and J. P. Borthagaray. A fractional Laplace equation: regularity
of solutions and finite element approximations. SIAM J. Numer. Anal.,
55(2):472–495, 2017.

[BBN+18] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Salgado.
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