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ON VANDERMONDE DETERMINANTS VIA n-DETERMINANTS

MILAN JANJIC

Department for Mathematics and Informatics, University of Banja Luka
Republic of Srpska, Bosnia and Herzegovina

ABSTRACT. We use earlier defined notion of n- determinant to investigate sub-
determinants of an extended Vandermonde matrix. Firstly, we demonstrate
our method on a number of particular cases. Then we prove that all these
results may be stated in terms of Schur’s polynomials. In our main result,
we prove that Schur polynomials are equal to minors of a fixed matrix, which
entries are formed of elementary symmetric polynomials. Such a formula is
known as the second Jaccobi-Trudi identity.

1. INTRODUCTION

Let X = {x1,22,...,2,} be a set of variables. We consider the following ex-
tended Vandermonde matrix:

2 +r—1

1 x ¥ -+ af :1:’11; X
2 n4r—

Vn,n+r -

2 n n+r—1

1 xn xn DY "En ... "En

First n columns of V;, ,,4, form the standard Vandermonde matrix

1 T e x?il
Vo=
We denote by K, (i = 1,2,...,n4r) columns of V,, p4+r. By &(X),(i=0,1,...,n)
are denoted elementary symmetric polynomial of z1,a,...,2,. Hence, €y (X) =

Le(X)=x1+x2+ -+ xn,....8,(X) =21 22 Tp.
We next consider the following polynomial p,(z) = [[\-,(z — z;). Expanding
the right-hand side we obtain

From p,(zx) =0,(k=1,...,n), we obtain
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Denoting (—1)""€,—i11(X) = en—it1(X), (i = 1,...,n) implies

Ky = Z en—it1(X) - K.
i=1
. In the same way, for each p =1,2,...,r, we obtain
(1) Knip =) en-it1(X) Kiyp1.
i=1

Remark 1. We may consider that each column K, is, in fact, a linear combina-
tions of all preceding columns of V,, 4., by taking coeflicient 0 for columns that
do not appear in the equation ().

We next consider the following matrix of order (r +n — 1) x r.

en o o0 --- 0 0
€n-1 €n 0 .- 0 0 0
P o €1 €y €3 - 0 0 0
e R T R
0 0 0 -1 €1 €9
0 o o0 --- 0 -1 e

Assume that
{1,2,...,n4+r—1} = {i1,d2,.. .y in—1} U{j1, 72, - -, Jr }-
Clearly, the union on the right-hand side must be disjoint. We denote by
M = M(iy,i9,...,0p—1,n+7)
the sub-matrix of V,, 4, lying in columns i1, é2,...,%p—1,n+7 of Vj, nyr. We define

n(n—1) , . .
sgnM — (_1)%4—114--“4'%71_

r(r—1)
2

It is easy to see that the equation sgnM = (—1)""+ Fiit+ir also holds.

We next denote by @, = Q,(j1, 42, --,Jr) the sub-matrix of order r of P lying
in rows ji,j2,...,jr of P.

In our paper [I], the following formula is proved:

. i1 —1 B
Izll 1 L xll 1 I711+r 1
i — i _1—1 _
Iz21 1 . xé 1 I721+7‘ 1
i1 — in—1—1 _
xh Lo gt xz-ﬁ-r 1 ’ .
(2) — =sgnM - det Q,(J1,- -, jr)-
1 T9 N Igil
1 Tn “e I271

We start with examples of this result.
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2. TWO INTRODUCING EXAMPLES

In this part, we describe two extreme case, when Q..(j1,. .., j.) lies either in the
first r rows of P or in the last r. We firstly take i1 =r+ 1o =7+ 2,...,ip,_1 =
r+mn —1. Then @, lies in the first » rows of P. Hence, it is a lower triangular
matrix having all diagonal elements equal to e,. Also, sgnM = (—1)(»~D" 5o that

Proposition 2. The following equation holds

St e g g
r r r+n— r4+n—
ThH Ty SR /) T4
r r+1 .. r+n—2 r+n—1
T, Ty Ty, Ly o ( 1)(n—1)-r . ’I‘(X)
n—2 n—1 - €n
1z - 2] T
n—2 n—1
o “e I2 I2
1 x, - a2 gnt

Extracting x7xh - - - ), from nominator of the fraction, the equation becomes obvious.

Proposition 3. Assume that iy = t,(t = 1,2,...,n — 1). We obuiously have
sgnM = 1. Forr > n, we have

n—2 n+r—1
1z - = , x1+ .
n— n—+nr—
1 290 -+ x4 T4
. €1 €y - 0 0
’ -1 e .- 0 0
n—2 n—+r—1
n—2 n—1 - .
Lo ey 2 o 1 0 0 e1 e
1 @y - xh ° xh” L2
) 0 0 -+ -1 e
n—2 n—1
1 z, - x T,
3. CAsEr=1

In the case r = 1, the matrix P has the following form

en(X)
en_l(X)
P= : ,
e1(X)
-1
If Ay, Ag, ..., Ay, Apqq are columns of V,, 41, then we have

Apy1 = Z en—i+1(X) - Apn_it1.
i=1

2
We next have sgnM = =I+2. Hence,
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Proposition 4. We have

Jj—2 J n
Il DY Il 2 :Z:‘ 1 DY xl
J— J n
1 :E2 PR xl :E2 PR :I:2
1 @y - a7 2l - an n2—nt2
(3) 1 n—2 n—1 = (_1) 2 ’ e"—j+1(X)'
TR 44 , ] .
n— n—
1 a9 T4 T4
n—2 n—1
1 =z, T, T,
4. CASE r =2
In this case, we have
2 n n+1
1 = b A Ty X
1 x x3 N
Viniz = | : z z
2 n n+1
1 zp xn2—1 o Ty xn—ll
.. n n+
1 =z, z;, Ty TR

We denote by #; deleted elements of V), p42. If ¢ and j are indices of deleted
columns, we have

~i—1 ~j—1 n+1

1 xl .. xl ... :Z:‘l 1 DRI :Z:‘l
M 1 X9 N jé_l N j}";_ N I‘g‘-"_l
R T fod SN & o

1 =z, Ty ), Ty

In this case the matrix P is of order (n 4+ 1) x 2, and @ is a 2 x 2 sub-matrix of
. ei(X) 6i+1(X)>
P. We consider the case when = . Next, we have sgnM =
@ <€j(X) ej+1(X) &
r(r—1 P
(—=1)nr+t “z7+i+i We thus obtain

Proposition 5. The following formula holds

Lie1 Lj—1 n+1
1 e ‘rl 1 PR :L'l 1 PR :L'l 1
i 2] — n+
1 e $2 PR J;2 PR J;2
st NIy Lol S n+1
1 z, T, Zy, _ (_1)nr+7r(rgl) +itg, ei(X) €; (X)
1 oay - a2 alt eir1(X)  ejr1(X)
1 z9 x’g_2 3:;_1
1 =z, =2 gnol
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5. CASE 7;1:1,2.2:2,...,2.71,1:71—1

In this case, we have

n—2 n+r
1 = xy ; Ty
1 a9 o~ antr
2 2
M = . ,
r4+n—2 n-+r
1 =z, x) Ty

e1(X) ex(X) -+ en(X) 0 e 0 0 0
-1 &@(X) - epa(X) en(X) -+ 00 0
Qr=1 L : S : :
0 0o - 0 0 =1 e(X) e(X)
0 0 - 0 0 - 0 -1 &(X)

We see that @), is a Hessenberg matrix, and also a Toeplitz matrix. It is easy to
see that det @), satisfies the following recurrence:

det @ = €1(X) - Qry + €2(X) - det Qyo(X) + -+ + en(X) - det @y, (r > n).
Being obviously sgnM = 1, we obtain
Proposition 6. The following formula holds

1 @y e 2
n—2 n+r
1 z9 - T4 T4
r4+n—2 n—+r
1 =z, x,, T, et
n—2 n—1 =de QT
1 = T, Ty
n—2 n—1
1 x T4 T4
n—2 n—1
1 =z, Ty Ty

6. A RELATION WITH SCHUR POLYNOMIALS

In this section, we relate obtained results with the Schur polynomials. We trans-
form M in the following way: Firstly, we interchange rows (1,n),(2,n—1),.... For
this we need | %] transposition. Hence

xvll—i-r—l In-}-r—l xZJrrfl
Gn—1—1 Iin7171 x;’n—171
1 2
N = : ;
I’Llfl x;171 x;}*l

and det N = (—1)L2z).det M. By denoting \; = 7, Xy = i1 —n+1,..., Ay = i1 —1,
we obtain

xi\l—i_n_l $>\1+n_1 L. I7);1+n71
x)\2+n72 .’IJA2+"72 . ZC)\2+”_2
1 2 n
N = . : . ;
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where A\; > Ao > -+ > A\, > 1. Hence, A = (A1, Ag,..., A,) is a partition. We see
that M is uniquely determined by this partition

We thus connect M with the Schur polynomial sy(z1,22,...,2,). In this way
all proved results becomes identities for Schur polynomials. Consider the following
partition

{jl,jz,...,jT} = {1,2,...,n+r}\{)\n,)\n_1 +1,...,\1+n— 1}

We see that the set {j1, jo,...,jr} is uniquely determined by A and r. Finally, We
denote nr + j1 + -+ + jr + # + 15 =v(\ ).

Hence, the following formula is true:

Sa(z1,. ., xy) = (—=1)"A) - det Q(A, ).

The expression on the left-hand side of this equation is the Schur polynomial
sa(zi, @, ... xy).
Remark 7. Hence, each Schur polyinomial is, up to the sign, a sub-determinant of

order r of P.

Remark 8. We obtained formula in which the Schur polynomials are obtained in
terms of elementary symmetric polynomials. Such a formula is known as the second
Jacobi-Trudi identity.
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