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PLATEAU FLOW

OR

THE HEAT FLOW FOR HALF-HARMONIC MAPS

MICHAEL STRUWE

Abstract. Using the interpretation of the half-Laplacian on S1 as the Dirichlet-
to-Neumann operator for the Laplace equation on the ball B, we devise a clas-
sical approach to the heat flow for half-harmonic maps from S1 to a closed
target manifold N ⊂ R

n, recently studied by Wettstein, and for arbitrary

finite-energy data we obtain a result fully analogous to the author’s 1985 re-
sults for the harmonic map heat flow of surfaces and in similar generality.
When N is a smoothly embedded, oriented closed curve Γ ⊂ R

n the half-
harmonic map heat flow may be viewed as an alternative gradient flow for a
variant of the Plateau problem of disc-type minimal surfaces.

1. Background and results

1.1. Half-harmonic maps and their heat flow. Let N ⊂ Rn be a closed sub-
manifold, that is, compact and without boundary. The concept of a half-harmonic
map u : S1 → N ⊂ Rn was introduced by Da Lio-Rivière [14], who together with
Martinazzi in [12], Theorem 2.9, also made the interesting observation that the
harmonic extension of a half-harmonic map yields a free boundary minimal surface
supported by N , a fact which also was noticed by Millot-Sire [29], Remark 4.28.

In his PhD-thesis, Wettstein [48],[49], [50], recently studied the corresponding
heat flow given by the equation

(1.1) dπN (u)
(

ut + (−∆)1/2u
)

= 0 on S1 × [0,∞[,

where ut = ∂tu, and where πN : Nρ → N is the smooth nearest neighbor projection
on a ρ-neighborhood Nρ of the given target manifold to N , and, with the help of
a fine analysis of the fractional differential operators involved, he showed global
existence for initial data of small energy.

Moser [32] and Millot-Sire [29] contributed important results to the study of
half-harmonic maps by exploiting the fact that for any smooth u : S1 → R

n we can
represent the half-Laplacian classically in the form

(1.2) (−∆)1/2u = ∂rU

where U : B → R

n is the harmonic extension of u to the unit disc B 1. Here, using
the identity (1.2) we are able to remove the smallness assumption in Wettstein’s
work and show the existence of a “global” weak solution to the heat flow (1.1)

Date: July 15, 2022.
1The classical formula (1.2) is a special case of a much more general result, due to Caffarelli-

Silvestre [4], who pointed out that many nonlocal problems involving fractional powers of the
Laplacian can be related to a local, possibly degenerate, elliptic equation via a suitable extension
of the solution to a half-space.
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for data of arbitrarily large (but finite) energy, which is defined for all times and
smooth away from finitely many “blow-up points” where energy concentrates, and
whose energy is non-increasing. The solution is unique in this class in exact analogy
with the classical result [42] by the author on the harmonic map heat flow for maps
from a closed surface to a closed target manifold N ⊂ Rn; see Theorem 1.2 below.

In order to describe our work in more detail, let

H1/2(S1;N) = {u ∈ H1/2(S1;Rn); u(z) ∈ N for almost every z ∈ S1}.
Interpreting S1 = ∂B, where B = B1(0;R

2) and tacitly identifying a map u ∈
H1/2(S1;N) with its harmonic extension U ∈ H1(B;Rn), for a given function u0 ∈
H1/2(S1;N) we then seek to find a family of harmonic functions u(t) ∈ H1(B;Rn)
with traces u(t) ∈ H1/2(S1;N) for t > 0, solving the equation

(1.3) dπN (u)
(

ut + ∂ru
)

= ut + dπN (u)∂ru = 0 on S1 × [0,∞[,

with initial data

(1.4) u|t=0 = u0 ∈ H1/2(S1;N).

1.2. Energy. The half-harmonic heat flow may be regarded as the heat flow for
the half-energy

E1/2(u) =
1

2

∫

S1

|(−∆)1/4u|2dφ

of a map u ∈ H1/2(S1;N). Note that the half-energy of u equals the standard
Dirichlet energy

E(u) =
1

2

∫

B

|∇u|2dz

of its harmonic extension u ∈ H1(B;Rn). Indeed, integrating by parts we have

(1.5)

∫

B

|∇u|2dz =

∫

S1

u∂ru dφ =

∫

S1

u(−∆)1/2u dφ =

∫

S1

|(−∆)1/4u|2dφ,

where we use the Millot-Sire identity (1.2) and where the last identity easily follows
from the representation of the operators (−∆)1/2 and (−∆)1/4 in Fourier space with

symbols |ξ|,
√

|ξ|, respectively, and Parceval’s identity. 2 Therefore, in the following
for convenience we may always work with the classically defined Dirichlet energy.
Moreover, we may interpret the half-harmonic heat flow as the heat flow for the
Dirichlet energy in the class of harmonic functions with trace in H1/2(S1;N); see
Section 2 below for details.

1.3. Results. Identifying R2 ∼= C, we denote as M the 3-dimensional Möbius
group of conformal transformations of the unit disc, given by

M = {Φ(z) = eiθ
z − a

ā+ z
∈ C∞(B̄; B̄) : |a| < 1, θ ∈ R}.

Observe that the Dirichlet energy is invariant under conformal transformations,
and we have E(u) = E(u ◦ Φ) for any u ∈ H1(B;Rn) and any Φ ∈ M .

For smooth data we then have the following result.

2Conversely, via Fourier expansion we also can prove (1.5) directly. Computing the first vari-
ations of E and E1/2, respectively, we then obtain (1.2).
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Theorem 1.1. Let N ⊂ Rn be a closed, smooth sub-manifold of Rn, and suppose
that the normal bundle T⊥N is parallelizable. Then the following holds:

i) For any smooth u0 ∈ H1/2(S1;N) there exists a time T0 ≤ ∞ and a unique
smooth solution u = u(t) of (1.3), hence of (1.1), with data (1.4) for 0 < t < T0.

ii) If T0 < ∞, we have concentration in the sense that for some δ > 0 and any
R > 0 there holds

sup
z0∈B, 0<t<T0

∫

BR(z0)∩B

|∇u(t)|2dz ≥ δ,

and for suitable tk ↑ T0 there exist finitely many points z
(1)
k , . . . , z

(i0)
k and conformal

maps Φ
(i)
k ∈ M with z

(i)
k → z(i) ∈ B̄ and Φ

(i)
k → Φ

(i)
∞ ≡ z(i) weakly in H1(B) such

that u(tk) ◦Φ(i)
k → ū(i) weakly in H1(B) as k → ∞, where ū(i) is non-constant and

conformal and satisfies

(1.6) dπN (ū(i))∂rū
(i) = 0, 1 ≤ i ≤ i0.

Moreover, there exists δ = δ(N) > 0 such that E(ū(i)) ≥ δ, and i0 ≤ E(u0)/δ. Fi-
nally, u(tk) smoothly converges to a limit u1 ∈ H1/2(S1;N) on B̄ \{z(1), . . . , z(i0)}.

iii) If T0 = ∞, then, as t → ∞ suitably, u(t) smoothly converges to a half-
harmonic limit map away from at most finitely many concentration points where
non-constant half-harmonic maps “bubble off” as in ii).

By the Da Lio-Rivière interpretation of (1.6), the “bubbles” ū(i) as well as the
limit u∞ of the flow conformally parametrize minimal surfaces with free boundary
on N , meeting N orthogonally along their free boundaries.

The hypothesis regarding the target manifold N in particular is fullfilled if N
is a closed, orientable hypersurface of co-dimension 1 in Rn, or if N is a smoothly
embedded, closed curve Γ ⊂ Rn.

It would be interesting to find examples of initial data for which the flow blows
up in finite time, as in the work of Chang-Ding-Ye [5] on the harmonic map heat
flow.

For data in H1/2(S1;N) the following global existence result holds, which is our
main result.

Theorem 1.2. For N ⊂ R

n as in Theorem 1.1 the following holds: i) For any
u0 ∈ H1/2(S1;N) there exists a unique global weak solution of (1.3) with data (1.4)
as in Definition 6.3, whose energy is non-increasing and which is smooth for positive
time away from finitely many points in space-time where non-trivial half-harmonic
maps “bubble off” in the sense of Theorem 1.1.ii).

ii) As t → ∞ suitably, u(t) smoothly converges to a half-harmonic limit map
away from at most finitely many concentration points where non-constant half-
harmonic maps “bubble off” as in Theorem 1.1.iii).

Note that uniqueness is only asserted within the class of partially regular weak
solutions with non-increasing energy, as in the case of the harmonic map heat flow.
It would be interesting to find out if the latter condition suffices, as in the work of
Freire [18], [19], and, conversely, to explore the possibility of “backward bubbling”
in (1.3), as in the examples of Topping [45] for the latter flow.

1.4. Key features of the proof and related flow equations. In our approach,
in a similar vain as Lenzmann-Schikorra [27], we uncover and exploit surprising reg-
ularity properties of the normal component dπ⊥

N (u)∂ru for the harmonic extension
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of u, likely related to the fractional commutator estimates for the normal projection
in the work of Da Lio-Rivière [14] or the regularity estimates of Da Lio-Pigati [13],
Mazowiecka-Schikorra [28], and others.

The use of the Dirichlet-to-Neumann map for the harmonic extension u : B → R

n

of u instead of the half-Laplacian, and the simple identity (3.2) as well as equation
(3.5) allow to perform the analysis using only local, classically defined operators,
avoiding fractional calculus almost entirely.

Note that equation (1.3) is similar to the equation governing the (scalar) evo-
lution problem for conformal metrics e2ug

R

2 of prescribed geodesic boundary cur-
vature and vanishing Gauss curvature on the unit disc B, studied for instance by
Brendle [2] or Gehrig [20]. In contrast to the latter flows, due to the presence of the
projection operator mapping ur to its tangent component, the flow (1.3) at first
sight appears to be degenerate. However, surprisingly, within our framework we
are able to obtain similar smoothing properties as in the case of the harmonic map
heat flow of surfaces.

A different heat flow associated with half-harmonic maps, using the half-heat
operator (∂t − ∆)1/2 instead of (1.1), was suggested by Hyder et al. [22], and
they obtained global existence of partially regular, but possibly non-unique weak
solutions for their flow, with a possibly large singular set of measure zero.

1.5. Applications to Plateau problem. In the case when N is a smoothly em-
bedded, oriented closed curve Γ ⊂ Rn the half-harmonic heat flow (1.3) may furnish
an alternative gradient flow for the Plateau problem of minimal surfaces of the type
of the disc, which has a long and famous tradition in geometric analysis.

Having been posed by Plateau in the 1890’s, Plateau’s problem was finally solved
independently by Douglas [16] and Radó [33] in 1930/31. In order to analyse the
set of all minimal surfaces solving the Plateau problem, including saddle points of
the Dirichlet integral, thereby building on Douglas’ ideas, in 1939 Morse-Tompkins
[31] proposed a critical point theory for Plateau’s problem in the sense of Morse
[30], attempting to characterize non-minimizing solutions as “homotopy-critical”
points of Dirichlet’s integral. However, in the 1980’s Tromba [47], [46] pointed
out that it was not even clear that all smooth, non-degenerate minimal surfaces
would be “homotopy-critical” in the sense of Morse-Tompkins [31]. To overcome
this problem, Tromba developed a version of degree theory that could be applied
in this case and which yielded at least a proof of the “last” Morse inequality, which
is an identity for the total degree.

In 1982, finally, this author [41] recast the Plateau problem as a variational
problem on a closed convex set and he was able to develop a version of the Palais-
Smale type critical point theory for the problem within this frame-work, which
allowed him to obtain all Morse inequalities in a rigorous fashion; see the monograph
[44] and the paper by Imbusch-Struwe [23] for further details. In the papers [43]
by this author and [25] by Jost-Struwe the approach was extended to the case of
multiple boundaries and/or higher genus.

A key element of critical point theory for a variational problem is the construction
of a pseudo-gradient flow for the problem at hand. In [41] this was achieved in
an ad-hoc way. However, starting with the work of Eells-Sampson [17] on the
harmonic map heat flow, it is now an established approach in geometric analysis
to study the (negative) (L2-)gradient flow related to a variational problem, similar
to the standard heat equation. For Plateau’s problem, such a flow was obtained
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by Chang-Liu [6] within the frame-work laid out by Struwe [41] in the form of a
parabolic variational inequality, for which Chang-Liu obtained a solution of classH2

by means of a time-discrete minimization scheme. Rupflin [35], Rupflin-Schrecker
[36] studied the analogous parabolic variational inequality in the case of an annulus,
which again had previously been studied by this author [43] by means of an ad-hoc
pseudo-gradient flow.

In view of the much better regularity properties of the flow equation (1.3) it
would be tempting to regard this as the correct definition of the canonical gradient
flow for the Plateau problem, but an important issue still needs to be addressed.

1.6. Monotonicity. Recall that in the classical Plateau problem u(t) is required
to induce a (weakly) monotone parametrization of Γ for each t > 0. Even though it
may seem likely that – at least for curves Γ on the boundary of a convex body in R3

– this Plateau boundary condition will be preserved along the flow (1.3) whenever it
is satisfied initially, at this moment even for a strictly convex planar curve Γ ⊂ R2 it
is not clear whether this actually happens. However, the results that we obtain also
seem to be of interest if we drop the Plateau condition. In particular, our results
motivate the study of smooth minimal surfaces with continous trace covering only
a part of the given boundary curve Γ; dropping the monotonicity condition also
brings the parametric approach to the Plateau problem closer to the approach via
geometric measure theory or level sets.

1.7. Plateau flow. It should be straightforward to extend our results to the case
when the disc B is replaced by a surface Σ of higher genus with boundary ∂Σ ∼=
S1, if for given initial data u0 ∈ H1/2(S1;N) we consider a family u = u(t) in
H1/2(S1;N) solving the equation (1.3), that is,

ut + dπN (u)∂νu = 0

instead of (1.1), where for each time we harmonically extend u(t) to Σ and denote
as ∂νu the outward normal derivative of u along ∂Σ, as was proposed and analysed
by Da Lio-Pigati [13] in the time-independent case. Similarly, one might study the
flow (1.3) on a domain Σ with multiple boundaries. Of course, in order for the flow
to converge to a minimal surface in the case of higher genus or higher connectivity
it will be necessary to couple the flow (1.3) with a corresponding evolution equation
for the conformal structure on Σ, as in the work of Rupflin-Topping [37] on minimal
immersions. Note that on a general domain Σ the flow equations (1.1) and (1.3)
no longer agree. In order to clearly distinguish the flow equation (1.3) from the
equation (1.1) defining the half-harmonic map heat flow, we therefore propose to
say that (1.3) defines the “Plateau flow”.

1.8. Outline. After a brief discussion of energy estimates in Section 2, in Section
3 we present the analytic core of the argument for higher regularity in Section 4
and for the blow-up analysis, later presented in Section 8. These tools are also
instrumental in proving uniqueness of partially regular weak solutions in Section 7.
The L2-bounds for higher and higher derivatives which we establish in Section 4,
assuming that energy does not concentrate, may be of particular interest. These
bounds either concern estimates for ∇∂k

φu on B or on ∂B, and we view the latter

bounds as stronger by an order of 1/2. These bounds may be used interlaced, as
we later do in Section 6, to prove uniform smooth estimates, locally in time, for
smooth flows with smooth initial data converging in H1/2(N ;S1). Since the latter
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data are dense in H1/2(N ;S1) we thus not only obtain existence of weak solutions
for arbitrary data u0 ∈ H1/2(N ;S1) but also can show their smoothness for positive
time and hence are able to derive Theorem 1.2 from Theorem 1.1. A peculiar feature
is that one set of regularity estimates can only be obtained globally, that is on all
of B, whereas the other set of estimates may be localized using cut-off functions.
Similar estimates for a regularized version of (1.3) are employed in Section 5 to
prove local existence of smooth solutions of (1.3) for smooth data (1.4). Finally, in
Section 9 the large-time behavior of smooth solutions to (1.3) is discussed, finishing
the proof of Theorem 1.1.

1.9. Notation. The letter C is used throughout to denote a generic constant,
possibly depending on the “target” N and the initial energy E(u0).

Moreover, since T⊥N by assumption is parallelizable and compact, there exists
ρ > 0 such that the representation

T : N ×Bρ(0;R
m) ∋ (p, y) → p+

m
∑

i=1

yiνi(p) ∈ Nρ

of the tubular neighborhood Nρ = ∪p∈NBρ(p) of N is a diffeomorphism, where
ν1, . . . , νm is a suitable smooth orthonormal frame along N and where we let y =
(y1, . . . , ym) ∈ Rm. For q ∈ Nρ then T−1(q) = (p, h) with p = πN (q) defines a
(vector-valued) signed distance function h = h(q) = (h1(q), . . . , hm(q)) with hi(q) =
νi(p) · (q − πN (q)) for each 1 ≤ i ≤ i0. Fixing a smooth function η : R → R such
that η(s) = s for |s| < ρ/2, and with η(s) = 0 for |s| ≥ 3ρ/4, we then let

distN (q) = (dist1N (q), . . . , distmN (q)),

with

distiN (q) = η(hi(q)) for q ∈ Nρ, distiN (q) = 0 else, 1 ≤ i ≤ m.

Then for any smooth u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B;Rn) we
have

(1.7)

m
∑

i=1

νi(u)∂rdist
i
N (u) =

m
∑

i=1

νi(u)νi(u) · ur = dπ⊥
N (u)ur on ∂B = S1,

where for each p ∈ N we denote as dπ⊥
N (p) = 1− dπN (p) : Rn → T⊥

p N the orthog-
onal projection. In the sequel, we abbreviate

m
∑

i=1

νi(u)νi(u) · ur =: ν(u)ν(u) · ur = ν(u)∂rdistN(u);

moreover, we extend the vector fields νi to the whole ambient space by letting
νi(q) = ∇distiN(q) for q ∈ Rn, 1 ≤ i ≤ m.

Finally, we fix a smooth cut-off function ϕ ∈ C∞
c (B) satisfying 0 ≤ ϕ ≤ 1 with

ϕ ≡ 1 on B1/2(0), and for any z0 ∈ B, any 0 < R < 1 we scale

ϕz0,R(z) = ϕ((z − z0)/R) ∈ C∞
c (BR(z0)).

Acknowledgement. I thank Amélie Loher and the anonymous referee for careful
reading of the manuscript and useful suggestions.
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2. Energy inequality and first consequences

The half-harmonic heat flow may be regarded as the heat flow for the Dirichlet
energy in the class H1/2(S1;N). Indeed, let u(t) be a smooth solution of (1.3),
(1.4) for 0 < t < T0. Then we have the following result.

Lemma 2.1. For any 0 < T < T0 there holds

E(u(T )) +

∫ T

0

∫

∂B

|ut|2dφ dt ≤ E(u0).

Proof. Integrating by parts and using (1.3) we compute

d

dt
E(u) =

∫

B

∇u∇ut dx =

∫

∂B

ur · ut dφ

= −
∫

∂B

|dπN (u)ur|2dφ = −
∫

∂B

|ut|2dφ

for any 0 < t < T0. The claim follows by integration. �

Moreover, there holds a localized version of this energy inequality.

Lemma 2.2. There exists a constant C > 0 such that for any z0 ∈ B, any 0 <
R < 1, any ε > 0, and any 0 < t0 < t1 ≤ t0 + εR < T0 there holds

∫

B

|∇u(t1)|2ϕ2
z0,Rdz + 4

∫ t1

t0

∫

∂B

|ut|2ϕ2
z0,Rdφ dt

≤ 4

∫

B

|∇u(t0)|2ϕ2
z0,Rdz + CεE(u0).

Proof. Writing ϕ = ϕz0,R for brevity, integrating by parts, and using Young’s
inequality, similar to the proof of Lemma 2.1 for any 0 < t < T0 we have

d

dt

(1

2

∫

B

|∇u|2ϕ2dz
)

=

∫

∂B

ut · urϕ
2dφ−

∫

B

utdiv(∇uϕ2)dz

= −
∫

∂B

|dπN (u)ur|2ϕ2dφ− 2

∫

B

ut∇uϕ∇ϕdz

≤ −
∫

∂B

|ut|2ϕ2dφ+ (8εR)−1

∫

B

|∇u|2ϕ2dz + 8εR

∫

B

|ut|2|∇ϕ|2dz.

(2.1)

Letting

A = sup
t0<t<t1

(1

2

∫

B

|∇u(t)|2ϕ2dz
)

,

then upon integration we find

A+

∫ t1

t0

∫

∂B

|ut|2ϕ2dφ dt

≤
∫

B

|∇u(t0)|2ϕ2dz +
t1 − t0
2εR

A+ CεR−1

∫ t1

t0

∫

BR(z0)∩B

|ut|2dz dt.

But with u = u(t) also ut = ut(t) is harmonic for each t. Expanding

ut(re
iφ) =

∑

k≥0

akr
keikφ



8 MICHAEL STRUWE

in a Fourier series, we see that the map

r 7→
∫

∂Br(0)

|ut|2ds = 2π
∑

k≥0

|ak|2r2k+1,

with ds denoting the element of length along ∂Br(0), is non-decreasing. Thus for
any z0 ∈ B, any 0 < R < 1, and any t0 < t < t1 there holds

∫

BR(z0)∩B

|ut|2dz ≤ 2R

∫

∂B

|ut|2dφ,(2.2)

and we may use Lemma 2.1 to conclude. �

3. A regularity estimate

To illustrate the key ideas that later will allow us to prove higher regularity
and analyze blow-up of solutions of (1.3), we first consider smooth solutions u ∈
H1/2(S1;N) of the equation

(3.1) dπN (u)∂ru+ f = 0 on ∂B = S1,

where f ∈ L2(S1). We prove the following a-priori estimate, where we use classical
estimates similar to Wettstein’s [48] Lemma 3.4, which in turn is a fractional version
of an earlier result by Rivière [34]. Note that with the truncated signed distance
function distN : Rn → R

m we have the orthogonal decomposition

(3.2) ∂ru = dπN (u)∂ru+ dπ⊥
N (u)∂ru = dπN (u)∂ru+ ν(u)∂r(distN (u))

on ∂B = S1, where we recall that we use the shorthand notation

ν(u)∂r(distN (u)) =

m
∑

i=1

νi(u)∂r(dist
i
N (u)) =

m
∑

i=1

νi(u)νi(u) · ∂ru

and extend νi(p) = ∇distiN(p), p ∈ Rn.

Proposition 3.1. There exist constants C, δ0 = δ0(N) > 0 such that for any
smooth solution u ∈ H1/2(S1;N) of (3.1) with E(u) ≤ δ2 < δ20 there holds

(3.3)

∫

S1

|∂φu|2dφ ≤ C‖f‖2L2(S1).

Proof. Multiplying (3.2) with ∂ru, we find the Pythagorean identity

(3.4) |∂ru|2 = |dπN (u)∂ru|2 + |dπ⊥
N (u)∂ru|2 = |dπN (u)∂ru|2 + |∂r(distN (u))|2.

Note that distN (u) ∈ H1
0 (B); moreover, for each 1 ≤ i ≤ m we have∇(distiN (u)) =

νi(u) · ∇u, and there holds the equation

(3.5) ∆(distiN (u)) = div(νi(u) · ∇u) = ∇u · dνi(u)∇u in B.

The divergence theorem now gives

‖∂r(distN (u))‖2L2(S1)

= (∇(distN (u)),∇(distN (u))r)L2(B) + (∆(distN (u)), (distN (u))r)L2(B)

≤ C‖∇u‖L2(B)‖∇2(distN (u))‖L2(B) ≤ Cδ‖∇2(distN (u))‖L2(B),

where the basic L2-theory for the Laplace equation (3.5) yields the bound

‖∇2(distN (u))‖L2(B) ≤ C‖∆(distiN (u))‖L2(B) ≤ C‖∇u‖2L4(B).
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With Sobolev’s embedding H1/2(B) →֒ L4(B) we then conclude

‖∂r(distN (u))‖2L2(S1) ≤ Cδ‖∇u‖2H1/2(B).

Thus from (3.4) and (3.1) we have

‖∂ru‖2L2(S1) ≤ ‖f‖2L2(S1) + ‖∂r(distN (u))‖2L2(S1)

≤ ‖f‖2L2(S1) + Cδ‖∇u‖2H1/2(B).
(3.6)

But Fourier expansion of the harmonic function u gives

(3.7) ‖∂φu‖2L2(S1) = ‖∂ru‖2L2(S1) =
1

2
‖∇u‖2L2(S1)

as well as the bound

‖∇u‖2H1/2(B) ≤ C‖∇u‖2L2(S1),

and from (3.6) we obtain

‖∂ru‖2L2(S1) ≤ ‖f‖2L2(S1) + Cδ‖∇u‖2H1/2(B) ≤ ‖f‖2L2(S1) + Cδ‖∂ru‖2L2(S1),

which for sufficiently small δ > 0 by (3.7) yields the claim. �

In particular, from Proposition 3.1 we obtain a positive energy threshold for
non-constant solutions of (1.6).

Corollary 3.2. Suppose u ∈ H1/2(S1;N) smoothly solves (1.6). Then, either u is
constant, or E(u) ≥ δ20, with δ0 = δ0(N) > 0 given by Proposition 3.1.

Combining the ideas in the proof of the previous result with ideas from the
classical proof of the Courant-Lebesgue lemma in minimal surface theory, we can
obtain the following local version of Proposition 3.1.

Proposition 3.3. There exists a constant δ > 0 with the following property. Given
any smooth solution u ∈ H1/2(S1;N) of (3.1) with harmonic extension u ∈ H1(B),
any z0 ∈ ∂B, and any 0 < R ≤ 1/2 such that

(3.8)

∫

BR(z0)∩B

|∇u|2dz < δ2,

with a constant C = C(R) > 0 there holds
∫

BR2 (z0)∩S1

|∂φu|2dφ ≤ C‖f‖2L2(BR(z0)∩S1) + CE(u).

Proof. Fix any z0 ∈ ∂B and 0 < R ≤ 1/2 such that (3.8) holds. For suitable
ρ ∈ [R2, R], with s denoting arc-length along the curve Cρ = {z0+ρeiθ ∈ B; θ ∈ R}
with end-points zj = z0 + ρeiθj = eiφj ∈ ∂B, j = 1, 2, we have

ρ

∫

Cρ

|∇u|2ds ≤ 2 inf
R2<ρ′<R

(

ρ′
∫

Cρ′

|∇u|2ds
)

.

We can bound the latter infimum by the average over ρ ∈ [R2, R] with respect to
the measure with density 1/ρ to obtain the bound

ρ

∫

Cρ

|∇u|2ds ≤ 2

∫ R

R2

∫

Cρ

|∇u|2ds dρ
/

∫ R

R2

dρ

ρ

≤ 2

∫

B

|∇u|2dz
/

| log(R)| = 4E(u)/| log(R)|.
(3.9)
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Let Φ0 : B → B be the conformal map fixing the circular arc Cρ and mapping

the point z0 to the point −z0, obtained as composition Φ0 = π−1
0 ◦ Ψ0 ◦ π0 of

stereographic projection π0 : B → R

2
+ from the point −z0 and reflection Ψ0 : R

2
+ →

R

2
+ of the upper half-plane R2

+ in the half-circle π0(Cρ). Replacing u by the map
u ◦ Φ0 in B \ Bρ(z0) we obtain a piecewise smooth map v1 : B → R

n which is
harmonic on B \Cρ and continuous on all of B. Let v0 ∈ H1(B) be harmonic with
w := v1 − v0 ∈ H1

0 (B). Note that by the variational characterization of harmonic
functions and conformal invariance of the Dirichlet integral we have

(3.10) E(v0) ≤ E(v1) ≤
∫

BR(z0)∩B

|∇u|2dz ≤ δ2.

Moreover, for any smooth ϕ ∈ H1
0 (B) by (3.9) we can estimate

∣

∣

∫

B

∇w∇ϕdz
∣

∣ =
∣

∣

∫

B

∇v1∇ϕdz
∣

∣ =
∣

∣

∫

Cρ

[∂νv1]ϕds
∣

∣

≤
(

∫

Cρ

|∇u|2ds
)1/2

(

∫

Cρ

|ϕ|2ds
)1/2

≤ C(R)E(u)1/2‖ϕ‖H1/2(B),

where [∂νv1] denotes the difference of the outer and inner normal derivatives of v1
along Cρ. Thus we have ∆w ∈ H−1/2(B), and the basic L2-theory for the Laplace

equation gives w ∈ H3/2 ∩H1
0 (B) with

‖w‖H3/2(B) ≤ sup
ϕ∈H1

0(B),‖ϕ‖
H1/2(B)

≤1

(

∫

B

∇w∇ϕdz
)

≤ C(R)E(u)1/2

and then also

(3.11) ‖∂rw‖2L2(S1) ≤ C‖w‖2H3/2(B) ≤ C(R)E(u).

In view of (3.10), for sufficiently small δ > 0 from Proposition 3.1 we obtain the
estimate

(3.12) ‖∂φv0‖2L2(S1) ≤ C‖dπN (v0)∂rv0‖2L2(S1).

Observe that since v0 = v1 on ∂B = S1 and since we also have v1 = u on B∩Bρ(z0),
v1 = u ◦ Φ0 on B \Bρ(z0), respectively, we can bound

‖dπN (v0)∂rv0‖2L2(S1) = ‖dπN (v1)∂rv0‖2L2(S1)

≤ 2‖dπN (v1)∂rv1‖2L2(S1) + 2‖∂rw‖2L2(S1)

and
‖dπN (v1)∂rv1‖2L2(S1) ≤ C(R)‖dπN (u)∂ru‖2L2(S1∩Bρ(z0))

.

Thus from (3.11) we obtain

‖dπN (v0)∂rv0‖2L2(S1) ≤ C(R)‖dπN (u)∂ru‖2L2(S1∩Bρ(z0)
+ C‖∂rw‖2L2(S1)

≤ C(R)‖f‖2L2(S1∩Bρ(z0))
+ C(R)E(u),

and from (3.12) there results the bound

‖∂φu‖2L2(S1∩Bρ(z0))
= ‖∂φv0‖2L2(S1∩Bρ(z0))

≤ ‖∂φv0‖2L2(S1)

≤ C‖dπN (v0)∂rv0‖2L2(S1) ≤ C(R)‖f‖2L2(S1∩BR(z0)))
+ C(R)E(u),

as claimed. �

The local estimate Proposition 3.3 also implies the following global bound.
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Proposition 3.4. There exists a constant δ > 0 with the following property. Given
any smooth solution u ∈ H1/2(S1;N) of (3.1), any 0 < R ≤ 1/2 with

(3.13) sup
z0∈B

∫

BR(z0)∩B

|∇u|2dz < δ2,

there holds
∫

S1

|∂φu|2dφ ≤ C(R)‖f‖2L2(S1) + C(R)E(u).

Proof. Covering ∂B with balls BR2(zi), 1 ≤ i ≤ i0, from Proposition 3.3 we obtain
the claim. �

Remark 3.5. The proofs of the above propositions only require u ∈ H1(S1;N) with
harmonic extension u ∈ H3/2(B).

4. Higher regularity

Again let u(t) be a smooth solution of the half-harmonic heat flow (1.3) for
0 < t < T0 with smooth initial data (1.4). We show that as long as the flow does
not concentrate energy in the sense of Theorem 1.1.ii) the solution remains smooth
and can be a-priori bounded in any Hk-norm in terms of the data.

4.1. H2-bound. In a first step we show an L2-bound in space-time for the second
derivatives of our solution to the flow (1.3). Recall that by harmonicity, writing
u = u(t), ∂φu = uφ, and so on, for any 0 < t < T0 we have (3.7), that is,

∫

∂B

|uφ|2dφ =

∫

∂B

|ur|2dφ,

as Fourier expansion shows, with similar identities for partial derivatives of u of
higher order. Indeed, writing

(4.1) ∆u =
1

r
(rur)r +

1

r2
uφφ

we see that also ∂j
φu and then also ∇k−j∂j

φu is harmonic for any j ≤ k in N0, where

∇u = (ux, uy) in Euclidean coordinates z = x+ iy. Thus by induction we obtain

(4.2)

∫

∂B

|∇ku|2dφ = 2

∫

∂B

|∇k−1uφ|2dφ = · · · = 2k
∫

∂B

|∂k
φu|2dφ

for any k ∈ N. Similarly, for any 1/4 < r < 1 with uniform constants C > 0 we
have

∫

∂Br(0)

|∇ku|2dz ≤ C

∫

∂Br(0)

|∇k−1uφ|2dz ≤ · · · ≤ C

∫

∂Br(0)

|∂k
φu|2dz.

Integrating, and using the mean value property of harmonic functions together with
(4.2) to bound

sup
B1/4(0)

|∇ku|2 ≤ C

∫

B\B1/4(0)

|∇ku|2dz ≤ C

∫

B

|∇∂k−1
φ u|2dz,

in particular, for any k ∈ N we have the bound

(4.3)

∫

B

|∇ku|2dz ≤ C

∫

B

|∇∂k−1
φ u|2dz

with an absolute constant C > 0.
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The following lemma is strongly reminiscent of analogous results for the harmonic
map heat flow in two space dimensions.

Lemma 4.1. With a constant C > 0 depending only on N there holds

d

dt

(

∫

∂B

|uφ|2dφ
)

+

∫

B

|∇uφ|2dz ≤ C

∫

B

|∇u|2|uφ|2dz.

Proof. Writing dπN (u) = 1− dπ⊥
N (u) with

dπ⊥
N (u)X = ν(u)ν(u) ·X =

m
∑

i=1

νi(u)νi(u) ·X

for any X ∈ Rn, we compute

1

2

d

dt

(

∫

∂B

|uφ|2dφ
)

=

∫

∂B

uφ · uφ,tdφ = −
∫

∂B

uφφ · utdφ

=

∫

∂B

uφφ · dπN (u)urdφ = −
∫

∂B

(

uφ · urφ − uφ · ∂φ(ν(u) ν(u) · ur)
)

dφ

= −1

2

∫

∂B

∂r(|uφ|2)dφ −
∫

∂B

uφ · dν(u)uφ ν(u) · urdφ,

where we use orthogonality uφ · νi(u) = 0 on ∂B, 1 ≤ i ≤ m, in the last step. But
uφ is harmonic. So with ∆|uφ|2 = 2|∇uφ|2, from Gauss’ theorem we obtain

1

2

∫

∂B

∂r(|uφ|2)dφ =

∫

B

|∇uφ|2dz.

On the other hand, by Young’s inequality we can estimate
∫

∂B

ur · ν(u)uφ · dν(u)uφdφ =

∫

B

∇u · ∇
(

ν(u)uφ · dν(u)uφ

)

dz

≤ C

∫

B

|∇uφ||∇u||uφ|dz + C

∫

B

|∇u|2|uφ|2dz

≤ 1

2

∫

B

|∇uφ|2dz + C

∫

B

|∇u|2|uφ|2dz,

and our claim follows. �

Combining the previous result with a quantitative bound for the concentration
of energy, we obtain a space-time bound for the second derivatives of u. Note that
since u is smooth by assumption, for any δ > 0, any T < T0 there exists a number
R = R(T, u) > 0 such that

(4.4) sup
z0∈B, 0<t<T

∫

BR(z0)∩B

|∇u(t)|2dz < δ.

Proposition 4.2. There exist constants δ = δ(N) > 0 and C > 0 such that for
any T < T0 with R > 0 as in (4.4) there holds

sup
0<t<T

∫

∂B

|uφ(t)|2dφ+

∫ T

0

∫

B

|∇uφ|2dx dt

≤ C

∫

∂B

|u0,φ|2dφ+ CTR−2E(u0).

(4.5)
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Proof. For given T < T0 and δ > 0 to be determined we fix R > 0 such that (4.4)
holds. Let BR/2(zi), 1 ≤ i ≤ i0, be a cover of B such that any point z0 ∈ B belongs
to at most L of the balls BR(zi), where L ∈ N is independent of R > 0. We then
split

∫

B

|∇u|2|uφ|2dz ≤
i0
∑

i=1

∫

BR/2(zi)

|∇u|4dz ≤
i0
∑

i=1

∫

B

|∇(uϕzi,R)|4dz.

Using the multiplicative inequality (10.2) in the Appendix for each i we can bound

∫

B

|∇(uϕzi,R)|4dz ≤ Cδ

∫

BR(zi)

(

|∇2u|2 +R−2|∇u|2
)

dz.

Summing over 1 ≤ i ≤ i0, we thus obtain the bound

∫

B

|∇u|2|uφ|2dz ≤ CLδ

∫

B

|∇2u|2dz + CLδR−2E(u)

≤ CLδ

∫

B

|∇uφ|2dz + CLδR−2E(u0),

and for sufficiently small δ > 0 from Lemma 4.1 we obtain the claim. �

With the help of Proposition 4.2 we can now bound u in H2(B) also uniformly
in time. For this, we first note the following estimate, which also will be useful later
for bounding higher order derivatives.

Lemma 4.3. For any k ∈ N, with a constant C > 0 depending only on k and N ,
for the solution u = u(t) to (1.3), (1.4) for any 0 < t < T0 there holds

d

dt

(

‖∇∂k
φu‖2L2(B)

)

+ ‖∂k
φur‖2L2(S1)

≤ C
∑

1≤ji≤k+1,Σiji≤k+2

‖∇∂k
φu‖L2(B)‖Πi∇jiu‖L2(B).

Proof. For any k ∈ N we use harmonicity of ∂2k
φ u to compute

1

2

d

dt

(

‖∇∂k
φu‖2L2(B)

)

= (−1)k
∫

B

∇∂2k
φ u∇ut dx

= (−1)k(∂2k
φ ur, ut)L2(S1) = (−1)k+1(∂2k

φ ur, dπN (u)ur)L2(S1)

= −(∂k
φur, ∂

k
φur)L2(S1) + (∂k

φur, ∂
k
φ(ν(u) ν(u) · ur))L2(S1)

= −‖∂k
φur‖2L2(S1) + I,

(4.6)

where we split I =
∑k

j=0

(

k
j

)

Ij with

Ij = (∂k
φur, ∂

j
φ(ν(u) ν(u))∂

k−j
φ ur)L2(S1)

= (∇∂k
φu,∇(∂j

φ(ν(u)ν(u)) · ∂
k−j
φ ur))L2(B).
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Hence for any 1 ≤ j ≤ k we can bound

|Ij | ≤ C
∑

0≤i≤j

‖∇∂k
φu‖L2(B)‖∇∂j−i

φ ν(u)∂i
φν(u)∂

k−j
φ ur‖L2(B)

+ C
∑

0≤i≤j

‖∇∂k
φu‖L2(B)‖∂j−i

φ ν(u)∂i
φν(u)∇∂k−j

φ ur‖L2(B)

≤ C
∑

1≤ji≤k+1,Σiji=k+2

‖∇∂k
φu‖L2(B)‖Πi∇jiu‖L2(B),

as claimed. It remains to bound the term I0 = ‖∂k
φur ·ν(u)‖2L2(S1). With the signed

distance function we can express

ν(u) · uφr =
(

ν(u) · ur

)

φ
− ur · dν(u)uφ = (distN (u))φr − ur · dν(u)uφ,

so that

I0 = ‖∂k
φur · ν(u)‖2L2(S1) =

(

∂k
φur · ν(u), ∂k

φ(distN (u))r
)

L2(S1)
+ II

=
(

∇∂k
φu,∇

(

ν(u)∂k
φ(distN (u))r

))

L2(B)
+ II,

where all terms in II can be dealt with as in the case 1 ≤ j ≤ k. Finally, we have
(

∇∂k
φu,∇

(

ν(u)∂k
φ(distN (u))r

))

L2(B)

≤ ‖∇∂k
φu‖L2(B)

(

‖∇2∂k
φ(distN (u))‖L2(B) + ‖∇ν(u)∂k

φ(distN (u))r‖L2(B)

)

.

But by the chain rule we can bound

‖∇ν(u)∂k
φ(distN (u))r‖L2(B)

)

≤ C‖∇u∇k+1(distN (u))‖L2(B)

)

≤ C
∑

1≤ji≤k+1,Σiji=k+2

‖Πi∇jiu‖L2(B).

Moreover, by (3.5) and elliptic regularity theory, there holds

‖∇k+2(distN (u))‖2L2(B) ≤ C‖∆(distN (u))‖2Hk(B) ≤ C‖∇u · dνi(u)∇u‖2Hk((B)

≤ C
∑

1≤ji≤k+1,Σiji≤k+2

‖Πi∇jiu‖L2(B),

which gives the claim. �

For k = 1, from Proposition 4.2 we now easily derive a uniform L2-bound for
the second derivatives of the flow.

Proposition 4.4. For any smooth u0 ∈ H1/2(S1;N) and any T < T0 with R > 0
as in Proposition 4.2 with a constant C1 = C1(T,R, u0) > 0 depending on the right
hand side of (4.5) there holds

sup
0<t<T

∫

B

|∇uφ(t)|2dz +
∫ T

0

∫

∂B

|uφr|2dφ dt ≤ C1

∫

B

|∇u0,φ|2dz + C1.

Proof. For k = 1 by Lemma 4.3 we need to bound the term

J =
∑

1≤ji≤2,Σiji≤3

‖Πi∇jiu‖L2(B) ≤ C‖|∇2u||∇u|+ |∇u|3‖L2(B) + J1,

where J1 contains all terms of lower order. By the maximum principle and Sobolev’s
embedding H1(∂B) →֒ L∞(∂B) we can estimate

‖∇u‖2L∞(B) ≤ ‖∇u‖2L∞(∂B) ≤ C‖∇u‖2H1(∂B) ≤ C‖uφr‖2L2(∂B) + C1,
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where we have also used (3.7) and Proposition 4.2. Also bounding

‖∇u‖3L6(B) ≤ ‖∇u‖2L4(B)‖∇u‖L∞(B)

≤ C
(

‖∇2u‖L2(B)‖∇u‖L2(B) + E(u)
)

‖∇u‖L∞(B)

via (10.2), and again using (3.7) (and with similar, but simpler bounds for J1), we
arrive at the estimate

J ≤ C‖|∇2u||∇u|+ |∇u|3‖L2(B) + C1

≤ C
(

‖∇2u‖L2(B) + E(u)
)

‖∇u‖L∞(B) + C1

≤ C
(

1 + ‖∇uφ‖L2(B) + E(u0)
)(

‖uφr‖L2(∂B) + C1

)

.

With Lemma 4.3 and Young’s inequality we then have

d

dt

(

1 + ‖∇uφ‖2L2(B)

)

+ ‖uφr‖2L2(S1)

≤ C‖∇uφ‖L2(B)

(

‖∇uφ‖L2(B) + E(u0)
)(

‖uφr‖L2(∂B) + C1

)

≤ 1

2
‖uφr‖2L2(∂B) + C(1 + ‖∇uφ‖2L2(B))

(

‖∇uφ‖2L2(B) + C1

)

.

(4.7)

Absorbing the first term on the right on the left hand side of this inequality and
dividing by 1 + ‖∇uφ‖2L2(B) we obtain

d

dt

(

log
(

1 + ‖∇uφ‖2L2(B)

))

≤ C‖∇uφ‖2L2(B) + C1,

and from Proposition 4.2 we obtain the bound

sup
0<t<T

‖∇uφ(t)‖2L2(B) ≤ C1(1 + ‖∇u0,φ‖2L2(B)).

The claim then follows from (4.7). �

4.2. H3-bounds. The derivation of a-priori L2-bounds for third derivatives of the
solution u to the flow (1.3), (1.4) requires special care, which is why we highlight
this case.

Proposition 4.5. For any smooth u0 ∈ H1/2(S1;N) and any T < T0 there holds

sup
0<t<T

∫

B

|∇uφφ(t)|2dz +
∫ T

0

∫

∂B

|uφφr|2dφ dt ≤ C2

∫

B

|∇u0,φφ|2dz + C2,

where we denote as C2 = C2(T,R, u0) > 0 a constant bounded by the terms on the
right hand side in the statements of Propositions 4.2 and 4.4.

Proof. For k = 2 by Lemma 4.3 we need to bound the term

J =
∑

1≤ji≤3,Σiji=4

‖Πi∇jiu‖L2(B)

≤ C‖|∇u|4 + |∇u|2|∇2u|+ |∇2u|2 + |∇u||∇3u|‖L2(B)

and corresponding terms involving at most 3 derivatives in total, which we will
omit.
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In dealing with the first term, by the multiplicative inequality (10.2) and Sobolev’s
embedding H2(B) →֒ L∞(B) we can estimate

‖∇u‖4L8(B) ≤ ‖∇u‖2L4(B)‖∇u‖2L∞(B) ≤ C‖∇u‖H1(B)‖∇u‖L2(B)‖∇u‖2L∞(B)

≤ C(‖∇2u‖2L2(B) + E(u))‖∇u‖2L∞(B) ≤ C2‖∇u‖2L∞(B)

≤ C2(‖∇3u‖L2(B) + ‖∇u‖L2(B))‖∇u‖L∞(B)

with a constant C2 = C2(T,R, u0) > 0 as in the statement of the proposition.
Similarly there holds

‖∇2u‖2L4(B) ≤ C‖∇2u‖H1(B)‖∇2u‖L2(B)

≤ ‖∇3u‖L2(B)‖∇2u‖L2(B) + ‖∇2u‖2L2(B) ≤ C2(1 + ‖∇3u‖L2(B)).

Hence we can also bound

‖|∇u|2|∇2u|‖L2(B) ≤ ‖∇u‖4L8(B) + ‖∇2u‖2L4(B)

≤ C2(1 + ‖∇3u‖L2(B))(1 + ‖∇u‖L∞(B)).

Finally, we estimate

‖|∇u||∇3u|‖L2(B) ≤ ‖∇3u‖L2(B)‖∇u‖L∞(B)

to obtain

J ≤ C2(1 + ‖∇3u‖L2(B))(1 + ‖∇u‖L∞(B)).

But with the inequality

‖f‖L∞(B) ≤ C‖f‖H1(B)(1 + log1/2(1 + ‖f‖H2(B)/‖f‖H1(B))

for f ∈ H2(B) due to Brezis-Gallouet [1] (see also Brezis-Wainger [3] for a more
general version) we have

‖∇u‖2L∞(B) ≤ C‖∇u‖2H1(B)

(

1 + log(1 + ‖∇u‖H2(B)/‖∇u‖H1(B))
)

≤ C2(1 + log(1 + ‖∇3u‖L2(B))),

and Lemma 4.3 yields the differential inequality

d

dt

(

‖∇∂2
φu‖2L2(B)

)

+ ‖uφφr‖2L2(∂B)

≤ C2‖∇∂2
φu‖L2(B)(1 + ‖∇3u‖L2(B))

(

1 + log(1 + ‖∇3u‖L2(B))
)

.

Simplifying, and recalling that ‖∇3u‖2L2(B) ≤ C‖∇∂2
φu‖2L2(B) by (4.3), we then find

d

dt

(

1+‖∇∂2
φu‖L2(B)

)

≤ C2(1 + ‖∇∂2
φu‖L2(B))

(

1 + log(1 + ‖∇∂2
φu‖L2(B))

)

;

that is, we have

d

dt

(

1+ log(1 + ‖∇∂2
φu‖L2(B))

)

≤ C2

(

1 + log(1 + ‖∇∂2
φu‖L2(B))

)

.

Arguing as in the proof of Proposition 4.4 we then obtain the claim. �
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4.3. Hm-bounds, m ≥ 4. In view of Proposition 4.5 we can now use induction to
prove the following result.

Proposition 4.6. For any k ≥ 3, any smooth u0 ∈ H1/2(S1;N), and any T < T0

there holds

sup
0<t<T

∫

B

|∇∂k
φ(t)|2dz +

∫ T

0

∫

∂B

|∂k
φur|2dφ dt ≤ Ck

∫

B

|∇∂k
φu0|2dz + Ck,

where we denote as Ck = Ck(T,R, u0) > 0 a constant bounded by the terms on the
right hand side in the statement of the proposition for k − 1.

Proof. By Proposition 4.5 the claimed result holds true for k = 2. Suppose the
claim holds true for some k0 ≥ 2 and let k = k0 + 1. Note that by Sobolev’s
embedding H2(B) →֒ W 1,4 ∩ C0(B̄) and (4.3) for 0 ≤ t < T we then have the
uniform bounds

‖∇k0+1u‖2L2(B) + ‖∇k0u‖2L4(B) +
∑

1≤j≤k0−1

‖∇ju‖2L∞(B)

≤ Ck0‖∇k0+1u0‖2L2(B) + Ck0 ≤ Ck < ∞
(4.8)

with a constant of the type Ck, as defined above.
By Lemma 4.3 again we only need to bound the term

J =
∑

1≤ji≤k+1,Σiji≤k+2

‖Πi∇jiu‖L2(B).

Clearly we have

J ≤ ‖∇k+1u‖L2(B)‖∇u‖L∞(B) + ‖∇ku‖L2(B)‖∇u‖2L∞(B) + ‖∇ku∇2u‖L2(B)

+ ‖∇k−1u∇3u‖L2(B) + ‖∇k−1u∇2u‖L2(B)‖∇u‖L∞(B) + Ck

≤ Ck‖∇k+1u‖L2(B) + ‖∇ku∇2u‖L2(B) + ‖∇k−1u∇3u‖L2(B) + Ck.

We now distinguish the following cases: If k− 1 = k0 ≥ 3 by (4.8) we can bound

‖∇ku∇2u‖L2(B) ≤ ‖∇ku‖L2(B)‖∇2u‖L∞(B) ≤ Ck0‖∇k0+1u‖2L2(B) + Ck0 ≤ Ck

as well as

‖∇k−1u∇3u‖L2(B) ≤ ‖∇k−1u‖L4(B)‖∇3u‖L4(B) ≤ Ck0‖∇k0u‖2L4(B) + Ck0 ≤ Ck

to obtain the estimate

J ≤ Ck‖∇k+1u‖L2(B) + Ck.

If, on the other hand, k0 = k− 1 = 2, by our induction hypothesis (4.8) we have

‖∇k−1u∇3u‖L2(B) = ‖∇2u∇ku‖2L2(B) ≤ ‖∇ku‖L4(B)‖∇2u‖L4(B)

≤ Ck‖∇ku‖H1(B) ≤ Ck‖∇k+1u‖L2(B) + Ck,

and we find

J ≤ Ck‖∇k+1u‖L2(B) + Ck

as before.
In any case, inequality (4.3) and Lemma 4.3 now may be invoked to obtain

d

dt

(

‖∇∂k
φu‖2L2(B)

)

≤ Ck‖∇∂k
φu‖2L2(B) + Ck,

and our claim follows. �
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4.4. Local H2-bounds. The bounds established so far all require the initial data
to be sufficiently smooth for the estimate at hand and do not yet allow to show
smoothing of the flow. For the latter purpose we next prove a second set of “in-
termediate” estimates that in combination with the first set of estimates later will
allow boot-strapping. Moreover, in contrast to the estimates established so far, the
following estimates may be localized. This will be important for showing regularity
of the flow at blow-up times away from concentration points of the energy on ∂B.

For the localized estimates, fix a point z0 ∈ ∂B and some radius 0 < R0 < 1/4
and for k ∈ N set Rk = 2−kR0, ϕk = ϕz0,Rk

. Set ϕk = 1 for each k ∈ N for the
analogous global bounds.

We first establish the following localized version of Lemma 4.1.

Lemma 4.7. With a constant C > 0 depending only on N there holds

d

dt

(

∫

∂B

|uφ|2ϕ2
1 dφ

)

+

∫

B

|∇uφ|2ϕ2
1 dz ≤ C

∫

B

|∇u|2|uφ|2ϕ2
1 dz + CR−2

0 E(u0).

Proof. Similar to the proof of Lemma 4.1, we compute

1

2

d

dt

(

∫

∂B

|uφ|2ϕ2
1 dφ

)

=

∫

∂B

uφ · uφ,tϕ
2
1 dφ = −

∫

∂B

∂φ(uφϕ
2
1) · utdφ

=

∫

∂B

∂φ(uφϕ
2
1) · dπN (u)urdφ = −

∫

∂B

(

uφ · urφ − uφ · ∂φ(ν(u) ν(u) · ur)
)

ϕ2
1dφ

= −1

2

∫

∂B

∂r(|uφ|2)ϕ2
1dφ−

∫

∂B

uφ · dν(u)uφ ν(u) · urϕ
2
1dφ.

With ∆|uφ|2 = 2|∇uφ|2 we obtain

1

2

∫

∂B

∂r(|uφ|2)ϕ2
1dφ =

∫

B

|∇uφ|2ϕ2
1dz +

∫

B

∇|uφ|2ϕ1∇ϕ1dz,

where

∣

∣

∫

B

∇|uφ|2ϕ1∇ϕ1dz
∣

∣ ≤ 1

4

∫

B

|∇uφ|2ϕ2
1dz + C

∫

B

|uφ|2|∇ϕ1|2dz

by Young’s inequality. Finally, we can bound
∫

∂B

ur · ν(u)uφ · dν(u)uφϕ
2
1 dφ =

∫

B

∇u · ∇
(

ν(u)uφ · dν(u)uφϕ
2
1

)

dz

≤ C

∫

B

(

|∇uφ||∇u||uφ|+ |∇u|2|uφ|2
)

ϕ2
1dz + C

∫

B

|∇u||∇ϕ1||uφ|2ϕ1dz

≤ 1

4

∫

B

|∇uφ|2ϕ2
1dz + C

∫

B

|∇u|2|uφ|2ϕ2
1dz + C

∫

B

|∇u|2|∇ϕ1|2dz,

and our claim follows. �

We need a substitute for the global bound (4.3). For this, we note that the
equation (4.1) also implies the pointwise bound |urr|2 ≤ 2|uφφ|2/r4 + 2|ur|2/r2;
hence we have

|∇2u|2 ≤ C(|∇uφ|2 + 2|∇u|2) in BR0(z0)
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with an absolute constant C > 0, uniformly in z0 ∈ ∂B and 0 < R0 < 1/4. By
induction then, similarly we have

|∇k+1u|2 ≤ C(|∇k∂φu|2 + |∇ku|2) ≤ C

k
∑

j=0

|∇∂j
φu|2 in BR0(z0)(4.9)

with an absolute constant C = C(k) > 0, uniformly in z0 ∈ ∂B and 0 < R0 < 1/4
for any k ∈ N.

Likewise, as a substitute for the global non-concentration condition (4.4) we now
suppose that z0 ∈ ∂B is not a concentration point in the sense that for suitably
chosen δ > 0 to be determined in the sequel and some 0 < R0 < 1/4 as above there
holds

(4.10) sup
0<t<T0

∫

BR0 (z0)∩B

|∇u(t)|2dz < δ.

We then obtain the following localized version of Proposition 4.2.

Proposition 4.8. There exist constants δ > 0 and C > 0 independent of R0 > 0
such that whenever (4.10) holds then for any T ≤ T0 we have

sup
0<t<T

∫

∂B

|uφ(t)|2ϕ2
1 dφ+

∫ T

0

∫

B

|∇uφ|2ϕ2
1 dz dt

≤ 2

∫

∂B

|u0,φ|2ϕ2
1 dφ+ CTR−2

0 E(u0).

Proof. With the help of the inequality (10.1) in the Appendix we can bound

∫

B

|∇u|4ϕ2
1dz ≤ Cδ

∫

BR(zi)

|∇2u|2ϕ2
1dz + CδR−2

0

∫

BR(zi)

|∇u|2dz.

Thus, for sufficiently small δ > 0 our claim follows from Lemma 4.7. �

The next lemma again prepares for a proposition that later will allow us to obtain
higher derivative bounds by induction. Note the differences to Lemma 4.3.

Lemma 4.9. For any k ≥ 2, with a constant C > 0 depending only on k and N ,
for the solution u = u(t) to (1.3), (1.4) for any 0 < t < T0 there holds

d

dt

(

‖∂k
φuϕk‖2L2(∂B)

)

+ ‖∇∂k
φuϕk‖2L2(B)

≤ C
∑

1≤ji≤k,Σiji≤2k+2

‖Πi∇jiuϕ2
k‖L1(B)

+ C
∑

1≤ji≤k,Σi≥0ji≤k+1

‖Πi>0∇jiu∇j0ϕk‖2L2(B) + CR−2k
0 E(u0).
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Proof. Fix k ≥ 2. With ∆|∂k
φu|2 = 2|∇∂k

φu|2 we compute

1

2

d

dt

(

‖∂k
φuϕk‖2L2(∂B)

)

= (−1)k
∫

∂B

∂k
φ(∂

k
φuϕ

2
k) · utdφ

= (−1)k+1

∫

∂B

∂k
φ(∂

k
φuϕ

2
k) · (ur − ν(u) ν(u) · ur)dφ

= −1

2

∫

∂B

∂r(|∂k
φu|2)ϕ2

kdφ+

∫

∂B

∂k
φu · ∂k

φ

(

ν(u) ν(u) · ur)
)

ϕ2
kdφ.

= −
∫

B

|∇∂k
φu|2ϕ2

kdz −
∫

B

∇(|∂k
φu|2)ϕk∇ϕkdz + I,

where we split

I =

∫

∂B

∂k
φu · ∂k

φ

(

ν(u) ν(u) · ur)
)

ϕ2
kdφ =

k
∑

j=0

(k

j

)

Ij

with

Ij = (∂k
φu·∂j

φ(ν(u) ν(u))ϕ
2
k , ∂

k−j
φ ur)L2(∂B)

=
(

∇
(

∂k
φu · ∂j

φ(ν(u)ν(u))ϕ
2
k

)

,∇∂k−j
φ u

)

L2(B)
, 0 ≤ j ≤ k.

For 1 ≤ j ≤ k we bound

|Ij | ≤ C
∑

0≤i≤j

‖∇∂k
φuϕk‖L2(B)‖∂j−i

φ ν(u)∂i
φν(u)∇∂k−j

φ uϕk‖L2(B)

+ C
∑

0≤i≤j

‖∂k
φu · ∇

(

∂j−i
φ ν(u)∂i

φν(u)ϕ
2
k

)

· ∇∂k−j
φ u‖L1(B)

By the chain rule then for 1 ≤ j ≤ k we have

|Ij | ≤ C
∑

1≤ji≤k,Σiji=k+1

‖∇∂k
φuϕk‖L2(B)‖Πi∇jiuϕk‖L2(B)

+ C
∑

1≤ji≤k,Σiji=k+2

‖∂k
φu ·Πi∇jiuϕ2

k‖L1(B)

+ C
∑

1≤ji≤k,Σiji=k+1

‖∂k
φu ·Πi∇jiuϕk∇ϕk‖L1(B).

By Cauchy-Schwarz and Young’s inequality then we can bound
∑

1≤j≤k

|Ij | ≤
1

4
‖∇∂k

φuϕk‖2L2(B) + C
∑

1≤ji≤k,Σiji=k+1

‖Πi∇jiuϕk‖2L2(B)

+ C
∑

1≤ji≤k,Σiji=2k+2

‖Πi∇jiuϕ2
k‖L1(B) + C‖∂k

φu∇ϕk‖2L2(B)

≤ 1

4
‖∇∂k

φuϕk‖2L2(B) + C
∑

1≤ji≤k
Σiji=2k+2

‖Πi∇jiuϕ2
k‖L1(B) + C‖∂k

φu∇ϕk‖2L2(B),

as claimed. Finally, with

ν(u) · uφr = (distN (u))φr − ur · dν(u)uφ

as in the proof of Lemma 4.3, for j = 0 we can write

ν(u) · ∂k
φur = ∂k−1

φ

(

ν(u) · uφr

)

+ II = ∂k
φ(distN (u))r + III,
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where the terms in II and III involve products of at least two derivatives of orders
between 1 and k of u. Thus we have

I0 = (∂k
φu · ν(u)ϕ2

k, ν(u) · ∂k
φur)L2(∂B)

= (∂k
φu · ν(u)ϕ2

k, ∂
k
φ(distN (u))r)L2(∂B) + II0

with a term II0 that can be dealt with in the same way as the terms Ij , 1 ≤ j ≤ k.
Using the divergence theorem and integrating by parts we can write the leading

term as

Î0 := (∂k
φu · ν(u)ϕ2

k, ∂
k
φ(distN (u))r)L2(∂B)

=
(

∇
(

∂k
φu · ν(u)ϕ2

k

)

,∇∂k
φ(distN (u))

)

L2(B)

+
(

∂k
φu · ν(u)ϕ2

k,∆∂k
φ(distN (u))

)

L2(B)

=
(

∇
(

∂k
φu · ν(u)ϕ2

k

)

,∇∂k
φ(distN (u))

)

L2(B)

−
(

∂φ
(

∂k
φu · ν(u)ϕ2

k

)

,∆∂k−1
φ (distN (u))

)

L2(B)

to see that this term may be bounded

|Î0| ≤ C‖(|∇∂k
φu|+ |∂k

φu∇u|)ϕk + |∂k
φu∇ϕk|‖L2(B)‖∇k+1(distN (u))ϕk‖L2(B).

But by elliptic regularity we again have

‖∇k+1(distN (u))ϕk‖L2(B)

≤ ‖∇k+1(distN (u)ϕk)‖L2(B) + C
∑

1≤j≤k+1

‖∇k+1−j(distN(u))∇jϕk‖L2(B)

≤ C‖∆(distN (u)ϕk)‖Hk−1(B) + C
∑

1≤j≤k+1

‖∇k+1−j(distN (u))∇jϕk‖L2(B),

where from (3.5) we can bound the first term on the right

‖∆(distN (u))ϕk‖Hk−1(B) ≤
∑

0≤j<k

‖∇j
(

∇u · dν(u)∇uϕk

)

‖L2(B)

≤ C
∑

0≤j0<k, 1≤ji≤k,Σi≥0ji≤k+1

‖Πi∇jiu∇j0ϕk‖L2(B).

Moreover, using that distN (u)) = 0 on ∂B, with the help of Poincaré’s inequality
we find the bound

‖distN (u)∇k+1ϕk‖2L2(B) ≤ CR−2k
k ‖∇(distN (u))‖2L2(BRk

(z0))
≤ CR−2k

0 E(u).

The remaining terms for 1 ≤ j ≤ k can be estimated

‖∇k+1−j(distN (u))∇jϕ2‖L2(B) ≤ C
∑

1≤ji≤k,Σiji=k+1−j

‖Πi∇jiu∇jϕ2‖L2(B)

via the chain rule. Thus, finally, we obtain the bound

‖∇k+1(distN (u))ϕk‖L2(B)

≤ C
∑

1≤j0,ji≤k,Σi≥0ji≤k+1

‖Πi>0∇jiu∇j0ϕ2‖L2(B) + CR−2k
0 E(u0).
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By Cauchy-Schwarz and Young’s inequality thus we can bound

|Î0| ≤
1

4
‖∇∂k

φuϕk‖2L2(B) + C‖∂k
φu∇uϕk‖2L2(B)

+ C
∑

1≤ji≤k,Σiji≤k+1

‖Πi>0∇jiu∇j0ϕk‖2L2(B) + CR−2k
0 E(u0),

and together with our above estimate for the terms Ij , j ≥ 1, our claim follows. �

Proposition 4.10. There exists a constant δ > 0 independent of R0 > 0 such that
whenever (4.10) holds then for any T ≤ T0 with a constant C2 = C2(T,R, u0) > 0
bounded by the terms on the right hand side in the statement of Proposition 4.8
there holds the estimate

sup
0<t<T

∫

∂B

|uφφ(t)|2ϕ2
2 dφ+

∫ T

0

∫

B

|∇uφφ|2ϕ2
2 dz dt

≤ C2

∫

∂B

|u0,φφ|2ϕ2
2 dφ+ C2.

Proof. For k = 2 with the help of Young’s inequality we can bound

J1 =
∑

1≤ji≤k,Σiji≤2k+2

‖Πi∇jiuϕ2
k‖L1(B)

≤ C‖(|∇2u|3 + |∇2u|2|∇u|2 + |∇2u||∇u|4 + |∇u|6 + 1)ϕ2
2‖L1(B)

≤ C‖(|∇2u|3 + |∇u|6 + 1)ϕ2
2‖L1(B),

and

J2 =
∑

1≤j0,ji≤k,Σi≥0ji≤k+1

‖Πi>0∇jiu∇j0ϕ2‖2L2(B)

≤ C‖(|∇2u|2 + |∇u|4 + 1)|∇ϕ2|2 + (|∇u|2 + 1)|∇2ϕ2|2‖L1(B).

Observing that ϕ1 = 1 on the support of ϕ2, by (10.2) for the first term in J1
we have

‖|∇2u|3ϕ2
2‖L1(B) ≤ ‖∇2uϕ2‖2L4(B)‖∇2uϕ1‖L2(B)

≤ C‖∇2uϕ2‖H1(B)‖∇2uϕ2‖L2(B)‖∇2uϕ1‖L2(B)

≤ C(‖∇3uϕ2‖L2(B) + ‖∇2uϕ1‖L2(B))‖∇2uϕ2‖L2(B)‖∇2uϕ1‖L2(B).

Moreover, arguing as in (10.1) for the function |∇u|6ϕ2
2 in place of |v|4ϕ2, we can

bound
∫

B

|∇u|6ϕ2
2dz ≤ C

(

∫

B

(

|∇2u||∇u|2ϕ2 + |∇u|3|∇ϕ2|
)

dz
)2

≤ C
(

∫

B

|∇2u|3ϕ2
2dz

)2/3(
∫

B

|∇u|3ϕ1/2
2 dz

)4/3

+ C
(

∫

B

|∇u|3|∇ϕ2|
)

dz
)2

,

where by Hölder’s inequality we have
∫

B

|∇u|3ϕ1/2
2 dz ≤

(

∫

B

|∇u|6ϕ2
2dz

)1/4(
∫

B

|∇u|2ϕ2
1dz

)3/4
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so that with Young’s inequality we obtain
∫

B

|∇u|6ϕ2
2dz ≤ Cδ

(

∫

B

|∇2u|3ϕ2
2dz

)2/3(
∫

B

|∇u|6ϕ2
2dz

)1/3

+ C
(

∫

B

|∇u|3|∇ϕ2|
)

dz
)2

≤ 1

2

∫

B

|∇u|6ϕ2
2dz + C

∫

B

|∇2u|3ϕ2
2dz + C

(

∫

B

|∇u|3|∇ϕ2|
)

dz
)2

.

With Young’s inequality for suitable ε > 0, and using (4.9), we then can bound

J1 ≤ C‖(|∇2u|3 + 1)ϕ2
2‖L1(B) + C‖|∇u|3|∇ϕ2|‖2L1(B) ≤ ε‖∇3uϕ2‖2L2(B)

+ C(1 + ‖∇2uϕ2‖2L2(B))‖∇2uϕ1‖2L2(B) + C‖|∇u|3|∇ϕ2|‖2L1(B)

≤ 1

2
‖∇∂2

φuϕ2‖2L2(B) + C(1 + ‖∇∂φuϕ2‖2L2(B))‖∇∂φuϕ1‖2L2(B) + C1,

where we also have estimated

‖|∇u|3|∇ϕ2|‖2L1(B) ≤ C‖∇uϕ1‖4L4(B)‖∇uϕ1‖2L2(B)

≤ C
(

‖∇2uϕ1‖2L2(B) + E(u)
)

‖∇uϕ1‖4L2(B) ≤ C‖∇∂φuϕ1‖2L2(B) + C.

Similarly, with (10.2) we have

J2 ≤ C‖∇2uϕ1‖2L2(B) + C.

Thus, from Lemma 4.7 we obtain

d

dt

(

‖∂2
φuϕ2‖2L2(∂B)

)

+
1

2
‖∇∂2

φuϕ2‖2L2(B)

≤ C(1 + ‖∇∂φuϕ2‖2L2(B))‖∇∂φuϕ1‖2L2(B) + C.
(4.11)

Denote as C1 = C1(T,R, u0) > 0 a constant bounded by the terms on the right
hand side in the statements of Propositions 4.8. By elliptic regularity, using that
|∆(uϕ2| ≤ 2|∇u∇ϕ2|+ C we can bound

‖∇2uϕ2‖2L2(B) ≤ ‖uϕ2‖2H2(B) + C‖∇u∇ϕ2‖2L2(B) + C

≤ C‖uϕ2‖2H2(∂B) + ‖∆(uϕ2)‖2L2(B) + C‖∇u∇ϕ2‖2L2(B) + C

≤ C‖∂2
φuϕ2‖2L2(∂B) + CE(u) + C1.

From (4.11) we then obtain the differential inequality

d

dt

(

1 + ‖∂2
φuϕ2‖2L2(∂B)

)

≤ C(1 + ‖∂2
φuϕ2‖2L2(∂B))‖∇∂φuϕ1‖2L2(B) + C1;

that is,

d

dt

(

log
(

1 + ‖∂2
φuϕ2‖2L2(∂B)

)

)

≤ C‖∇∂φuϕ1‖2L2(B) + C1,

and the right hand side is integrable in time by Proposition 4.8. The claim follows.
�

We continue by induction.
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Proposition 4.11. There exists a constant δ > 0 independent of R0 > 0 with
the following property. Whenever (4.10) holds, then for any k ≥ 3, any smooth
u0 ∈ H1/2(S1;N), and any T < T0, there holds

sup
0<t<T

∫

∂B

|∂k
φu(t)|2ϕ2

kdφ+

∫ T

0

∫

B

|∇∂k
φu|2ϕ2

kdz dt ≤ Ck

∫

∂B

|∂k
φu0|2ϕ2

kdφ+ Ck,

where we denote as Ck = Ck(T,R, u0) > 0 a constant bounded by the terms on the
right hand side in the statement of the proposition for k − 1.

Proof. By Proposition 4.10 the claimed result holds true for k = 2. Suppose the
claim holds true for some k0 ≥ 2 and let k = k0+1. Note that by elliptic regularity,
as in the proof of Proposition 4.10 we can bound

‖∇kuϕk‖2L2(B) ≤ ‖uϕk‖2Hk(B) + C
∑

j<k

‖∇ju∇k−jϕk‖2L2(B)

≤ C‖uϕk‖2Hk(∂B) + C‖∆(uϕk)‖2Hk−2(B) + C
∑

j<k

‖∇ju∇k−jϕk‖2L2(B)

≤ C‖∂k
φuϕk‖2L2(∂B) + C

∑

j<k

‖∇ju∇k−jϕk‖2L2(B) + Ck.

By induction hypothesis and Sobolev’s embedding H2(B) →֒ W 1,4 ∩ C0(B̄) for
0 ≤ t < T we then have the uniform bounds

‖∇k0uϕk0‖2L2(B) + ‖∇k0−1uϕk0‖2L4(B) +

k0−2
∑

j=1

‖∇juϕk0‖2L∞(B) ≤ Ck,

and it follows that

‖∇kuϕk‖2L2(B) + ‖∇k0uϕk‖2L4(B) + ‖∇k0−1uϕk‖2L∞(B) ≤ C‖∂k
φuϕk‖2L2(∂B) + Ck.

Again let

J1 :=
∑

1≤ji≤k,Σiji=2k+2

‖Πi∇jiuϕ2
k‖L1(B)

≤ ‖
(

|∇ku|2(|∇2u|+ |∇u|2) + |∇ku||∇k0u||∇3u|+ · · ·+ |∇u|2k+2
)

ϕ2
k‖L1(B).

and set

J2 =
∑

1≤j0,ji≤k,Σi≥0ji≤k+1

‖Πi>0∇jiu∇j0ϕ2‖2L2(B).

Suppose k0 = 2. Recalling that ϕk = ϕkϕk0 , we can bound the listed terms

‖|∇3u|2(|∇2u|+ |∇u|2)ϕ2
3‖L1(B)

≤ ‖∇3uϕ3‖2L4(B)(‖∇2uϕ2‖L2(B) + ‖∇uϕ2‖2L4(B))

≤ C3‖∇∂3
φuϕ3‖L2(B)‖∇3uϕ3‖L2(B) + C3‖∇3uϕ2‖2L2(B) + C3

≤ C3‖∇∂3
φuϕ3‖L2(B)‖∂3

φuϕ3‖L2(∂B) + C3‖∇∂2
φuϕ2‖2L2(B) + C3

≤ ε‖∇∂3
φuϕ3‖2L2(B) + C3‖∂3

φuϕ3‖2L2(∂B) + C3‖∇∂2
φuϕ2‖2L2(B) + C3,

and

‖|∇u|8ϕ2
3‖L1(B) ≤ ‖∇uϕ3‖2L∞(B)‖∇uϕ2‖6L6(B)

≤ C3‖∂3
φuϕ3‖2L2(∂B) + C3,
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respectively. Here we also have used (10.1), (10.2) to bound

‖∇uϕ2‖3L6(B) ≤ ‖∇(|∇u|3ϕ3
2)‖L1(B)

≤ C‖(|∇2u|ϕ2 + |∇u||∇ϕ2|)|∇u|2ϕ2
2‖L1(B)

≤ C(‖∇2uϕ2‖L2(B) + ‖∇u∇ϕ2‖L2(B))‖∇uϕ2‖2L4(B)

≤ C(‖∇2uϕ2‖L2(B) + ‖∇u∇ϕ2‖L2(B))
2‖∇uϕ2‖L2(B) ≤ C3.

Similarly, we can bound the remaining terms and the terms in J2 to obtain

d

dt

(

‖∂3
φuϕ3‖2L2(∂B)

)

+
1

2
‖∇∂3

φuϕ3‖2L2(B)

≤ C3(1 + ‖∂3
φuϕ3‖2L2(∂B))(1 + ‖∇∂2

φuϕ2‖2L2(B)) + C3

from Lemma 4.9 and then

d

dt

(

log
(

1 + ‖∂3
φuϕ2‖2L2(∂B)

)

)

≤ C3(1 + ‖∇∂2
φuϕ2‖2L2(B)),

where the right hand side is integrable in time by Proposition 4.10. The claim for
k = 3 thus follows.

For k ≥ 4 the analysis is similar (but simpler) and may be left to the reader. �

5. Local existence

In order to show local existence we approximate the flow equation (1.3) by the
equation

(5.1) ut = −(ε+ dπN (u))ur on ∂B.

where ε > 0 and where we smoothly extend the nearest-neighbor projection πN ,
originally defined only in the ρ-neighborhood Nρ of N , to the whole ambient Rn.
Our aim then is to show that for given smooth initial data u0 the evolution problem
(5.1), (1.4) admits a smooth solution uε which remains uniformly smoothly bounded
on a uniform time interval as ε ↓ 0. Fixing some 0 < ε < 1/2, we show existence
for the problem (5.1) with data (1.4) by means of a fixed-point argument.

To set up the argument, fix smooth initial data u0 : S
1 → N with harmonic

extension u0 ∈ C∞(B̄;Rn) and some k ≥ 2. For suitable T > 0 to be determined
let

X = L∞
(

[0, T ];Hk+1(B;Rn)
)

∩H1(S1 × [0, T ];Rn)

and set

V = {v ∈ X ; v(0) = u0, ∆v(t) = 0 in B for 0 ≤ t ≤ T,

‖v‖2X = sup
0≤t≤T

‖v(t)‖2Hk+1(B) +

∫ T

0

∫

S1

|vt|2dφ dt ≤ 4R2
0},

where R0 = ‖u0‖Hk+1(B). We endow the space V with the metric derived from the
semi-norm

|v|2X = sup
0≤t≤T

‖∇v(t)‖2L2(B) +

∫ T

0

∫

S1

|vt|2dφ dt.

Note that this metric is positive definite on V in view of the initial condition that
we impose.

Lemma 5.1. V is a complete metric space.
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Proof. Let (vm)m∈N ⊂ V with |vl − vm|X → 0 (l,m → ∞). By the theorem
of Banach-Alaoglu a subsequence vm ⇁ v weakly-∗ in L∞

(

[0, T ];Hk+1(B)
)

with

vm,t → vt weakly in L2([0, T ]×S1), and by weak lower semi-continuity of the norm
there holds

‖v‖2X ≤ lim sup
m→∞

‖vm‖2X ≤ 4R2
0.

Moreover, we have ∆v(t) = 0 for all 0 ≤ t ≤ T and v(0) = u0 by compactness of
the trace operator H1(S1 × [0, T ]) ∋ u 7→ u(0) ∈ L2(S1). Hence v ∈ V .

Moreover, we have

|vl − v|X ≤ lim sup
m→∞

|vl − vm|X → 0 as l → ∞.

�

Lemma 5.2. There is T2 > 0 such that for any T ≤ T2, any v ∈ V there is a
solution u = Φ(v) ∈ V of the equation

(5.2) ut = −(ε+ dπN (v))ur on ∂B × [0, T2[,

satisfying (1.4).

Proof. For v ∈ V we construct a solution u = Φ(v) ∈ X of (5.2) via Galerkin
approximation. For this let (ϕl)l∈N0 be Steklov eigenfunctions of the Laplacian,
satisfying

∆ϕl = 0 in B

with boundary condition

∂rϕl = λlϕl on ∂B, l ∈ N0.

Note that the Steklov eigenvalues are given by λ0 = 0 and λ2l−1 = λ2l = l, l ∈ N.
In fact, we may choose ϕ0 ≡ 1/

√
2π and

(5.3) ϕ2l−1(re
iθ) =

1√
π
rlsin(lθ), ϕ2l(re

iθ) =
1√
π
rlcos(lθ), l ∈ N.

to obtain an orthonormal basis for L2(S1) consisting of these functions. Given

m ∈ N then let u(m)(t, z) =
∑m

l=0 a
(m)
l (t)ϕl(z) solve the system of equations

∂ta
(m)
l = (ϕl,u

(m)
t )L2(S1) = −

(

ϕl, (ε+ dπN (v))u(m)
r

)

L2(S1)

= −
m
∑

j=0

a
(m)
j λj

(

ϕl, (ε+ dπN (v))ϕj

)

L2(S1)
, 0 ≤ l ≤ m.

(5.4)

Since for any m ∈ N the coefficients λj(ϕl, (ε+dπN (v))ϕj

)

L2(S1)
of this system are

uniformly bounded for any v ∈ V , for any m ∈ N there exists a unique global so-

lution a(m) = (a
(m)
l )0≤l≤m of (5.4) with initial data a

(m)
l (0) = al0 = (u0, ϕl)L2(S1),

0 ≤ l ≤ m.
Note that for any m ∈ N and any j ∈ N0 the function

∂2j
φ (ru(m)

r ) ∈ span{ϕl; 0 ≤ l ≤ m},
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and ∂2j
φ u(m) is harmonic. In particular, for j = 0 we obtain

1

2

d

dt

(

‖∇u(m)‖2L2(B)

)

=

∫

B

∇u(m)∇u
(m)
t dz = (u(m)

r , u
(m)
t )L2(S1)

= −(u(m)
r , (ε+ dπN (v))u(m)

r )L2(S1)

= −ε‖u(m)
r ‖2L2(S1) − ‖dπN (v)u(m)

r ‖2L2(S1)

≤ −1

2
‖u(m)

t ‖2L2(S1) ≤ 0,

(5.5)

and we find the uniform H1-bound

sup
t≥0

‖∇u(m)(t)‖2L2(B) + ε‖u(m)
r ‖2L2([0,∞[×S1) + ‖u(m)

t ‖2L2([0,∞[×S1)

≤ 2‖∇u(m)(0)‖2L2(B) ≤ 2‖∇u0‖2L2(B) ≤ 2R2
0.

(5.6)

Moreover, for j = k ∈ N as in the definition of X upon integrating by parts we
find

1

2

d

dt

(

‖∇∂k
φu

(m)‖2L2(B)

)

= (−1)k
∫

B

∇∂2k
φ u(m)∇u

(m)
t dz

= (−1)k(∂2k
φ u(m)

r , u
(m)
t )L2(S1)

= (−1)k+1(∂2k
φ u(m)

r , (ε+ dπN (v))u(m)
r )L2(S1)

= −ε‖∂k
φu

(m)
r ‖2L2(S1) − ‖dπN (v)∂k

φu
(m)
r ‖2L2(S1) + I,

(5.7)

where I =
∑k

j=1

(

k
j

)

Ij with

Ij = −(∂k
φu

(m)
r , ∂j

φ(dπN (v))∂k−j
φ u(m)

r )L2(S1)

similar to the proof of Lemma 4.3. However, now we simply bound

|Ij | ≤ C
∑

Σiji=j

‖∂k
φu

(m)
r ‖L2(S1)‖Πi∂

ji
φ v∂k−j

φ u(m)
r ‖L2(S1), 1 ≤ j ≤ k.

Note that by compactness of Sobolev’s embedding H1(S1) →֒ L∞(S1) and
Ehrlich’s lemma for any number 1 ≤ j ≤ k, any δ > 0 we can bound

‖∂k−j
φ u(m)

r ‖L∞(S1) ≤ δ‖∂k−j+1
φ u(m)

r ‖L2(S1) + C(δ)‖∂k−j
φ u(m)

r ‖L2(S1)

≤ 2δ‖∂k
φu

(m)
r ‖L2(S1) + C(δ)‖u(m)

r ‖L2(S1).

On the other hand, for any v ∈ V by the trace theorem we have

‖∂k
φv‖L2(S1) ≤ C‖∂k

φv‖H1(B) ≤ C‖v‖Hk+1(B) ≤ CR0

and we therefore also can bound

‖∂j
φv‖L∞(S1) ≤ C‖∂k

φv‖L2(S1) + ‖∂j
φv‖L2(S1) ≤ C‖v‖Hk+1(B) ≤ CR0.

for any 1 ≤ j < k.
Thus, for sufficiently small δ > 0 with a constant C > 0 depending on ε > 0 and

R0 there holds

|I| ≤ ε/2‖∂k
φu

(m)
r ‖2L2(S1) + C‖u(m)

r ‖2L2(S1)
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and from (5.7) with the help of (3.7) we obtain the inequality

d

dt

(

‖∇∂k
φu

(m)‖2L2(B)

)

≤ C‖u(m)
r ‖2L2(S1) = C‖u(m)

φ ‖2L2(S1) ≤ C‖u(m)
φ ‖2H1(B)

≤ C‖∇∂k
φu

(m)‖2L2(B) + C‖∇u(m)‖2L2(B) ≤ C(1 + ‖∇∂k
φu

(m)‖2L2(B)),

where we recall (5.6) for the last conclusion.
It follows that for suitably small T > 0 there holds ‖u(m)‖2X ≤ 4R2

0 for all

m ∈ N. Thus, there is a sequence m → ∞ such that u(m) ⇁ u weakly-∗ in

L∞([0, T ];Hk+1(B)) with u
(m)
t ⇁ ut weakly in L2([0, T ]×S1), where u =: Φ(v) ∈ V

solves equation (5.2). �

Lemma 5.3. There is T > 0 such that for v1, v2 ∈ V there holds

|Φ(v1)− Φ(v2)|X ≤ 1

2
|v1 − v2|X .

Proof. Let T2 > 0 be as determined in Lemma 5.2 and fix some 0 < T ≤ T2. For
v1, v2 ∈ V then we have ui =: Φ(vi) ∈ V , i = 1, 2. Set w = u1 − u2, v = v1 − v2,
and compute

(5.8) wt = −(ε+ dπN (v1))wr − (dπN (v1)− dπN (v2))u2,r on ∂B = S1.

Multiplying with wr and integrating we obtain

1

2

d

dt

(

‖∇w‖2L2(B)

)

=

∫

B

∇w∇wt dx = (wr , wt)L2(S1) = −ε‖wr‖2L2(S1)

− ‖dπN (v1)wr‖2L2(S1) − (wr , (dπN (v1)− dπN (v2)u2,r)L2(S1),

where with ‖u2,r‖L∞(S1) ≤ C‖u2‖H3(B) ≤ CR0 we can bound

|(wr ,(dπN (v1)− dπN (v2))u2,r)L2(S1)| ≤ C‖wr‖L2(S1)‖v‖L2(S1)‖u2,r‖L∞(S1)

≤ C‖wr‖L2(S1)‖v‖L2(S1) ≤
ε

2
‖wr‖2L2(S1) + C‖v‖2L2(S1).

Thus, with a constant C = C(ε) > 0 we find

(5.9)
d

dt
‖∇w‖2L2(B) + ε‖wr‖2L2(S1) ≤ C‖v‖2L2(S1).

Similarly, from (5.8) we can bound

(5.10) ‖wt‖2L2(S1) ≤ C‖wr‖2L2(S1) + C‖v‖2L2(S1).

Integrating over 0 ≤ t ≤ T and observing that we have

sup
0≤t≤T

‖v(t)‖2L2(S1) ≤
(

∫ T

0

‖vt(t)‖L2(S1)dt
)2 ≤ T

∫ T

0

‖vt(t)‖2L2(S1)dt,

from (5.9) we first obtain

sup
0≤t≤T

‖∇w(t)‖2L2(B) + ε‖wr‖2L2([0,T ]×S1) ≤ CT sup
0≤t≤T

‖v(t)‖2L2(S1) ≤ CT 2|v|2X ,

which we may use together with (5.10) to bound

|w|2X = sup
0≤t≤T

‖∇w(t)‖2L2(B) + ‖wt‖2L2([0,T ]×S1) ≤ CT 2|v|2X .

For sufficiently small T > 0 then our claim follows. �
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Thus, by Banach’s fixed point theorem, for any ε > 0, any smooth u0 ∈
H1/2(S1;N) there exists T > 0 and a solution u = u(t) ∈ V of the initial value
problem (5.1), (1.4). We now show that the number T > 0 may be chosen uniformly
as ε ↓ 0. Indeed, we have the following result.

Lemma 5.4. There exists a constant C > 0 such that for any k ≥ 2, any smooth
u0 ∈ H1/2(S1;N), and any 0 < ε ≤ 1/2 for the solution u to (5.1) with u(0) = u0

there holds
d

dt

(

‖∇∂k
φu‖2L2(B)

)

≤ C(1 + ‖∇u‖2L2(B) + ‖∇∂k
φu‖L2(B)

k+3.

Proof. Similar to the proof of Lemma 5.2, for given 2 ≤ k ∈ N we compute

1

2

d

dt

(

‖∇∂k
φu‖2L2(B)

)

= (−1)k
∫

B

∇∂2k
φ u∇ut dx

= (−1)k(∂2k
φ ur, ut)L2(S1) = (−1)k+1(∂2k

φ ur, (ε+ dπN (u))ur)L2(S1)

≤ −‖dπN(u)∂k
φur‖2L2(S1) − I,

(5.11)

where we now drop the term ε‖∂k
φur‖2L2(S1) from (5.7). Again we split I =

∑k
j=1

(

k
j

)

Ij

with

Ij = (∂k
φur, ∂

j
φ(dπN (u))∂k−j

φ ur)L2(S1)

= (∇∂k
φu,∇(∂j

φ(dπN (u))∂k−j
φ ur))L2(B),

but now we bound these terms as in the proof of Lemma 4.3 via

|Ij | ≤ C‖∇∂k
φu‖L2(B)

(

‖∇∂j
φ(dπN (u))∂k−j

φ ur‖L2(B) + ‖∂j
φ(dπN (u))∇∂k−j

φ ur‖L2(B)

)

≤ C
∑

1≤ji≤k+1,Σiji=k+2

‖∇∂k
φu‖L2(B)‖Πi∇jiu‖L2(B).

Using that for any k ≥ 2 by Sobolev’s embedding H2(B) →֒ W 1,4 ∩ C0(B̄) be can
bound

∑

1≤ji≤k+1,Σiji=k+2

‖Πi∇jiu‖L2(B) ≤ C(1 + ‖∇u‖L2(B) + ‖∇k+1u‖L2(B))
k+2,

and also using (4.3), we obtain the claim. �

We now are able to conclude.

Proposition 5.5. For any k ≥ 2, any smooth u0 ∈ H1/2(S1;N) there exists T > 0
and a solution u ∈ V to (1.3) with initial data u(0) = u0.

Proof. In view of Lemma 5.4, there exists a uniform number T > 0 such that,
with V as defined above, for any 0 < ε ≤ 1/2 for there exists a solution uε ∈ V
to (5.1). By definition of V , as ε ↓ 0 suitably, we have uε → u weakly-∗ in
L∞([0, T ];Hk+1(B)) ∩H1(S1 × [0, T ]). But this suffices to pass to the limit ε ↓ 0
in (5.1), and u ∈ V solves (1.3) with u(0) = u0. �

Proof of Theorem 1.1.i). By Proposition 5.5 for any smooth u0 ∈ H1/2(S1;N) and
any k ≥ 2 there exists T > 0 and a solution u ∈ V of (1.3), (1.4) for 0 < t < T .
Alternatingly employing Propositions 4.11 and 4.6, we then obtain smoothness
of u for 0 < t ≤ T , including the final time T . (This argument later appears
in more detail in Section 6 after Lemma 6.2.) Iterating, the solution u may be
extended smoothly until some maximal time T0 where condition (4.4) ceases to hold.
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Uniqueness (even within a much larger class of competing functions) is established
in Section 7. �

6. Weak solutions

Given u0 ∈ H1/2(S1;N), there are smooth functions u0k ∈ H1/2(S1;N) with
u0k → u0 in H1(B) as k → ∞. Indeed, similar to an argument of Schoen-Uhlenbeck
[39], Theorem 3.1, with a standard mollifying sequence (ρk)k∈N for the mollified
functions v0k := u0 ∗ ρk we have distN (v0k) → 0 uniformly, and u0k := πN (v0k) →
u0 ∈ H1/2(S1;N) as k → ∞.

Let uk be the corresponding solutions of (1.4) with initial data uk(0) = u0k,
defined on a maximal time interval [0, Tk[, k ∈ N. We claim that each function uk

can be smoothly extended to a uniform time interval [0, T [ for some T > 0. To see
this, we first establish the following non-concentration result.

Lemma 6.1. For any δ > 0 there exists a number R > 0 and a time T0 > 0 such
that

sup
z0∈B, 0<t<T0

∫

BR(z0)∩B

|∇uk(t)|2dz < δ for all k ∈ N.

Proof. Given δ > 0, by absolute continuity of the Lebesgue integral and H1-
convergence u0k → u0 (k → ∞) we can find R > 0 such that

sup
z0∈B

∫

B2R(z0)∩B

|∇u0k|2dz < δ for all k ∈ N.

Choosing T0 = δR, by Lemma 2.2 then we have

sup
z0∈B, 0<t<T0

∫

BR(z0)∩B

|∇uk(t)|2dz < 4δ + CδE(uk0) < Lδ

with a uniform constant L > 0 for all k ∈ N. The claim follows, if we replace δ
with δ/L. �

In view of Proposition 3.3, from Lemma 6.1 and Lemma 2.1 we obtain the
following bound for uk in H1(S1).

Lemma 6.2. There exist a time T0 > 0 and constants C > 0, C0 = C0(E(u0)) > 0
such that

∫ T0

0

∫

S1

|∂φuk(t)|2dφ dt ≤ CE(uk0) ≤ C0 for all k ∈ N.

From Lemma 6.2 we obtain locally in time uniform smooth bounds for (uk) for
t > 0 by iteratively applying our previous regularity results. More precisely, Fatou’s
lemma and Lemma 6.2 first yield the bound

∫ T0

0

lim inf
k→∞

(

∫

S1

|∂φuk(t)|2dφ
)

dt ≤ C0.

Thus for almost every 0 < t0 < T0 there holds

lim inf
k→∞

∫

S1

|∂φuk(t0)|2dφ < ∞.
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For any such 0 < t0 < T0, if δ > 0 is sufficiently small, from Proposition 4.2 with
another appeal to Fatou’s lemma we may conclude

∫ T0

t0

lim inf
k→∞

∫

B

|∇∂φuk|2dz dt ≤ lim inf
k→∞

∫ T0

t0

∫

B

|∇∂φuk|2dz dt ≤ C1

for some C1 > 0, so that now we even have

lim inf
k→∞

∫

B

|∇∂φuk(t1)|2dz < ∞.

for almost every t0 < t1 < T0. Hence we may next invoke Proposition 4.4 and (4.2)
to obtain the bound

lim inf
k→∞

∫ T0

t1

∫

∂B

|∇∂φuk|2dz dt < ∞

for any such t0 < t1 < T0, and Fatou’s lemma gives that

lim inf
k→∞

∫

∂B

|∇∂φuk(t2)|2dφ < ∞

for almost every t1 < t2 < T0. Now Proposition 4.10 may be applied with ϕ0 = 1,
and we obtain

lim inf
k→∞

∫ T0

t2

∫

B

|∇∂2
φuk|2dz dt < ∞

for any such t1 < t2 < T0. Another application of Fatou’s lemma gives

lim inf
k→∞

∫

B

|∇∂2
φuk(t3)|2dz < ∞

for almost every t2 < t3 < T0, and Proposition 4.5 yields

lim inf
k→∞

∫ T0

t3

∫

∂B

|∇∂2
φuk|2dφ dt < ∞

for any such t2 < t3 < T0. We may then iterate, using (3.7) and alternatingly
employing Propositions 4.11 and 4.6 for 3 ≤ k ∈ N, to find a subsequence (uk)
satisfying uniform smooth bounds on ]t0, T0] for any t0 > 0. Passing to the limit
k → ∞ for this subsequence we obtain a weak solution to (1.3), (1.4) of energy-class
in the following sense.

Definition 6.3. A function u ∈ H1([0, T0]×S1;N)∩L∞([0, T0];H
1/2(S1;N)) is a

weak solution of (1.3), (1.4) of energy-class, if (1.3) is satisfied in the weak sense,
that is, if there holds

∫ T0

0

∫

∂B

(ut + dπN (u)ur) · ϕdφdt

=

∫ T0

0

∫

∂B

ut · ϕdφdt+

∫ T0

0

∫

B

∇u · ∇
(

dπN (u)ϕ
)

dz dt = 0

(6.1)

for all ϕ ∈ C∞
c (S1×]0, T0[), and if there holds the energy inequality

(6.2) E(u(T )) +

∫ T

0

∫

∂B

|ut|2dφ dt ≤ E(u0)

for any 0 < T < T0, with the initial data u0 ∈ H1/2(S1;N) being attained in the
sense of traces.
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We then may summarize our results, as follows.

Proposition 6.4. For any u0 ∈ H1/2(S1;N) there exists T0 > 0 and a weak
solution u to (1.3), (1.4) on [0, T0] of energy-class, which is smooth for t > 0.

Proof. For any open U ⊂ S1×]0, T0[ we have uniform smooth bounds for uk on U ;
thus a suitable sub-sequence uk → u smoothly locally as k → ∞. The equation
(6.1) follows from the corresponding identites for uk.

Moreover, (6.2) follows from the energy identity, Lemma 2.1, for uk in view of
H1-convergence u0k → u0 as well as weak lower semi-continuity of the energy and
of the L2-norm.

Finally, with error o(1) → 0 as k → ∞ for 0 < t < T0 we can estimate

‖u(t)− u0‖2L2(∂B) ≤ ‖uk(t)− u0k‖2L2(∂B) + o(1)

≤
(

∫ t

0

‖∂tuk(t
′)‖L2(∂B)dt

′
)2

+ o(1) ≤ t

∫ t

0

‖∂tuk(t
′)‖2L2(∂B)dt

′ + o(1)

≤ tE(u0) + o(1) → 0 as t ↓ 0,

and u(t) → u0 weakly in H1/2(S1;N) ∩ H1(B;Rn) as t ↓ 0. In fact, by (6.2) we
then even have strong convergence. �

7. Uniqueness

With the help of the tools developed in Section 3 we can show uniqueness of
partially regular weak energy-class solutions as in Proposition 6.4.

Theorem 7.1. Let u0 ∈ H1/2(S1;N). Suppose u and v both are weak energy-class
solutions of (1.3), (1.4) on [0, T0] for some T0 > 0 with initial data u0, and suppose
that u and v are smooth for t > 0. Then u = v.

Proof. Using the identity (3.2) for u and v, respectively, for the function w = u− v
for almost every 0 < t < T0 we have

∂tw + ∂rw = ν(u)∂r(distN (u))− ν(v)∂r(distN (v))

= (ν(u)− ν(v))∂r(distN(u)) + ν(v)∂r(distN (u)− distN(v))
(7.1)

on ∂B = S1. From equation (3.5), moreover, we obtain

|∆(distN (u)− distN(v))| = |∇u · dν(u)∇u −∇v · dν(v)∇v|
≤ C(|w||∇u|2 + (|∇u|+ |∇v|)|∇w|) in B.

(7.2)

Observing that

|distN (u)− distN (v)| ≤ C|w|,
upon multiplying (7.2) with the function (distN (u)− distN(v)) ∈ H1

0 (B), integrat-
ing by parts, and using Young’s inequality, for any ε > 0 we obtain

‖∇(distN (u)− distN(v))‖2L2(B)

≤ C

∫

B

(|w|2|∇u|2 + (|∇u|+ |∇v|)|∇w||w|)dz

≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)(‖∇u‖2L4(B) + ‖∇v‖2L4(B)).

(7.3)
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On the other hand, for any 0 < t0 < T ≤ T0, multiplying the equation (7.1) with
w and integrating by parts on S1 × [t0, T ], upon letting t0 ↓ 0 we find

sup
0<t<T

‖w(t)‖2L2(∂B) +

∫ T

0

∫

B

|∇w|2dz dt ≤ C

∫ T

0

∫

∂B

(∂tw + ∂rw)w dφdt

= C

∫ T

0

∫

∂B

w(ν(u) − ν(v))∂r(distN (u))dφ dt

+ C

∫ T

0

∫

∂B

w ν(v)∂r(distN (u)− distN (v)) dφ dt =: C

∫ T

0

(I + II)dt.

We first estimate the term

I = I(t) =

∫

∂B

w(ν(u) − ν(v))∂r(distN (u)) dφ

=

∫

B

∇
(

w(ν(u) − ν(v))
)

∇(distN (u)) dz

+

∫

B

w(ν(u)− ν(v))∆(distN (u)) dz.

Using

|∇
(

w(ν(u) − ν(v))
)

| ≤ C|∇w||w| + |w
(

(dν(u)− dν(v))∇u + dν(v)∇w
)

|
≤ C(|∇w||w| + |w|2|∇u|)

we can bound

|
∫

B

∇
(

w(ν(u)− ν(v))
)

∇(distN (u))dz| ≤ C

∫

B

|(∇w||w| + |w|2|∇u|)|∇u|dz

≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)‖∇u‖2L4(B)

for each t. Also using (3.5), we can moreover estimate

|
∫

B

w(ν(u) − ν(v))∆(distN (u)) dz| ≤ C‖w‖2L4(B)‖∇u‖2L4(B)

for almost every 0 < t < T to obtain

|I| ≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)‖∇u‖2L4(B).

Similarly, we estimate the term

II = II(t) =

∫

∂B

w ν(v)∂r((distN (u)− distN (v)) dφ

=

∫

B

∇(wν(v))∇(distN (u)− distN(v))dz

+

∫

B

w ν(v)∆(distN (u)− distN(v)) dz.

Noting that with (7.3) we can bound

|
∫

B

∇(wν(v))∇(distN (u)− distN(v))dz|

≤ C(‖∇w‖L2(B) + ‖w∇v‖L2(B))‖∇(distN (u)− distN(v))‖L2(B)

≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)(‖∇u‖2L4(B) + ‖∇v‖2L4(B))
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and that with (7.2) we have

|
∫

B

wν(v)∆(distN (u)− distN (v)) dz|

≤ C

∫

B

(|w|2|∇u|2 + |w||∇w|(|∇u| + |∇v|)) dz

≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)(‖∇u‖2L4(B) + ‖∇v‖2L4(B))

we find the estimate

|II| ≤ ε‖∇w‖2L2(B) + C(ε)‖w‖2L4(B)(‖∇u‖2L4(B) + ‖∇v‖2L4(B))

for almost every 0 < t < T .
But Sobolev’s embedding H1/2(B) →֒ L4(B) and Fourier expansion give the

bound

‖w‖2L4(B) ≤ C‖w‖2H1/2(B) ≤ C‖w‖2L2(∂B)

and similar bounds for ∇u as well as ∇v. Moreover, since by the energy inequality
(6.2) we have u(t), v(t) → u0 strongly in H1(B) as t ↓ 0, there exist a radius
0 < R ≤ 1/2 and a time 0 < T < T0 such that condition (3.13) in Proposition 3.3
holds true on [0, T ] for both u and v, allowing to bound

∫ T

0

‖∇u(t)‖2L4(B)dt ≤ C

∫ T

0

‖∇u(t)‖2L2(∂B)dt ≤ C

∫ T

0

‖∂φu(t)‖2L2(∂B)dt

≤ C

∫ T

0

∫

∂B

|ut|2dφ dt+ C(R)TE(u0) ≤ C(R)(1 + T0)E(u0)

with the help of (3.7), and similarly for |∇v|. Choosing ε = 1/4, for sufficiently
small 0 < T < T0 by absolute continuity of the integral we thus can estimate

sup
0<t<T

‖w(t)‖2L2(∂B) +

∫ T

0

∫

B

|∇w|2dz dt

≤ 1

2
‖∇w‖2L2(B×[0,T ]) + C sup

0<t<T
‖w(t)‖2L2(∂B)

∫ T

0

(‖∇u‖2L4(B) + ‖∇v‖2L4(B))dt

≤ 1

2

(

sup
0<t<T

‖w(t)‖2L2(∂B) +

∫ T

0

∫

B

|∇w|2dz dt
)

,

and it follows that w = 0, as claimed. �

Proof of Theorem 1.2. Existence for short time and uniqueness of a partially reg-
ular weak solution to (1.3), (1.4) for given data u0 ∈ H1/2(S1;N) follow from
Proposition 6.4 and Theorem 7.1, respectively. Since by Proposition 6.4 our weak
solution is smooth for t > 0, the remaining assertions follow from Theorem 1.1.

Note that at any blow-up time Ti−1, i ≥ 1, of the flow as in Theorem 1.1.ii) there
exists a unique weak limit ui = limt↑Ti−1 u(t) ∈ H1/2(S1;N), and we may uniquely
continue the flow using Proposition 6.4. �

8. Blow-up

Preparing for the proof of part ii) of Theorem 1.1 suppose now that for the
solution constructed in part i) of that theorem there holds T0 < ∞. Then, as we
shall see in more detail below, by the results in Section 4 condition (4.4) must be
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violated for T = T0 and there exist δ > 0 and points zk ∈ B as well as radii rk ↓ 0
as k → ∞ such that for suitable tk ↑ T0 there holds

∫

Brk
(zk)∩B

|∇u(tk)|2dz = sup
z0∈B, t≤tk

∫

Brk
(z0)∩B

|∇u(t)|2dz = δ.

We may later choose a smaller constant δ > 0, if necessary. Moreover, for later use
from now on we consider local concentrations in the sense that for some z0 ∈ B
and some fixed radius r0 > 0 for a sequence of points zk ∈ B with zk → z0 and
radii rk ↓ 0 for suitable tk ↑ T0 as k → ∞ there holds

∫

Brk
(zk)∩B

|∇u(tk)|2dz = sup
z′∈Br0(z0), t≤tk

∫

Brk
(z′)∩B

|∇u(t)|2dz = δ.

Scale
uk(z, t) = u(zk + rkz, tk + rkt)

for
z ∈ Ωk = {z; zk + rkz ∈ B}, t ∈ Ik = {t; 0 ≤ tk + trk < T0}.

Note that then there holds
∫

B1(0)∩Ωk

|∇uk(0)|2dz

= sup
zk+rkz′∈Br0(z0),−tk/rk≤t<0

∫

B1(z′)∩Ωk

|∇uk(t)|2dz = δ.
(8.1)

Passing to a sub-sequence we may assume that the domains Ωk exhaust a limit
domain Ω∞ ⊂ R2, which either is the whole space R2 or a half-space H .

By the energy inequality Lemma 2.1 for t ∈ Ik there holds

(8.2)

∫

Ωk

|∇uk(t)|2dz =

∫

B

|∇u(tk + rkt)|2dz ≤ 2E(u0),

and for any t0 < 0 and sufficiently large k ∈ N we have
∫ 0

t0

∫

∂Ωk

|∂tuk|2ds dt =
∫ 0

t0

∫

∂Ωk

|dπN (uk)∂νkuk|2ds dt

=

∫ tk

tk+rkt0

∫

∂B

|ut|2dφ dt ≤
∫ T0

tk+rkt0

∫

∂B

|ut|2dφ dt → 0

(8.3)

as k → ∞, where ds is the element of length and where νk is the outward unit
normal along ∂Ωk. Expressing the harmonic functions ∂tuk(t) in Fourier series for
each t < 0, it then also follows that ∂tuk → 0 locally in L2 on Ω∞×] − ∞, 0[.
Finally, again using the fact that uk(t) for each t is harmonic, by the maximum
principle we have the uniform bound |uk| ≤ supp∈Γ |p| as well as uniform smooth
bounds locally away from the boundary of Ω∞.

Hence we may assume that as k → ∞ we have uk → u∞ weakly locally in H1

on Ω∞×] −∞, 0[, where u∞(z, t) = u∞(z) is independent of time, harmonic, and
bounded. Moreover, we have smooth convergence away from ∂Ω∞. Thus, if we
assume that Ω∞ = R2 by (8.1) it follows that

∫

B1(0)

|∇u∞|2dz = δ.

But any function v : R2 → R which is bounded and harmonic must be constant,
which rules out this possibility. Hence Ω∞ can only be a half-space.
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After a suitable rotation of the domain B and shift of coordinates in R2 ∼= C we
may then assume that zk = (0,−yk) with 1− yk ≤ Mrk for some M ∈ N and that
Ω∞ = {(x, y); y > y0} for some y0. Finally, replacing rk > 0 with (M + 1)rk and
zk with zk = (0,−1), if necessary, we may assume that Ωk ⊂ R2

+ = {(x, y); y > 0}
is the ball of radius 1/rk around the point (0, 1/rk) with 0 ∈ ∂Ωk, while from (8.1)
with a uniform number L ∈ N we have

(8.4) L

∫

B1(0)∩Ωk

|∇uk(0)|2dz ≥ Lδ ≥ sup
|z′|≤r0/rk,−tk/rk≤t<0

∫

B1(z′)∩Ωk

|∇uk(t)|2dz

for any k ∈ N. Let Φk : R
2
+ → Ωk be the conformal maps given by

Φk(z) =
2z

2− irkz
, z ∈ R2

+, k ∈ N,

with Φk → id locally uniformly on R2 ∼= C as k → ∞.
Let vk = uk ◦ Φk, k ∈ N. By conformal invariance of the Dirichlet energy, from

(8.2) for any t we have

(8.5)

∫

R

2
+

|∇vk(t)|2dz =

∫

Ωk

|∇uk(t)|2dz ≤ 2E(u0),

and by (8.4) with a uniform number L1 ∈ N there holds

(8.6) L1

∫

B+
2 (0)

|∇vk(0)|2dz ≥ L1δ ≥ sup
|z′|≤r0/rk,−tk/rk≤t<0

∫

B+
1 (z′)

|∇vk(t)|2dz,

where B+
r (z) = Br(z)∩R2

+ for any r > 0 and any z = (x, y) ∈ R2. Moreover, from
(8.3) for any t0 < 0 and any R > 0 for the integral over ]− R,R [×{0} ⊂ ∂R2

+ we
obtain

∫ 0

t0

∫ R

−R

|∂tvk|2dx dt

≤ C

∫ 0

t0

∫ R

−R

|dπN (vk)∂yvk|2dx dt → 0 as k → ∞,

(8.7)

and ∂tvk → 0 locally in L2 on R2
+×]−∞, 0[. In addition, from our choice of (uk)

it follows that vk → v∞ weakly locally in H1 on R2
+×] −∞, 0[ as k → ∞, where

v∞(z, t) =: w∞(z) is harmonic and bounded.
For a suitable sequence of times t0 < sk < 0, we then also have locally weak

convergence wk := vk(sk) → w∞ in H1 on R2
+ and, in addition,

(8.8) dπN (wk)∂ywk → 0 in L2
loc(∂R

2
+) as k → ∞.

Thus, for sufficiently small δ > 0 by Proposition 3.3, applied to the functions
wk ◦Ψ, where Ψ: B → R

2
+ is a suitable conformal map, we also have uniform local

L2-bounds for ∂xwk on ∂R2
+, and we may assume that wk → w∞ locally uniformly

and weakly locally in H1 on ∂R2
+ as k → ∞. Since wk is harmonic, we then also

have locally strong H1-convergence wk → w∞ on R2
+.

To see that w∞ is non-constant, let ϕk = ϕz0,4rk , k ∈ N. Integrating the identity
(2.1) from the proof of Lemma 2.2 in time, with error o(1) → 0 and suitable numbers
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εk ↓ 0 as k → ∞ in view of (8.3) we find

1

2

∣

∣

∫

B

|∇u(tk)|2ϕ2
kdz −

∫

B

|∇u(tk + rksk)|2ϕ2
kdz

∣

∣

≤
∫ tk

tk+rksk

∫

∂B

|ut|2ϕ2
kdφ dt+ 2

∫ tk

tk+rksk

∫

B

|ut∇uϕk∇ϕk|dz dt

≤ o(1) + 8εkrk

∫ tk

tk+rksk

∫

B

|∇u|2|∇ϕk|2dz dt

+ (8εkrk)
−1

∫ tk

tk+rksk

∫

B

|ut|2ϕ2
kdz dt.

(8.9)

With the help of (2.2) and (8.3) for suitable εk ↓ 0 we can bound

(8εkrk)
−1

∫ tk

tk+rksk

∫

B

|ut|2ϕ2
kdz dt ≤ Cε−1

k

∫ tk

tk+rksk

∫

∂B

|ut|2dz dt → 0.

Since for any choice t0 < sk < 0 we also can estimate

8εkrk

∫ tk

tk+rksk

∫

B

|∇u|2|∇ϕk|2dz dt ≤ Cεk|t0|E(u0)) → 0,

from (8.9) and (8.6) it follows that with error o(1) → 0 as k → ∞ we have

L1

∫

B+
4 (0)

|∇wk|2dz + o(1) = L1

∫

B+
4 (0)

|∇vk(sk)|2dz + o(1)

≥ L1

∫

B

|∇u(tk + rksk)|2ϕ2
kdz + o(1) ≥ L1

∫

B

|∇u(tk)|2ϕ2
kdz

≥ L1

∫

B+
2 (0)

|∇vk(0)|2dz ≥ L1δ.

(8.10)

Finally, in view of locally uniform convergence wk → w∞ and weak local L2-
convergence of the traces ∇wk → ∇w∞ on ∂R2

+, we may pass to the limit k → ∞
in (8.8) to conclude that

(8.11) dπN (w∞)∂yw∞ = 0 on ∂R2
+.

Since w∞ is harmonic, the Hopf differential

f = |∂xw∞|2 − |∂yw∞|2 − 2i∂xw∞ · ∂yw∞

defines a holomorphic function f ∈ L1(R2
+,C). Moreover, w∞ ∈ H

3/2
loc (R

2
+) with

trace ∇w∞ ∈ L2
loc(∂R

2
+); thus also the trace of f is well-defined on ∂R2

+. By
(8.11) now the trace of f is real-valued; thus f ≡ c for some constant c ∈ R. But
∇w∞ ∈ L2(R2

+); hence f ∈ L1(R2
+). It follows that c = 0, and w∞ is conformal.

With stereographic projection Φ: B → R

2
+ from a point z0 ∈ ∂B define the map

ū = w∞◦Φ ∈ H1/2(S1;N). By conformal invariance, ū again is harmonic with finite
Dirichlet integral and satisfies (1.6) on ∂B \{z0}; since the point {z0} has vanishing
H1-capacity, ū then is stationary in the sense of [21]. Moreover, ū is conformal.
For such mappings, smooth regularity on B̄ was shown by Grüter-Hildebrandt-
Nitsche [21]; thus condition (1.6) holds everywhere on ∂B in the pointwise sense,
and ū parametrizes a minimal surface of finite area supported by N which meets
N orthogonally along its boundary.
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Proof of Theorem 1.1.ii). For given smooth data u0 ∈ H1/2(S1;N) let u be the
unique solution to (1.3), (1.4) guaranteed by part i) of the theorem, and suppose
that the maximal time of existence T0 < ∞. Then condition (4.4) must fail as
t ↑ T0; else from Propositions 4.11 and 4.6 we obtain smooth bounds for u(t) as
t ↑ T0 and there exists a smooth trace u1 = limt↑T0 u(t). But by the first part of
the theorem there is a smooth solution to the initial value problem for (1.3) with
initial data u1 at time T0, and this solution extends the original solution u to an
interval [0, T1[ for some T1 > T0, contradicting maximality of T0.

Let z(i) ∈ B, 1 ≤ i ≤ i0, such that for some number δ > 0 and suitable t
(i)
k ↑ T0,

z
(i)
k → z(i), r

(i)
k → 0 as k → ∞ there holds

lim inf
k→∞

∫

B
r
(i)
k

(z
(i)
k

)∩B

|∇u(t
(i)
k )|2dz ≥ δ.

By the argument following (8.9) thus for a suitable sequence of radii 0 < r
(0)
k → 0

such that r
(i)
k /r

(0)
k → 0 as well as (T0 − t

(i)
k )/r

(0)
k → 0 then with error o(1) → 0 as

k → ∞ there holds
∫

B
r
(0)
k

(z(i))∩B

|∇u(t)|2dz + o(1) ≥
∫

B
r
(i)
k

(z
(i)
k )∩B

|∇u(t
(i)
k )|2dz ≥ δ.

for all T0 − r
(0)
k < t < T0, uniformly in 1 ≤ i ≤ i0. For sufficiently large k ∈ N

such that r
(0)
k < infi<j |z(i) − z(j)|/4 it follows that i0 ≤ E(u0)/δ, and we may fix

r0 > 0 and redefine t
(i)
k , r

(i)
k , and z

(i)
k , if necessary, such that for each 1 ≤ i ≤ i0

there holds
∫

B
r
(i)
k

(z
(i)
k )∩B

|∇u(t
(i)
k )|2dz = sup

z′∈Br0 (z
(i)), 0<t≤t

(i)
k

∫

B
r
(i)
k

(z′)∩B

|∇u(t)|2dz = δ.

Moreover, we may assume that δ < δ0, as defined in Proposition 3.1. The char-
acterization of the concentration points as in Theorem 1.2.ii) via solutions ū(i) of
(1.6) then follows from our above analysis.

In addition, Corollary 3.2 yields the uniform lower bound

lim
r0↓0

lim inf
t↑T

∫

Br0(z
(i))∩B

|∇u(t)|2dz ≥ 2E(ū(i)) ≥ 2δ20

for the concentration energy quanta, which gives the claimed upper bound for the
total number of concentration points.

Finally, with the help of Proposition 4.11 we can smoothly extend the solution
u to B \ {z(1), . . . , z(i0)} at time t = T0. �

9. Asymptotics

Suppose next that the solution u to (1.3), (1.4) exists for all time 0 < t < ∞.
Then u either concentrates for suitable tk ↑ ∞ in the sense that condition (4.4) does
not hold true uniformly in time, or u satisfies uniform smooth bounds, as shown in
Section 4.

In the latter case, the claim made in Theorem 1.1.iii) easily follows.

Proposition 9.1. Suppose that for any δ > 0 there exists R > 0 such that con-
dition (4.4) holds true for all 0 < t < ∞. Then there exists a smooth solution
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u∞ ∈ H1/2(S1;N) of (1.6) such that u(t) → u∞ smoothly as t → ∞ suitably, and
u∞ parametrizes a minimal surface of finite area supported by N which meets N
orthogonally along its boundary.

Proof. For sufficiently small δ > 0, for any j ∈ N by iterative reference to Proposi-
tions 4.2, 4.4 - 4.6, and 4.10, 4.11, respectively, as in Section 6 we can find constants
Cj > 0 such that ‖u(t)‖Hj(B) ≤ Cj for all t > 1, Moreover, by the energy inequality

Lemma 2.1 for a suitable sequence tk → ∞ there holds ut(tk) → 0 in L2(∂B) as
k → ∞. Then for any j ∈ N a subsequence u(tk) → u∞ in Hj(B), and a diagonal
subsequence converges smoothly, where u∞ solves (1.6). By the argument after
(8.11) in Section 8 then u∞ is conformal and u∞ parametrizes a minimal surface
with free boundary on N which meets N orthogonally along its boundary. �

In the remaining case that for some δ > 0 condition (4.4) fails to hold, there exists

a sequence tk ↑ ∞ and points z(1), . . . , z(i0) such that for sequences z
(i)
k → z(i), radii

r
(i)
k → 0 as k → ∞ there holds

lim inf
k→∞

∫

B
r
(i)
k

(z
(i)
k )∩B

|∇u(tk)|2dz ≥ δ, 1 ≤ i ≤ i0.

By Lemma 2.1 there holds the a-priori bound i0 ≤ E(u0)/δ for the number of
concentration points. By the argument leading to (8.10) then for a suitable number
0 < r0 ≤ infi<j |z(i)−z(j)|/4 with error o(1) → 0 as k → ∞ and with some constant
L ∈ N for all 1 ≤ i ≤ i0 there holds

L

∫

B
2r

(i)
k

(z
(i)
k )∩B

|∇u(tk)|2dz + o(1)

≥ sup
z0∈Br0(z

(i)
k

), tk−r0≤t≤tk

∫

B
r
(i)
k

(z0)∩B

|∇u(t)|2dz ≥ δ.

Fixing any index 1 ≤ i ≤ i0 and renaming z
(i)
k =: zk, r

(i)
k =: rk, we then scale

uk(z, t) = u(zk + rkz, tk + rkt), z ∈ Ωk = {z; zk + rkz ∈ B}, −tk/rk ≤ t ≤ 0,

as before and observe that for any t0 < 0 there holds

∫ 0

t0

∫

∂Ωk

|∂tuk|2ds dt =
∫ 0

t0

∫

∂Ωk

|dπN (uk)∂νkuk|2ds dt

=

∫ tk

tk+rkt0

∫

∂B

|ut|2dφ dt ≤
∫ ∞

tk+rkt0

∫

∂B

|ut|2dφ dt → 0

(9.1)

as k → ∞, where νk is the outward unit normal along ∂Ωk. Just as in Section
8 for suitable t0 < sk < 0 we then obtain local uniform and H1-convergence of
a subsequence of the conformally rescaled maps wk = uk(sk) ◦ Φk ∈ H1

loc(R
2
+) to

a smooth, harmonic and conformal limit w∞ with finite energy and continuously
mapping ∂R2

+ to N , inducing a solution ū∞ = w∞ ◦ Φ ∈ H1/2(S1;N) of (1.6)
corresponding to a minimal surface with free boundary on N . This ends the proof
of Theorem 1.1.iii)
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10. Appendix

In this section, for the convenience of the reader we derive two interpolation
inequalities that play a crucial role in our arguments.

Let v ∈ H1(B), and let ϕzi,r as above such that the collection of balls Br(zi),
1 ≤ i ≤ i0 covers B̄ with at most L balls B2r(zi) overlapping at any z ∈ B, with
L ∈ N independent of r > 0. We may assume r < 1/8 so that for any 1 ≤ i ≤ i0
there is a pair of orthogonal vectors e1,i, e2,i such that for any z ∈ Br(zi) there
holds z+ se1,i + te2,i ∈ B for any 0 ≤ s, t ≤ 2r. After a rotation of coordinates, we
may assume that e1,i = (1, 0), e2,i = (0, 1) are the standard basis vectors. Writing
ϕ for ϕzi,r for any z = (x, y) ∈ Br(zi), by arguing as Ladyzhenskaya [26], using
that

(v2ϕ)(x + 2r, y) = 0 = (v2ϕ)(x, y + 2r),

then we can estimate

v4(z) = |(v2ϕ)(z)|2 ≤
∫ 2r

0

|∂x(v2ϕ)(x + s, y)|ds ·
∫ 2r

0

|∂y(v2ϕ)(x, y + t)|dt

≤
∫

{s;(s,y)∈B}

|∂x(v2ϕ)(s, y)|ds ·
∫

{t;(x,t)∈B}

|∂y(v2ϕ)(x, t)|dt,
(10.1)

and with the help of Fubini’s theorem we find
∫

Br(zi)

|v|4dz ≤
∫

B

|v|4ϕ2dz ≤
∫ ∞

−∞

(

∫

{x;(x,y)∈B}

|(v2ϕ)(x, y)|2dx
)

dy

≤
∫ ∞

−∞

∫

{s;(s,y)∈B}

|∂x(v2ϕ)(s, y)|ds dy ·
∫ ∞

−∞

∫

{t;(x,t)∈B}

|∂y(v2ϕ)(x, t)|dt dx

≤
(

∫

B

|∇(v2ϕ)|dz
)2 ≤

(

∫

B

(2|∇v||vϕ|+ v2|∇ϕ|)dz
)2

≤ C
(

∫

B2r(zi)

|∇v|2dz + r−2

∫

B2r(zi)

v2dz
)

∫

B2r(zi)

v2dz.

Fixing r = 1/5 and summing over 1 ≤ i ≤ i0 with an absolute constant C > 0 we
obtain the bound

‖v‖4L4(B) ≤ C‖v‖2H1(B)‖v‖2L2(B)(10.2)

for any v ∈ H1(B).
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Basel, 1999.

[24] Jost, Jürgen: Univalency of harmonic mappings between surfaces, J. Reine Angew. Math.
324 (1981), 141-153.

[25] Jost, J.; Struwe, M.: Morse-Conley theory for minimal surfaces of varying topological type,
Invent. Math. 102 (1990), no. 3, 465-499.

[26] Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow, Second Eng-
lish edition, revised and enlarged Translated from the Russian by Richard A. Silverman and
John Chu, Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers,
New York-London-Paris, 1969.

[27] Lenzmann, Enno; Schikorra, Armin: Sharp commutator estimates via harmonic extensions,
Nonlinear Anal. 193 (2020), 111375, 37 pp.

[28] Mazowiecka, Katarzyna; Schikorra, Armin: Fractional div-curl quantities and applications to

nonlocal geometric equations, J. Funct. Anal. 275 (2018), no. 1, 1-44.
[29] Millot, Vincent; Sire, Yannick: On a fractional Ginzburg-Landau equation and 1/2-harmonic

maps into spheres, Arch. Ration. Mech. Anal. 215 (2015), no. 1, 125-210.
[30] Morse, Marston: Functional topology and abstract variational theory, Ann. of Math. (2) 38

(1937), no. 2, 386-449.
[31] Morse, Marston; Tompkins, C.: The existence of minimal surfaces of general critical types,

Ann. of Math. (2) 40 (1939), no. 2, 443-472.
[32] Moser, Roger: Intrinsic semiharmonic maps, J. Geom. Anal. 21 (2011), no. 3, 588-598.
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