
Mahonian and Euler-Mahonian statistics for

set partitions

Shao-Hua Liu

School of Statistics and Mathematics

Guangdong University of Finance and Economics

Guangzhou, China

Email: liushaohua@gdufe.edu.cn

Abstract. A partition of the set [n] := {1, 2, . . . , n} is a collection of disjoint nonempty

subsets (or blocks) of [n], whose union is [n]. In this paper we consider the following rarely

used representation for set partitions: given a partition of [n] with blocks B1, B2, . . . , Bm

satisfying maxB1 < maxB2 < · · · < maxBm, we represent it by a word w = w1w2 . . . wn

such that i ∈ Bwi , 1 ≤ i ≤ n. We prove that the Mahonian statistics INV, MAJ, MAJd,

r-MAJ, Z, DEN, MAK, MAD are all equidistributed on set partitions via this representation,

and that the Euler-Mahonian statistics (des,MAJ), (mstc, INV), (exc,DEN), (des,MAK) are all

equidistributed on set partitions via this representation.
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1. Introduction

1.1. Mahonian and Euler-Mahonian statistics

We use the notation M = {1k1 , 2k2 , . . . ,mkm} for the multiset M consisting of ki copies of i,

for all i ∈ [m] := {1, 2, . . . ,m}. Let n = k1 + k2 + · · ·+ km, we write |M | = n and 〈M〉 = m.

Throughout this paper, we always assume that M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all

i ∈ [m] and that |M | = n. Let SM be the set of multipermutations of multiset M .

Given w = w1w2 . . . wn ∈ SM , a pair (i, j) is called an inversion of w if i < j and wi > wj.

Let INV(w) be the number of inversions of w. An index i, 1 ≤ i ≤ n− 1, is called a descent of

w if wi > wi+1. Let Des(w) be the set of all descents of w, and let des(w) := |Des(w)|, where

| · | indicates cardinality. Define the major index of w, denoted MAJ(w), to be

MAJ(w) =
∑

i∈Des(w)

i.
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Name Reference Year
INV Rodriguez [35] 1839
MAJ MacMahon [29] 1916
r-MAJ Rawlings [32] (for permutations) 1981

Rawlings [33] (for words) 1981
MAJd Kadell [25] 1985
Z Zeilberger-Bressoud [39] 1985
DEN Denert [12], Foata-Zeilberger [15] (for permutations) 1990

Han [22] (for words) 1994
MAK Foata-Zeilberger [15] (for permutations) 1990

Clarke-Steingŕımsson-Zeng [11] (for words) 1997
MAD Clarke-Steingŕımsson-Zeng [11] 1997
STAT Babson-Steingŕımsson [2] (for permutations) 2000

Kitaev-Vajnovszki [26] (for words) 2016

Table 1. Mahonian statistics on words.

Name Reference Year
(des,MAJ) MacMahon [29] 1916
(exc,DEN) Denert [12], Foata-Zeilberger [15] (for permutations) 1990

Han [22] (for words) 1994
(des,MAK) Foata-Zeilberger [15] (for permutations) 1990

Clarke-Steingŕımsson-Zeng [11] (for words) 1997
(mstc, INV) Skandera [37] (for permutations) 2001

Carnevale [4] (for words) 2017

Table 2. Euler-Mahonian statistics on words.

MacMahon’s equidistribution theorem asserts that for any multiset M ,∑
w∈SM

qINV(w) =
∑
w∈SM

qMAJ(w).

In other words, the statistics INV and MAJ are equidistributed on SM . This famous result was

obtained by MacMahon [29] in 1916. It was not until 1968 that a famous bijective proof was

found by Foata [14].

Any statistic that is equidistributed with des is said to be Eulerian, while any statistic

equidistributed with MAJ is said to be Mahonian. A bivariate statistic that is equidistributed

with (des, MAJ) is said to be Euler-Mahonian. Following [11], we will write Mahonian statistics

with capital letters. Tables 1 and 2 list the most common Mahonian and Euler-Mahonian

statistics on words in the literature respectively.

There are many research articles devoted to finding MacMahon type results for other

combinatorial objects. For example, see [10] for 01-fillings of moon polyominoes, [18] for

standard Young tableaux, [34] for ordered set partitions, [28] for k-Stirling permutations. In

this paper we consider set partitions.
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1 2 3 4 5 6 7 8 9

Fig. 1. The standard representation of {{1, 3, 5, 7}, {2, 6}, {4}, {8, 9}}.

1.2. Set partitions

A partition of the set [n] = {1, 2, . . . , n} is a collection of disjoint nonempty subsets (or blocks)

of [n], whose union is [n]. For example, {{1, 3, 5, 7}, {2, 6}, {4}, {8, 9}} is a partition of [9].

We denote by Πn the set of all partitions of [n], and by Πn,m the set of all partitions of [n]

with exactly m blocks. There are several well-known representations for set partitions, and

each of them has its aim value and its result. In the following, we provide three most common

representations.

Given a partition of [n], the graph on the vertex set [n] whose edge set consists of the arcs

connecting the elements of each block in numerical order is called the standard representation.

For example, the standard representation of {{1, 3, 5, 7}, {2, 6}, {4}, {8, 9}} has the arc set

{(1, 3), (3, 5), (5, 7), (2, 6), (8, 9)}; see Fig. 1. Using the standard representation, Chen, Gessel,

Yan and Yang [9] introduced a major index statistic and then obtained a MacMahon type

result for set partitions.

Given a partition of [n], write it as B1/B2/ · · · /Bm, where B1, B2, . . . , Bm are the blocks

and satisfy the following order property

minB1 < minB2 < · · · < minBm.

This representation is called the block representation. For example, the block representation

of {{4}, {2, 6}, {8, 9}, {1, 3, 5, 7}} is {1, 3, 5, 7}/{2, 6}/{4}/{8, 9}. From the historical point of

view, the set partitions are defined by block representation. Using the block representation,

Sagan [36] introduced a major index statistic and then obtained a MacMahon type result for

set partitions.

Given a partition w of [n] with blocks B1, B2, · · · , Bm, where

minB1 < minB2 < · · · < minBm,

we write w = w1w2 . . . wn, where wi is the block number in which i appears, that is, i ∈ Bwi .

This representation is called the canonical representation. For example, the canonical repre-

sentation of {{1, 3, 5, 7}, {2, 6}, {4}, {8, 9}} is 121312144. The canonical representation is one

of the most popular representations in the theory of set partitions. Many statistics, especially

the pattern-based statistics, on set partitions are defined via canonical representation, see,

e.g., the book [30] for more information.
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In this paper, we consider the following rarely used representation for set partitions: given

a partition w of [n] with blocks B1, B2, . . . , Bm, where

maxB1 < maxB2 < · · · < maxBm,

we write w = w1w2 . . . wn, where wi is the block number in which i appears, that is, i ∈ Bwi .

Note that the only difference between this representation and canonical representation is that

here we use the ordering according to the maximal element of the blocks. This representation

was also considered by Johnson [23, 24] and Deodhar-Srinivasan [13]. In this paper we prove

that the Mahonian statistics on words in Table 1, except for STAT, are all equidistributed

on set partitions via this representation, and that the Euler-Mahonian statistics on words in

Table 2 are all equidistributed on set partitions via this representation. For this reason, we call

this representation the Mahonian representation for set partitions. We will state formally the

main results of this paper in the next section, and will prove them in the remaining sections.

2. Main results

2.1. Definitions and the main results

Given w = w1w2 . . . wn ∈ SM , define the tail permutation of w to be the subword wt1wt2 . . . wtm
of w, where t1 < t2 < . . . < tm, so that wti is the last (rightmost) occurrence of that letter

for any i ∈ [m]. For example, the tail permutation of 331322112441 is 3241. Clearly the tail

permutation of w ∈ SM is a permutation of [m] (recall that we always assume that 〈M〉 = m).

Let Sτ
M be the set of words in SM with tail permutation τ . In particular, let PM be the

set of words in SM with increasing tail permutation, that is, PM = Sτ
M , where τ = 12 · · ·m.

Thus, PM is the set of words in SM in which the last occurrences of 1, 2, . . . ,m occur in

that order. For example, let M = {12, 22}, then SM = {1122, 1212, 1221, 2112, 2121, 2211},
S21
M = {1221, 2121, 2211}, and PM = S12

M = {1122, 1212, 2112}.

Let w be a partition of [n] with blocks B1, B2, . . . , Bm, where

maxB1 < maxB2 < · · · < maxBm,

if |Bi| = ki, 1 ≤ i ≤ m, we say that w is of type (k1, k2, . . . , km). It is obvious that PM is the

set of the partitions of [n] of type (k1, k2, . . . , km) via Mahonian representation. Throughout

this paper we always use the Mahonian representation to represent a set partition, that is, we

always think of a set partition as an element in PM for some M . Then

Πn =
⋃
|M |=n

PM and Πn,m =
⋃

|M |=n,〈M〉=m

PM .
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The main results of this paper can be summarized as the following three theorems.

Theorem 2.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], then∑
w∈PM

qINV(w) =
∑
w∈PM

qMAJ(w) =
∑
w∈PM

qMAJd(w) =
∑
w∈PM

qZ(w)

=
∑
w∈PM

qr-MAJ(w) =
∑
w∈PM

qDEN(w) =
∑
w∈PM

qMAK(w) =
∑
w∈PM

qMAD(w).
(2.1)

Note that (2.1) shows that the Mahonian statistics on words in Table 1, except for STAT, are

all equidistributed on set partitions of given type via Mahonian representation. The following

theorem shows that the Euler-Mahonian statistics on words in Table 2 are all equidistributed

on set partitions of given type via Mahonian representation.

Theorem 2.2. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], then∑
w∈PM

tdes(w)qMAJ(w) =
∑
w∈PM

tmstc(w)qINV(w) =
∑
w∈PM

texc(w)qDEN(w) =
∑
w∈PM

tdes(w)qMAK(w).

A permutation τ = τ1τ2 . . . τm of [m] is said to be consecutive if {τ1, τ2, . . . , τi} forms a set

of consecutive numbers for all i ∈ [m]. For example, τ = 54362718 is consecutive, whereas

τ = 54236718 is not. In particular, the increasing permutation τ = 12 . . .m is consecutive.

Throughout this paper we always assume that τ is a consecutive permutation. For the statistics

INV, MAJ, MAJd, Z, we prove the following more general result.

Theorem 2.3. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], and let τ be a

consecutive permutation of [m], then∑
w∈SτM

qINV(w) =
∑
w∈SτM

qMAJ(w) =
∑
w∈SτM

qMAJd(w) =
∑
w∈SτM

qZ(w). (2.2)

Setting τ = 12 . . .m in (2.2) gives the top row of (2.1).

Remark 2.1. Small examples show that none of r-MAJ, DEN, MAK and MAD is equidistributed

with INV (or MAJ, MAJd, Z) on Sτ
M for consecutive τ in general.

Remark 2.2. Small examples show that any two of (des,MAJ), (mstc, INV), (exc,DEN) and

(des,MAK) are not equidistributed on Sτ
M for consecutive τ in general.

To conclude this subsection, we give an example. Table 3 gives the distributions of the
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P{1,1,2,2,3,3} INV MAJ MAJ2 Z 2-MAJ DEN MAK MAD STAT

112233 0 0 0 0 0 0 0 0 0
112323 1 4 1 2 1 4 4 1 3
113223 2 3 4 1 2 3 3 2 4
121233 1 2 1 2 1 2 2 1 5
121323 2 6 2 4 2 6 6 2 8
123123 3 3 6 6 5 5 3 4 4
131223 3 2 3 3 4 2 2 3 5
132123 4 5 4 5 3 3 5 3 9
211233 2 1 2 1 2 1 1 2 4
211323 3 5 3 3 3 5 5 3 7
213123 4 4 5 5 6 4 4 6 8
231123 5 2 4 4 5 3 2 5 3
311223 4 1 2 2 3 1 1 4 2
312123 5 4 3 4 4 2 3 5 6
321123 6 3 5 3 4 4 4 4 7

Table 3. The distributions of the statistics INV, MAJ, MAJ2, Z, 2-MAJ, DEN, MAK, MAD, STAT on
P{1,1,2,2,3,3}.

statistics INV, MAJ, MAJ2, Z, 2-MAJ, DEN, MAK, MAD, STAT on P{1,1,2,2,3,3}. We see that∑
w∈P{1,1,2,2,3,3}

qSTAT(w) = 1 + q2 + 2q3 + 3q4 + 2q5 + q6 + 2q7 + 2q8 + q9,

∑
w∈P{1,1,2,2,3,3}

qS(w) = 1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6,

where S is any of INV, MAJ, MAJ2, Z, 2-MAJ, DEN, MAK, MAD.

2.2. q-Stirling numbers of the second kind

A q-analog of a mathematical object is an object depending on the variable q that reduces to

the original object when we set q = 1. Let

[n]q = 1 + q + q2 + · · ·+ qn−1, [n]q! = [1]q[2]q . . . [n]q,

(
n

i

)
q

=
[n]q!

[i]q![n− i]q!
.

Then [n]q, [n]q! and
(
n
i

)
q

are the q-analogs of n, n! and
(
n
i

)
respectively.

It is well-known that the total number of partitions of [n] is the Bell number B(n), and

that the number of partitions of [n] with exactly m blocks is the Stirling number of the second

kind S(n,m). That is,

|Πn| = B(n), |Πn,m| = S(n,m).
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There are two recursions for S(n,m):

S(n,m) = S(n− 1,m− 1) +mS(n− 1,m), S(0,m) = δ0,m, (2.3)

and

S(n+ 1,m) =
n∑
i=0

(
n

i

)
S(n− i,m− 1), S(0,m) = δ0,m, (2.4)

where δn,m is the Kronecker delta, defined by δn,m = 1 if n = m, and δn,m = 0 otherwise.

Considering the q-analogs of the above two recursions leads to two different kinds of q-Stirling

numbers of the second kind.

Carlitz’s q-Stirling numbers of the second kind, denoted Sq(n,m), are defined by the fol-

lowing recursion

Sq(n,m) = Sq(n− 1,m− 1) + [m]qSq(n− 1,m), Sq(0,m) = δ0,m,

which is a q-analog of (2.3). These polynomials were first studied by Carlitz [5, 6] and then

Gould [16]. Milne [31] introduced an inversion statistic, here we denote inv, for set partitions

via canonical representation, and he proved

Sq(n,m) =
∑

w∈Πn,m

qinv(w).

Sagan [36] introduced a major index statistic, here we denote maj, for set partitions via block

representation, and he proved

Sq(n,m) =
∑

w∈Πn,m

qmaj(w).

Johnson’s q-Stirling numbers of the second kind, denoted
{
n

m

}
q

, are defined by the following

recursion {
n+ 1

m

}
q

=
n∑
i=0

(
n

i

)
q

{
n− i
m− 1

}
q

,

{
0

m

}
q

= δ0,m,

which is a q-analog of (2.4). These polynomials were first studied by Johnson [24]. As pointed

out by Johnson [24],
{
n

m

}
q

is different from Sq(n,m). Johnson [24] proved

{
n

m

}
q

=
∑

w∈Πn,m

qINV(w),

where w uses the Mahonian representation. Combining Johnson’s result with Theorem 2.1,
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we have the following corollary.

Corollary 2.1. Using the Mahonian representation, we have{
n

m

}
q

=
∑

w∈Πn,m

qS(w),

where S is any of INV, MAJ, MAJd, r-MAJ, Z, DEN, MAK, MAD.

2.3. Structure of the paper

This paper is organized as follows. In Sections 3, 4 and 5, we establish the equidistributions

of INV and MAJ, INV and MAJd, MAJ and Z on Sτ
M for consecutive τ , respectively. In Section

6, we establish the equidistribution of the bi-statistics (mstc, INV) and (des,MAJ) on PM . In

Section 7, we establish the equidistribution of INV and r-MAJ on PM . In Section 8, we establish

the equidistribution of the bi-statistics (des,MAJ) and (exc,DEN) on PM . In Section 9, we

establish the equidistribution of the triple statistics (des, MAK, MAD) and (exc, DEN, INV) on

PM . Combining these results we obtain Theorems 2.1, 2.2 and 2.3.

3. Equidistribution of INV and MAJ on Sτ
M

The equidistribution of INV and MAJ was proved bijectively for the first time by Foata [14].

We denote this famous bijection by F . The goal of this section is to prove that the classical

statistics INV and MAJ are equidistributed on Sτ
M for consecutive τ . We will show this by

proving that Foata’s bijection F preserves the consecutive tail permutation. We first give a

brief description of F .

Given a word w = w1w2 . . . wn and a letter x. We first define an operator Jx on w. If

wn ≤ x, write w = u1b1u2b2 . . . usbs, where each bi is a letter less than or equal to x, and each

ui is a word (possibly empty), all of whose letters are greater than x. Similarly, if wn > x,

write w = u1b1u2b2 . . . usbs, where each bi is a letter greater than x, and each ui is a word

(possibly empty), all of whose letters less than or equal to x. In each case we define the

operator Jx on w to be

Jx(w) = b1u1b2u2 . . . bsus.

We call the letters b1, b2, . . . , bs the jumping letters, the remaining letters the fixed letters. The

following property for the operator Jx is crucial

INV(Jx(w)x)− INV(w) =

{
n, if wn > x,

0, if wn ≤ x.

8



Given w = w1w2 . . . wn. Define γ1 = w1, and γi+1 = Jwi+1
(γi)wi+1 for 1 ≤ i ≤ n − 1. Finally

set F (w) = γn.

Theorem 3.1 (Foata [14]). F : SM → SM is a bijection satisfying

MAJ(w) = INV(F (w))

for all w ∈ SM .

Example 3.1. Let w = 211323, it is not hard to see that MAJ(w) = 5. We give the procedure

for creating F (w):

γ1 = 2,

γ2 = J1(2)1 = 21,

γ3 = J1(21)1 = 121,

γ4 = J3(121)3 = 1213,

γ5 = J2(1213)2 = 31212,

γ6 = J3(31212)3 = 312123 = F (w).

Note that INV(F (w)) = 5.

The following result shows that Foata’s bijection preserves the consecutive tail permutation.

Proposition 3.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], and let τ be a

consecutive permutation of [m]. Then the set Sτ
M is invariant under Foata’s bijection, that is

F (Sτ
M) = Sτ

M .

Proof. To prove F (Sτ
M) = Sτ

M , it suffices to show that F (w) ∈ Sτ
M for all w ∈ Sτ

M , because

F is a bijection. Suppose that τ = τ1τ2 . . . τm.

Given a word with some letters overlined, we call the subword consisting of the overlined

letters the overlined subword. For example, the overlined subword of 331322112441 is 3241.

Given w = w1w2 . . . wn ∈ Sτ
M , we overline the last occurrences of the letters 1, 2, . . . ,m.

Thus, the overlined subword of w is τ1τ2 . . . τm as w ∈ Sτ
M . Note that γi is a word with some

letters overlined for 1 ≤ i ≤ n, because γi is a rearrangement of w1w2 . . . wi. We claim that

for any i, 1 ≤ i ≤ n, we have

(i) the overlined subword of γi is the same as the overlined subword of w1w2 . . . wi.

(ii) each overlined letter of γi is the last occurrence of that letter in γi.

9



We use induction on i to prove our claim. The initial case of i = 1 is obvious. Assume that

our claim is true for i and prove it for i+ 1, where 1 ≤ i ≤ n− 1. Suppose that the overlined

subword of w1w2 . . . wi is τ1τ2 . . . τs. For 1 ≤ k ≤ s, because τ k, which is the last occurrence

of τk in w, appears in w1w2 . . . wi, we have that wi+1 /∈ {τ1, τ2, . . . , τs}.

Below we assume that γi = c1c2 . . . ci. (This will simplify the description of the proof of

Proposition 4.1 in the next section although it is not necessary.)

(A) We first prove (i) for i+ 1. By the induction hypothesis, the overlined subword of γi is

τ1τ2 . . . τs. Since {τ1, τ2, . . . , τs} is a set of consecutive numbers and wi+1 /∈ {τ1, τ2, . . . , τs}, we

see that either all of τ1, τ2, . . . , τs are greater than wi+1, or all of them are smaller than wi+1.

It follows that either all of the overlined letters of γi are greater than wi+1, or all of them are

smaller than wi+1. Then either all of the overlined letters of c1c2 . . . ci are jumping letters, or

all of them are fixed letters. Combining this with the definition of the operator Jwi+1
, we can

see that the operator Jwi+1
dose not change the overlined subword of c1c2 . . . ci. Then by the

definition of γi+1, we have that the overlined subword of γi+1 is the same as overlined subword

of w1w2 . . . wiwi+1, this completes the proof of (i).

(B) We now prove (ii) for i+ 1. For 1 ≤ k ≤ s, by the induction hypothesis we see that τ k

is the last occurrence of the letter τk in γi. It is not hard to see that either all the occurrences

of τk in c1c2 . . . ci are jumping letters, or all of them are fixed letters. Combining this with

the fact that wi+1 /∈ {τ1, τ2, . . . , τs}, we obtain that τ k is the last occurrence of the letter τk

in γi+1, 1 ≤ k ≤ s. If wi+1 is not overlined, we complete the proof of (ii) for i + 1. If wi+1 is

overlined, it must be the last occurrence of that letter in γi+1, we also complete the proof of

(ii) for i+ 1.

By (i) of our claim, the overlined subword of γn = F (w) is τ1τ2 . . . τm. By (ii) of our claim,

the tail permutation of F (w) is τ1τ2 . . . τm. So F (w) ∈ Sτ
M , completing the proof.

Remark 3.1. It is not hard to prove that if τ is a consecutive permutation of [m], then

F (τ) = τ . (This can also be deduced by a theorem of Björner and Wachs [3, Theorem 4.2].

Also see [8].) Proposition 3.1 can be viewed a generalization of this result to words, because

Proposition 3.1 gives the above result when we set M = {1, 2, . . . ,m}.

By Theorem 3.1 and Proposition 3.1 we obtain the equidistribution of INV and MAJ on

Sτ
M for consecutive τ , and we achieve the goal of this section.
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4. Equidistribution of INV and MAJd on Sτ
M

Given w = w1w2 . . . wn ∈ SM , let d be a positive integer, define

MAJd(w) = invd(w) +
∑

wi>wi+d

i,

where

invd(w) = |{(i, j) : i < j < i+ d, wi > wj}|.

It is not hard to see that MAJ1 = MAJ and MAJn = INV, thus the family of MAJd interpolates

between MAJ and INV. The statistic MAJd was introduced by Kadell [25], who gave a bijective

proof that this statistic is Mahonian. Kadell’s bijection takes INV to MAJd, with the extreme

case taking INV to MAJ corresponding precisely to the inverse of Foata’s bijection. Assaf [1]

exhibited a different family of bijections, taking MAJd−1 to MAJd. In his Ph.D. thesis [27], Liang

gave a bijection Fd that takes MAJd to INV (the author independently found this bijection,

and later discovered the Ph.D. thesis of Liang [27]). The bijection Fd is a natural extension

of Foata’s bijection and is the inverse of Kadell’s bijection.

We now describe the bijection Fd. Given w = w1w2 . . . wn ∈ SM . We will define words

γ1, γ2, . . . , γn, where γi is a rearrangement of w1w2 . . . wi. First define γi = w1w2 . . . wi for

1 ≤ i ≤ d. Assume that γi = c1c2 . . . ci has been defined for some d ≤ i ≤ n− 1. Then define

γi+1 = Jwi+1
(c1c2 . . . ci−d+1)ci−d+2ci−d+3 . . . ciwi+1. (4.5)

Finally, set Fd(w) = γn. When d = 1, we have γi+1 = Jwi+1
(γi)wi+1. Thus Fd reduces to

Foata’s bijection F when d = 1. We have the following theorem.

Theorem 4.1 (Liang [27]). Fd : SM → SM is a bijection satisfying

MAJd(w) = INV(Fd(w))

for all w ∈ SM .

Example 4.1. Let w = 213123 and d = 2, it is not hard to see that MAJ2(w) = 5. We give

11



the procedure for creating F2(w):

γ1 = 2,

γ2 = 21,

γ3 = J3(2)13 = 213,

γ4 = J1(21)31 = 1231,

γ5 = J2(123)12 = 31212,

γ6 = J3(3121)23 = 312123 = F2(w).

Note that INV(F2(w)) = 5.

The following proposition shows that Fd preserves the consecutive tail permutation, which

is a generalization of Proposition 3.1.

Proposition 4.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], and let τ be a

consecutive permutation of [m], then Sτ
M is invariant under Fd, that is,

Fd(S
τ
M) = Sτ

M .

Replacing each c1c2 . . . ci by c1c2 . . . ci+d−1 in the paragraphs (A) and (B) of the proof of

Proposition 3.1 gives the proof of Proposition 4.1.

By Theorem 4.1 and Proposition 4.1, we obtain the equidistribution of INV and MAJd on

Sτ
M for consecutive τ , and we achieve the goal of this section.

5. Equidistribution of MAJ and Z on Sτ
M

Given a word w = w1w2 . . . wn, the z-index of w, denoted by Z(w), is defined by

Z(w) =
∑
i<j

MAJ(wij),

where wij is a word obtained from w by deleting all elements except i and j. For example, let

w = 312432314,

w12 = 1221, w13 = 31331, w14 = 1414, w23 = 32323, w24 = 2424, w34 = 34334,

then

Z(w) =
∑
i<j

MAJ(wij) = 18.

12



Zeilberger and Bressoud [39] proved Z is Mahonian by induction. Greene [17] presented a

combinatorial proof. Han [21] gave another combinatorial proof by exhibiting a Foata-style

bijection, which we will denote as HZ. The goal of this section is to establish the equidistri-

bution of the statistics MAJ and Z on Sτ
M for consecutive τ by proving that Han’s bijection

HZ preserves the consecutive tail permutation.

Before stating the bijection HZ, we need some notions, see [21]. Recall that, throughout

this paper we let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i. In this section, we let m be a

fixed number and let m = (k1, k2, . . . , km) := {1k1 , 2k2 , . . . ,mkm} with ki ≥ 0 for all i. That

is, for the multiset M we assume that ki ≥ 1 and for the multiset m we assume that ki ≥ 0.

Let w = x1x2 . . . xn ∈ Sm and let x be a positive integer, define

Cx(w) = y1y2 . . . yn, where yi = Cx(xi) :=

{
xi − x, if xi > x,

xi − x+m, if xi ≤ x,

and

Cx(w) = z1z2 . . . zn, where zi = Cx(xi) :=


xi, if xi < x,

xi − 1, if xi > x,

m, if xi = x.

Note that Cx(w) ∈ Smx and Cx(w) ∈ Smx , where

mx = (kx+1, kx+2, . . . , km, k1, k2, . . . , kx−1, kx), (5.6)

mx = (k1, k2, . . . , kx−1, kx+1, kx+2, . . . , km, kx). (5.7)

Let us recall the construction of a bijection θm,m′ : Sm → Sm′ , fixing the statistic MAJ. It

is enough to give this construction when m and m′ differ only by two consecutive letters, say

i and i+ 1, that is the bijection

θi : Sm → Sm′ , where m = (k1, . . . , ki, ki+1, . . . , km),m′ = (k1, . . . , ki+1, ki, . . . , km).

We do it as follows: let w ∈ Sm. We replace all the (i + 1)i factors of this word with

a special letter “∼”. In the word thus obtained, the maximum factors containing the two

letters i and i + 1 have the form ia(i + 1)b (a ≥ 0, b ≥ 0). We then change these factors to

ib(i+ 1)a and replace each “∼” by (i+ 1)i, to obtain the word θi(w) ∈ Sm′ . For example, let

13



w = 1112111222215622 and i = 1, we have

w = 111 21 11222 21 5622

7→ 111 ∼ 11222 ∼ 5622

7→ 222 ∼ 11122 ∼ 5611

7→ 222 21 11122 21 5611 = θ1(w).

Note that Des(w) = Des(θi(w)) and thus θi fixes the statistic MAJ.

The bijection HZ is defined, for any word w ∈ Sm and any letter x, by the following

composition:

HZ(wx) =
(
C−1
x ◦HZ ◦ θmx,mx ◦ Cx(w)

)
x.

Theorem 5.1 (Han [21]). HZ is a bijection satisfying

MAJ(w) = Z(HZ(w))

for any w ∈ Sm.

The main result of this section is the following proposition, which implies the equidistri-

bution of the statistics MAJ and Z on Sτ
M for consecutive τ .

Proposition 5.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], and let τ be a

consecutive permutation of [m], the set Sτ
M is invariant under Han’s bijection HZ, that is

HZ(Sτ
M) = Sτ

M .

In the rest of this section, we prove this proposition. As we will see, this is a somewhat

more difficult task. We first give some notations and lemmas.

For any j ≥ 0, we denote

θj! = θj ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0, where θ0 = id.

Let S be a set, we denote S−1 := {s−1 : s ∈ S}. In general, we denote S−i := {s−i : s ∈ S}.

Lemma 5.1. Given w = w1w2 . . . wn ∈ Sm, assume that θ(m−2)!(w) = c1c2 . . . cn. Let i ∈ [n],

if wi = m, then ci = m; if wi < m, then ci ∈ Ri − 1, where Ri = {wi−1, wi, . . . , wn,m}, and

we assume that w0 = m.

Proof. Let

θj!(w) = w
(j)
1 w

(j)
2 . . . w(j)

n ,
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for 0 ≤ j ≤ m − 2. So wi = w
(0)
i and ci = w

(m−2)
i , 1 ≤ i ≤ n. Let w

(j)
0 = w

(j)
n+1 = m for all j.

Given an index i ∈ [n], we assume that wi = a. Obviously,

w
(0)
i = w

(1)
i = w

(2)
i = · · · = w

(a−2)
i = a.

Then when wi = a = m, we have ci = w
(m−2)
i = m. Below we assume that wi = a < m. Then

a− 1 ≤ m− 2. Consider the word θ(a−1)!(w). If a > 1 and w
(a−1)
i = a− 1, then

w
(a)
i = w

(a+1)
i = · · · = w

(m−2)
i = a− 1.

So ci = w
(m−2)
i = a− 1 = wi− 1 ∈ Ri− 1. Below we assume that w

(a−1)
i 6= a− 1, so w

(a−1)
i = a

(including the case of a = 1). Assume that w
(a−1)
i−1 = p, and that

w
(a−1)
i = w

(a−1)
i+1 = · · · = w

(a−1)
j−1 = a, and w

(a−1)
j = q 6= a,

where 1 ≤ i < j ≤ n+ 1. The above assumption means that

w
(a−1)
i−1 w

(a−1)
i w

(a−1)
i+1 . . . w

(a−1)
j−1 w

(a−1)
j = paa . . . aq, a 6= q.

We distinguish two cases.

Case 1: p ≤ a. We further distinguish two subcases.

Subcase 1.1: a > q. It is not hard to see that

w
(a)
i = a+ 1, w

(a+1)
i = a+ 2, . . . , w

(m−2)
i = m− 1.

Then ci = w
(m−2)
i = m− 1 ∈ Ri − 1.

Subcase 1.2: a < q. Since w
(a−1)
j = q > a, we have wj = q. It is not hard to see that

w
(a)
i w

(a)
i+1 . . . w

(a)
j−1w

(a)
j = (a+ 1)(a+ 1) . . . (a+ 1)q,

w
(a+1)
i w

(a+1)
i+1 . . . w

(a+1)
j−1 w

(a+1)
j = (a+ 2)(a+ 2) . . . (a+ 2)q,

...

w
(q−2)
i w

(q−2)
i+1 . . . w

(q−2)
j−1 w

(q−2)
j = (q − 1)(q − 1) . . . (q − 1)q.

If q = m, then ci = w
(m−2)
i = w

(q−2)
i = m − 1 ∈ Ri − 1. If q < m, then q − 1 ≤ m − 2.

Since w
(q−2)
i = q − 1, then w

(q−1)
i is either q − 1 or q. If w

(q−1)
i = q − 1, then

w
(q)
i = w

(q+1)
i = · · · = w

(m−2)
i = q − 1.
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We have ci = w
(m−2)
i = q − 1 = wj − 1 ∈ Ri − 1. If w

(q−1)
i = q. Clearly,

w
(q−1)
i w

(q−1)
i+1 . . . w

(q−1)
j−1 w

(q−1)
j = qq . . . q.

We now assume that

w
(q−1)
i−1 w

(q−1)
i w

(q−1)
i+1 . . . w

(q−1)
k = sqq . . . qr, q 6= r,

where 1 ≤ i < j < k ≤ n+ 1. As p ≤ a, i.e., w
(a−1)
i−1 ≤ w

(a−1)
i , and θl fixes the decent set

for all l, we have s ≤ q. Then we return to Case 1 and we can give the proof inductively.

Case 2: p > a. We further consider two subcases.

Subcase 2.1: a > q. Since w
(a−1)
i−1 = p > a, we see that wi−1 = p. It is clear that

w
(a)
i = a+ 1, w

(a+1)
i = a+ 2, . . . , w

(p−2)
i = w

(p−1)
i = · · · = w

(m−2)
i = p− 1.

Then ci = w
(m−2)
i = p− 1 = wi−1 − 1 ∈ Ri − 1.

Subcase 2.2: a < q. Combining the arguments of Subcase 1.2 and Subcase 2.1

gives the proof.

We complete the proof.

Given a word w = w1w2 . . . wn and a set A, if w∩A 6= ∅, that is {w1, w2, . . . , wn}∩A 6= ∅, we

denote by LastA(w) the rightmost letter in w that belongs to A. Obvious that LastA(w) ∈ A.

For example, let A = {2, 3, 5}, then LastA(123453441) = 3 and LastA(123435441) = 5.

Lemma 5.2. Given a set A with 1 < min(A) ≤ max(A) < m. Let w ∈ Sm, if w ∩ A 6= ∅,
then

LastA−1

(
θ(m−2)!(w)

)
= LastA(w)− 1.

Proof. Assume that w = w1w2 . . . wn and θ(m−2)!(w) = c1c2 . . . cn. Let B = [m+1]−A, clearly

(B − 1) ∩ (A − 1) = ∅. Since max(A) < m, we have m,m + 1 ∈ B. Let wp be the rightmost

letter in w that belongs to A. Assume that wp = a. Since a ∈ A, we have 2 ≤ a ≤ m− 1. It

is clear that LastA(w) = wp = a ∈ A and wp+1, wp+2, . . . , wn ∈ B. Then

E := {wp+1, wp+2, . . . , wn,m,m+ 1} ⊆ B.

Given an index i with p+ 2 ≤ i ≤ n, by Lemma 5.1 we have

ci ∈ {wi−1 − 1, wi − 1, . . . , wn − 1,m− 1,m} ⊆ E − 1 ⊆ B − 1. (5.8)
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For i = p+ 1, by Lemma 5.1 we have

cp+1 ∈ {wp − 1} ∪ (E − 1) ⊆ {a− 1} ∪ (B − 1). (5.9)

Since (B − 1) ∩ (A− 1) = ∅, by (5.9) and (5.8) we have

cp+1 = a− 1 ∈ A− 1 or cp+1 /∈ A− 1, (5.10)

cp+2, cp+3, . . . , cn /∈ A− 1. (5.11)

Assume that θ(a−2)!(w) = e = e1e2 . . . en (note that a ≥ 2). Clearly ep = wp = a. We now

apply the operator θa−1 to e. If ep becomes a− 1, since a− 1 is unchanged after we apply the

operator θm−2 ◦ · · · ◦ θa+1 ◦ θa, then cp = a− 1, combining this with (5.10) and (5.11) we get

LastA−1 (c1c2 . . . cn) = a− 1 = wp − 1 = LastA(w)− 1,

we complete the proof for this case. Below we assume that ep is unchanged after we apply the

operator θa−1 to e. We consider two cases.

Case 1: epep+1 = a(a − 1). It is clear that ep+1 is unchanged after we apply the operator

θm−2 ◦ · · · ◦ θa ◦ θa−1 to e. Therefore, cp+1 = a− 1. Combining this with (5.11), we have

LastA−1 (c1c2 . . . cn) = cp+1 = a− 1 = wp − 1 = LastA(w)− 1.

Case 2: ep+1 6= a−1. Let θa−1(e) = θ(a−1)!(w) = h = h1h2 . . . hn. By our assumption that ep is

unchanged after we apply the operator θa−1 to e, we have hp = ep = a. Because hp = ep = a,

there must be an index q with q < p such that eqeq+1 . . . ep = (a − 1) . . . (a − 1)a . . . a,

and hqhq+1 . . . hp also has the form (a − 1) . . . (a − 1)a . . . a. Assume that hs = a − 1 and

hs+1 = · · · = hp = a, where q ≤ s < p. Since a − 1 is unchanged after we apply the

operator θm−2 ◦ · · · ◦ θa+1 ◦ θa to h, then cs = hs = a − 1. Because h = θ(a−1)!(w) and

hshs+1 . . . hp = (a− 1)a . . . a, we see that

F := {ws, ws+1, . . . , wp} ⊆ {1, 2, . . . , a}. (5.12)

Note that applying the operator θm−2 ◦ · · · ◦ θa+1 ◦ θa to h will not decrease any letter a in h.

Since hs+1 = hs+2 = · · · = hp = a, we have

cs+1, cs+2, . . . , cp ≥ a. (5.13)

Given an index i with s+ 1 ≤ i ≤ p, by Lemma 5.1, we have

ci ∈ {wi−1 − 1, wi − 1, . . . , wn − 1,m− 1,m} ⊆ (F − 1) ∪ (E − 1).
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By (5.12) and (5.13) we have ci /∈ F − 1, then ci ∈ E − 1 ⊆ B − 1, where s+ 1 ≤ i ≤ p. Since

(B − 1) ∩ (A− 1) = ∅, we have

cs+1, cs+2, . . . , cp /∈ A− 1. (5.14)

Combining (5.14), (5.10), (5.11) and the fact that cs = a− 1 ∈ A− 1, we get

LastA−1 (c1c2 . . . cn) = a− 1 = wp − 1 = LastA(w)− 1.

We complete the proof.

Comparing equations (5.6) and (5.7), we see that

θmx,mx = θm−x(m−2)! := θ(m−2)! ◦ θ(m−2)! ◦ · · · ◦ θ(m−2)!︸ ︷︷ ︸
m−x

.

We define the map φx := θmx,mx ◦ Cx = θm−x(m−2)! ◦ Cx. Then

HZ(wx) =
(
C−1
x ◦HZ ◦ φx(w)

)
x.

Lemma 5.3. Given a set A and a number x with 1 ≤ min(A) ≤ max(A) < x ≤ m. Let

w ∈ Sm, if w ∩ A 6= ∅, then

LastA(φx(w)) = LastA(w).

Proof. Let m− x = d. Since max(A) < x, by the definition of Cx we see that

LastA+d(C
x(w)) = LastA(w) + d. (5.15)

Since max(A) < x, we have max(A) + d < m. Thus, 1 < min(A + j) ≤ max(A + j) < m for

any 1 ≤ j ≤ d. By Lemma 5.2, we have

LastA
(
θd(m−2)! ◦ Cx(w)

)
= LastA+1

(
θd−1

(m−2)! ◦ C
x(w)

)
− 1

= LastA+2

(
θd−2

(m−2)! ◦ C
x(w)

)
− 2

...

= LastA+d−1

(
θ1

(m−2)! ◦ Cx(w)
)
− (d− 1)

= LastA+d (Cx(w))− d.

Combining this with (5.15) yields

LastA (φx(w)) = LastA(w),
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completing the proof.

Proof of Proposition 5.1. We prove the following stronger property. Given w ∈ Sm. For any

l with 1 ≤ l ≤ m, assume that τ = τ1τ2 . . . τl is a consecutive permutation of [l]. Denote

Ar = {τ1, τ2, . . . , τr}, 1 ≤ r ≤ l.

If

LastAr (w) = τr, for any 1 ≤ r ≤ l, (5.16)

then

LastAr (HZ(w)) = τr, for any 1 ≤ r ≤ l. (5.17)

To see the above property implies Proposition 5.1, note that taking ki ≥ 1 for 1 ≤ i ≤ m in

m = (k1, k2, . . . , km), we have m = M . Then taking l = m, (5.16) means that w ∈ Sτ
M , and

(5.17) means that HZ(w) ∈ Sτ
M . Thus, the above property implies Proposition 5.1.

Below we use induction on n, which is the length of w, to prove the above property. The

initial case of n = 1 is obvious. Assume the above property is true for n− 1 and prove it for

n. Let w = w1w2 . . . wn and w′ = w1w2 . . . wn−1. By definition we see that

HZ(w) =
(
C−1
wn ◦HZ ◦ φwn(w′)

)
wn. (5.18)

We first consider the case that wn ∈ Al. Then LastAl (w) = wn. By (5.16) we see that wn = τl.

Since τ is a consecutive permutation of [l], then τl = l or τl = 1. We distinguish two cases.

Case 1: τl = l. From (5.18) we have

HZ(w) =
(
C−1
l ◦HZ ◦ φl(w′)

)
l. (5.19)

Given r with 1 ≤ r ≤ l − 1. Obviously, 1 ≤ min(Ar) ≤ max(Ar) < l ≤ m. Since w ∩ Ar 6= ∅
and l /∈ Ar, then w′ ∩ Ar 6= ∅. By Lemma 5.3, we get

LastAr(φl(w
′)) = LastAr(w

′) = LastAr(w) = τr, for 1 ≤ r ≤ l − 1. (5.20)

Note that φl(w
′) is of length n− 1, we apply the induction hypothesis to φl(w

′), with taking

l′ = l− 1 and τ ′ = τ1τ2 . . . τl−1. Clearly, τ ′ is a consecutive permutation of [l− 1] as τl = l. By

(5.20), we see that φl(w
′) and τ ′ satisfy the condition (5.16), then

LastAr (HZ ◦ φl(w′)) = τr, for 1 ≤ r ≤ l − 1. (5.21)
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Since max(Ar) < l, we see that

LastAr
(
C−1
l ◦HZ ◦ φl(w′)

)
= LastAr (HZ ◦ φl(w′)) = τr, for 1 ≤ r ≤ l − 1. (5.22)

Combining (5.22) with (5.19) yields

LastAr (HZ(w)) = τr, for 1 ≤ r ≤ l − 1.

Since Al = {1, 2, . . . , l}, by (5.19) we have

LastAl (HZ(w)) = l = τl.

Thus, (5.17) holds for 1 ≤ r ≤ l, and we complete the proof for this case.

Case 2: τl = 1. In this case we have

HZ(w) =
(
C−1

1 ◦HZ ◦ φ1(w′)
)

1. (5.23)

Clearly θm1,m1
= id, then φ1(w′) = C1(w′) = d1d2 . . . dn−1, where

di =

{
wi − 1, if wi > 1,

m, if wi = 1.
(5.24)

Let τ ′ = τ ′1τ
′
2 . . . τ

′
l−1, where τ ′i = τi − 1. Since τ = τ1τ2 . . . τl is a consecutive permutation of

[l] and τl = 1, we see that τ ′ is a consecutive permutation of [l − 1]. For 1 ≤ r ≤ l − 1, let

A′r = {τ ′1, τ ′2, . . . , τ ′r} = Ar − 1.

Note that min(Ar) > 1 for 1 ≤ r ≤ l − 1, by (5.24) we see that

LastA′r (φ1(w′)) = LastAr (w′)− 1 = τr − 1 = τ ′r, for 1 ≤ r ≤ l − 1. (5.25)

Applying the induction hypothesis to φ1(w′), then

LastA′r (HZ ◦ φ1(w′)) = τ ′r, for 1 ≤ r ≤ l − 1. (5.26)

It is not hard to see that

LastAr
(
C−1

1 ◦HZ ◦ φ1(w′)
)

= LastA′r (HZ ◦ φ1(w′)) + 1. (5.27)

Then we obtain

LastAr
(
C−1

1 ◦HZ ◦ φ1(w′)
)

= τ ′r + 1 = τr, for 1 ≤ r ≤ l − 1. (5.28)
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Note that 1 /∈ Ar for 1 ≤ r ≤ l − 1, combining (5.28) with (5.23), we have

LastAr (HZ(w)) = τr, for 1 ≤ r ≤ l − 1.

Clearly, Al = {1, 2, . . . , l}, by (5.23) we have

LastAl (HZ(w)) = 1 = τl.

Thus, (5.17) holds for 1 ≤ r ≤ l, completing the proof for this case.

We now consider the case that wn /∈ Al. Since Al = [l] and wn /∈ Al, we have l < wn ≤ m.

Then for any r, 1 ≤ r ≤ l, we have 1 ≤ min(Ar) ≤ max(Ar) < wn ≤ m. The proof for this

case is very similar to that of Case 1, and we omit it.

6. Equidistribution of (mstc,INV) and (des,MAJ) on PM

The permutation statistic stc was introduced by Skandera [37], he proved that (stc, INV) is

Euler-Mahonian. Carnevale [4] extended the statistic stc to words, which he called mstc,

and proved that (mstc, INV) is Euler-Mahonian, that is (mstc, INV) and (des, MAJ) are

equidistributed on words. In this section, we prove that (mstc, INV) and (des, MAJ) are

equidistributed when restricted to PM . Here we give an equivalent definition of the statistic

mstc.

First, we define the map std : SM → Sn. Given w = w1w2 . . . wn ∈ SM , define std(w) to

be the permutation π1π2 . . . πn ∈ Sn such that πi < πj if and only if either wi < wj or wi = wj

with i < j. For example, std(32112133) = 64125378. Clearly, INV(std(w)) = INV(w).

Second, we define the map I : Sn → In, where In := {(c1, c2, . . . , cn) : 0 ≤ ci ≤ i − 1}.
Given π ∈ Sn, for i ∈ [n], let ci be the number of letters j to the right of the letter i in π such

that j < i. Then define

I(π) = (c1, c2, . . . , cn).

Clearly, INV(π) =
∑n

i=1 ci. For example, let π = 64125378, then I(π) = (0, 0, 0, 3, 1, 5, 0, 0)

and INV(π) = 3 + 1 + 5 = 9.

Third, we give the definition of the statistic eul on In, see [19]. Let c = (c1, c2, . . . , cn) ∈ In.

If n = 1, define eul(c) = 0; if n ≥ 2, let c′ = (c1, c2, . . . , cn−1), then define

eul(c) =

{
eul(c′), if cn ≤ eul(c′),

eul(c′) + 1, if cn > eul(c′).
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Finally, for w ∈ SM , define

mstc(w) = eul ◦ I ◦ std(w). (6.29)

Remark 6.1. Let i(π) = π−1. Originally, Carnevale [4] defined the statistic mstc to be

mstc(w) = stc ◦ i ◦ std(w). (6.30)

In [28] (at the end of Section 7), the author proved that for any permutation π,

eul ◦ I(π) = stc ◦ i(π).

Then

eul ◦ I ◦ std(w) = stc ◦ i ◦ std(w),

which shows the equivalence of (6.29) and (6.30).

We now review the bijection Ψ on permutations that takes INV to MAJ, which is essentially

due to Carlitz [7]. Also see [34]. See [28] for a k-extension of this bijection.

We will recursively define the bijection Ψ. Given a permutation π ∈ Sn, assume that

I(π) = (c1, c2, . . . , cn). Let π′ ∈ Sn−1 be the permutation obtained from π by deleting the

letter n. Assume that Ψ(π′) ∈ Sn−1 has been defined, we will define Ψ(π) from Ψ(π′) by

inserting the letter n. There are n positions where we can insert n in Ψ(π′) to obtain a

permutation Ψ(π). We first label the positions of Ψ(π′) according to the following rules:

(a) Label the position after Ψ(π′) with 0.

(b) Label the positions following the descents of Ψ(π′) from right to left with 1, 2, . . . , des(Ψ(π′)).

(c) Label the remaining positions from left to right with des(Ψ(π′)) + 1, . . . , n− 1.

Finally, we insert the letter n into the position labeled by cn, let Ψ(π) be the resulting per-

mutation.

For example, if Ψ(π′) = 64125378, we can write the labeling of the positions of Ψ(π′) as

subscripts to get

46342152651377880.

If c9 = 6, then Ψ(π) = 641295378.

Given a multiset M = {1k1 , 2k2 , . . . ,mkm} with |M | = n, we extend Ψ to SM , which we

denote ΨM . First, we define a map istdM : Sn → SM . Given π ∈ Sn, istdM(π) ∈ SM is

obtained from π by replacing the letters 1, 2, . . . , k1 with 1, replacing the letters k1 + 1, k1 +

2, . . . , k1 + k2 with 2, . . . , replacing the letters 1 +
∑m−1

i=1 ki, . . . ,
∑m

i=1 ki with m. Clearly for
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any w ∈ SM , we have

istdM ◦ std(w) = w.

For w ∈ SM , we define

ΨM(w) = istdM ◦Ψ ◦ std(w). (6.31)

See [38] (Section 2.2) for another equivalent description of ΨM .

Example 6.1. Let M = {12, 22, 32} and let w = 213123 ∈ SM . So π = std(w) = 315246.

Clearly, I(π) = (c1, c2, c3, c4, c5, c6) = (0, 0, 2, 0, 2, 0). We give the procedure for creating Ψ(π):

110
c2=0−−→ 11220

c3=2−−→ 2133120
c4=0−−→ 213312440

c5=2−−→ 35214312540
c6=0−−→ 513246 = Ψ(π).

Then ΨM(w) = istdM ◦Ψ(π) = istdM(513246) = 312123.

Our next goal is to prove the following property of ΨM .

Proposition 6.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m]. For any w ∈ SM ,

we have

(mstc, INV)w = (des,MAJ)ΨM(w).

To prove Proposition 6.1, we need some lemmas.

Lemma 6.1. Given π ∈ Sn, let I(π) = (c1, c2, . . . , cn). For any 1 ≤ i ≤ n − 1, if ci ≥ ci+1,

then in permutation Ψ(π), the letter i+ 1 is not immediately followed by the letter i.

Proof. Let π(i) be the subpermutation of π by deleting the letters i + 1, i + 2, . . . , n, and let

γi = Ψ(π(i)). Clearly γn = Ψ(π). Consider γi−1, assume that we have labeled the positions

of γi−1 by 0, 1, . . . , i − 1. Assume that des(γi−1) = d. We now insert the letters i and i + 1

(in order) into γi−1 to obtain γi and γi+1. If ci ≤ d, then ci+1 ≤ ci ≤ d, by rules (a) and (b)

we see that the letter i + 1 is on the right of the letter i in γi+1, thus, the letter i + 1 is not

immediately followed by i in γi+1, as well as in γn. If ci > d and the letter i+ 1 is immediately

followed by i in γi+1, by rule (c), it is not hard to see that ci+1 = ci + 1, contradicting the

assumption that ci ≥ ci+1, and we complete the proof.

By a similar argument, we can obtain the following lemma, and we omit the proof of it.

Lemma 6.2. Given π ∈ Sn, let I(π) = (c1, c2, . . . , cn). For any 1 ≤ i ≤ n − 1, and

1 ≤ s ≤ n − i, if ci ≥ ci+1 ≥ · · · ≥ ci+s, then in permutation Ψ(π), the letter i + s is

not immediately followed by the letter i.

Lemma 6.3. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m]. Let w ∈ SM , then

Des(istdM ◦Ψ ◦ std(w)) = Des(Ψ ◦ std(w)).
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Proof. Assume that π = std(w) ∈ Sn. Given i ∈ [m], assume that wi1 = wi2 = · · · = wiki = i,

where i1 < i2 < · · · < iki . Let a =
∑i−1

j=1 kj, then πi1 = a + 1, πi2 = a + 2, . . . , πiki = a + ki.

Assume that I(π) = (c1, c2, . . . , cn). It is not hard to see that

ca+1 ≥ ca+2 ≥ · · · ≥ ca+ki .

To obtain istdM ◦Ψ(π), we need replace the letters a+ 1, a+ 2, . . . , a+ ki in Ψ(π) with i. By

Lemma 6.2, we see that in Ψ(π), the letter a + s2 is not immediately followed by the letter

a+ s1, for any 1 ≤ s1 < s2 ≤ ki. Thus, the replacement fixes the descent set, that is,

Des(istdM ◦Ψ(π)) = Des(Ψ(π)),

which completes the proof.

Lemma 6.4. For any permutation π, we have

(eul ◦ I, INV)π = (des,MAJ)Ψ(π).

The proof of the lemma can be found in the proof of Theorem 7.1 in [28] (the case k = 1).

Proof of Proposition 6.1. Given w ∈ SM , we have

mstc(w) = eul ◦ I ◦ std(w) (by (6.29))

= des(Ψ ◦ std(w)) (by Lemma 6.4)

= des(istdM ◦Ψ ◦ std(w)) (by Lemma 6.3)

= des(ΨM(w)) (by (6.31))

and

INV(w) = INV(std(w))

= MAJ(Ψ ◦ std(w)) (by Lemma 6.4)

= MAJ(istdM ◦Ψ ◦ std(w)) (by Lemma 6.3)

= MAJ(ΨM(w)), (by (6.31))

completing the proof.

The following proposition shows that ΨM preserves the increasing tail permutation.

Proposition 6.2. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], the set PM is

invariant under ΨM , that is

ΨM(PM) = PM .

Proof. Let w = w1w2 . . . wn ∈ PM , assume that wsj is the last occurrence of j, 1 ≤ j ≤ m.
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Then ws1ws2 . . . wsm = 12 . . .m, where s1 < s2 < · · · < sm. Let π = π1π2 . . . πn = std(w). We

denote aj =
∑j

l=1 kl. Then πs1 = a1, πs2 = a2, . . . , πsm = am. Let I(π) = (c1, c2, . . . , cn). It is

not hard to see that ca1 = ca2 = · · · = cam = 0. By rule (a) of the construction of Ψ(π), we see

that in Ψ(π), all the letters to the right of aj are larger than aj, for 1 ≤ j ≤ m. This implies

that istdM (Ψ(π)) ∈ PM , that is, ΨM(w) ∈ PM , completing the proof.

Combining Proposition 6.1 with Proposition 6.2 gives the equidistribution of the bi-statistics

(mstc, INV) and (des, MAJ) on PM .

7. Equidistribution of INV and r-MAJ on PM

The r-major index, denoted r-MAJ, was introduced by Rawlings [32] for permutations, and

extended to words in [33].

First, define the r-descent set, denoted r-Des, and r-inversion set, denoted r-Inv, for word

w = w1w2 . . . wn as follows:

r-Des(w) = {i ∈ {1, 2, . . . , n− 1} : wi ≥ wi+1 + r},
r-Inv(w) = {(i, j) : 1 ≤ i < j ≤ n,wi − r < wj < wi}.

Now, r-MAJ is defined by

r-MAJ(w) = |r-Inv(w)|+
∑

i∈r-Des(w)

i.

It is clear that r-MAJ reduces to MAJ when r = 1 and to INV when r ≥ n, thus the family of

r-MAJ interpolates between MAJ and INV.

Rawlings [32] showed that r-MAJ is equidistributed with INV on permutations by con-

structing a bijection on permutations that takes INV to r-MAJ, which is a generalization of

Carlitz’s bijection which we have given in the previous section. In [33], Rawlings extended his

bijection to words and then proved that INV and r-MAJ are equidistributed on SM . Here we

use a different way to describe Rawlings’ bijection R on words given in [33] that takes INV to

r-MAJ.

Given w ∈ SM , let w′ ∈ SM ′ , where M ′ = {1k1 , 2k2 , . . . , (m−1)km−1}, be the word obtained

from w by deleting all of the occurrences of m. Consider the jth m in w from left to right, let

uj(m) be the letters in w that are on the right of this m and that are smaller than m. Clearly,

u1(m) ≥ u2(m) ≥ · · · ≥ ukm(m). For example, w = 2152431552, w′ = 2124312, and u1(5) = 5,

u2(5) = 1, u3(5) = 1. We will recursively define Rawlings’ bijection R. Assume that R(w′)

has been defined, we will define R(w) ∈ SM from R(w′) by inserting km m’s. Assume that

we have inserted (j − 1) m’s, we are going to insert the jth m. First, we star the positions
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before each m. Then, we label the positions that are not occupied by any star according to

the following rules. Using the labels 0, 1, 2, . . . in order, first read from right to left and label

those positions that will not result in the creation of a new r-descent. Then, reading back

from left to right the positions that will create a new r-descent are labeled. Finally, we insert

the jth m into the position labeled by uj(m).

For example, assume that r = 3, and we will insert the third 5 into 215243152, then the

labels in the top and bottom rows of

2 1 5 2 4 3 1 5 2
* *

01234

5 6 7

respectively indicate the positions that will not and that will result in a new 3-descent. If

u3(5) = 1, we obtain 2152431552.

With the above notations, we now consider w ∈ PM . It is not hard to see that w′ ∈ PM ′
and ukm(m) = 0. By the procedure of creating R(w) from R(w′), we see that the rightmost

letter of R(w) is m. Then an inductive proof shows that R(w) ∈ PM . This is the content of

the following proposition, which implies the equidistribution of INV and r-MAJ on PM .

Proposition 7.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], the set PM is

invariant under Rawlings’ bijection, that is,

R(PM) = PM .

8. Equidistribution of (des,MAJ) and (exc,DEN) on PM

Denert’s permutation statistic, DEN, was introduced by Denert in [12], and she conjectured

that (exc, DEN) is Euler-Mahonian. This conjecture was first proved by Foata and Zeilberger

[15], Han [19, 20] gave two bijective proofs. Han [22] extended DEN to words, and proved

that (exc, DEN) is Euler-Mahonian by giving a bijection on words that takes (des, MAJ) to

(exc, DEN). We denote Han’s bijection given in [22] by HDEN. The goal of this section is to

establish the equidistribution of the bi-statistics (des, MAJ) and (exc, DEN) on PM by proving

that HDEN preserves the increasing tail permutation.

Let w = w1w2 . . . wn ∈ SM , the two-line notation of w is written as

w =

(
a1 a2 a3 . . . an

w1 w2 w3 . . . wn

)
,
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where w := a1a2 . . . an is the nondecreasing rearrangement of w = w1w2 . . . wn, this notation

will be adhered to throughout; that is, if w = w1w2 . . . wn is a word, w has the above meaning.

Let w = w1w2 . . . wn ∈ SM , with w = a1a2 . . . an. An excedance in w is a triple (i, ai, wi)

such that wi > ai. Here i is called the excedance place, ai is called the excedance bottom, wi is

called the excedance top. The number of excedances of w is denoted by exc(w). Let Exc w be

the subword consisting of all the excedance tops of w, in the order induced by w. Let Nexc w

be the subword consisting of those letters of w that are not excedance tops. For example, if

w = 121442314, then Exc w = 244 and Nexc w = 112314. Let imv(w) be the number of weak

inversions of w, i.e.,

imv(w) = |{(i, j) : i < j, wi ≥ wj}|.

Denert’s statistic of w, DEN(w), is defined by

DEN(w) =
∑
i

{i : wi > ai}+ imv(Exc w) + INV(Nexc w).

For example, let

w =

(
1 1 2 2 3 3 3 4 4 5

5 3 1 1 2 4 4 3 2 3

)
,

then Exc w = 5344 and Nexc w = 112323, and

DEN(w) = (1 + 2 + 6 + 7) + imv(5344) + INV(112323) = 16 + 4 + 1 = 21.

Before stating Han’s bijection HDEN, we need some notions. A biword is an ordered pair of

words of the same length, written as

w =

(
x1 x2 x3 . . . xn

w1 w2 w3 . . . wn

)
.

In particular, the two-line notation of a word is a biword satisfying x1x2 . . . xn is the nonde-

creasing rearrangement of w1w2 . . . wn.

Definition 8.1. A biword w =

(
x1 x2 x3 . . . xn

w1 w2 w3 . . . wn

)
is called a dominated cycle if n = 1

and w1 = xn, or n > 1, w1 = xn, wi = xi−1 and w1 > wi for all 2 ≤ i ≤ n.

Definition 8.2. Let P be the set of positive integers. Given x, y ∈ P, the cyclic interval Kx, yK
is defined by

Kx, yK =

{z ∈ P : x < z ≤ y}, if x ≤ y;

{z ∈ P : x < z or z ≤ y} if x > y.
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Definition 8.3. For 1 ≤ i ≤ n−1, define the operator Ti on biword w =

(
x1 x2 x3 . . . xn

w1 w2 w3 . . . wn

)
to be

Ti(w) =

(
x1 x2 . . . xi−1

w1 w2 . . . wi−1

)
T

(
xi xi+1

wi wi+1

)(
xi+2 . . . xn

wi+2 . . . wn

)
,

where

T

(
x y

α β

)
=



y x

β α

 , if exactly one of α and β lies in Kx, yK;y x

α β

 , otherwise.

Han’s bijection HDEN is devised to decompose a word into dominated cycles. Below is a

description of Han’s bijection.

Let w = w1w2 . . . wn ∈ SM , we write it in the two-line notation

w =

(
a1 a2 a3 . . . an

w1 w2 w3 . . . wn

)
.

If n = 1, then w itself is a dominated cycle. We assume that n ≥ 2. If wn = an, then set

w′ =

(
a1 a2 a3 . . . an−1

w1 w2 w3 . . . wn−1

)
, u =

(
an

wn

)
.

If wn 6= an, let i1 be the largest index such that ai1 = wn, and set

w(1) = Tn−2 ◦ Tn−1 ◦ · · · ◦ Ti1(w) =

(
a

(1)
1 a

(1)
2 . . . a

(1)
n−2 wn an

w
(1)
1 w

(1)
2 . . . w

(1)
n−2 w

(1)
n−1 wn

)
.

If w
(1)
n−1 = an, then set

w′ =

(
a

(1)
1 a

(1)
2 . . . a

(1)
n−2

w
(1)
1 w

(1)
2 . . . w

(1)
n−2

)
, u =

(
wn an

an wn

)
.

If w
(1)
n−1 6= an, let i2 be the largest index such that a

(1)
i2

= w
(1)
n−1, and set

w(2) = Tn−3 ◦ Tn−1 ◦ · · · ◦ Ti2(w(1)) =

(
a

(2)
1 a

(2)
2 . . . a

(2)
n−3 w

(1)
n−1 wn an

w
(2)
1 w

(2)
2 . . . w

(2)
n−3 w

(2)
n−2 w

(1)
n−1 wn

)
.

Similarly, we can repeat the above process by considering whether w
(2)
n−2 is equal to an. So we
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can obtain a sequence of words w(1), w(2), . . . , w(t) such that

w(t) =

(
a

(t)
1 a

(t)
2 . . . a

(t)
n−t−1 w

(t−1)
n−t+1 . . . wn an

w
(t)
1 w

(t)
2 . . . w

(t)
n−t−1 w

(t)
n−t . . . w

(1)
n−1 wn

)
,

where w
(t)
n−t = an and w

(t−1)
n−t+1 6= an, . . . , w

(1)
n−1 6= an, wn 6= an. Set

w′ =

(
a

(t)
1 a

(t)
2 . . . a

(t)
n−t−1

w
(t)
1 w

(t)
2 . . . w

(t)
n−t−1

)
, u =

(
w

(t−1)
n−t+1 w

(t−2)
n−t+2 . . . wn an

an w
(t−1)
n−t+1 . . . w

(1)
n−1 wn

)
,

Note that an ≥ ai for 1 ≤ i ≤ n, and w
(t−1)
n−t+1 6= an, . . . , w

(1)
n−1 6= an, wn 6= an, then we see that

u is a dominated cycle.

It is not hard to see that w′ is the two-line notation of the word w
(t)
1 w

(t)
2 . . . w

(t)
n−t−1. Ap-

pealing to induction, assume that w′ admits a decomposition u1, u2, . . . , us into dominated

cycles, then the decomposition of w is defined to be u1, u2, . . . , us, u, and HDEN(w) is obtained

by concatenating the bottom rows of these cycles.

Theorem 8.1 (Han [22]). HDEN : SM → SM is a bijection satisfying

(exc,DEN)w = (des,MAJ)HDEN(w)

for all w ∈ SM .

Example 8.1. Let w = 124324, then(
1 2 2 3 4 4

1 2 4 3 2 4

)
−→

(
1 2 2 3 4

1 2 4 3 2

)(
4

4

)
T3−→

(
1 2 3 2 4

1 2 3 4 2

)(
4

4

)

−→

(
1

1

)(
2

2

)(
3

3

)(
2 4

4 2

)(
4

4

)
.

So HDEN(w) = 123424. We see that (exc, DEN)w = (des, MAJ)HDEN(w) = (1, 4).

The following proposition shows that Han’s bijection HDEN preserves the increasing tail

permutation, which implies the equidistribution of the bi-statistics (des, MAJ) and (exc, DEN)

on PM .

Proposition 8.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], the set PM is

invariant under Han’s bijection HDEN, that is,

HDEN(PM) = PM .

Proof. Given w ∈ PM , assume that the operations that we used to create HDEN(w) are Tk1 ,
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Tk2 , . . . , Tks in order. Let(
α1

β1

)
=

(
w

w

)
and

(
αi+1

βi+1

)
= Tki

(
αi
βi

)
for 1 ≤ i ≤ s.

Consider the sequence

β1, β2, β3, . . . , βs+1,

where β1 = w, βs+1 = HDEN(w). It is clear that for 1 ≤ i ≤ s, either βi+1 = βi, or βi+1 is

obtained from βi by interchanging two consecutive entries. Note that the tail permutation

of β1 is 123 . . .m. If all the tail permutations of β1, β2, β3, . . . , βs+1 are 123 . . .m, our proof

is completed. Now we assume that all the tail permutations of β1, β2, . . . , βt are 123 . . .m,

and the tail permutation of βt+1 is not 123 . . .m. Assume that βt = b1b2 . . . bn and βt+1 =

b1b2 . . . bc−1bc+1bcbc+2 . . . bn. Because the tail permutations of βt and βt+1 are different and

the tail permutation of βt is 123 . . .m, we see that the tail permutation of βt+1 has the form

12 . . . (i− 1)(i+ 1)i(i+ 2) . . .m. Thus, in βt, bc is the last occurrence of the letter i and bc+1

is the last occurrence of the letter i+ 1. Since the tail permutation of βt is 123 . . .m and bc is

the last occurrence of the letter i, we have min{bc+1, bc+2, . . . , bn} > i. Note that(
αt+1

βt+1

)
= Tkt

(
αt

βt

)
=

(
∗ ∗ . . . ∗
b1 b2 . . . bc−1

)
T

(
x y

i i+ 1

)(
∗ . . . ∗
bc+2 . . . bn

)
.

By the process of creating HDEN(w), we can see the following two facts: (i) x ≤ y; (ii)

x ∈ {bc+2, bc+3, . . . , bn}. From fact (i) we see that

Kx, yK = {x+ 1, x+ 2, . . . , y}.

By fact (ii) we have

x ≥ min{bc+2, bc+3, . . . , bn} > i.

Thus, i < i+ 1 < x+ 1. Then both i and i+ 1 are not in the set Kx, yK. By the definition of

the operator T , we have βt+1 = βt, which is a contradiction and the proof is completed.

9. Equidistribution of (des,MAK,MAD) and

(exc,DEN,INV) on PM

The Mahonian permutation statistic MAK was introduced by Foata and Zeilberger [15]. Clarke,

Steingŕımsson and Zeng [11] extended it to words. In the same paper, Clarke, Steingŕımsson

and Zeng introduced a new Mahonian statistic MAD on words, and they proved that the triple

statistics (des, MAK, MAD) and (exc, DEN, INV) are equidistributed on words by exhibiting a

bijection Φ on words that takes (des, MAK, MAD) to (exc, DEN, INV). The goal of this section
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is to establish the equidistribution of (des, MAK, MAD) and (exc, DEN, INV) on PM by proving

that Φ preserves the increasing tail permutation.

Let w = w1w2 . . . wn ∈ SM , the height h(a) of a letter a in w is one more than the number

of letters in w that are strictly smaller than a. The value of the ith letter in w, denoted by

vi, is defined by

vi = h(wi) + l(i),

where l(i) is the number of letters in w that are to the left of wi and equal to wi. For example,

given w = 21144231, then w = 11122344, so the heights of 1, 2, 3, 4 are, respectively, 1, 4, 6, 7.

The values of the letters of w are given by 4, 1, 2, 7, 8, 5, 6, 3, in the order in which they appear

in w. It is not hard to see that v1v2 . . . vn = std(w).

Let w = w1w2 . . . wn ∈ SM , recall that a decent of w is an index i such that wi > wi+1,

we call wi a descent top, and wi+1 a descent bottom. The descent tops sum of w, denoted

by Dtop(w), is the sum of the heights of the descent tops of w. The descent bottoms sum of

a word w, denoted by Dbot(w), is the sum of the values of the descent bottoms of w. The

descent difference of w is

Ddif(w) = Dtop(w)−Dbot(w).

Given a word w = w1w2 . . . wn, we separate w into its descent blocks by putting in dashes

between wi and wi+1 whenever wi ≤ wi+1. A maximal contiguous subword of w which lies

between two dashes is a descent block. A descent block is an outsider if it has only one letter;

otherwise, it is a proper descent block. The leftmost letter of a proper descent block is its

closer and the rightmost letter is its opener. Let B be a proper descent block of the word w

and let C(B) and O(B) be the closer and opener of B, respectively. Let a be a letter of w,

we say that a is embraced by B if C(B) ≥ a > O(B).

The right embracing numbers of a word w = w1w2 . . . wn are the numbers e1, e2, . . . , en

where ei is the number of descent blocks in w that are strictly to the right of wi and that

embrace wi. The right embracing sum of w, denoted by Res(w), is defined by

Res(w) = e1 + e2 + · · ·+ en.

Definition 9.1.

MAK(w) = Dbot(w) + Res(w),

MAD(w) = Ddif(w) + Res(w).

We now give an overview of the bijection Φ, see [11]. Given w = w1w2 . . . wn ∈ SM , let

π = std(w). For permutation π, we first construct two biwords

(
f

f ′

)
and

(
g

g′

)
, and then
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form the biword

(
f g

f ′ g′

)
by concatenating f and g, and f ′ and g′, respectively. The word f

is defined as the subword of descent bottoms in π, ordered increasingly. The word g is defined

as the subword of non-descent bottoms in π, also ordered increasingly. The word f ′ is the

subword of descent tops in π, ordered so that for any letter x in f ′, there are exactly d letters

in f ′ that are on the left of x and that are greater than x, where d is the embracing number of

the letter x in π. The word g′ is the subword of non-descent tops in π, ordered so that for any

letter x in g′, there are exactly d letters in g′ that are on the right of x and that are smaller

than x, where d is the embracing number of the letter x in π. Rearranging the columns of(
f g

f ′ g′

)
, so that the top row is in increasing order, then let π′ be the bottom row of the

rearranged biword. We point out that f and f ′ are the excedance bottoms and excedance

tops in π′, respectively. Finally, we let Φ(w) = istdM(π′).

Example 9.1. Consider the word

w = 1 3 2 1 3 2 2 3.

Then

π = std(w) = 1− 6 3 2− 7 4− 5− 8.

It is not hard to see that(
f

f ′

)
=

(
2 3 4

3 7 6

)
,

(
g

g′

)
=

(
1 5 6 7 8

1 2 4 5 8

)
.

Then (
f g

f ′ g′

)
=

(
2 3 4 1 5 6 7 8

3 7 6 1 2 4 5 8

)
→

(
1 2 3 4 5 6 7 8

1 3 7 6 2 4 5 8

)
,

and

π′ = 1 3 7 6 2 4 5 8.

Thus,

Φ(w) = 1 2 3 3 1 2 2 3.

Theorem 9.1 (Clarke-Steingŕımsson-Zeng [11]). Φ : SM → SM is a bijection satisfying

(des,MAK,MAD)w = (exc,DEN, INV) Φ(w)

for all w ∈ SM .

The following proposition shows that Φ preserves the increasing tail permutation, it implies

that the triple statistics (des, MAK, MAD) and (exc, DEN, INV) are equidistributed on PM .
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Proposition 9.1. Let M = {1k1 , 2k2 , . . . ,mkm} with ki ≥ 1 for all i ∈ [m], the set PM is

invariant under Φ, that is,

Φ(PM) = PM .

Proof. Let w = w1w2 . . . wn ∈ PM . For any given s ∈ {2, 3, . . . ,m}, assume that wp = s is

the last occurrence of the letter s in w. Let c =
∑s

j=1 kj. Let π = π1π2 . . . πn = std(w), then

πp =
∑s

j=1 kj = c. We claim that in permutation π′, for any b with b < c, the letter b is on the

left of the letter c. Note that our claim implies the proposition. Below we prove our claim.

Because the tail permutation of w is 12 . . .m and wp = s is the last occurrence of the letter s

in w, we have wp < wj for j > p. Then c = πp < πj for j > p. It follows that in permutation

π the embracing number of the letter c is 0 and that c is a non-descent top. By the definition

of π′, we see that c ∈ g′, and there is no letter in g′ that is smaller than c and that is on the

right of c. If b ∈ g′, it must be on the left of c in g′ since b < c. In this case we see that b is

on the left of c in π′. If b ∈ f ′, then it is an excedance top in π′. Assume that π′j = b, then

j < b. Assume that π′k = c, since c ∈ g′ is not an excedance top, we have c ≤ k. Therefore,

j < b < c ≤ k. So in this case we also have that b = π′j is on the left of c = π′k in π′ as j < k.

Then our claim is true and we complete the proof.
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[11] R.J. Clarke, E. Steingŕımsson, J. Zeng, New Euler-Mahonian statistics on permutations

and words, Adv. in Appl. Math. 18 (1997) 237-270.

[12] M. Denert, The genus zeta function of hereditary orders in central simple algebras over

global fields, Math. Comp. 54 (1990) 449-465.

[13] R.S. Deodhar, M.K. Srinivasan, An inversion number statistic on set partitions, Electron.

Notes Discrete Math. 15 (2003) 84-86.

[14] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968)

236-240.

[15] D. Foata, D. Zeilberger, Denert’s permutation statistic is indeed Euler-Mahonian, Stud.

Appl. Math. 83 (1990) 31-59.

[16] H.W. Gould, The q-Stirling numbers of the first and second kinds, Duke Math. J. 28

(1961) 281-289.

[17] J. Greene, Bijections related to statistics on words, Discrete Math. 68 (1988) 15-29.

[18] J. Haglund and L. Stevens, An extension of the Foata map to standard Young tableaux,

Sém. Lothar. Combin. 56 (2006) B56c.

[19] G.-N. Han, Distribution Euler-mahonienne: une correspondance, C. R. Acad. Sci. Paris,

Série I 310 (1990) 311-314.

[20] G.-N. Han, Une nouvelle bijection pour la statistique de Denert, C. R. Acad. Sci. Paris,

Série I 310 (1990) 493-496.
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