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Abstract

A new very simple proof of the number of labeled rooted forest-graphs with
a given number of vertices is given. As a partial case of this formula we

have Cayley’s formula.
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1 Introduction.

There are many ways to prove the Cayley’s formula(see, e.g. the books [4]

and [1]). About some recent publications see [2]. A very close in style proof
is also contained in the work [7]. In this small note, we want to demon-
strate another way to derive this formula. More exactly we establish a

number of rooted forest graph (i.e., graphs whose connected components
are tree-graphs) with fixed number and positions of roots of their connected

components (tree-graphs). As a partial case of this formula we have Cay-
ley’s formula. It is important to note its connection with cluster expansions

in statistical mechanics. Although the formula for forests were obtained
in another paper of the author, reference [5], through the same way, here
we have its derivation in the context of graph theory only and this shows

an interesting contribution of how statistical mechanics ideas can provide
new tools for another mathematics.

2 Configuration space and forest graph.

Let R
d be a d-dimensional Euclidean space. The set of coordinates γ =

{xi}i∈N of identical points is considered to be a locally finite subset in R
d

and the set of all such subsets is the configuration space Γ. We will consider
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only finite graphs, so through Γ0 denote the set of all finite configurations.
Space of finite configurations in R

d are possible present in the form of

disjunctive union of sets:

Γ0 :=
∞
∐

n=0

Γ(n), Γ(n) := {γ ∈ Γ | |γ| = n, n ∈ N} , Γ(0) := ∅. (2.1)

One can form a graph from each configuration by connecting certain

configuration points (vertices) with lines (edges). A separate configuration
point will also be considered as a graph consisting of a single vertex. If

the graph f is created on the configuration γ ∈ Γ(n), then its order is
determined by the cardinality of the configuration |f | = |γ| = n. By E(f)

we denote the set of edges of graph f .
Consider m-connected graph (m ≥ 1), each connected component of

which is labeled tree-graph. The roots of the corresponding connected
components form the configuration η = {x1, . . . , xm} ∈ Γ(m) All other
vertices form some configuration γ = {y1, . . . , yn}, n = 0, 1, .... Any subset

of γ, which belong to some tree with root xk could not belong to other
tree with root xl, l 6= k. The case n = 0 means that m-connected graph f

consist of m points. In the case m = 1 graph f is labeled tree-graph with
n + 1 vertices and n edges. Such kind of graphs are called rooted labeled

graph-forest. The set of all such forests with a given configuration of tree
roots η and vertices γ denote Fη;γ. Topologically, graphs corresponding to
different configurations η and γ but with the same number of points |η|
and |γ| are considered the same.

We consider analytic contributions of graphs as follows. Every vertex

has analytic contribution some constant h and for every edge which connect
point x and y we write some function ν(x− y). If such graphs appear in a

specific problem, then it is necessary to impose appropriate conditions on
these functions.

The analytical contribution of any graph-forest f ∈ Fη,γ is

G(f) = h|η|+|γ|
∏

(x,y)∈E(f)

ν(x− y), (2.2)

The main result is based on the following elementary identity.

Proposition 2.1 For any x ∈ η denote ηx̂ := η \ {x}. Then
∑

f∈Fη;γ

∏

(x′,y′)∈E(f)

ν(x′ − y′) =
∑

ξ⊆γ

∏

(y∈ξ)

ν(x− y)
∑

f∈F
ηx̂∪ξ;γ\ξ

∏

(x′,y′)∈E(f)

ν(x′ − y′).

(2.3)
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Proof. The left side of the equation (2.3) is the sum of the contributions of
all graph-forests of the set Fη;γ. The right side is the same sum in which

its terms are written in the following order. First, we write the sum of the
contributions of all graphs in which the vertex x is not connected to any
other vertex. On the right side this is the sum of all contributions of the

graphs from Fηx̂;γ, that is ξ = ∅. The next group of terms includes graphs
in which a vertex x is joined by a single line to the vertices y ∈ γ. So, all

ξ are one point sets from γ. The remaining groups of sums corresponds to
graphs in which the vertex x is attached to the points of the subset ξ of γ

by |ξ| lines.
�

3 Reproducing kernel.

For a given η and γ and factors h, ν we introduce some kernal Qh,ν(η|γ)
which is uniquely determined by the following recursion relation for any
x ∈ η:

Qh,ν(η|γ) = h
∑

ξ⊆γ

Kν(x; ξ)Qh,ν(η
x̂ ∪ ξ|γ \ ξ), |η| ≥ 1, (3.1)

where

Kν(x; ξ) :=

{

∏

y∈ξ ν(x− y),

1, ξ = ∅.
(3.2)

with the following initial conditions:

Qh,ν(∅|∅) = 1, Qh,ν(∅|γ) = 0, if γ 6= ∅, (3.3)

and

Qh,ν(η|γ) = 0, if η ∩ γ 6= ∅. (3.4)

Lemma 3.1 The solution of the equation (3.1) can be written in the form:

Qh,ν(η|γ) =
∑

f∈Fη,γ

G(f), (3.5)

where G(f) is defined by (2.2).

The proof is trivial. It is easy to see that (3.5) coincides with l.h.s. of (2.3)
and recursion relation (3.1)-(3.2) is just r.h.s. of (2.3).

Now we need to know the number of forest graphs for given η, γ with

|η| = m and |γ| = n This number is established by the following lemma
(see also [5]).
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Lemma 3.2 [5] The number of forest graphs in (3.5), which is a solution
of (3.1) with given n = |γ| and m = |η| can be written by the following

formula
N(m|n) = m(n+m)n−1. (3.6)

Proof. If we put h = ν = 1 in the equation (3.5), then Q1,1(η|γ) =

N(m|n), which satisfies the equation:

N(m|n) =
n

∑

k=0

(

n

k

)

N(m+ k − 1|n− k). (3.7)

By induction in n + m we will assume that the formula (3.6) is valid for
N(m+k−1|n−k) for k = 0, 1, . . . , n. Then substituting N(m+k−1|n−
k) = (m + k − 1)(m + n − 1)n−k−1 in the right part of (3.7) we get the

equality

n
∑

k=0

(

n

k

)

(m+ k − 1)(m+ n− 1)n−k−1 = M1 + M2, (3.8)

where

M1 := m

n
∑

k=0

(

n

k

)

(m+ n− 1)n−k−1 = (3.9)

=m(m+ n− 1)−1
n

∑

k=0

(

n

k

)

(m+ n− 1)n−k = m(m+ n− 1)−1(m+ n)n,

(3.10)

and

M2 :=
n

∑

k=0

(

n

k

)

(k − 1)(m+ n− 1)n−k−1 =

=n

n
∑

k=1

(

n− 1

k − 1

)

(m+ n− 1)n−k−1 − (m+ n− 1)−1
n

∑

k=0

(

n

k

)

(m+ n− 1)n−k =

=n(m+ n− 1)−1(m+ n)n−1 − (m+ n− 1)−1(m+ n)n

=−m(m+ n− 1)−1(m+ n)n−1. (3.11)

As a result we have M1+M2 = m(m+n)n−1 , which completes the proof.
�
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4 Conclusion: Cayley’s formula.

So, for m = 1 equation (3.6) is Cayley’s formula. The main trick of this
simple proof is to write the recursive equation (3.1) for the kernel Qh,ν(η|γ).
This equation was written in the work [3] as a technical element in writing
the solution of the Kirkwood-Salzburg equations(see details in [5]).
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