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Abstract

This paper investigates some properties of complex structures on Lie algebras.
In particular, we focus on nilpotent complex structures that are characterized by a
suitable J-invariant ascending or descending central series dj and dj respectively.
In this article, we introduce a new descending series pj and use it to give proof of
a new characterization of nilpotent complex structures. We examine also whether
nilpotent complex structures on stratified Lie algebras preserve the strata. We find
that there exists a J-invariant stratification on a step 2 nilpotent Lie algebra with
a complex structure.

1 Introduction

In recent years, complex structures on nilpotent Lie algebras have been shown to be very
useful for understanding some geometric and algebraic properties of nilmanifolds. In [3]
and [4], Cordero, Fernández, Gray and Ugarte introduced nilpotent complex structures,
studied 6 dimensional nilpotent Lie algebras with nilpotent complex structures, and pro-
vided a classification. Since the ascending central series is not necessarily J-invariant,
they introduced a J-invariant ascending central series to characterize nilpotent com-
plex structures. More recently, Latorre, Ugarte and Villacampa defined the space of
nilpotent complex structures on nilpotent Lie algebras and further studied complex
structures on nilpotent Lie algebras with one dimensional center [10], [11]. They also
provided a theorem describing the ascending central series of 8 dimensional nilpotent
Lie algebras with complex structures. In [7], Gao, Zhao and Zheng studied the re-
lation between the step of a nilpotent Lie algebra and the smallest integer j0 such
that the J-invariant ascending central series stops. Furthermore, they introduced a
J-invariant descending central series, which is another tool to characterize nilpotent
complex structures. These papers use the language of differential forms to characterize
nilpotent complex structures. Our proofs here in this paper are purely Lie algebraic.

Let G be a Lie group and g ∼= TeG be its Lie algebra, which we always assume
to be real, unless otherwise stated. A linear isomorphism J : TG → TG is an
almost complex structure if J2 = −I. By the Newlander–Nirenberg Theorem [13], an
almost complex structure J corresponds to a left invariant complex structure on G if
and only if

[JeX, JeY ]− [X,Y ]− Je([JeX,Y ] + [X, JeY ]) = 0, (1)

for all X,Y ∈ g. Since we are interested only on Lie algebras in this paper, from now
on, we will write J for Je. We will refer to (1) as the Newlander–Nirenberg condition.
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2 Complex structures on nilpotent Lie algebras

In this section, we consider some properties of the central series of nilpotent Lie algebras
with complex structures J and define J-invariant central series. We define nilpotent
complex structures, and relate their properties to the dimension of the center z of a
nilpotent Lie algebra.

Definition 2.1. (See, for instance, e.g., [9]) Let g be a Lie algebra. The descending
central series and ascending central series of g are denoted cj(g) and cj(g) respectively,
for all j ≥ 0, and defined inductively by

c0(g) = g, cj(g) = [g, cj−1(g)]; (2)
c0(g) = {0}, cj(g) = {X ∈ g : [X, g] ⊆ cj−1(g)}. (3)

Remark 2.2. (i) Notice that c1(g) = Z(g), c1(g) = [g, g], and

cj(g)/cj−1(g) = Z
(
g/cj−1(g)

)
for all j ≥ 1,

where Z(·) means the center of a Lie algebra. Furthermore, cj(g)/cj+1(g) ⊆ Z (n/
cj+1(g)) for all j ≥ 0. It is clear that cj(g) and cj(g) are ideals of g for all j ≥ 0.

(ii) A Lie algebra g is called nilpotent of step k, for some k ∈ N, if ck(g) = {0}
and ck−1(g) 6= {0}. We will denote nilpotent Lie algebras by n in this paper. See, e.g.,
[8, Section 5.2] or [9].

2.1 J-invariant central series and nilpotent complex structures

Following [3,Definition 1], we define the J-invariant ascending central series dj for
nilpotent Lie algebras and introduce nilpotent complex structures on nilpotent Lie alge-
bras. Furthermore, we recall the definition of the J-invariant descending central series
dj . [7,Defintion 2.7]

Definition 2.3. Let n be a Lie algebra with a complex structure J. Define a sequence
of J-invariant ideals of n by d0 = {0} and

dj = {X ∈ n : [X, n] ⊆ dj−1, [JX, n] ⊆ dj−1} (4)

for all j ≥ 1. We call the sequence dj the ascending J-invariant central series. The
complex structure J is called nilpotent of step j0 if there exists j0 ∈ N such that dj0 = n
and dj0−1 ⊂ n.

We define inductively the J-invariant descending central series by

d0 = n, dj = [dj−1, n] + J [dj−1, n] (5)

all for j ≥ 1.

Remark 2.4. (i) For the ascending J-invariant central series dj ,

dj/dj−1 = Z(n/dj−1) ∩ JZ(n/dj−1) for all j ≥ 1.

In particular, d1 = z ∩ Jz, which is the largest J-invariant subspace of z and, if J is
nilpotent, then d1 6= {0}. The nilpotency of J implies that the ascending J-invariant
central series dj of n is strictly increasing until dj0 = n. Furthermore, if n is a step k
nilpotent Lie algebra with a nilpotent complex structure J of step j0, then k ≤ j0 ≤
1
2 dim n. See, e.g., [3] and [7].

(ii) By definition, if n admits a nilpotent complex structure, then n is nilpotent.
(iii) For all j ≥ 0, it is clear that cj(n)+Jcj(n) ⊆ dj ; Furthermore, dj �n and dj �n

where � is the notation of ideal.
(iv) Let n be a Lie algebra with a complex structure J. Then J preserves all terms

of cj(n) if and only if dj = cj(n) for all j ≥ 0. [3,Corollary 5] Similarly, J preserves all
terms of cj(n) if and only if dj = cj(n) for all j.
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The following lemma provides a connection between J-invariant ascending and de-
scending central series.

Lemma 2.5. Let n be a Lie algebra with a complex structure J . Suppose that J is
nilpotent of step j0.

(i) Then n/dj0−1 is Abelian. Conversely, if there exists j0 ∈ N such that n/dj0−1 is
Abelian, then J is nilpotent of step at most j0.

(ii) Then dj ⊆ dj0−j for all j ≥ 0. Conversely, if there exists j0 ∈ N such that
dj ⊆ dj0−j for all j ≥ 0, then J is nilpotent of step at most j0.

Proof. For part (i), suppose that J is nilpotent of step j0. By definition, dj0 = n and
dj0−1 ⊂ n. Then

Z(n/dj0−1) ∩ JZ(n/dj0−1) = n/dj0−1.

It is obvious that Z(n/dj0−1) = n/dj0−1. Hence n/dj0−1 is Abelian.
Conversely, suppose that there exists j0 ∈ N such that n/dj0−1 is Abelian. Then

{0} 6= c1(n) ⊆ dj0−1. For all X ∈ n,

[X, n] ⊆ dj0−1 and [JX, n] ⊆ dj0−1.

We deduce that n = dj0 and therefore J is nilpotent of step at most j0.
For part (ii), assume that J is nilpotent of step j0. By definition, d0 = n = dj0 .

Next, assume that ds−1 ⊆ dj0−s+1 for some s ∈ N. Then

ds = [ds−1, n] + J [ds−1, n]
⊆ [dj0−s+1, n] + J [dj0−s+1, n]
⊆ dj0−s + Jdj0−s = dj0−s.

Hence by induction, dj ⊆ dj0−j for all j ≥ 0.
Conversely, suppose that there exists j0 ∈ N such that dj ⊆ dj0−j for all j ≥ 0. In

particular, d1 ⊆ dj0−1. By definition, c1(n) ⊆ d1. It follows that

[n/dj0−1, n/dj0−1] ⊆ [n, n] + dj0−1 = c1(n) + dj0−1 ⊆ d1 + dj0−1 ⊆ dj0−1,

and thus n/dj0−1 is Abelian. From Lemma 2.5, J is nilpotent of step at most j0.

Remark 2.6. Under the condition of Lemma 2.5, if J is nilpotent of step j0, dj0−1 ⊆
d1 ⊆ z. Then dj0−1 is Abelian. Furthermore, there exists j0 ∈ N such that n/dj0−1 is
Abelian if and only if dj ⊆ dj0−j for all j ≥ 0. This is proved by induction as in the
proof of Lemma 2.5.

Corollary 2.7. Let n be a step k nilpotent Lie algebra with a complex structure J.
Then J is nilpotent of step k if and only if dj ⊆ dk−j for all j ≥ 0.

Proof. Suppose that J is nilpotent of step k. By Lemma 2.5, dj ⊆ dk−j for all j ≥ 0.
Conversely, assume that dj ⊆ dk−j for all j. Again by Lemma 2.5, J is nilpotent of step
at most k. Furthermore, it follows that {0} 6= ck−1(n) ⊆ dk−1. Therefore dk−1 6= {0}
and J is nilpotent of step k.

Remark 2.8. From Remark 2.6, J is nilpotent of step k if and only if n/dk−1 is Abelian.
We introduce a new descending central series whose descending ‘rate’ is slower than

that of cj(n) but faster than that of dj .

Definition 2.9. Let J be a complex structure on a Lie algebra n. We define the
sequence pj inductively by

p0 = n and pj = [pj−1, n] + [Jpj−1, n] for all j ≥ 1. (6)

3
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Remark 2.10. It is clear that pj+1 ⊆ pj for all j ≥ 0. Furthermore, pj � n since
[pj , n] ⊆ pj+1 ⊆ pj for all j ≥ 0.

Lemma 2.11. Let n be a Lie algebra with a complex structure J . Then cj(n) ⊆ pj for
all j ≥ 0. Furthermore, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0.

Proof. By definition, c0(n) = n = p0. It follows, by induction, that cj(n) ⊆ pj for all
j ≥ 0. Using (5), [dj−1, n] ⊆ dj . By definition, p0 = n = d0 and Jp0 = Jn = n = d0.
Next, suppose that ps ⊆ ds and Jps ⊆ ds for some s ∈ N. Then by (6),

ps+1 = [ps, n] + [Jps, n] ⊆ [ds, n] ⊆ ds+1 and Jps+1 ⊆ J [ds, n] ⊆ ds+1

By induction, pj ⊆ dj and Jpj ⊆ dj for all j ≥ 0.

Remark 2.12. (i) Notice that pj/pj+1 ⊆ Z (n/pj+1) for all j ≥ 0. Indeed, for all P ∈ pj

and Y ∈ n, since [P, Y ] ⊆ pj+1, it is enough to deduce

[P + pj+1, Y + pj+1] = [P, Y ] + pj+1 ⊆ pj+1.

Hence pj/pj+1 ⊆ Z (n/pj+1).
(ii) By Lemma 2.11, pj + Jpj ⊆ dj for all j ≥ 0. We show that pj + Jpj � n for all

j ≥ 0. Indeed, for all P, P ′ ∈ pj ,

[P + JP ′, n]︸ ︷︷ ︸
⊆ [pj + Jpj , n]

⊆ [P, n]︸ ︷︷ ︸
⊆ pj+1

+ [JP ′, n]︸ ︷︷ ︸
⊆ pj+1

⊆ pj+1 ⊆ pj+1 + Jpj+1 ⊆ pj + Jpj .

Hence pj +Jpj�n. From part (ii), we can show that pj +Jpj is a J-invariant descending
central series. Indeed, for all T = P + JP ′ ∈ pj + Jpj and Y ∈ n,

[T + pj+1 + Jpj+1, Y + pj+1 + Jpj+1] ⊆ [T, Y ] + pj+1 + Jpj+1 ⊆ pj+1 + Jpj+1.

Theorem 2.13. Let n be a Lie algebra with a complex structure J. The following are
equivalent:

(i) J is nilpotent of step j0;
(ii) pj0 = {0} and pj0−1 6= {0};
(iii) dj0 = {0} and dj0−1 6= {0}.

Proof. We first show that (i) and (ii) are equivalent. Assume that J is nilpotent of step
j0. From Lemma 2.5 part (ii), dj0−1 ⊆ d1. Hence by Lemma 2.11,

pj0 ⊆ [dj0−1, n] ⊆ [d1, n] = {0}.

Thus pj0 = {0}. Assume, by contradiction, that pj0−1 = {0}. We show that pj0−j−1 +
Jpj0−j−1 ⊆ dj for all j ≥ 0 by induction. By definition, pj0−1 + Jpj0−1 = {0} = d0.
Next, suppose that pj0−s−1 + Jpj0−s−1 ⊆ ds for some s ∈ N. Then from Remark 2.12
part (ii),

[pj0−s−2 + Jpj0−s−2, n] ⊆ pj0−s−1 + Jpj0−s−1 ⊆ ds.

This implies, using (4), pj0−s−2 + Jpj0−s−2 ⊆ ds+1. By induction, pj0−j−1 + Jpj0−j−1
⊆ dj for all j ≥ 0. In particular, let j = j0− 1. Then n ⊆ dj0−1, which implies that J is
nilpotent of step j0 − 1 by definition. This is a contradiction. Therefore pj0−1 6= {0}.

Conversely, suppose that pj0 = {0} and pj0−1 6= {0}. We show that J is nilpotent
of step j0. By definition, pj0 + Jpj0 = {0} = d0. It follows, by induction, that pj0−j +
Jpj0−j ⊆ dj for all j ≥ 0. Hence pj0−j ⊆ dj . In particular, let j = j0 − 1. Then

p1 = [n, n] ⊆ dj0−1 ⇒ n/dj0−1 is Abelian .

By Lemma 2.5, J is nilpotent of step at most j0.

4
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We next show that dj0−1 6= n by contradiction. Assume, by contradiction, that
n = dj0−1. We show that pj−1 ⊆ dj0−j for all j ≥ 1 by induction. By definition,
p0 = n = dj0−1. Next, suppose that ps−1 ⊆ dj0−s for some s ∈ N. Then

ps = [ps−1, n] + [Jps−1, n]
⊆ [dj0−s, n] + [Jdj0−s, n]
⊆ dj0−s−1.

By induction, pj−1 ⊆ dj0−j for all j ≥ 1. In particular, let j = j0. We deduce that
pj0−1 ⊆ d0 = {0}. This implies that pj0−1 = {0} which is a contradiction. Hence
dj0−1 6= n. By definition, J is nilpotent of step j0.

We now show (i) and (iii) are equivalent. Since J is nilpotent of step j0, it follows,
from Lemma 2.5 part (ii), that dj ⊆ dj0−j for all j ≥ 0. In particular, let j = j0.
By definition, dj0 = d0 = {0}. We show that dj0−1 6= {0}. By Lemma 2.11, {0} 6=
pj0−1 + Jpj0−1 ⊆ dj0−1. Hence dj0−1 6= {0}.

Conversely, assume that dj0 = {0} and dj0−1 6= {0}. By definition, [dj0−1, n] ⊆
dj0 = {0}. Hence, {0} 6= dj0−1 ⊆ d1. Next, assume that dj0−s ⊆ ds for some s ∈ N.
Then by definition,

[dj0−s−1, n] ⊆ dj0−s ⊆ ds.

By (4), dj0−s−1 ⊆ ds+1. By induction, dj0−j ⊆ dj for all j ≥ 0. Let j = j0. We find that
d0 = n ⊆ dj0 . Therefore dj0 = n and J is nilpotent of step at most j0.

We next show that dj0−1 6= n. Suppose not, that is, n = dj0−1. By definition,
d0 = n = dj0−1. It follows, by induction, that dj−1 ⊆ dj0−j for all j ≥ 1. Let j = j0.
We find that dj0−1 ⊆ {0}. This is a contradiction. Hence dj0−1 6= n and J is nilpotent
of step j0.

Finally, since (i) is equivalent to both (ii) and (iii), we conclude that (ii) and (iii)
are equivalent.

Remark 2.14. Suppose that a Lie algebra n admits a nilpotent complex structure J of
step j0. Then

cj(n) + Jcj(n) ⊆ pj + Jpj ⊆ dj ⊆ dj0−j (7)

for all j ≥ 0.
It is shown that, in [3,Corollary 7], if cj(n) is J-invariant for all j ≥ 0, then J is

nilpotent. We will provide a different approach to this.

Corollary 2.15. Let n be a step k nilpotent Lie algebra with a complex structure J.
Suppose that all cj(n) are J-invariant. Then pj = cj(n) for all j ≥ 0. Furthermore, J
is nilpotent of step k.

Proof. Since all cj(n) are J-invariant, by definition, p0 = n = c0(n). We have, by
induction, that pj = cj(n) for all j ≥ 0. Therefore pk = ck(n) = {0} and pk−1 =
ck−1(n) 6= {0}. By Theorem 2.13, J is nilpotent of step k.

Corollary 2.16. Let n be a step k nilpotent Lie algebra with a nilpotent complex struc-
ture J of step k. Suppose that ck−1(n) = z. Then z is J-invariant.

Proof. Since J is nilpotent of step k, by (7),

z + Jz ⊆ dk−1 ⊆ d1 ⊆ z⇒ [z + Jz, n] = {0}.

Hence Jz = z.

Corollary 2.17. Let n be a Lie algebra with a nilpotent complex structure J of step
j0. Then for all j ≥ 1, dj0−j is not contained in dj−1.

5
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Proof. Since J is nilpotent of step j0, by Theorem 2.13, dj0−1 6= {0} = d0. Hence
dj0−1 is not contained in d0. Next, suppose that dj0−s+1 is not contained in ds−2 for
some N 3 s ≥ 2. We show that dj0−s is not contained in ds−1. Suppose not. That is,
dj0−s ⊆ ds−1. Then

dj0−s+1 = [dj0−s, n] + J [dj0−s, n]
⊆ [ds−1, n] + J [ds−1, n] ⊆ ds−2.

It follows that dj0−s+1 ⊆ ds−2. This is a contradiction. Hence dj0−s is not contained in
ds−1. By induction, for all j ≥ 1, dj0−j is not contain in dj−1.

We investigate the possible range of dim z for a Lie algebra n with a nilpotent
complex structure J.

Proposition 2.18. Let n be a non-Abelian Lie algebra of dimension 2n with a nilpotent
complex structure J. Then 2 ≤ dim z ≤ 2n− 2.

Proof. Recall that d1 = z ∩ Jz, which is the largest J-invariant subspace of z. Since J
is nilpotent, it is clear that d1 6= {0}. Furthermore, since d1 is J-invariant, it follows
that 2 ≤ dim d1 ≤ dim z. Then the lower bound of dim z is 2.

Next, we show that the upper bound of dim z is 2n − 2. Since n is non-Abelian,
it is possible to find X,Y ∈ n such that 0 6= [X,Y ] ∈ c1(n). Then span{X,Y } is
2-dimensional and span{X,Y } ∩ z = {0}. Hence dim z ≤ 2n− 2.

In conclusion, 2 ≤ dim z ≤ 2n− 2.

Remark 2.19. From Proposition 2.18, we can further conclude that if dim z = 1, then
the complex structure J on n is non-nilpotent. In particular, the Lie algebra of n× n
upper triangular matrices does not admit a nilpotent complex structure.

3 Stratified Lie algebras with complex structures

In this section we consider a special type of nilpotent Lie algebras: stratified Lie algebra.
Recent results on nilpotent Lie algebras with a stratification can be found in [5], [6], [12].
We start with the definition of stratified Lie algebras.

Definition 3.1. A nilpotent Lie algebra n is said to admit a step k stratification if
it has a vector space decomposition of the form n1 ⊕ n2 ⊕ . . . ⊕ nk, where nk 6= {0},
satisfying the bracket generating property [n1, nk] = {0} and

[n1, nj−1] = nj for all j ∈ {2, . . . , k}.

A Lie algebra n that admits a stratification is called a stratified Lie algebra. A complex
structure J on a stratified Lie algebra n is said to be strata-preserving if it preserves
each layer of the stratification.

Remark 3.2. Let n be a step k stratified Lie algebra. By induction,

cj(n) =
⊕

j+1≤l≤k

nl for all j ≥ 0. (8)

Proposition 3.3. Let n be a 2n-dimensional step n nilpotent Lie algebra for some
n ∈ N. Suppose that dim cj(n) = 2n − 2j for all 1 ≤ j ≤ n. Then n does not admit a
stratification.

Proof. Assume, by contradiction, that n admits a stratification. Since, by (8), cj(n) =⊕
j+1≤l≤n nl and dim c1(n) = 2n−2, dim n1 = 2. Since n is a stratified Lie algebra, n2 =

[n1, n1]. Thus dim n2 = 1 and dim c2(n) = 2n− 3 > 2n− 4. This is a contradiction.

6
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Proposition 3.4. Let n be a step k stratified Lie algebra with a complex structure J
and k ≥ 2. Suppose that dim n1 = 2. Then J is not strata-preserving.

Proof. Suppose, by contradiction, that there exists a strata-preserving complex struc-
ture J. Then dim nj ∈ 2N for all j ≥ 1. However, dim n1 = 2 implies that dim n2 = 1,
which contradicts the assumption that dim n2 ∈ 2N. Hence n does not have a strata-
preserving complex structure.

Remark 3.5. Let n be a step 3 stratified Lie algebra with a strata-preserving complex
structure. Arguing in a similar way as in Proposition 3.4, we conclude that dim n 6= 4
or 6.

We show that there always exists a stratification on step 2 nilpotent Lie algebra
with a strata-preserving complex structure J .

Theorem 3.6. Let n be a step 2 nilpotent Lie algebra with a complex structure J.
Suppose that c1(n) is J-invariant. Then n admits a J-invariant stratification.

Proof. Define a J-invariant inner product ψ by

ψ(X,Y ) = φ(X,Y ) + φ(JX, JY ), for all X,Y ∈ n,

where φ is an inner product on n. We show that there exists a stratification on n
such that n1 and n2 are J-invariant. Define n2 = [n, n] and n1 = n⊥2 , the orthogonal
complement of n2 with respect to ψ. Then n2 = c1(n) is J-invariant and by definition
n = n1 ⊕ n2. Also note that

n2 = [n1 ⊕ n2, n1 ⊕ n2] = [n1, n1].

This implies that n1 generates n. Thus J is a complex structure that preserves both n1
and n2.

Remark 3.7. (i) Let g be an arbitrary Lie algebra. A complex structure J on g is called
bi-invariant if J [X,Y ] = [JX, Y ] for all X,Y ∈ g. That is, J ◦ ad = ad ◦J. A complex
structure J is called Abelian if [X,Y ] = [JX, JY ] for all X,Y ∈ g. See, e.g., [2], [14].
Notice that J preserves all terms of cj(n) and cj(n) if J is bi-invariant, while if J is
Abelian, J only preserves all terms of cj(n).

(ii) Suppose that n is a step k stratified Lie algebra with a bi-invariant complex
structure J. From (8), cj(n) =

⊕
j+1≤l≤k nl, it is clear that dim nj ∈ 2N for all j ∈

{1, . . . , k}.

Proposition 3.8. Let n be a step k stratified Lie algebra with a strata-preserving com-
plex structure J. Then Jcj(n) = cj(n) for all j ≥ 0 and J is nilpotent of step k.

Proof. We first show that Jcj(n) = cj(n) for all j ≥ 0. Recall, from (4), that cj(n)
=
⊕

j+1≤l≤k nl and hence Jcj(n) = cj(n) for all j ≥ 0. By Corollary 2.15, J is nilpotent
of step k.

It is known that every step 2 nilpotent Lie algebra maybe stratified (see, e.g., [12]).
We will provide another proof in Theorem 3.9, that every complex structure on a step
2 nilpotent Lie algebra is nilpotent of step 2 or 3. See, e.g., [7,Theorem 1.3] and
[15,Proposition 3.3]. In what follows, we denote by k = n2∩Jn2 the largest J-invariant
subspace contained in n2 and we also remind the reader that d1 = z ∩ Jz is the largest
J-invariant subspace contained in z.

Theorem 3.9. Let n = n1⊕n2 be a step 2 nilpotent Lie algebra with a complex structure
J and a J-invariant inner product ψ.

(i) Suppose that k = {0}. Then d1 is Abelian and J is nilpotent of step 2.
(ii) Suppose that {0} 6= k ⊂ n2. Then J is nilpotent of step 3.
(iii) Suppose that n2 = k. Then J is strata-preserving and nilpotent of step 2.
In conclusion, J is nilpotent of either step 2 or 3.

7
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Proof. We start with parts (i) and (ii) together. Suppose that Jn2 6= n2. Then, p2 =
[Jn2, n] ⊆ n2. For all Z2 ∈ n2, X, JX ∈ n, by the Newlander–Nirenberg condition,

[Jn2, n] 3 [JZ2, JX] = J [JZ2, X] ∈ J [Jn2, n]. (9)

This implies that p2 is J-invariant in n2. We now consider the following two possi-
bilities.

(i) If k = {0}, then from (9), we get that p2 = {0}. By Theorem 2.13, J is nilpotent
of step 2.

(ii) If {0} 6= k ⊂ n2, since {0} 6= p2 ⊆ k and Jp2 ⊂ n2, then by definition, p3 = {0}.
By Theorem 2.13, J is nilpotent of step 3.

Finally, for part (iii), suppose that n2 = k. We find that J preserves n2. By Theorem
3.6, J is strata-preserving. From Corollary 3.8, J is nilpotent of step 2.

In conclusion, J is either nilpotent of step 2 or 3.

Remark 3.10. (i) If J is nilpotent of step 3, then there does not necessarily exist a
J-invariant stratification.

(ii) We recall, from [7,Theorem 1.3], if z is not J-invariant, then J is nilpotent of
step 3. From Theorem 3.9, we have the following table:

J Strata-preserving Non-strata-preserving
Jz = z J nilpotent of step 2 J nilpotent of step 2
Jz 6= z J nilpotent of step 2 J nilpotent of step 3

Table 1: nilpotency of J

From Table 1, if J is nilpotent of step 2, then J is either strata-preserving or center-
preserving. More precisely, we conclude that either k = n2 ∩ Jn2 = {0} or Jn2 = n2.
Indeed, if n is step 2 nilpotent Lie algebra with a nilpotent complex structure J of step
2, J may not be strata-preserving.

Notice that an even dimensional nilpotent Lie algebra with dim c1(n) = 1 has step
2. There does not exist a J-invariant stratification for dimensional reasons. Suppose
that dim c1(n) ≥ 2. We have the following theorem.

Theorem 3.11. Let n be a step 2 stratified Lie algebra with a complex structure J .
(i) Suppose that dim n2 = 2. Then
(a) J is nilpotent of step 2; (b) if dim d1 = 2, then Jn2 = n2.
(ii) Suppose that dim n2 = 2l for some l ≥ 2 ∈ N. Furthermore, assume that

dim d1 ≤ 4l − 2 and Jn2 6= n2. Then J is nilpotent of step 3.

Proof. By Theorem 3.9, J is nilpotent of either step 2 or 3.
Start with part (i). Assume that dim n2 = 2. For part (a), notice that J could be

either strata-preserving or not. If J is strata-preserving, by Theorem 3.9 part (iii), J is
nilpotent of step 2. Otherwise, J is not strata-preserving. Since dim n2 = 2, it follows
that k = {0}. Then by Theorem 3.9 part (i), J is Abelian and hence nilpotent of step
2.

Next, for part (b), recall that d1 = z ∩ Jz is the largest J-invariant subspace of
z. Suppose that n2 is not J-invariant. Then k = {0}. From part (i), J is nilpotent of
step 2. It follows, from Theorem 2.13, that d2 = {0} and d1 ⊆ d1. However, dim d1 =
dim n2 ⊕ Jn2 = 4 > dim d1. This is a contradiction. Hence Jn2 = n2.

We now show part (ii). Notice that l 6= 1. Otherwise dim n2 = dim d1 = 2. This
implies that Jn2 = n2. Suppose, by contradiction, that J is not nilpotent of step 3.
Hence J is nilpotent of step 2. Then from Remark 3.10 part (ii), k = {0} and by
definition, d1 = n2 ⊕ Jn2 ⊆ d1. However, dim d1 = 4l > dim d1. This is a contradiction.
Hence k 6= {0}. By Theorem 3.9 part (ii), J is nilpotent of step 3.
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Remark 3.12. We can extend the statement of part (i) into a higher step stratification
as follows:

Let n be a step k stratified Lie algebra with a nilpotent complex structure J of step
k. Suppose that dim nk = 2 and dim d1 = 2. Then Jnk = nk.

Corollary 3.13. Let n = n1 ⊕ n2 be a step 2 stratified Lie algebra with a complex
structure J such that dim n2 = 2. Then J is center-preserving or strata-preserving or
both. Furthermore, suppose that 2 ≤ dim z ≤ 3 or dim z = 4 and Jz 6= z. Then there
exists a J-invariant stratification.

Proof. By Theorem 3.11, J is nilpotent of step 2. Then by Table 1, Jn2 = n2 or Jz = z
or both if n2 = z.

Furthermore, dim d1 = 2 since 2 ≤ dim z ≤ 3 or dim z = 4 and Jz 6= z. By part (ii)
of Theorem 3.11, Jn2 = n2. Furthermore, by Theorem 3.6, there exists a J-invariant
stratification.

Suppose that n is a 6 dimensional step 2 nilpotent Lie algebra with a complex
structure. In [4,Table 1], there is a complete classification of complex structures on
these algebras. However, no information is provided on whether or not J preserves the
strata.

Corollary 3.14 ([1, 4]). Let n be a 6 dimensional step 2 nilpotent Lie algebra with a
complex structure J such that dim c1(n) = 2. Then n admits a J-invariant stratification.

Proof. By Theorem 3.9 and Proposition 2.18, J is nilpotent and 2 ≤ dim z ≤ 4. If
dim z = 4, dim c1(n) = 1 and J is not strata-preserving due to dimensional reasons. We
omit this case. Next, assume that dim z ≤ 3. This is a direct consequence of Corollary
3.13.

In what follows, we focus on higher step stratified Lie algebras with complex struc-
tures.

Proposition 3.15. Let n be a step 3 stratified Lie algebra with a complex structure J .
Suppose that Jn3 = n3. Then J is nilpotent of step 3.

Proof. By the definition of the descending central series pj in (6), {0} 6= p2 = n3 +
[Jc1(n), n]. On the one hand, suppose that [Jc1(n), n] = {0}. We deduce that p2 = n3
and hence p3 = {0} by definition. Using Theorem 2.13, J is nilpotent of step 3. On
the other hand, suppose that [Jc1(n), n] 6= {0}. Then by the Newlander–Nirenberg
condition, for all U ∈ c1(n) and X, JX ∈ n

0 6= [JU, JX]− J [JU,X]︸ ︷︷ ︸
∈ [Jc1(n), n] + J [Jc1(n), n]

= [U,X] + J [U, JX]︸ ︷︷ ︸
∈ n3

.

Hence [Jc1(n), n] ⊆ n3. This implies that p2 ⊆ n3 and therefore Jp2 ⊆ n3. Then
p3 = [p2, n] + [Jp2, n] = {0}. Again by Theorem 2.13, J is nilpotent of step 3.

Proposition 3.16. Let n be a 8 dimensional step 3 stratified Lie algebra with a complex
structure J such that 2 dim n3 = dim c1(n) = 4. Suppose that Jn3 6= n3 and dim z ≤ 3.
Then J is nilpotent of step 4. Furthermore, d2 = n3 ⊕ Jn3.

Proof. Since n3 ⊆ z, dim z ≥ 2. By [10,Corollary 3.12], J is nilpotent. Then us-
ing Remark 2.4 (i), 3 ≤ j0 ≤ 4, where j0 is the nilpotent step of J. Suppose, by
contradiction, that J is nilpotent of step 3. It follows, from the equation (7), that
n3 + Jn3 ⊆ d2 ⊆ d1 ⊆ z. On the one hand, since dim z ≤ 3, dim d1 = 2. On
the other hand, since Jn3 6= n3 and dim n3 = 2, n3 ∩ Jn3 = {0} and therefore
dim n3 ⊕ Jn3 = 4 > dim d1. This is a contradiction. So J is nilpotent of step 4.
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We now show that d2 = n3 ⊕ Jn3. It is sufficient to show that d2 ⊆ n3 ⊕ Jn3. By
definition,

d2 = [d1, n] + J [d1, n]
= span

{
[T,X] + J [T ′, X ′] : ∀ T, T ′ ∈ d1, ∀ X,X ′ ∈ n

}
.

For all T, T ′ ∈ d1, we may write T = U + JV and T ′ = U ′ + JV ′ where U, V, U ′, V ′ ∈
c1(n). Then

0 6= [T,X] + J [T ′, X ′] = [U,X] + J [U ′, X ′]︸ ︷︷ ︸
∈ n3 ⊕ Jn3

+[JV,X] + J [JV ′, X ′]. (10)

By the Newlander–Nirenberg condition,

0 6= [JV,X] + J [JV, JX]︸ ︷︷ ︸
∈ [Jc1(n), n] + J [Jc1(n), n]

= J [V,X]− [V,X] ∈ n3 ⊕ Jn3.

Hence [JV,X] +J [JV ′, X ′] ∈ n3⊕Jn3. From (10), [T,X] +J [T ′, X ′] ∈ n3⊕Jn3. Hence
d2 ⊆ n3 ⊕ Jn3. In conclusion, d2 = n3 ⊕ Jn3.
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