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INVERSE LOCALIZATION AND GLOBAL APPROXIMATION

FOR SOME SCHRÖDINGER OPERATORS

ON HYPERBOLIC SPACES

ALBERTO ENCISO, ALBA GARCÍA-RUIZ, AND DANIEL PERALTA-SALAS

Abstract. We consider the question of whether the high-energy eigenfunc-
tions of certain Schrödinger operators on the d-dimensional hyperbolic space of
constant curvature −κ2 are flexible enough to approximate an arbitrary solu-
tion of the Helmholtz equation ∆h+h = 0 on Rd, over the natural length scale
O(λ−1/2) determined by the eigenvalue λ ≫ 1. This problem is motivated by
the fact that, by the asymptotics of the local Weyl law, approximate Laplace
eigenfunctions do have this approximation property on any compact Riemann-
ian manifold. In this paper we are specifically interested in the Coulomb and
harmonic oscillator operators on the hyperbolic spaces Hd(κ). As the dimen-
sion of the space of bound states of these operators tends to infinity as κ ց 0,
one can hope to approximate solutions to the Helmholtz equation by eigen-
functions for some κ > 0 that is not fixed a priori. Our main result shows
that this is indeed the case, under suitable hypotheses. We also prove a global
approximation theorem with decay for the Helmholtz equation on manifolds
that are isometric to the hyperbolic space outside a compact set, and consider
an application to the study of the heat equation on Hd(κ). Although global
approximation and inverse approximation results are heuristically related in
that both theorems explore flexibility properties of solutions to elliptic equa-
tions on hyperbolic spaces, we will see that the underlying ideas behind these
theorems are very different.

1. Introduction

In this paper we are concerned with high energy eigenfunctions of Schrödinger
operators on a complete Riemannian d-dimensional manifold M with d > 2, which
we will eventually choose to be a hyperbolic space. To this end, we consider non-
trivial square-integrable solutions ψj to equations of the form

(1) ∆Mψj + (λj − V )ψj = 0 ,

where ∆M is the Laplace–Beltrami operator on the manifold, the potential V is a
well-behaved function and λj ≫ 1 are eigenvalues. It is well known that rescaled
limits of high energy eigenfunctions of a Schrödinger operator are connected with
solutions to the Helmholtz equation. Recall that the Helmholtz equation reads as

∆Mu+ λu = 0

for some constant λ > 0, and that in the d-dimensional Euclidean space one can
often take advantage of the scaling properties of the equation and set λ = 1:

(2) ∆v + v = 0 .
1
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It is standard that, over geodesic balls of the natural radius determined by
the eigenvalue, high energy eigenfunctions on a manifold, such as solutions to (1),
behave essentially like solutions to the Euclidean Helmholtz equation (2) on the unit
ball. Roughly speaking, this is because, if x̄ are normal coordinates on a geodesic
ball centered at a certain point of the manifold and one considers the rescaled

coordinates x := λ
1/2
j x̄, a straightforward computation shows that Equation (1)

can be rewritten on the Euclidean ball |x| < 1 as

∆ψj + ψj = O
(
λ−1
j

)
,

where ∆ denotes the ordinary Laplacian in the coordinates x and where the error
term depends on derivatives of ψj up to second order.

It is also known that, under mild assumptions, one can pick a sequence of approx-
imate eigenfunctions on the manifold (meaning, for concreteness, a linear combina-
tion Uλ of eigenfunctions with eigenvalues λj lying on the interval Iλ := [λ, (1+δ)λ],
with λ ≫ 1 and some arbitrarily small but fixed δ > 0) whose behavior on a ball
of radius λ−1/2 centered at a fixed point p reproduces that of any fixed solution v
to the Helmholtz equation (2) on R

d modulo a small error. More precisely, by the
well-known asymptotics for the local Weyl law [17], given any solution v, one can
construct Uλ as above such that

(3)
∥∥∥Uλ ◦ expMp (λ−1/2 ·)− v

∥∥∥
Ck(B)

→ 0

as λ → ∞, where expMp is the exponential map at a point p ∈ M , B ⊂ R
d is a

bounded domain and k is any fixed integer. (In fact, it is well known that the
size of the interval Iλ can be made substantially smaller, see e.g. [5].) Nontrivial
extensions of this property, which consider random combinations of eigenfunctions
with eigenvalues in the interval Iλ, can be consulted in [6] and in the references
therein.

A subtler question is whether one can replace the approximate eigenfunctions Uλ

by bona fide eigenfunctions ψj . Remarkably, there are only a few cases where
it is known that high-energy eigenfunctions can approximate, on suitable scales,
arbitrary solutions to the Helmholtz equation. For short, when this happens, we will
say that the Schrödinger operator −∆M + V has the inverse localization property.
In general, one does not expect that this should hold for a general Riemannian
manifold, even when the potential is identically 0.

In fact, Jung and Zelditch have constructed [18] a Riemannian 3-manifold for
which all the (nonconstant) Laplace eigenfunctions have exactly two nodal domains,
and this can be used to show that there are solutions to the Helmholtz equation that
cannot be approximated by rescaled eigenfunctions on this manifold in the sense
of (3). Also, in [9] we have recently shown that the inverse localization property
does not hold on generic flat tori. Specifically, whether the approximating property
holds or not depends solely on the arithmetic properties of the spectrum of the
torus, and the set of tori for which it holds has measure zero.

The list of Schrödinger operators which are known to possess the inverse lo-
calization property is remarkably short. To our best knowledge, the only known
examples are the harmonic oscillator operator on R

d [10] and the Laplace opera-
tor on certain tori [9] and on the round sphere S

d and all Riemannian quotients
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thereof [15]. The Coulomb operator [11] exhibits an analogous localization prop-
erty, where the Helmholtz equation must be replaced by a “zero energy Coulomb
equation” to account for the fact that one considers eigenvalues that do not tend to
infinity but to 0, which is the bottom of the essential spectrum. The curl operator
on T

3 and S
3, whose eigenfunctions are known as Beltrami fields, also exhibits an

inverse localization property [14]. These facts have found several applications in
previous work of two of the authors, including the proof of a conjecture of Berry [2]
on eigenfunctions whose nodal sets realize a certain knot [11, 10] or the construction
of stationary Euler flows with knotted vortex lines [14].

Note that in all the known examples, the eigenvalues have a very high multi-
plicity. As shown by Uhlenbeck [25], a generic perturbation of these examples will
split the eigenspaces, leading to Schrödinger operators for which all the eigenvalues
have multiplicity 1 and for which, in general, one does not expect inverse localiza-
tion to hold. However, it stands to reason that some kind of inverse localization
property should hold provided that the perturbation preserves the multiplicity of
the eigenvalues.

Our objective in this paper is to explore this heuristic idea in the context of
Schrödinger operators on the d-dimensional hyperbolic space H

d(κ) of negative
constant sectional curvature −κ2. Specifically, we are interested in the Coulomb
and harmonic oscillator operators

HC
κ := −∆κ + αV C

κ , HH
κ := −∆κ + αV H

κ ,

where ∆κ is the Laplace–Beltrami operator, V C
κ and V H

κ are the Coulomb and
harmonic oscillator potentials on H

d(κ) and α is a fixed positive constant that will
not play any role in the arguments. Precise definitions and explicit formulas will
be provided in Section 2.

These operators have long played a significant role in mathematics and in physics.
Indeed, the study of the classical counterparts of these systems can be traced
back [23] to Lobachevski circa 1835 in the case of the Coulomb (or Kepler) po-
tential and to Liebman in 1902 in the case of the harmonic oscillator. The study of
the corresponding quantum models respectively started in Schrödinger in 1940 and
with Higgs in 1979. It has long been known that these models possess superinte-
grability properties analogous to those of their Euclidean analogs, as discussed in
a broader context in [1]. One should note that, even though the Coulomb system
is typically considered in any dimension d > 2, the potential is always a formal
extension of the 3-dimensional case in the sense that it diverges as the inverse of
the distance to the point p0 where the point charge is located. In particular, the
equation ∆κV

C
κ = cd,κ δp0 , where δp0 is the Dirac measure supported on p0, only

holds in dimension 3.

Even though the Coulomb and harmonic oscillator operators on H
d(κ) are for-

mally very similar to those of their Euclidean counterparts, their spectral properties
are rather different. In particular, the space of bound states is finite dimensional for
both operators. We will elaborate on this point in Section 2. An easy consequence
of this fact is that the operators HA

κ , with A = C or H, cannot have the inverse
localization property for any κ > 0.

However, the main result of this paper is that a suitable analog of the inverse
localization principle for parametric families of operators does indeed hold. The
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basic idea is that, as the dimension of the space of bound states of HA
κ tends to

infinity as κց 0, one can try to approximate solutions to the Helmholtz equation
by eigenfunctions of HA

κ for some κ > 0 that is not fixed a priori. For simplicity,
in the Introduction we only deal with the harmonic oscillator operator. As in the
Euclidean case, the analogous statement for the Coulomb operatorHC

κ is necessarily
less transparent, so we have chosen relegate it to Theorem 4.1 in the main text. To
state the theorem, let us fix a point p0 ∈ H

d(κ) and denote by expκp0
the exponential

map at p0 defined by the hyperbolic metric of curvature −κ2.
Theorem 1.1. Let v be an even or odd solution to the Helmholtz equation (2) on
R

d, with d > 2. Given any ε > 0 small, any integer k, and any ball B ⊂ R
d, there

exist some κ > 0 and an eigenfunction ψ of HH
κ such that

‖ψ ◦ expκp0
(λ−1/2 ·)− v‖Ck(B) < ε .

Here λ is the corresponding eigenvalue and p0 ∈ H
d(κ) is the point where the

potential V H
κ attains its global minimum.

Let us point out that assuming that the function v in Theorem 1.1 satisfies the
Helmholtz equation in all of Rd or in a smaller domain is actually irrelevant, as it
is whether one aims to approximate the function on a ball or on any other bounded
domain Ω whose complement Rd\Ω is connected. This is because one can prove [12]
that a function satisfying the Helmholtz equation on a domain containing the clo-
sure of a domain Ω as above, which would be an essentially minimal assumption
for the purposes of Theorem 1.1, can be approximated in the Ck(Ω) norm by a
solution of the Helmholtz equation on the whole R

d with the sharp fall off rate at
infinity (i.e., |v(x)| < C(1 + |x|)(1−d)/2 if d > 2).

Let us provide some context for this result. It is a general fact that a solution w
of a nice linear elliptic equation Lw = 0 on a domain containing the closure of a
bounded domain Ω with connected complement (be it on R

d or on a noncompact
manifold) can be approximated in Ck(Ω) by a global solution, that is, a solution
to the equation on the whole space. This kind of results, which generalize Runge’s
classical theorem in complex analysis, goes back to the work of Lax, Malgrange and
Browder, and are known as global approximation theorems [4]. The key property
of the Helmholtz equation on R

d, established in [12], is that one can additionally
assume a decay condition at infinity for the global solution, which is moreover sharp.

As we shall see next, one can also prove a global approximation theorem with
decay for the Helmholtz equation on a hyperbolic space. However, it is worth stress-
ing that the underlying ideas behind this result and behind an inverse localization
theorem are rather different. To illustrate this fact, we shall state the following
more general result, which does not follow from the approximation theorems with
decay for essentially flat elliptic operators proved in [8]. Recall that a d-dimensional
Riemannian manifold M is hyperbolic outside a compact set if there exist compact
sets K1 ⊂ M and K2 ⊂ H

d(κ) such that M\K1 and H
d(κ)\K2 are isometric, for

some κ > 0. We will consider manifolds for which there is a point p0 ∈M whose in-
jectivity radius is infinite, which implies in particular thatM is diffeomorphic to Rd.
An important class of manifolds with this property are those of Cartan–Hadamard,
that is, simply connected manifolds with nonpositive sectional curvature. To state
this result, we will denote by ρM (x) = ρM (x, p0) the geodesic distance in M from
x to the point p0 ∈M .
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Theorem 1.2. Consider a d-dimensional Riemannian manifold M with d > 2
which is hyperbolic outside a compact set and has a point p0 with infinite injectivity
radius. Fix an integer k and a constant ε > 0. Suppose that the function w satisfies
the Helmholtz equation

(4) ∆Mw + λw = 0

in a neighbourhood of the closure of a bounded domain Ω ⊂M , and that the comple-
ment M\Ω is connected. We also assume that λ belongs to the continuous spectrum

of the Laplacian, i.e., λ >
[
(d−1)κ

2

]2
. Then there exists a solution v of the Helmholtz

equation (4) on all of M which approximates w as

‖w − v‖Ck(Ω) < ε

and which satisfies the sharp Agmon–Hörmander decay condition

(5) sup
R>0

1

R

∫

BR

|v(x)|2 dVol(x) <∞ .

Here BR is the geodesic ball of radius R centered at p0 and dVol is the Riemannian
volume form on M . In the case that M is the hyperbolic space H

d(κ), the decay of
v is pointwise:

(6) |v(x)| < Ce−
d−1
2 κρM (x).

Remark 1.3. Using that M is isometric to the hyperbolic space outside some com-
pact set, and the expression of dVol in geodesic coordinates centered at p0, it is
straightforward to check that the decay (5) is an averaged version of the pointwise

decay (6). We stress that the condition λ >
[
(d−1)κ

2

]2
, where

[
(d−1)κ

2

]2
is the

bottom of the purely continuous spectrum of ∆M , is only used to ensure the decay
bound (5); a global approximation theorem with no control at infinity of the global
solution certainly holds without the aforementioned assumption.

Remark 1.4. Note that we are not assuming that the curvature of M is asymptoti-
cally small. Furthermore, a result of Uhlenbeck [25] ensures that all the eigenvalues
of the Dirichlet Laplacian are nondegenerate for generic compact perturbations
of Hd(κ). Therefore, the validity of this result (unlike that of Theorem 1.1) is in
no way related to the multiplicity of the eigenvalues.

The decay condition of a global approximation theorem is key in many applica-
tions, such as nonlinear equations [13]. Although we shall not pursue this direction
here, in Section 5 we will exploit this fact to derive a global approximation theorem
with decay for the heat equation on H

d(κ) (Theorem 5.2).

2. The harmonic oscillator and Coulomb operators in hyperbolic

spaces

We will describe the d-dimensional hyperbolic spaceHd(κ) = (Rd, gκ) of sectional
curvature−κ2 < 0 via geodesic normal coordinates centered at a fixed but arbitrary
point p0 ∈ H

d(κ). That is, we take coordinates ρ = ρM (x, p0) := distκ(x, p0), the
geodesic distance to p0, and the angular variable ω ∈ S

d−1. In these coordinates
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the metric takes the form gκ = dρ2 + sinh2(κρ)
κ2 gSd−1 . For simplicity, in Sections 2–4

we will instead use the coordinates (r, ω) with

r :=
sinh(κρ)

κ
.

In these coordinates, the metric and the Laplacian read as

gκ =
1

1 + κ2r2
dr2 + r2gSd−1 ,

∆κ = (1 + κ2r2)
∂2

∂r2
+
d− 1 + dκ2r2

r

∂

∂r
+ r−2∆Sd−1 .

We are interested in the Coulomb and harmonic oscillator potentials on H
d(κ),

which are given respectively by

V C
κ := −

√
κ2 + r−2 ,

V H
κ :=

r2

1 + κ2r2
.

The point p0 is chosen to be the global minimum point of the harmonic potential
and the singular point of the Coulomb potential. Note that when d = 3, ∆κV

C
κ =

cd,κδp0 , where cd,κ is an explicit constant, so V C
κ onH

3(κ) has a direct interpretation
as the electrostatic potential of a point charge located at p0. Also, the harmonic

potential is defined as V H
κ :=

(
V C
κ

)−2
, which mimics the well known functional

relation between the harmonic potential |x|2 and the Coulomb potential |x|−1 in
Euclidean space.

The eigenvalues and eigenfunctions of the Coulomb operator HC
κ are well known

(see e.g. [22]). An orthogonal basis of the space of square-integrable eigenfunctions
is

ψκ,C
nlm := fκ,C

nl (r)Ylm(ω) ,

fκ,C
nl (r) = rl

(√
1 + κ2r2 + κr

)c
P (a;b)
n

(
2
(√

1 + κ2r2 + κr
)2

− 1

)
.

The constants are defined in terms of n and l as

c := −n− α

2κ(n+ l + d−1
2 )

; a := 2l+d−2; b := −n− l− d− 1

2
− α

2κ(n+ l + d−1
2 )

,

and hereafter Ylm, with 1 6 m 6 dl :=
(
l+d−2

l

)
2l+d−2
l+d−2 , denotes any orthonormal

basis of the space (d−1)-dimensional spherical harmonics with spherical eigenvalue

µl = l(l+ d− 2), for any nonnegative integer l. Also, P
(a;b)
n is a Jacobi polynomial.

The indices n, l range over the set of nonnegative indices such that

(7) n+ l <

√
α

2κ
− d− 1

2
,

and 1 6 m 6 dl. In particular, the point spectrum is finite, contrary to what
happens in the Euclidean case of the Euclidean Coulomb operator.

The eigenvalue of ψκ,C
nlm is

λκ,Cnl = − α2

4(n+ l + d−1
2 )2

− κ2
(
n+ l +

d− 1

2

)2

.
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Just as in the Euclidean counterpart, the energy only depends on N := n+ l. Thus

the multiplicity of λnl is
∑N

j=0 dj , just as in the Euclidean case.

In the case of the harmonic oscillator HH
κ , a basis of the space of bound states is

ψκ,H
nlm := fκ,H

nl (r)Ylm(ω) ,

fκ,H
nl (r) := rl(1 + κ2r2)

c
2P (a;b)

n

(
1 + 2κ2r2

)
,

with

c := −β/κ2; a := l+
d− 2

2
; b := −β/κ2 − 1/2 .

Here the nonnegative integers range over the set

(8) 2n+ l <
β

κ2
− d− 1

2
,

and 1 6 m 6 dl. Thus the space of bound states is again finite-dimensional. The

eigenvalue of ψκ,H
nlm is

λκ,Hnl = β(4n+ 2l+ d)− κ2
(
2n+ l +

d− 1

2

)2

,

where β :=
√
κ4+4α−κ2

2 . This depends only on N := 2n + l, so the multiplicity of

λκ,Hnl is then as in the Euclidean case as well:

⌊N
2 ⌋∑

k=0

dN−2k .

It is worth recalling that, in Euclidean space, an orthogonal basis of eigenfunc-
tions of the space of bound states of the Coulomb and harmonic oscillator operators,

HH := −∆+ α|x|2 ,
HC := −∆− α|x|−1 ,

is respectively given by

ψH
nlm := rle−

√
αr2/2L

(l+d
2−1)

n

(√
αr2
)
Ylm(ω) ,

ψC
nlm := rle−αr/2(n+l+ d−1

2 )L(2l+d−2)
n

(
αr

n+ l + d−1
2

)
Ylm(ω) .

Here n, l > 0 and 1 6 m 6 dl. The corresponding eigenvalues are

λHnl =
√
α(4n+ 2l+ d) , λCnl := − α2

4
(
n+ l + d−1

2

)2 .

3. Proof of Theorem 1.1

Assume that v is an even function, i.e., v(x) = v(−x) for all x ∈ R
d. The case

when v is odd is analogous and will be sketched at the end of this section.
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Let us begin by taking hyperspherical coordinates in a ball B′ ⊃⊃ B. For any
fixed r, one can expand v in hyperspherical harmonics to write

v =
∑

l>0

dl∑

m=1

vlm(r)Ylm(ω) ,

with

vlm(r) =

∫

Sd−1

v(r, ω)Ylm(ω) dσ(ω) .

Furthermore, since

∆Sd−1Ylm = −µlYlm = −l(l+ d− 2)Ylm ,

one can integrate the Helmholtz equation (2)

−v = ∆v = ∂rrv +
d− 1

r
∂rv +

∆Sd−1v

r2

with Ylm over Sd−1 to obtain

−vlm =

∫

Sd−1

Ylm ∆v =

(
∂rr +

d− 1

r
∂r

)∫

Sd−1

vYlm +
1

r2

∫

Sd−1

v∆Sd−1Ylm

=

(
∂rr +

d− 1

r
∂r −

l(l + d− 2)

r2

)
vlm .

Note that we have integrated by parts the term involving the spherical Laplacian.

Thus we infer that vlm satisfies a Bessel-type ODE that only depends on l. Since
v is smooth, vlm must be well behaved at r = 0, which ensures that there are real
constants clm such that

vlm(r) = clmJl+ d−2
2
(r)r1−d/2 .

Furthermore, clm = 0 for all odd l because v is assumed to be even, so the integral
defining vlm(r) is zero.

Since v is smooth, the above series converges to v e.g. in L2(B′). Therefore, for
any δ > 0 there is an integer l0 such that the finite sum

w :=

l0∑

l=0

dl∑

m=1

clmJl+ d−2
2
(r)r1−d/2Ylm(ω)

approximates the function v as

‖v − w‖L2(B′) < δ .

As the difference v − w also satisfies the Helmholtz equation, standard elliptic
estimates show that the approximation also holds in the Ck sense:

(9) ‖v − w‖Ck(B) < Cδ .

To connect these expressions with eigenfunctions of HH
κ , let us start with the

following lemma:

Lemma 3.1. Let us fix some integers l and n as in (8). Uniformly for r 6 R, the

eigenfunction ψκ,H
nlm admits the asymptotic expansion, as n→ ∞ and κ→ 0,

ψκ,H
nlm


 r√

λHnl

, ω


 = Anl

[
Jl+ d−1

2
(r) · r 2−d

2 +O
(
n− d+1

4

)
+O(κ2)

]
Ylm(ω) .
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In fact,

(10) lim
n→∞,κ→0

∥∥∥∥∥∥
ψκ,H
nlm


 r√

λHnl

, ω


− AnlJl+ d−1

2
(r) · r 2−d

2 Ylm(ω)

∥∥∥∥∥∥
Ck(BR)

= 0 .

Throughout, we assume 2n+ l < β
κ2 − d−1

2 . Here Anl is a non-zero constant.

Proof. The result is proved in two steps. In the first part of the proof, we use the
asymptotic relation between Laguerre and Jacobi polynomials that can be found,
for example, in [24, (5.3.4.)]:

L(α)
n (r) = lim

γ→∞
P (α;γ)
n

(
1− 2γ−1r

)
.

It is well-known that one can rewrite Jacobi and Laguerre polynomials as hyperge-
ometric functions and confluent hypergeometric functions respectively:

P
(α;γ)
n (z) =

(
n+ α
n

)
2F1

(
−n, 1 + α+ γ + n;α+ 1; 12 (1− z)

)
,

L
(α)
n (z) :=

(
n+ α
n

)
M(−n, α+ 1, z) = 1F1(−n, α+ 1, z) .

If we pay attention to the fact that the first argument in both of them is a non-
positive integer, we can conclude that the series defining hypergeometric functions
are just finite sums and then we can bound the error:

∣∣∣∣P
(α;γ)
n

(
1− 2r

γ

)
− L(α)

n (r)

∣∣∣∣

=

(
n+ α
n

) ∣∣∣∣2F1

(
−n, 1 + α+ γ + n;α+ 1;

r

γ

)
−M(−n, α+ 1, r)

∣∣∣∣

=

(
n+ α
n

) ∣∣∣∣∣

n+1∑

k=0

(−n)krk
(α+ 1)kk!

(
(1 + α+ γ + n)k

γk
− 1

)∣∣∣∣∣

=

(
n+ α
n

) ∣∣∣∣
(−n)r(1 + α+ n)

(α+ 1)γ
+

(−n)(1− n)r2((1 + α+ n+ γ)(2 + α+ n+ γ)− γ2)

2(α+ 1)(α+ 2)γ2

+ · · ·+ (−1)rn((1 + α+ n+ γ) · · · (2n+ α+ γ)− γn)

(α+ 1) · · · (α+ n)n!γn

∣∣∣∣ = O
(
γ−1

)
,

uniformly for 0 6 r 6 R as γ → ∞. Here (q)n is the (rising) Pochhammer symbol:

(q)n :=

{
1 , n = 0
q(q + 1) · · · (q + n− 1) , n > 0

From this, it follows that

P (α;γ)
n

(
1− 2γ−1r

)
= L(α)

n (r) +O
(
γ−1

)
,

uniformly in [0, R].
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If we take γ := −β/κ2 − 1/2 and notice that O(γ−1) = O(κ2), we can conclude

P
(l+d/2−1;−βκ−2−1/2)
n

(
1 + 2κ2r2

)
= P (l+d/2−1;γ)

n

(
1− 2r2

β

(1/2 + γ)

)

= P (l+d/2−1;γ)
n

(
1− 2βr2γ−1 +O

(
γ−2

))
= L(l+d/2−1)

n

(
βr2
)
+O

(
κ2
)

= L(l+d/2−1)
n

(√
αr2 +O(κ2)

)
+O

(
κ2
)
= L(l+d/2−1)

n

(√
αr2
)
+O

(
κ2
)
.

Here we have used that

β =

√
κ4 + 4α− κ2

2
=

√
α+O(κ2) .

On the other hand, some elementary computations show that
(√

1 + κ2r2
)−βκ−2

= e−
√
αr2/2+O(κ2) +O

(
κ2
)
= e−

√
αr2/2 +O(κ2) ,

uniformly on [0, R], since e−r2
√
α/2 > O(κ2) for sufficiently small κ.

Standard formulas for the derivatives of orthogonal polynomials (see e.g. [24,
(4.21.7)] and [19, (22.8.6)]) yield similar approximation results for derivatives of
arbitrary order, so we conclude that

∥∥∥∥f
κ,H
nl (r) − rle−

√
αr2/2L

(l+ d
2−1)

n

(√
αr2
)∥∥∥∥

Ck(0,R)

= O(κ2) .

By noticing that

λκ,Hnl = λHnl +O(κ2),

we can see that∥∥∥∥∥∥∥
fκ,H
nl

(
r/

√
λκ,Hnl

)
−


 r√

λHnl




l

e−
√
αr2/(2λH

nl)L
(l+ d

2−1)
n

(√
α
r2

λHnl

)
∥∥∥∥∥∥∥
Ck(0,R)

= O(κ2) .

Next we use Hilb’s asymptotic formula for the Laguerre polynomial [24, (8.22.4)],
which gives an asymptotic expansion for a fixed θ > 0:

e−x/2xθ/2L(θ)
n (x) =

Γ(n+ θ + 1)
(
n+ θ+1

2

)θ/2
n!
Jθ

(√
(4n+ 2θ + 2)x

)
+ x5/4O

(
n

2θ−3
4

)
.

The bound holds uniformly in 0 6 x 6 R for any fixed R > 0. Using the substi-
tutions x =

√
αr2(λHnl)

−1 and θ = l + d
2 − 1, we obtain the following asymptotic

expansion of the radial part of ψH
nlm:

(
r√
λHnl

)l

e
−

√
αr2

2λH
nl L(l+d/2−1)

n

(√
αr2

λHnl

)
= Anlr

1−d/2Jl+d/2−1(r)+O
(
nl/2+d/4−5/4

)
.

Here

Anl :=




√
λHnl

2




−l

Γ(n+ l + d/2)2d/2−1

n!
.

It is standard that this asymptotic formula can be derived term by term, so one
obtains the formula for the derivatives (10) that appears in the lemma and similar
ones for higher derivatives.
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Using Stirling’s asymptotic formula for the factorial,

n! =
√
2πn

(n
e

)n(
1 +O

(
1

n

))
,

and the identity

(11) Γ(n+ l + d/2) =

√
π(2n+ 2l+ d− 1)!

22n+2l+d−2(n+ l + d−1
2 )!

,

we can estimate the constant Anl for large n as

Anl =
α−l/42d/2−1

el+d/2−1
nl/2+d/2−1 +O(nl/2+d/2−2) ,

if d is even and

Anl =
α−l/42d/2−1

el+d/2−1/2
nl/2+d/2−1 +O(nl/2+d/2−2) ,

if d is odd. Thus we conclude that nl/2+d/4−5/4A−1
nl = O

(
n− d+1

4

)
. The lemma

then follows by combining the above identities together. �

To continue, let us take a large integer n̂ that will be fixed later, and which we
assume to be much larger than l0/2. For each even integer l smaller than 2n̂ we set

n̂l := n̂− l/2,

so that the eigenvalue
(12)

λ := λκ,Hn̂ll
= β(4n̂l+2l+d)−κ2

(
2n̂l + l +

d− 1

2

)2

= β(4n̂+d)−κ2
(
2n̂+

d− 1

2

)2

does not depend on the choice of l. We can now derive an eigenfunction of the
hyperbolic harmonic oscillator from the function w by setting

ψ :=

l0∑

l=0

dl∑

m=1

clmA
−1
n̂ll
ψκ,H
n̂llm

.

To make sure that this is indeed an eigenfunction, we need to ensure that all the
numbers n̂l, l,m are in the admissible range of the integers, so we pick the curvature
of the hyperbolic space small enough so that

κ2 <
β

2n̂+ l0 +
d−1
2

.

By construction, ψ is then an eigenfunction of the hyperbolic harmonic oscillator
with energy as in (12). Here we have used the fact that clm = 0 for odd l, since the
defined number n̂l is an integer only for even l. We are now in conditions to use
Lemma 3.1.

We claim that for any δ > 0 one can choose n̂ large enough so that

(13)
∥∥∥ψ
(
·/
√
λ
)
− w

∥∥∥
Ck(B)

< δ .
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This is a rather straightforward consequence of Lemma 3.1. Indeed, substituting
the asymptotic expressions obtained in the sum for ψ we find
∣∣∣∣ψ
(
x√
λ

)
− w(x)

∣∣∣∣ 6
l0∑

l=0

dl∑

m=1

|clm|
∣∣∣∣A

−1
n̂ll
ψκ,H
n̂llm

(
x√
λ

)
− Jl+d/2−1(r)r

1−d/2Ylm(ω)

∣∣∣∣

=

l0∑

l=0

dl∑

m=1

|clm|
(
O
(
n̂
− d+1

4

l

)
+O(κ2)

)
6

C

n̂3/4
,

provided that n̂ is much larger than l0/2, κ≪ 1 and |x| < R, R being the diameter
of B. An analogous argument shows similar bounds for the derivatives of ψ and w
so the estimate (13) follows provided n̂ is large enough.

To conclude, we combine (9), (13) and the fact that we are working in normal
geodesic coordinates on a hyperbolic space to show that
∥∥∥v(·)− ψ ◦ expκp0

(
·/
√
λ
)∥∥∥

Ck(B)
6 ‖v − w‖Ck(B) +

∥∥∥ψ ◦ expκp0

(
·/
√
λ
)
− w(·)

∥∥∥
Ck(B)

< ε,

provided that κ is small enough. Here p0 is the point where the harmonic oscillator
potential attains its global minimum.

A straightforward modification of the argument enables us to consider the case
where v is odd. If v is odd, we only need to notice that clm = 0 for all even l and
define n̂l as n̂l = n̂− l+1

2 to prove the result.

4. The Coulomb operator on hyperbolic spaces

The localization result for the Coulomb operator of Hd(κ) analogous to Theo-
rem 1.1 is the following:

Theorem 4.1. Let v satisfy the equation

∆v +
α

|x|v = 0

in R
d with d > 2. Given ε > 0 small, an integer k and a ball B ⊂ R

d whose closure
does not contain the origin, there exist some κ > 0 and an eigenfunction ψ of HC

κ

such that

‖ψ ◦ expκp0
−v‖Ck(B) < ε .

Here p0 ∈ H
d(κ) is the singularity of the Coulomb potential.

The proof of this result is very similar to the one of Theorem 1.1, so we will
just sketch it and point out the differences. Arguing as before, we immediately see
that v can be written in the ball B as

v(r, ω) =

∞∑

l=0

dl∑

m=1

clmJ2l+d−2

(√
4αr

)
r1−d/2Ylm(ω) .

In the series above, clm are real constants. We also conclude that for any δ > 0
there is an integer l0 such that the truncated sum

w :=

l0∑

l=0

dl∑

m=1

clmJ2l+d−2

(√
4αr

)
r1−d/2Ylm(ω)
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approximates the function v in Ck:

(14) ‖v − w‖Ck(B) < Cδ .

The next lemma is the analog of Lemma 3.1 and will be key in the proof. In
the statement we take two constants R0 < R such that B is contained in BR\BR0 ,
where BR denotes the ball of (geodesic) radius R centered at the origin.

Lemma 4.2. Let us fix some integers l and n as in (7). Uniformly for 0 < R0 6

r 6 R, the eigenfunction ψκ,C
nlm admits the asymptotic expansion

(15)

ψκ,C
nlm(r, ω) = Anl

[
J2l+d−2

(√
4αr

)
r1−d/2 +O

(
n−l−d/2+1/4

)
+O(κ)

]
Ylm(ω) ,

as n → ∞ and κ → 0 with n+ l <
√

α
2κ − d−1

2 , where Anl is a nonzero constant.
In fact,

lim
n→∞,κ→0

∥∥∥ψκ,C
nlm(r, ω)−AnlJ2l+d−2

(√
4αr

)
r1−d/2Ylm(ω)

∥∥∥
Ck(B)

= 0 .

Proof. Again, we use the asymptotic relation between Laguerre and Jacobi poly-
nomials [24, (5.3.4)], from which it follows that

P (α;γ)
n

(
1− 2γ−1r

)
= L(α)

n (r) +O
(
γ−1

)

uniformly in [0, R].

If we take γ = − 2l+2n+d−1
2 − α

2κ(n+l+ d−1
2 )

and notice that O(γ−1) = O(κ), we

conclude

P

(
2l+d−2;−l−n−d−1

2 − α

2κ(n+l+ d−1
2

)

)

n

(
2
(√

1 + κ2r2 + κr
)2

− 1

)

= P (2l+d−2;γ)
n

(
1 + 4κr +O(κ2)

)
= P (2l+d−2;γ)

n

(
1− 2rα

(n+ l + d−1
2 )γ

+O
(
γ−2

)
)

= L(2l+d−2)
n

(
αr

n+ l + d−1
2

)
+O (κ) .

On the other hand, using Taylor’s series,

(√
1 + κ2r2 + κr

)−n− α

2κ(n+l+
d−1
2 ) =

(
1 + κr +O

(
κ2
))−n− α

2κ(n+l+
d−1
2 )

=


1− αr

2(n+ l + d−1
2 )

·
(

−α
2κ
(
n+ l + d−1

2

)
)−1

+O
(
κ2
)



−n− α

2κ(n+l+
d−1
2 )

= e
− αr

2(n+l+ d−1
2 ) +O (κ) ,

also uniformly on [0, R].

Standard formulas for the derivatives of orthogonal polynomials (see e.g. [24,
(4.21.7)] and [19, (22.8.6)]) allow us to show similar approximation results for
derivatives of arbitrary order, and then

∥∥∥ψκ,C
nlm − ψC

nlm

∥∥∥
Ck(B)

= O(κ) .
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Now using again Hilb’s asymptotic formula for the Laguerre polynomial [24, (8.22.4)]
and the substitutions x = αr

n+l+(d−1)/2 and θ = 2l+ d− 2 we are able to obtain the

asymptotic expansion of ψC
nlm:

rle

−αr

2(n+l+ d−1
2 )L(2l+d−2)

n

(
αr

n+ l + d−1
2

)
= AnlJ2l+d−2

(√
4αr

)
r1−d/2+O

(
nl+d/2−7/4

)
,

uniformly in [R0, R], with

Anl :=
(n+ 2l + d− 2)!

k!αl−1+d/2
.

Using Stirling’s asymptotic formula for the factorial and the identity (11), we
can estimate the constant Anl for large n as

Anl =
n2l+d−2

e2l+d−2αl+d/2−1
+O(n2l+d−3) .

Of course, since the eigenfunctions satisfy the radial equation
(
d2

dr2
+
d− 1

r

d

dr
− l(l + n− 2)

r2
+
α

r
+ λCnl

)
fC
nl(r) = 0 ,

this uniform estimate can be easily promoted to a Ck bound in [R0, R], and hence
in B. The bound (15) follows by combining the above identities. �

The main difference with Lemma 3.1 is that now we are not rescaling eigen-
functions with a factor depending on the increasing energy, that is, we are not
approximating in arbitrarily small balls. This can be understood as evidence of the
fact that the key ingredient of the proof is only the degeneracy of eigenfunctions,
rather than having arbitrarily large energies.

Now we follow the proof of Theorem 1.1. Let us take a large enough natural
number n̂ that will be fixed later, which we assume to be much larger than l0. For
each integer l smaller than n̂ we set

n̂l := n̂− l ,

so that the eigenvalue

(16) λ := λκ,Cn̂ll
= − α2

4(n̂+ d−1
2 )2

− κ2
(
n̂+

d− 1

2

)2

does not depend on the choice of l. Note that, contrary to what happens in the
analysis of the harmonic oscillator, no parity hypothesis is needed. Finally, we
choose an eigenfunction of the Coulomb operator by setting

ψ :=

l0∑

l=0

dl∑

m=1

clmA
−1
n̂ll
ψκ,C
n̂llm

,

with eigenvalue λ as in (16). For this function to make sense we need to ensure

the existence of eigenfunctions ψκ,C
nlm because of the finite spectrum of the Coulomb

operator of HC
κ . Thus, we impose a restriction over the size of κ:

κ <
α

2

(
n+ l+

d− 1

2

)−2

.
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Applying Lemma 4.2, we conclude that for any δ > 0 there exists a natural number
n̂ large enough so that

(17) ‖ψ − w‖Ck(B) < δ .

Indeed, substituting the asymptotic expressions previously obtained in the defini-
tion of ψ we find

‖ψ − w‖Ck(B) 6

l0∑

l=0

dl∑

m=1

|clm|
∥∥∥A−1

n̂ll
ψκ,C
n̂llm

(r, ω)− J2l+d−2

(√
4αr

)
r1−d/2Ylm(ω)

∥∥∥
Ck(B)

=

l0∑

l=0

dl∑

m=1

|clm|
(
O
(
n̂
−l−d/2+1/4
l

)
+O(κ)

)
< δ ,

provided that n̂ is large enough and κ is small.

To conclude, we combine (14), (17) and the fact that we are working in normal
geodesic coordinates on the hyperbolic space centered at the singularity p0 of the
Coulomb potential to infer that

∥∥v − ψ ◦ expκp0

∥∥
Ck(B)

6 ‖v − w‖Ck(B) +
∥∥w − ψ ◦ expκp0

∥∥
Ck(B)

< ε ,

provided that κ is small enough.

5. Global approximation with decay

In this section we prove a global approximation theorem with decay for local
solutions of the Helmholtz equation on manifolds with infinite injectivity radius at
some point p0 and that are hyperbolic outside a compact set (Theorem 1.2). As an
application of this result, we obtain a global approximation theorem for the heat
equation with compactly supported Cauchy data on the hyperbolic space H

d(κ);
this extends the analogous result for the Cauchy problem of the heat equation in
Euclidean space proved in [8].

5.1. Proof of Theorem 1.2. Let us denote by N the neighbourhood of Ω where
w is defined. We start by taking a smooth function χ :M → R which is equal to 1
in a neighbourhood Ω′ of Ω and identically zero outside N . We define the smooth
function w1 in M given by w1 := χw, which means that w1 equals 0 outside N
even though w is not defined there.

It is well known [25] that a generic smooth bounded domain N ′ of M has the
property that λ is not a Dirichlet eigenvalue of the Laplacian ∆M on N ′. Ac-
cordingly [3], we can find a symmetric Dirichlet Green’s function G satisfying the
distributional equation:

∆M,xG(x, y) + λG(x, y) = δy(x) for all x, y ∈ N ′ ×N ′,

G∣∣∂N ′(·, y) = 0 ∀y ∈ N ′.

We also know that G is bounded by a constant times ρM (x, y)2−d if d > 3 and
by a constant times log (ρM (x, y)) if d = 2, and is smooth outside the diagonal
diag(N ′ ×N ′).

In what follows we take N ′ big enough to contain N and we also assume that
N ′\Ω is connected (e.g., take N ′ to be a large enough geodesic ball). Let dVol be
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the volume measure on M . Since λ is not a Dirichlet eigenvalue of ∆M on N ′, it
readily follows that

(18) w1(x) =

∫

N ′
G(x, y)f(y) dVol(y) ,

for all x ∈ N ′, f being the smooth function f := ∆Mw1 + λw1 supported on
N\Ω′. A standard continuity argument allows us to approximate the integral (18)
uniformly on Ω′ by a Riemann sum of the form

(19) w2(x) :=

nmax∑

n=1

cnG(x, xn) ,

which is defined for all x ∈ N ′. Concretely, for every δ > 0 there exist a large
enough integer nmax, real numbers cn and points xn ∈ N\Ω′ such that the finite
sum (19) satisfies the bound

‖ w1 − w2 ‖C0(Ω′)< δ .

Let us now take a big enough geodesic ball BR centered at p0 so that it contains
N (and the compact set K1 on whose complement M is isometric to H

d(κ)) but
satisfying BR ⊂ N ′ (this is possible because N ′ is an arbitrary generic domain). We
claim that we can sweep the singularities of the function w2 outside N\Ω′, in order
to approximate it by another function w′

2 whose singularities are contained in the
complement of BR. The proof is based on a duality argument and the Hahn-Banach
theorem.

Lemma 5.1. For every δ > 0, there is a finite amount of points {x′n}
n′
max

n=1 in

N ′\BR and constants c′n such that the finite linear combination

(20) w′
2(x) :=

n′
max∑

n=1

c′nG(x
′
n, x)

approximates the function w2 uniformly in Ω:

(21) ‖ w′
2 − w2 ‖Ck(Ω)< δ ,

for any fixed integer k.

Proof. Consider the space V of all finite linear combinations of the form (20) where
x′n can be any point in N ′\BR and the constants c′n take arbitrary values. Re-
stricting these functions to the set Ω′, we can regard V as a subspace of the Banach
space L2(Ω′) :=

{
f ∈ L2(M) : supp f ⊆ Ω′

}
. It is well know that the space L2(Ω′)

is its own dual. Let us take any function g ∈ L2(Ω′) such that
∫
Ω′ fg = 0 for all

f ∈ V , that is, g is orthogonal to the subspace V . We define a function F ∈ L2(N ′)
as

F (x) :=

∫

N ′
G(x, y)g(y) dVol(y) =

∫

Ω′
G(x, y)g(y) dVol(y),

so that F satisfies the equation

∆MF + λF = g

on N ′.

Notice that F is identically zero on N ′\BR by the definition of the function g
and that F satisfies the elliptic equation ∆MF + λF = 0 in N ′\Ω′. Since N ′\Ω′ is
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connected provided that Ω′ is close enough to Ω, and contains the set N ′\BR, by
elliptic analytic continuation we conclude that the function F must vanish on the
whole N ′\Ω′. It then follows that, for y /∈ Ω′,

0 = F (y) =

∫

N ′
G(y, x)g(x) dVol(x) .

Therefore, ∫

N ′
w2(y)g(y) dVol(y) = 0 ,

which implies that w2 cannot be separated from the space V and then can it be
uniformly approximated on Ω′ by elements of the subspace V , due to the Hahn-

Banach theorem. Acordingly, there is a finite set of points {x′n}
n′
max

n=1 in N ′\BR and
reals c′n such that the function (20) satisfies the estimate

(22) ‖w′
2 − w2‖L2(Ω′) < δ .

Standard elliptic estimates on manifolds allow us to promote (22) to a Ck bound
by restricting the domain to Ω ⊂ Ω′, see (21), and the lemma follows. �

Next, we notice that the function w′
2 satisfies

∆Mw
′
2 + λw′

2 = 0

on the ball BR, whose interior contains Ω′ and Ω. Exploiting the fact that the
injectivity radius ofM at p0 is infinite, let us consider spherical geodesic coordinates
on BR; that is ρ := ρM (x, p0) and ω ∈ S

d−1. Expanding w′
2 with respect to the

angular variables in a series of spherical harmonics, essentially as in the proof of
Theorem 1.1, we can write

(23) w′
2 =

∞∑

l=0

dl∑

m=1

wlm(ρ)Ylm(ω)

with

wlm(ρ) :=

∫

Sd−1

w(ρ, ω)Ylm(ω) dσ(ω) ,

where dσ is the canonical measure on S
d−1. The series converges in L2(BR).

Using the assumption that M\K1 is isometric to H
d(κ)\K2, we infer that we

can identify a one-sided neighborhood {R − η < ρ < R} of ∂BR in M with the
corresponding neighborhood in H

d(κ), for some small enough η > 0. A simple
computation analogous to that of the proof of Theorem 1.1 shows that the functions
wlm are solutions to the radial ODE

(24) ∂ρρwlm + (d− 1)κ
cosh(κρ)

sinh(κρ)
∂ρwlm − κ2

l(l + d− 2)

sinh(κρ)2
wlmλwlm = 0 ,

on the interval (R−η,R). Therefore, wlm must be a linear combination of the form

wlm(ρ) =
Clm

sinh(κρ)d/2−1
P 1−d/2−l
ν (cosh(κρ))

+
C′

lm

sinh(κρ)d/2−1

(
e−iπ( d

2−1+l)Qd/2−1+l
ν (cosh(κρ))

)
,
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where ν = − 1
2 − i

2κ

√
4λ− (d− 1)2κ2 (recall that λ >

[
(d−1)κ

2

]2
), Clm, C

′
lm are

complex constants, and Pµ
ν and Qµ

ν are associated Legendre conical functions of
the first and second kind, respectively.

A simple observation allows us to infer that the series (23) actually converges
in H2(BR) (or any other Sobolev space). Indeed, as M is hyperbolic outside a
compact set, and denoting by ∆κ the Laplacian on the corresponding hyperbolic
space, we know that

∆κw
′
2 + λw′

2 = Θ

for some smooth function Θ whose support is contained in BR−η. Therefore, ex-
panding Θ in a series of spherical harmonics using the spherical geodesic coordinates
(ρ, ω), we easily deduce that the partial sums

l0∑

l=0

dl∑

m=1

(∆κ + λ)[wlm(ρ)Ylm(ω)]

converge in L2(BR) to Θ as l0 → ∞. As BR is bounded, the choice of the elliptic
operator and of the volume form used to define Sobolev spaces is irrelevant, so the
claim follows.

The H2(BR) convergence of the series (23) implies that for any δ > 0 there is
an integer l0 such that the finite sum

(25) v′ :=

l0∑

l=0

dl∑

m=1

wlm(ρ)Ylm(θ)

is close to w′
2 in the sense:

(26) ‖ v′ − w′
2 ‖H2(BR)< δ .

In fact, since the solutions to the radial equation (24) are well defined (and smooth)
for all ρ > R − η, this allows us to extend the function v′ beyond BR to define a
function (that we still denote by v′) on the whole M . It is clear that

∆Mv
′ + λv′ = 0

on M\BR−η. Moreover, by the asymptotic properties of the conical Legendre
functions (see, e.g. [19, Chapter 14]), v′ has the pointwise decay

(27) |v′(x)| < Ce
1−d
2 κρ .

However, the function v′ does not satisfy, in general, the Helmholtz equation on
the whole M . To address this issue, we set

f1 := ∆Mv
′ + λv′ ,

which is a function that is supported in the interior of BR−η, and is bounded as

‖f1‖L2(M) = ‖f1‖L2(BR−η) < Cδ ,

as a consequence of the estimate (26). Following [21, Section 6], we can define the
function

f2 := (∆M + λ+ i0)−1f1
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for λ >
[
(d−1)κ

2

]2
, which satisfies the equation (∆M + λ)f2 = f1 on M and the

Agmon–Hörmander type bound

(28) sup
R>0

1

R

∫

BR

|f2(x)|2 dVol(x) < Cδ .

See [21, Section 6] for the precise meaning of the resolvent operator (∆M +λ+i0)−1

and the corresponding estimates.

Finally, if we define the function

v := v′ − f2

we deduce that it satisfies the Helmholtz equation ∆Mv+λv = 0 onM , and decays
at infinity as

sup
R>0

1

R

∫

BR

|v(x)|2 dVol(x) <∞

by the estimates (28) and (27) (it is straightforward to check, using the expression of
the volume form on the hyperbolic space in geodesic coordinates, that the pointwise
decay (27) satisfies an Agmon–Hörmander type bound). Moreover, all the previous
estimates allow us to write

‖v−w‖L2(Ω′) 6 ‖f2‖L2(Ω′)+‖v′−w′
2‖L2(Ω′)+‖w′

2−w2‖L2(Ω′)+‖w2−w‖L2(Ω′) < Cδ .

Finally, since v and w satisfy the Helmholtz equation in Ω′, standard elliptic
estimates imply that this L2 bound can be promoted to a Ck bound

‖ w − v ‖Ck(Ω)< ε .

The theorem follows observing that when M is the hyperbolic space H
d(κ), the

truncated series v′, cf. Equation (25), does satisfy the Helmholtz equation on
the whole space (because each summand satisfies it), and hence the function f2 is
identically zero on M . Accordingly, v = v′ and satisfies the pointwise bound (27),
as claimed.

5.2. The heat equation. In this subsection, for simplicity we will restrict our-
selves to the case when the manifold is the hyperbolic space M = H

d(κ). To state
our approximation theorem for the heat equation, given a function v0 ∈ C∞

0 (Hd(κ)),
let us denote by v := et∆κv0 the only solution to the Cauchy problem

(29) ∂tw −∆κw = 0

on H
d(κ)× (0,∞) and

w(x, 0) = v0(x) ,

for all x ∈ H
d(κ), such that w(x, t) tends to zero as ρκ(x) → ∞ for all t > 0. It is

well known that w can be written in terms of the hyperbolic heat kernel K(t, x, y)
as

w(x, t) =

∫

Hd(κ)

CdK(t, x, y)v0(y) dVol(y) ,

where Cd is a dimensional constant.

In the Appendix we show that this kernel depends only on the geodesic distance
ρ ≡ ρκ(x, y) between x and y, and we find an explicit formula for it. We hence use
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the notation K(t, x, y) = H(t, ρ), with H(t, ρ) = 0 if t < 0 and for t > 0 it is given
by the following formula.

If the dimension d is odd, d = 2m+ 1, then

H(t, ρ) =
(−1)m

2mπm
√
4πt

(
κ

sinh(κρ)

∂

∂ρ

)m

e−κ2m2t−ρ2/4t .

If the dimension d is even, d = 2m+ 2, then

H(t, ρ) =
(−1)me−

(2m+1)2κ2t
4 κ

t3/22m+5/2πm+3/2

(
κ

sinh(κρ)

∂

∂ρ

)m ∫ ∞

ρ

se−s2/4tds√
cosh(κs)− cosh(κρ)

.

We also state some pointwise bounds of this kernel and its derivatives in the Ap-
pendix. Now, given a space-time domain Ω ⊂ H

d(κ)× R, we denote by

Ω[t] := {x ∈ H
d(κ) : (x, t) ∈ Ω}

its intersection with the time t slice. The following global approximation theorem
for the heat equation on the hyperbolic space extends an analogous result proved
in [8] in the Euclidean case.

Theorem 5.2. Let w satisfy Equation (29) in a neighbourhood of the closure of

a bounded domain Ω ⊂ H
d(κ) × (0,∞). Suppose that the complement of Ω[t] in

H
d(κ) is connected for all t and fix an integer k and ε > 0. Then there exists

v0 ∈ C∞
0 (Hd(κ)), such that the function v(x, t) := et∆κv0(x) approximates w as

‖v − w‖Ck(Ω) < ε .

Proof. We denote by N a neighborhood of Ω where w is defined. By the hypoel-
lipticity of the parabolic equations we know that w ∈ C∞(N). Taking geodesic
spherical coordinates centered at some point of Hd(κ), we can assume that N is
contained in BR×(0, T ), for some geodesic ball BR of large enough radiusR. Taking
a smooth cut-off function χ : Hd(κ)× R → R that is equal to 1 in a neighborhood
Ω′ ⊂ N of Ω and is identically zero outside N , we infer that the function w1 := χw
is compactly supported and satisfies the equation

∂tw1 −∆κw1 = φ ,

for some smooth function φ on H
d(κ)× R which is supported on N\Ω′. Using the

properties of the heat kernel it is easy to check that

w1(x, t) =

∫

Hd(κ)×R

CdH(t− s, ρκ(x, y))φ(s, y) ds dV ol(y) .

If K is any compact set with nonempty interior that is contained in the comple-
ment of BR × R and whose time projection

{
t ∈ R : (x, t) ∈ K for some x ∈ H

d(κ)
}

contains that of N , we claim that there is a finite sum

w2(x, t) :=

jmax∑

j=0

cjH(t− sj , ρκ(x, yj)),

with cj real constants and (yj , sj) ∈ K such that

(30) ‖w1 − w2‖Ck(Ω) < δ,

for any fixed k and δ > 0. To prove this statement we use the next two lemmas.



SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACES 21

Lemma 5.3. Let U be a domain in H
d(κ) × R such that U [t] is connected for

all t ∈ R. Consider a point (y, s) ∈ U and a bounded domain K ⊂ U such that
K[s] 6= ∅. Then, for any ǫ > 0 and any bounded domain W ⊂ U c there exist a
finite set of points {(yj, sj)}Jj=1 in K and real constant {bj}Jj=1 ⊂ R such that

∥∥∥∥∥∥
H(· − s, ρκ(·, y))−

J∑

j=1

bjH(· − sj , ρκ(·, yj))

∥∥∥∥∥∥
Ck(W )

< ǫ .

Proof. We assume that (y, s) does not belong to K, as otherwise the statement is
trivial. Let us take a proper bounded subdomain U1 ⊂ U containing (y, s) and K.
We can assume that U1[t] is connected for all t. Consider the space S of all finite
linear combinations of the fundamental solution with poles belonging to K, that is,

S := span
R
{H(· − τ, ρκ(·, z)) : (z, τ) ∈ K} .

Restricting these functions to a neighborhoodW ′ ofW contained in the complement
of U1, S can be regarded as a subspace of the Banach space L2(W ′), which is its
own dual. The lemma follows arguing as in the proof of Lemma 5.1, to conclude
that there exists a function

v :=

J∑

j=1

bjH(· − sj , ρκ(·, yj))

in S such that

‖H(· − s, ρκ(·, y))− v‖Ck(W ) < ǫ .

For this, one just needs to use the anisotropic unique continuation theorem for par-
abolic equations (see e.g. [8, Theorem 2.1]) and apply standard parabolic estimates
to promote an L2(W ′) bound to a Ck(W ) bound. �

The second lemma follows from an easy continuity argument that makes use of
the properties of the heat kernel H(t, ρ) (see the Appendix), so we omit its proof.

Lemma 5.4. Let ϕ : Hd(κ) × R → R be a smooth function of compact support.
For any bounded domain W contained in the complement of suppϕ and any ǫ > 0,
there exist a finite set of points {(yj, sj)}Jj=1 in suppϕ and constants {cj}Jj=1 such
that∥∥∥∥∥∥

∫

Hd(κ)×R

H(· − s, ρκ(y, ·))ϕ(y, s) dVol(y) ds−
J∑

j=1

cjH(· − sj , ρκ(yj , ·))

∥∥∥∥∥∥
Ck(W )

< ǫ .

Now, by Lemma 5.4, taking U = (Hd(κ) × R)\Ω and W = Ω, we can approxi-
mate the function w1 by a linear combination of fundamental solutions with poles
contained in the set N\Ω′. Hence, noticing that U [t] is connected for all t, we can
use Lemma 5.3 to construct a function w2 satisfying the estimate (30) with poles
contained in a compact set K of the complement of BR × R, as claimed.

Next, notice that the decay properties of the fundamental solution H(t, ρ) (see
the Appendix) imply that for large |t|

sup
x∈BR

∣∣Dα
x∂

k
t w2(x, t)

∣∣ 6 Cα|t|−3/2e
−|t|κ2(d−1)2

4 .
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Then w2 satisfies the uniform L1 bound

sup
x∈BR

∫ ∞

−∞

∣∣Dα
x∂

k
t w2(x, t)

∣∣ dt < Cα,k ,

for any α and k. For all x ∈ BR, the mapping properties of the Fourier transform
ensure that the Fourier transform of w2 with respect to time,

ŵ2(x, τ) :=
1

2π

∫ ∞

−∞
w2(x, t)e

−iτtdt ,

is bounded and depends continuously on τ . Since this holds for all derivatives of
w2 with respect to t, we infer that its Fourier transform falls off as

sup
x∈BR

|Dα
x ŵ2(x, τ)| <

Cn

1 + |τ |n

for any n. Of course, ŵ2 is a smooth function of x ∈ BR because so is w2. This
implies that the inverse Fourier transform formula

(31) Dα
x∂

k
t w2(x, t) =

∫ ∞

−∞
(iτ)kDα

x ŵ2(x, τ)e
iτtdτ

holds pointwise for (x, t) ∈ BR ×R. In particular, as ∂tw2 −∆κw2 = 0 in that set,
it follows that

(32) ∆κŵ2(x, τ) − iτŵ2(x, τ) = 0

for all (x, τ) ∈ BR × R.

We next expand ŵ2(x, τ), with x ∈ BR for each τ ∈ R, in a basis of spherical
harmonics on the unit sphere S

d−1, which we denote as usual by

{Ylm(ω) : l > 0, 1 6 m 6 dl}

with ω ∈ S
d−1, and assume to be normalized so that they are an orthonormal basis

of L2(Sd−1). We recall that ∆Sd−1Ylm = −µlYlm, where µl = l(l + d − 2) is an
eigenvalue of the Laplacian on S

d−1 of multiplicity

dl =
2l + d− 2

l + d− 2

(
l + d− 2

l

)
.

More precisely, ŵ2 takes the form:

(33) ŵ2(x, τ) =:

∞∑

l=0

dl∑

m=1

ϕlm(ρ, τ)Ylm(ω) ,

where now ρ ≡ ρκ is the geodesic distance to the center of the ball BR and ω = x/ρ.
Notice that the coefficient ϕlm(ρ, τ) is given by

ϕlm(ρ, τ) =

∫

Sd−1

ŵ2(ρ, ω, τ)Ylm(ω)dσ(ω),

where dσ is the standard measure on the unit sphere, so ϕlm(ρ, τ) is a C∞ function
of ρ ∈ (0, R) for all τ . This series converges in L2(BR).
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In particular, writing Equation (32) in spherical geodesic coordinates, it follows
that

0 = ∆M ŵ2(x, τ) − iτŵ2(x, τ)

=

∞∑

l=0

dl∑

m=1

[
∂ρρϕlm + (d− 1)κ

cosh(κρ)

sinh(κρ)
∂ρϕlm −

(
iτ +

µlκ
2

sinh(κρ)2

)
ϕlm

]
Ylm(ω)

for all x ∈ BR (in the L2 sense). Therefore ϕlm satisfies the radial ODE

∂ρρϕlm + (d− 1)κ
cosh(κρ)

sinh(κρ)
∂ρϕlm −

(
iτ +

µlκ
2

sinh(κρ)2

)
ϕlm = 0

for 0 < ρ < R and stays bounded at ρ = 0. The only solution to this ODE bounded
at ρ = 0 is

ϕlm(ρ, τ) = Alm(τ)

(
sinh(κρ)

κ

)1−d/2

Q1−l−d/2
µ (cosh(κρ)) ,

where Alm(τ) is a complex constant that may depend on τ and

µ := −1

2
− 1

2κ

√
κ2(d− 1)2 − 4iτ .

We notice that the solution is an associated Legendre function of the second kind
which satisfies a exponential bound:

(34) |ϕlm(ρ, τ)| 6 C(τ)eA(τ)ρ,

for all ρ ∈ (0,∞) with A(τ) =
(1−d)κ+(κ4(d−1)4+16τ2)1/4

2 .

An additional important property is that each summand of the series (33) is
a smooth function on H

d(κ) for each τ ∈ R, which satisfies the Equation (32)
on the whole hyperbolic space. Standard elliptic estimates then imply that the
sum (33) converges on Ck(B) for any integer k and any smaller ball B ⊂ BR, and
the convergence is uniform for (ρ, τ) in compact subsets of [0, R) × R. For future
reference, we will fix some ball B such that Ω ⊂ B × (0, T ).

In view of the good convergence properties of the integral (31) and of the se-
ries (33), it is not hard to see that for any k and any δ > 0 one can choose large
enough L and τ0 such that

‖w2 − w3‖Ck(B×(−T,T )) < δ ,

where

w3(x, t) :=

L∑

l=0

dl∑

m=1

∫ τ0

−τ0

ϕlm(ρ, τ)Ylm(ω)eiτtdτ .

By the previous properties, we infer that

∂w3

∂t
−∆κw3 = 0 ,

in H
d(κ)× R and w3 is bounded like

sup
t∈R

|w3(x, t)| < CeAρ

as a consequence of (34).
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Now let us consider the smooth function

f(x) := w3(x, 0) .

As ∂tw3 − ∆κw3 = 0 and w3(x, 0) = f(x), the fact that f and w3 satisfy the
exponential bound

|f(x)|+ |w3(x, t)| < CeAρ

permits to invoke Grigor’yan’s uniqueness theorem for the heat equation on mani-
folds [20, Lemma 2.1] to conclude that

w3(x, t) =

∫

Hd(κ)

CdH(t, ρM (x, y))f(y) dVol(y)

for t > 0 and x ∈ H
d(κ). As the integral converges uniformly in Ck, one can take a

smooth compactly supported function v0(·) := χ1(ǫ·)f(·), where 0 6 χ1 6 1, χ1 = 1
on B1 and χ1 = 0 outside B2, to conclude that

‖w3 − v‖Ck(B×(0,T )) < δ ,

for any small enough ǫ, where

v(x, t) :=

∫

Hd(κ)

CdH(t, ρκ(x, y))v0(y) dVol(y) .

Putting together all the previous bounds, we finally obtain

‖v − w‖Ck(Ω) < Cδ ,

and the theorem then follows. �
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Appendix A. The heat kernel of a hyperbolic space

In this Appendix we recall explicit formulas for the heat kernel of Hd(κ) (see,
for example, [7, 16]). If the dimension d is odd, d = 2m+ 1, then

Hκ
d (t, ρ) =

(−1)m

2mπm
√
4πt

(
κ

sinh(κρ)

∂

∂ρ

)m

e−κ2m2t−ρ2/4t .

If the dimension d is even, d = 2m+ 2, then

Hκ
d (t, ρ) =

(−1)me−
(2m+1)2κ2t

4 κ

t3/22m+5/2πm+3/2

(
κ

sinh(κρ)

∂

∂ρ

)m ∫ ∞

ρ

se−s2/4tds√
cosh(κs)− cosh(κρ)

.

Two important recurrence formulas for heat kernels in hyperbolic spaces of dif-
ferent dimensions are

Hκ
d+2(t, ρ) = − e−dκ2tκ

2π sinh(κρ)

∂

∂ρ
Hκ

d (t, ρ)
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also

Hκ
d (t, ρ) =

∫ ∞

ρ

e
(2d−1)tκ2

4 Hκ
d+1(t, µ) sinh(κµ)

√
2dµ√

cosh(κµ)− cosh(κρ)
.

From this integral formula, one infers that there exists a positive constant c = c(d, κ)
such that

0 6 Hκ
d (t, ρ) 6 B(t, ρ) ,

for all t, ρ > 0, where

B(t, ρ) := ce−
κ2(d−1)2t

4 − (d−1)κρ
2 − ρ2

4t
(1 + κρ+ κ2t)

(d−3)
2 (1 + κρ)

(4πt)d/2
.

In particular, for each fixed ρ > 0, the heat kernel and its derivatives decay for
large positive time as

|∂nρ ∂kt Hκ
d (t, ρ)| 6 Cnt

−3/2e−
tκ2(d−1)2

4 .
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