
ar
X

iv
:2

20
2.

02
12

3v
2 

 [
m

at
h.

G
R

] 
 3

1 
A

ug
 2

02
2

BINARY SUBGROUPS OF DIRECT PRODUCTS

MARTIN R. BRIDSON

Abstract. We explore an elementary construction that produces finitely presented groups
with diverse homological finiteness properties – the binary subgroups, B(Σ, µ) < G1×· · ·×Gm.
These full subdirect products require strikingly few generators. If each Gi is finitely presented,
B(Σ, µ) is finitely presented. When the Gi are non-abelian limit groups (e.g. free or surface
groups), the B(Σ, µ) provide new examples of finitely presented, residually-free groups that do
not have finite classifying spaces and are not of Stallings-Bieri type. These examples settle a
question of Minasyan relating different notions of rank for residually-free groups. Using binary
subgroups, we prove that if G1, . . . , Gm are perfect groups, each requiring at most r generators,
then G1 × · · · ×Gm requires at most r⌊log

2
m+ 1⌋ generators.

For my friend Vaughan Jones, in memoriam

1. Introduction

In the study of infinite groups, the problem of deciding which finite subsets of a given group
G generate finitely presentable subgroups is notoriously difficult: there is no algorithm that can
solve this problem when G is a direct product of two non-abelian free groups for example [17].
Even when one knows that finite presentations exist, constructing them can remain impossibly
difficult [4].

In this article we will explore an elementary construction that provides a new source of finitely
presented subdirect products of groups; we call them binary subgroups. This construction
takes as input two positive integers m and r, an m-tuple of r-generator groups with markings
µ = (µi : Fr →→ Gi)

m
i=1, and an r-tuple of finite sets of positive integers Σ = (σ1, . . . , σr), with

each |σi| = m. It outputs a subgroup B(Σ, µ) < G1 × · · · × Gm that is finitely presented if
all of the Gi are finitely presented. B(Σ, µ) is constructed from the binary expansions of the
elements of

⋃
σi. I hope to convince the reader that this construction is an intriguing source

of groups that merits further study.
An important feature of the groups B(Σ, µ) is that they require strikingly few generators:

see Corollaries 1.3 and 1.4. The case where each Gi is free will be of particular interest. Indeed
the construction of B(Σ, µ) is motivated in large part by my work with Howie, Miller and Short
[5, 6] exploring the structure of subgroups of direct products of free groups, surface groups and
limit groups. The VSP Theorem from [6] will play a prominent role in our discussion, as will
homological finiteness properties.

In addition to economical generation and finiteness properties, we shall be concerned with the
co-nilpotency class of binary subgroups. Co-nilpotency is a characteristic of finitely presented,
residually free groups that originates in [8]; it played a prominent role in [5, 6]. Let S <
Λ1 × · · · × Λm be a finitely presented subgroup of a direct product of non-abelian limit groups
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2 BRIDSON

(e.g. free groups), and suppose that we have reduced to the case where S intersects each
Λi non-trivially and the coordinate projections S → Λi are onto (in other words, S is a full
subdirect product). It is proved in [6] that in this case S contains some term of the lower central
series of a subgroup of finite index D0 < Λ1 × · · · × Λm. If the first such term is γc+1(D0),
then the co-nilpotency class of S is defined to be c. Thus S has co-nilpotency class 0 if it is of
finite index and it has co-nilpotency class 1 if it is virtually the kernel of a map from a product
of non-abelian limit groups to an infinite abelian group. Groups of the latter kind are, by
definition, of Stallings-Bieri type; they have been extensively studied in connection with higher
finiteness properties [20, 2]. One of the achievements of [5] was to exhibit the first examples
of finitely presented, residually free groups whose co-nilpotency class is greater than 1. The
binary subgroups that we shall describe provide a more elementary construction of such groups
with a variety of co-nilpotency classes. For example, the co-nilpotency classes of the groups
B0(m) and B1(m) constructed below go to infinity with m.

1.1. Paradigms: the Binary Subgroups B0(m) and B1(m). Before delving into more tech-
nical matters, I want to illustrate the basic construction of this article with explicit examples.
We work with a free group of rank r, denoted by F , and fix a basis {a1, . . . , ar}. Throughout,
Fm will denote the m-th direct power F × · · · × F .

We consider two subgroups B0(m) < B1(m) < Fm. The subgroup B0(m) is generated by
the r⌊1 + log2m⌋ elements aij defined as follows: consider the array A(m) with m columns
and ⌊1 + log2m⌋ rows where column k is the binary expansion of k, with units at the top; for
j = 0, . . . , ⌊log2m⌋ let εj(m) be the word in the alphabet {0, 1} that is the j-th row of A(m)
(so k =

∑
j εj(k)2

j); we treat εj(m) as a multi-index and, for each ai, define aij ∈ Fm to be

the element obtained by raising ai to this multi-index, with the convention a1i = ai and a0i = 1
(the identity).

For example, when m = 18,

Table 1. The binary array A(m) for m = 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ε0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
ε1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
ε2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
ε3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
ε4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Table 2. The binary elements aij when m = 18

ai0 = (ai, 1, ai, 1, ai, 1, ai, 1, ai, 1, ai, 1, ai, 1, ai, 1, ai, 1)
ai1 = (1, ai, ai, 1, 1, ai, ai, 1, 1, ai, ai, 1, 1, ai, ai, 1, 1, ai)
ai2 = (1, 1, 1, ai, ai, ai, ai, 1, 1, 1, 1, ai, ai, ai, ai, 1, 1, 1)
ai3 = (1, 1, 1, 1, 1, 1, 1, ai, ai, ai, ai, ai, ai, ai, ai, 1, 1, 1)
ai4 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ai, ai, ai)
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The subgroup B1(m) < Fm is obtained from B0(m) by adjoining the diagonal elements
δi := (ai, . . . , ai),

B1(m) = 〈B0, δ1, . . . , δr〉 < Fm.

In our discussion of finiteness properties, the most natural ones to consider are finite presenta-
tion, type FPk and weak FPk (written wFPk). A groupG is of type FPk if the trivial ZG-module
Z has a projective resolution in which the modules up to dimension k are finitely generated,
and G has type wFPk if Hi(G0,Z) is finitely generated for all i ≤ k and all subgroups G0 < G
of finite index. Finite presentation implies FP2 and FPk implies wFPk.

We use the standard notation for the lower central series of a group, γ1(G) = G and γc+1(G) =
[G, γc(G)]. We also use the standard term rank and write d(G) for the cardinality of a smallest
generating set for G.

Theorem 1.1. For r ≥ 2, m ≥ 3,

(1) the rank of B0(m) < Fm is r(⌊1 + log2m⌋);
(2) the rank of B1(m) < Fm is r(⌊2 + log2m⌋);
(3) B0(m) contains γm−1(F

m);
(4) B1(m) contains γc(F

m), where c = ⌈(m− 1)/2⌉;
(5) B0(m) is finitely presented but not of type wFP3;
(6) if m ≤ 4 then B1(m) = Fm;
(7) if m ≥ 5 then B1(m) is finitely presented, type wFP3 but not wFP4;
(8) ∀c ∃ polynomial pc(t) of degree c such that if m > pc(log2m) and D0 < Fm is of finite

index, then γc(D0) 6⊆ B1(m).

One can replace F by a non-abelian limit group in this theorem – see Theorem 4.4.

The general binary subgroup B(Σ) < Fm is obtained from Σ = (σ1, . . . , σr) by writing the
binary expansions of the elements of each σi as the columns of an array, as above – the i-th
array Ai will have li rows where li = max{⌊1 + log2 x⌋ | x ∈ σi}; the generators aij ∈ B(Σ) are
obtained by raising ai to the multi-index given by the j-th row of Ai (see Section 5 for more
details).

Given any m-tuple of r-generator groups with markings (µi : F →→ Gi)
m
i=1, we take the image

of B(Σ) < Fm under the epimorphism µ = (µ1, . . . , µm) to define B(Σ, µ). With this notation
we have:

Theorem 1.2. B(Σ, µ) < G1×· · ·×Gm contains the (m−1)st term of the lower central series
and is closed in the profinite topology. Moreover, there is an algorithm that, given Σ, µ and
finite presentations of G1, . . . , Gm, will construct a finite presentation for B(Σ, µ). If the Gi

are limit groups, then there is an algorithm that will determine for each k ≥ 2 whether B(Σ, µ)
is of type wFPk.

The passage fromB(Σ, µ) to B(Σ) < Fm is an example of how one can push forward subdirect
products: see Sections 2.3 and 5.2, where we also examine the results of pulling back subgroups.

1.2. Economical generation. Philip Hall [12] initiated the study of economical generating
sets for direct powers of finite perfect groups. The theory was subsequently developed exten-
sively by Jim Wiegold [21] and others, and elements of it were extended to cover infinite groups
[22]: if G is finitely generated and perfect, then Gm requires at most O(logm) generators.
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Theorems 1.1 and 1.2 allow us to extend this statement about d(Gm) to direct products of
distinct groups. For if G1, . . . , Gm each require at most r generators, then by pushing forward
B0(m) < Fm we obtain a subgroup B < G1×· · ·×Gm with d(B) ≤ r⌊1+log2m⌋ that contains
a term of the lower central series of the product, and if the Gi are perfect then each term of
the lower central series is equal to the entire product.

Corollary 1.3. If G1, . . . , Gm are perfect and d(Gi) ≤ r, then d(G1×· · ·×Gm) ≤ r⌊1+log2m⌋.

For direct powers of finitely presented superperfect groups, the logarithmic growth of d(Gm)
can be promoted to a polylogarithmic bound on the number of relators needed to present Gm

(see [3]), but we do not have such a result for more general direct products.

1.3. Economical embeddings of residually free groups. In [6] an algorithm is established
that, given a finite presentation of a residually free group G, will construct a canonical embed-
ding of G into its existential envelope ∃E(G), which is a direct product of finitely many limit
groups (see Section 3 below for definitions). If G is centerless, then the number of direct factors
in ∃E(G) is the product rank of G, i.e. the largest integer rkF(G) such that G contains a direct

power of non-abelian free groups F
rkF(G)
2 . If a direct product of finitely many limit groups

contains G then it contains ∃E(G) and has at least rkF(G) direct factors.
In [18], Ashot Minasyan proved that if d(G) = k then ∃E(G) is a product of at most

exp(Cεk
2+ε) limit groups, where ε > 0 is arbitrary and Cε is a constant that goes to infin-

ity with ε. He asked if this upper bound could be improved to a polynomial in k. Theorem 1.1
answers his question in the negative: one cannot do better than an exponential function of k.
To see this, note that parts (3) and (4) of the theorem imply that B0(m) and B1(m) both have
product rank m.

Corollary 1.4. There exist sequences of finitely presented, centerless, residually-free groups
B(m) with product rank rkF(B(m)) = m requiring only d(B(m)) = O(logm) generators.

This article is organised as follows. In Section 2 we gather some basic facts about nilpotent
groups and subdirect products, and state the VSP Theorem. In Section 3 we recall some
elements of the theory of residually free groups and present the results that we need from
[5, 6, 13, 14] relating finiteness properties of subdirect products to coordinate projections.
Section 4 contains the proof of Theorem 1.1. In Section 5 we discuss the general construction
of binary subgroups, the process of pushing them forward and pulling them back, and certain
redundancies in the general construction. In the final section we discuss possible variations,
open questions, and directions for future work, including an enticing connection with coding
theory.

Acknowedgements: I thank Ben Green and Yonathan Fruchter for helpful discussions con-
cerning the connection to coding theory described in Section 6. I thank Claudio Llosa Isenrich
for encouraging comments and for drawing my attention to Ashot Minasyan’s question [18].
And I thank my co-authors from [5, 6], Jim Howie, Chuck Miller and Hamish Short, for many
years of stimulating and enjoyable conversations about subdirect products of limit groups.

2. Preliminaries

2.1. Nilpotent groups. With the exception of Proposition 2.2, the material in this section is
standard and can be found in Chapter 11 of the classical reference [11]. The terms of the lower
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central series of a group G are defined by γ1(G) = G and γn+1(G) = [G, γn(G)]. If γc+1(G) = 1
but γc(G) 6= 1 then G is said to be nilpotent of class c. The free nilpotent group of class c
and rank k is N(k, c) := Fk/γc+1(Fk); every k-generator nilpotent group of class at most c is a
quotient of this group.

If {a1, . . . , ak} is a basis for Fk, then the basic commutators [ai1 , . . . , ain ] of weight n project
under the natural map Fk → Fk/γn+1(Fk) to a basis of the free abelian group γn(Fk)/γn+1(Fk),
the rank of which is given by the Witt formula

Wn(k) =
1

n

∑

d|n

µ(d)kn/d

where µ(d) is the Möbius function. By making repeated use of this observation, we see
that N(k, c) is a polycyclic group whose Hirsch length (cohomological dimension) is h(k, c) =∑c

i=1Wi(k). A simple induction then shows that every subgroup of N(k, c) requires at most
h(k, c) generators. The crude approximation Wn(k) ≤ kn gives h(k, c) ≤

∑c
i=1 k

i, which is all
that we shall need for the polynomial in the last item of Theorem 1.1.

Lemma 2.1. If H is a subgroup of a k-generator nilpotent group G of class at most c, then
d(H) ≤ h(k, c).

Proof. By choosing an epimorphism N(k, c) →→ G and replacing H with its preimage in N(k, c)
we may assume that G = N(k, c), and this case is covered by the preceding discussion. �

The following is the main output that we require from this subsection.

Proposition 2.2. Let Λ1, . . . ,Λm be finitely generated groups each of which maps onto a non-
abelian free group. Suppose D = Λ1 × · · · × Λm has a k-generator subgroup S that contains
γc(D0) where D0 < D is a subgroup of finite index. Then m ≤ h(k, c)/Wc(2).

Proof. The hypothesis yields a surjection D →→ Fm
2 which maps γi(D) onto γi(F2)

m. We
compose D →→ Fm

2 with the canonical surjection Fm
2 →→ N(2, c)m. Let S and D0 be the

images of S and D0 under this composition. Then d(S) ≤ k and S is a nilpotent group of
class at most c containing γc(D0). The latter has finite index in the m-th direct power of
γc(F2)/γc+1(F2), which is a free abelian group of rank mWc(2), hence d(γc(D0)) = mWc(2).
Therefore mWc(2) ≤ h(k, c), by Lemma 2.1. �

The following well-known facts are proved by induction on the nilpotency class.

Lemma 2.3. Let N be a finitely generated nilpotent group. A subset Θ ⊂ N generates N if
and only if the image of Θ in the abelianization Nab = H1(N,Z) generates Nab.

Lemma 2.4. If a nilpotent group N is generated by a finite set of elements of finite order, then
N is finite.

2.2. Subdirect Products and the VSP Theorem. A subgroup of a direct product S <
G1 × · · · × Gm is termed a subdirect product if S projects onto each Gi; it is a full subdirect
product if, in addition, S ∩Gi 6= 1 for all i. If one wishes to understand the finitely generated
subgroups of direct products of groups drawn from a class that is closed under the taking of
finitely generated subgroups, then one can reduce to the study of full subdirect products by
projecting away from factors where S ∩Gi = 1 and replacing each Gj by the projection of S to
Gj ; free groups form one such class and limit groups form another.
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We refer the reader to [8] for a more thorough account of subdirect products.
The results of the present paper rely heavily on the following theorem from [6].

Theorem 2.5 (The VSP Theorem [6]). Let S < D = G1 × · · · ×Gm be a subgroup of a direct
product of finitely presented groups. If the projection pij(S) < Gi × Gj has finite index for all
1 ≤ i < j ≤ m, then

(1) S is finitely presented;
(2) γm−1(D0) < S for some D0 < D of finite index;
(3) S is closed in the profinite topology on D.

Moreover, there is an algorithm that, given finite presentations of the groups Gi and a finite set
Θ ⊂ D generating S, will construct a finite presentation 〈Θ | R〉 for S.

Item (1) of this theorem is considerably deeper than item (2), the latter being an instance of
the following general observation [8].

Lemma 2.6. Let k ≥ 2 and let G1, . . . , Gm be groups. If S < D = G1×· · ·×Gm projects onto
each k-tuple of factors, then γc(D) < S where c = ⌈(m− 1)/(k − 1)⌉.

To prove this, one first notes that since S projects onto each factor, S ∩Gi is normal in Gi,
so it is enough to show that S ∩ Gi contains all iterated commutators [x1, . . . , xc]. And such
commutators can be obtained explicitly from the hypothesis; for example, when m = 3 and
k = 2, one has ([x, y], 1, 1) = [ (x, ∗, 1), (y, 1, ∗) ].

Corollary 2.7. Let k ≥ 2. If G1, . . . , Gm are finitely generated and S < D = G1 × · · · × Gm

projects onto each pair of factors, then the projection of S to a k-tuple of factors T = Gi1 ×
· · ·×Gik will be surjective if and only if the composition S → T → T ab = H1(T,Z) is surjective.

Proof. S contains γm−1(D) and hence the image of S in T contains γm−1(T ), so S → T is
surjective if and only if S → T/γm−1(T ) is surjective. The result now follows from Lemma
2.3. �

Corollary 2.8. Let G1, . . . , Gm be finitely generated groups, each of which is generated by
elements of finite order. If S < D = G1 × · · · × Gm projects onto each pair of factors, then S
has finite index in D.

Proof. S contains γm−1(D) and Lemma 2.4 tells us that D/γm−1(D) is finite. �

Remark 2.9 (Algorithms). Corollary 2.7 makes the process of determining whether a sub-
group S of a direct product of finitely presented groups maps onto all k-tuples of factors
algorithmically decidable, provided one has the a priori knowledge that S projects to each pair
of factors. Similarly, the problem of deciding if S projects to a subgroup of finite index in each
k-tuple of factors is decidable given this knowledge.

2.3. Pushing forward and pulling back. Given an m-tuple of group epimorphisms µi :
Hi →→ Gi, the push-forward of a subgroup S < H1×· · ·×Hm is its image µ(S) < G1×· · ·×Gm

under µ = (µ1, . . . , µm). The pull-back of a subgroup T < G1 × · · · ×Gm is µ−1(T ).
The following lemma is immediate from the definitions.

Lemma 2.10. If S < G1 × · · · ×Gm projects to k-tuples of factors, then so does any pull-back
or push-forward of S. And if S contains the c-th term of the lower central series of the product,
then so does any pull-back or push-forward of S.
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3. Residually free groups, limits groups and coordinate projections

A group G is residually free if for every g ∈ Gr{1} there exists a homomorphism φ : G → F ,
with F free, such that φ(g) 6= 1; and G is fully residually free if for every finite set S ⊂ G there
is a homomorphism G → F that is injective on S. Finitely generated, fully residually free
groups are more commonly called limit groups, reflecting the powerful geometric approach to
their study initiated by Sela [19] et seq. This important and much-studied class of groups
contains free groups (obviously), free abelian groups, and the fundamental groups of all closed
surfaces of euler characteristic at most −2.

The study of finitely presented, residually free groups Γ reduces to the study of subdirect
products of limit groups because there is a canonical (and algorithmic) embedding Γ →֒ ∃E(Γ)
where ∃E(Γ), the existential envelope of Γ, is a direct product of limit groups [1], [6]. (At most
one of the direct factors is abelian, and the intersection of Γ with this is the centre of Γ.) The
following theorem is therefore an important tool in classifying which residually free groups are
finitely presented. This is the main result of [5]. The first item provides a converse to the
VSP Theorem in the setting of limit groups, while the second item points to the key role that
finiteness properties play in understanding residually free groups.

Theorem 3.1 ([6]). Let S < D = Λ1 × · · · × Λm be a full subdirect product, where the Λi are
non-abelian limit groups.

(1) If S is finitely presented, then the projection pij(S) < Λi × Λj has finite index for
1 ≤ i < j ≤ m.

(2) If S is not of finite index in D, then S is not of type wFPm.

Point (2) was improved upon by Kochloukova [13] and Kuckuck [14], who tied the finiteness
properties of S more closely to projections to k-tuples. The following statement combines their
results.

Theorem 3.2 ([13], [14]). For 2 ≤ k ≤ m, a full subdirect product of non-abelian limit groups
S < Λ1×· · ·×Λm projects to a subgroup of finite index in each k-tuple of factors Λi(1)×· · ·×Λi(k)

if and only if S is of type wFPk.

Henceforth we shall abbreviate the phrase “projects to a subgroup of finite index in” to
“virtually surjects to”.

4. Proof of Theorem 1.1

With the results of the previous sections in hand, most of the assertions of Theorem 1.1 will
follow once we verify that B0(m) < Fm surjects to pairs of factors but does not virtually surject
certain triples, while B1(m) < Fm surjects all triples of factors but does not virtually surject
certain 4-tuples.

Notation: We write Li
∼= F for the i-th summand of Fm throughout this section.

4.1. Proof that B0(m) < Fm projects onto pairs of factors. Consider columns p and q of
the array A(m), with p < q. Since p < q, there is at least one bit in the binary expansion of p
where it has 0 while q has 1; if this place is bit k, then in row k we have (εk(p), εk(q)) = (0, 1),
hence aik projects to (1, ai) ∈ Lp×Lq. Since p 6= 0, there is also a non-zero bit in its expansion;
if this is place l, then (εl(p), εl(q)) ∈ {(1, 0), (1, 1)}, hence ail maps to either (ai, 1) or (ai, ai)
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in Lp ×Lq. In either case, we see that {(ai, 1), (1, ai), (ai, ai)} is contained in the projection of
B0(m). This holds for i = 1, . . . , r and all 1 ≤ p < q ≤ m, so B0(m) projects onto each pair of
factors, as claimed. �

Remark 4.1. Having worked through the above proof with the original notation, we shall
abbreviate several of the similar proofs that follow by noting that the essential feature of A(m)
was that the subgroup C < Z

m generated by the row vectors εi projects onto the summands
Z
2 < Z

m corresponding to each pair of coordinates.

In the spirit of the above remark, the key fact for the following lemma is that the projection
of C to Z

3 × 1 < Z
m only has dimension 2.

Lemma 4.2. B0(m) < Fm does not virtually surject to certain triples of factors.

Proof. The non-zero entries in columns 1, 2, 3 are concentrated in two rows, namely ε0 and ε1,
so the projection of B0(m) to H1(L1 × L2 × L3,Z) ∼= Z

3r has rank at most (in fact exactly)
2r. �

4.2. Proof that B1(m) < Fm projects to triples. Consider columns p < q < s of the array
A(m). The essential point to prove this time is that we get a basis for Z

3 by adjoining the
element (1, 1, 1) (coming from δi = (ai, . . . , ai)) to the elements (εj(p), εj(q), εj(s))j obtained
by reading the entries in columns p, q, s in each row of the array.

Since p < s, there is at least one place in the binary expansion of p where it has 0 while s
has 1; if this place is bit k, then from columns p, q, s of row k we have either (0, 1, 1) or (0, 0, 1).
Similarly, as p < q, in some row we get either (0, 1, 1) or (0, 1, 0). If we get two distinct vectors
from this argument, then together with (1, 1, 1) (coming from δi) they will span Z

3. This fails
if we get (0, 1, 1) twice, in which case we use the condition q < s to get a vector (1, 0, 1) or
(0, 0, 1): adding either to {(1, 1, 1), (0, 1, 1)} gives a basis for Z3. �

Lemma 4.3. If m ≥ 5 then B1(m) < Fm does not virtually surject to certain 4-tuples of
factors.

Proof. We focus on columns 2 to 5 of the array A(m) and argue that the projection of B1(m) <
Fm to Z := H1(L2 × L3 × L4 × L5,Z) ∼= Z

4r only has rank 3r.
To see this, consider the rank-4 summand Z1 < Z that is spanned by the images of (a1, 1, 1, 1),

(1, a1, 1, 1), (1, 1, a1, 1), (1, 1, 1, a1). The only rows of A(m) that have non-zero entries in
columns 2, 3, 4, 5 are ε0, ε1, ε2, where we have

(0, 1, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1).

Thus the projection of 〈a1j | j = 0, 1, 2, . . .〉 to Z1 has rank 3. The diagonal element δ1
contributes (1, 1, 1, 1), but we already have this as the sum of the images of a11 and a12. A
similar argument applies to the summand Zi < Z corresponding to the generator ai ∈ F . Thus
the image of B1(m) in Z has rank 3r, as claimed. �

4.3. The remainder of the proof. In the light of the preceding results in this section, items
(3) and (4) of Theorem 1.1 are covered by Lemma 2.6, while items (5) and (7) are covered by
Theorems 2.5 and 3.2. We shall prove the remaining items in order.

Let k = ⌊1 + log2m⌋. We defined B0(m) by taking a generating set aij with rk elements,
so certainly d(B0(m)) ≤ rk. To see that d(B0(m)) = rk, we observe that B0(m) maps onto
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a direct product of k copies of F = Fr: the desired map is the coordinate projection onto
Λ[2] := L1 × L2 × L4 · · · × L2k−1 ; in this projection, aij maps to ai ∈ L2j . This proves assertion
(1) of the theorem.

The proof of item (2) is similar. In this case, to see that B1(m) requires at least r(k + 1)
generators we prove that its projection to the abelianization of Λ[2] × L3 is surjective. The
new difficulty that we face is that in the rank-3 summand of Vi < H1(L1 × L2 × L3,Z) cor-
responding to the basis element ai ∈ F , the only contributors among the aij are ai0 and ai1,
who contribute (1, 0, 1, 0, ...) and (0, 1, 1, 0, ...) respectively. But the element δi

∏
j>1 a

−1
ij con-

tributes (1, 1, 1, 0, ...) to Λ[2] × L3, ensuring that the image of B1(m) contains Vi. And aij
maps to ai ∈ L2j for j > 1, as before. Thus B1(m) maps onto H1(Λ

[2] × L3,Z) ∼= Z
r(k+1), so

d(B1(m)) ≥ r(k + 1).
The proof of item (6) is similar to that of item (2). The three rows of A(4) are (1, 0, 1, 0),

(0, 1, 1, 0), (0, 0, 0, 1) and together with δ = (1, 1, 1, 1) these span Z
4. In the spirit of remark

4.1, this translates easily into the fact that B1(4) contains each of the 4r generators of F 4.
Alternatively, we can observe (i) that B1(4) maps onto H1(F

4,Z) because it contains each of
the r summands Z4 corresponding to a choice of basis vector, and (ii) B1(4) contains [F

4, F 4],
by Lemma 2.6.

Item (8) is an immediate consequence of (2) and Proposition 2.2. In more detail, since
h(r, c) ≤

∑c
i=1 r

i and ⌊2 + log2m⌋ > log2m, it suffices to define pc(t) =
1

Wc(2)

∑c
i=1 t

i. �

4.4. Binary subgroups of direct products of limit groups. Let Λ1, . . . ,Λm be non-abelian
limit groups, and suppose that there exist epimorphisms µi : Fr → Λi that induce an isomor-
phism on abelianizations. Of particular interest is the case where each Λi is the fundamental
group of a closed surface of genus g, with r = 2g and µi : Fr → Λi a standard choice of
generators. Let Bj(m;µ) < D = Λ1, . . . ,Λm be the image of Bj(m) under µ = (µ1, . . . , µm).

Theorem 4.4. With the above notation, for all non-abelian limit groups Λi such that µi : Fr →
Λi induces an isomorphism on H1(−,Z):

(1) the rank of B0(m;µ) is r(⌊1 + log2m⌋);
(2) the rank of B1(m;µ) is r(⌊2 + log2m⌋);
(3) B0(m;µ) contains γm−1(D);
(4) B1(m;µ) contains γc(D), where c = ⌊1 + (m− 1)/2⌋;
(5) B0(m;µ) is finitely presented but not of type wFP3;
(6) if m ≤ 4 then B1(m;µ) = D;
(7) if m ≥ 5 then B1(m;µ) is finitely presented, type wFP3 but not wFP4;
(8) ∀c ∃ polynomial pc(t) such that if m > pc(log2m) and D0 < Λ1 × · · · × Λm is of finite

index, then γc(D0) 6⊆ B1(m).

The polynomial pc(t) depends only on c, not the particular Λi considered: again we may take
pc(t) =

1
Wc(2)

∑c
i=1 t

i.

Proof. The proofs of Theorem 1.1 and the supporting results were crafted so that they extend
mutatis mutandis to this setting. �

In fact, our earlier proofs apply to more general settings: the interested reader will have little
difficulty in verifying the following observations. (Lemma 2.10 is needed here.)
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Addenda 4.5. (i) If one drops the requirement that µ induces an isomorphism onH1(−,Z),
then items (3), (4), (6) and (8) of Theorem 4.4 remain valid while the equalities in (1)
and (2) are replaced by inequalities d(Bj(m;µ)) ≤ r(⌊j + 1 + log2m⌋). The positive
assertions in (5) and (7) remain valid but the negative assertions may fail.

(ii) If one weakens the hypotheses further, requiring only that each Λi is an r-generator
finitely presented group that maps onto a non-abelian free group, then the same set of
conclusions as in (i) remains valid.

(iii) If one weakens the hypotheses yet again, requiring only that each Λi is an r-generator
finitely presented group, then the only additional item to become invalid is (8).

5. Binary Subgroups: the general construction

We maintain the notation that F is the free group of rank r with basis {a1, . . . , ar}.
First we consider arbitrary binary subgroups of direct powers of free groups.

Definition 5.1. Let m ≥ 2 and r ≥ 2 be integers. For i = 1, . . . , r, let σi = (xi1, . . . , xim) be
a list of distinct positive integers. Let li = maxk ⌊1 + log2 xik. We associate to σi the li-by-m
matrix A[σi] whose k-th column is the binary expansion of xik. More precisely, the (j, k)-entry
of A[σi] is εj(k) if xik =

∑
j εj(k)2

j. We treat the j-th row of A[σi] as a multi-index and define

aij ∈ Fm by raising the generator ai ∈ F to this multi-index (cf. Table 2).
Let Σ = (σ1, . . . , σr). We define B(Σ) < Fm to be the subgroup generated by {aij | 1 ≤ i ≤

r, 1 ≤ j ≤ li}.

Example 5.2. B0(m) is the group one gets by taking σ1 = · · · = σr and xik = k.

B1(m) is the group one gets by taking σ1 = · · · = σr and xik = 2k + 1.

The proof in Section 4.1 that B0(m) surjects pairs of factors applies equally well to B(Σ).

Lemma 5.3. The projection of B(Σ) < Fm to each pair of factors is surjective.

From the VSP Theorem we deduce:

Proposition 5.4. B(Σ) < Fm is finitely presented and contains γm−1(F
m).

Remark 5.5 (Algorithms). Following Remark 2.9, with Lemma 5.3 in hand we see that
there is an algorithm that allows one to explore, for each k, whether B(Σ) < Fm (virtually)
projects onto all k-tuples of factors and hence to bound the higher finiteness properties and
co-nilpotency class of B(Σ) using Theorem 3.2 and Lemma 2.6.

5.1. Pushing forward and the proof of Theorem 1.2. The following defines the most
general binary subgroups that we consider.

Definition 5.6. Let Σ = (σ1, . . . , σr) be as in definition 5.1 and let (µi : F →→ Gi)
m
i=1 be an m-

tuple of r-generator groups. We define B(Σ, µ) to be the image in G1×· · ·×Gm of B(Σ) < Fm

under the epimorphism µ = (µ1, . . . , µm).

We invoke the VSP Theorem once more – in tandem with Lemma 2.10 and Remark 2.9 it
yields:

Theorem 5.7. For all m-tuples of finitely presented r-generator groups (µi : F →→ Gi)
m
i=1 and

all r-tuples Σ of lists of m distinct positive integers, the subgroup B(Σ, µ) < G1×· · ·×Gm =: D
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is finitely presented, closed in the profinite topology, and contains γm−1(D). Moreover, there is
an algorithm that, given finite presentations of G1, . . . , Gm, will construct a finite presentation
for B(Σ, µ). And for each k ≥ 2 there is an algorithm that will determine if B(Σ, µ) (virtually)
surjects all k-tuples of factors Gi1 × · · · ×Gik .

This completes the proof of Theorem 1.2, because the additional assertion concerning finite-
ness properties of limit groups is covered by Theorem 3.2.

5.2. Pulling back. Let B(Σ, µ) < G1 × · · · × Gm be as above. Given any m-tuple of epi-
morphisms (πi : Hi → Gi)

m
i=1, with the groups Hi finitely presented, we consider the pull-back

π−1B(Σ, µ) < E := H1 × · · · × Hm. In the light of Lemma 2.10 and the VSP Theorem we
see that π−1B(Σ, µ) will again be finitely presented, closed in the profinite topology, and con-
tain γm−1(E). And there is an algorithm that, given finite presentations of H1, . . . , Hm, will
construct a finite presentation for π−1B(Σ, µ).

This construction is of particular interest in the case where the Hi are limit groups and the
Gi are free groups. We shall explore it further in [7].

5.3. Redundancy, variations and standard forms. It is natural to wonder to what extent
B(Σ) < Fm determines Σ. Deciding isomorphism among the groups B(Σ) does not seem to
be a trivial matter. It is clear that Σ is not uniquely determined: permuting the order of the
sets σi corresponds to permuting the chosen basis of F , and in the case σ = σ1 = · · · = σm

permuting the order of the elements in σ merely permutes the direct factors of F . (One might
remove these ambiguities by insisting on a standard form in which the σi and their elements
are listed in a natural order.) Beyond this, even in the case σ = σ1 = · · · = σr there are further
redundancies: if no column of the matrix A[σ] contains an entry 1 in both of the rows j1 and
j2, then one can replace row j1 by the sum of these rows to obtain A[σ′] with σ′ 6= σ. This
operation leaves B(Σ) invariant, merely changing the preferred generating set aij by performing
the Nielsen move aij1 7→ aij1aij2 for each i.

An important point to note is that when we perform such row operations, we are constrained
by wanting to work within the context of integer matrices with entries in {0, 1}. If we were to
work instead over the field with 2 elements, then we would be free to perform row operations;
we could then carry out Gaussian elimination to transform the matrix A[σ] into a canonical
form without altering B(Σ). This freedom can be gained at the expense of switching from the
free group F = Fr to the free product Wr of r copies of Z/2Z. One might be tempted to think
that this switch would lead to a neater theory, and it would certainly tighten the connection
with binary linear codes, but the following observation shows that this alternative is useless if
one is interested in constructing groups with exotic finiteness properties.

We fix an epimorphism F → Wr and extend it coordinate-wise to obtain µ : Fm → Wm
r .

Proposition 5.8. For all choices of Σ, the subgroup B(Σ, µ) < Wm
r is of finite index.

Proof. Follows immediately from Lemma 5.3 and Corollary 2.8. �

6. Connections and challenges

B0(m) has the minimum number of generators among the binary subgroups of Fm. It is
striking that one only needs to add r additional generators to obtain B1(m), which surjects
all triples of factors and therefore has stronger finiteness properties. It is natural to ask what
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the minimum number of generators is for a binary subgroup that surjects 4-tuples of factors,
5-tuples, etc. More generally, it might be interesting to explore the nature of small collections
of integers Σ such that B(Σ) < Fm maps onto k-tuples of factors, where k < m is fixed.
In particular, one might count such collections and explore the asymptotics of the counting
functions.

Note that Corollary 2.7 reduces these issues to problems in linear algebra over Z; in the case
Σ = (σ, . . . , σ), one would just be exploring submatrices of A[σ], and the problem is so natural
that it has surely been studied in other contexts. Note too that Theorem 3.2 provides a direct
connection with the homological finiteness properties of B(Σ). The challenge of understanding
how the co-nilpotency class of B(Σ) varies with Σ seems harder.

6.1. Binary Codes. It seems likely that some answers to the type of question raised above
might be found by exploring the link to linear codes that I shall now sketch. I am grateful to
Ben Green for suggesting this connection, and I am grateful to Yonathan Fruchter for further
conversations about it.

A binary linear code of length m is a linear subspace C of the vector space F
m
2 ; the rank of

the code is the dimension of C. The dual code C⊥ < F
m
2 consists of the vectors orthogonal

to C with respect to the usual inner product x.y =
∑

xiyi. The non-zero vectors in C are
called codewords, and the minimum Hamming distance of a codeword from the zero vector
is the weight of the code. A linear code of length m, dimension k and weight d is called an
[m, k, d]-code. Such codes have been intensively studied in the context of error correction in
computer science and communication.

Each of the arrays that we used to define binary subgroups B < Fm defines a binary code
of length m: we take C to be the span of the rows of the array, read as elements of F

m
2 .

Conversely, given an [m, k, d]-code with basis c1, . . . , ck, we define the k × m array (matrix)
whose rows are the vectors ci to be A[σ], thereby defining σ and hence B[C] := B(Σ) < Fm

r ,
where Σ = (σ, . . . , σ). (More generally, given an r-tuple of codes, we could take a basis for each
code to obtain matrices A[σi] defining (σ1, . . . , σr) – but for the purposes of this discussion the
first case is enough.)

Let C0(m) < F
m
2 be the code defined by the array for B0(m) < Fm (see Table 1). The

argument that we used in Section 4.1 to prove that B0(m) < Fm does not surject the triple
of factors L1 × L2 × L3 < Fm shows that C0(m) does not project onto F

3
2 × 0 < F

m
2 . Indeed

it shows that (1, 1, 1, 0, . . . ) is orthogonal to C0(m), hence the dual code C0(m)⊥ has weight
at most 3. In fact, it has weight exactly 3, because if there were a vector y ∈ C0(m)⊥ whose
only non-zero coordinates were i and j, then the projection of B0(m) < Fm to Li × Lj (even
H1(Li × Lj ,F2)) would not be surjective. Likewise, the dual of the linear code C1(m) < F

m
2

corresponding to B1(m) < Fm has weight 4. (In retrospect, one sees that B0(m) and B1(m)
correspond to the Hadamard and extended Hadamard codes, which are dual to the Hamming
and extended Hamming codes, whose weights are well-known to be 3 and 4.) In general, if a
code C has length m and the weight of the dual code C⊥ is d′ > 2 then the corresponding
binary subgroup B[C] < Fm fails to project onto some d′-tuple of factors in Fm and hence is
not of type wFPd′.

These observations suggest that in order to produce binary subgroups B < Fm with a small
number of generators and strong finiteness properties, one should turn to the literature on
coding theory in search of [m, k, d] binary codes with k small and the weight d′ of the dual code
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large, keeping in mind that we are obliged to work over Z rather than F2 (cf. Proposition 5.8).
Yonathan Fruchter has made progress in this direction (private communication) and points out
the relevance of selective families and superimposed codes [9].

6.2. Kähler Groups. The work of Delzant and Gromov [10] highlighted the important role
that subdirect products of surface groups play in the struggle to understand which finitely
presented groups are fundamental groups of compact Kähler manifolds. In a subsequent article,
Claudio Llosa Isenrich and I will exploit the constraints that he established in [16] to investigate
whether binary subgroups of direct products of surface groups can be Kähler.

6.3. Implementation. Picking up on the theme of Corollary 2.7 and Remarks 2.9 and 5.5, I
would be interested to know how practical it is to implement the algorithms whose existence is
discussed in this article, in particular the algorithm that takes as input a list σ of m distinct
positive integers and gives as output (1) a finite presentation of the binary subgroup B < Fm

2

that it defines, and (2) the maximum k such that B is of type wFPk.
For (1), it would be necessary to implement a special case of the Effective 1-2-3 Theorem

from [6] – cf. [15].
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