RINGS GENERATED BY IDEMPOTENTS AND NILPOTENTS

HUANYIN CHEN AND MARJAN SHEIBANI

ABSTRACT. We present new characterizations of the rings in which every element is the sum of two idempotents and a nilpotent that commute, and the rings in which every element is the sum of two tripotents and a nilpotent that commute. We prove that such rings are completely determined by the additive decompositions of their square elements. These improve the results of Chen and Sheibani[J. Algebra Appl., 16, 1750178(2017)] and Zhou [J. Algebra Appl., 16, 1850009(2017)].

1. INTRODUCTION

A ring R is strongly 2-nil-clean ring if every element in R is the sum of two idempotents and a nilpotent that commute. An element $p \in R$ is tripotent if $p^3 = p$. A ring R is Zhou nil-clean ring if every element in R is the sum of two tripotents and a nilpotent that commute. Many elementary properties and structure theorems of such rings were investigated in [3, 5, 6, 7, 10, 12, 13]. In this paper we shall characterize preceding rings by means of the additive decomposition of their square elements. These improve the known results, e.g., [2, Theorem 16], [5, Theorem 2.8] and [13, Theorem 2.11].

In Section 2, we prove that a ring R is strongly 2-nil-clean if and only every square element in R is the sum of two idempotents and a nilpotent that commute if and only if every square element in Ris the sum of an idempotent, an involution and a nilpotent that commute.

²⁰¹⁰ Mathematics Subject Classification. 16U99, 16E50.

Key words and phrases. idempotent; tripotent; nilpotent; strongly 2-nilclean ring; Zhou nil-clean ring.

In Section 3, we further prove that a ring R is Zhou nil-clean if and only if every square element in R is the sum of two tripotents and a nilpotent that commute if and only if every square element in R is the sum of a tripotent, an involution and a nilpotent that commute.

Throughout, all rings are associative with an identity. We use N(R) to denote the set of all nilpotents in R. $a \in R$ is square if $a = x^2$ for some $x \in R$. $a \equiv b \pmod{N(R)}$ means that $a-b \in N(R)$.

2. Strongly 2-Nil-Clean rings

In this section, we establish new characterizations of strongly 2-nil-clean rings by means of their square elements. We begin with

Lemma 2.1. The following are equivalent for a ring R:

- (1) R is strongly 2-nil-clean.
- (2) For any $a \in R$, $a a^3 \in N(R)$.
- (3) Every element in R is the sum of a tripotent and a nilpotent that commute.

Proof. See [5, Theorem 2.3 and Theorem 2.8].

Theorem 2.2. The following are equivalent for a ring R:

- (1) R is strongly 2-nil-clean.
- (2) Every square element in R is the sum of an idempotent and a nilpotent that commute.
- (3) Every square element in R is the sum of two idempotents and a nilpotent that commute.
- (4) Every square element in R is the sum of three idempotents and a nilpotent that commute.

Proof. (1) \Rightarrow (2) For any $a \in R$, it follows by Lemma 2.1 that $a - a^3 \in N(R)$. Hence $a^2 - (a^2)^2 = a(a - a^3) \in N(R)$. In view of [12, Lemma 3.5], a^2 is the sum of an idempotent and a nilpotent that commute.

 $(2) \Rightarrow (3) \Rightarrow (4)$ These are trivial.

 $(4) \Rightarrow (1)$ Step 1. By hypothesis, there exist idempotents $e, f, g \in R$ and a nilpotent $w \in R$ that commute such that $2^2 = e + f + g + w$.

 $\mathbf{2}$

Hence 4e = e + ef + eg + ew, and so 3e = ef + eg + ew. This implies that 3ef = ef + efg + efw; whence, 2ef = efg + efw. Therefore

$$2ef = (2ef)^2 - 2ef = (efg + efw)^2 - (efg + efw) \in N(R).$$

Likewise, we have $2eg, 2fg \in N(R)$. Accordingly,

$$12 = 4^2 - 4 = (e + f + g + w)^2 - (e + f + g + w) \equiv 2(ef + eg + fg)(mod N(R)),$$

i.e., $6^2 = 3 \times 12 \in N(R)$. Hence $6 \in N(R)$. Write $2^n \times 3^n = 0$ for some $n \in \mathbb{N}$. Since $2^n R \cap 3^n R = 0$, we have $R \cong R_1 \times R_2$, where $R_1 = R/2^n R, R_2 = R/3^n R.$

Step 2. Let $a \in R$. Then there exist idempotents $e, f, g \in R$ and a nilpotent $w \in R$ that commute such that $(a+1)^2 = e+f+g+v$, and so $a^{2} + 2a = e - (1 - f) + g + w = e + h - k + w$, where h = fg, k = (1 - f)(1 - g). We easily check that $h^2 = h, k^2 = k$ and hk = kh = 0. Hence, we have

$$(a^{2}+2a)^{3} \equiv (e+h+k+2eh-2ek)(e+h-k)$$
$$\equiv e+h-k+6eh$$
$$\equiv a^{2}+2a(mod N(R)).$$

Therefore $(a^2 + 2a)^3 - (a^2 + 2a) \in N(R)$. Likewise, $(a - 1)^2$ is the sum of three idempotents and a nilpotent that commute. As the preceding discussion, we have $(a^2 - 2a)^3 - (a^2 - 2a) \in N(R)$.

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. Hence, $(a^3 - a)(a^3 + a) = a^6 - a^2 \in N(R_1)$. This implies that $(a^3 - a)^2 \in N(R_1)$, i.e., $a - a^3 \in A^3$ $N(R_1)$.

Case 2. $a \in R_2$. Since $3 \in N(R_2)$, we get

$$(a^2 - a)^3 - (a^2 - a) \in N(R_2),$$

 $(a^2 + a)^3 - (a^2 + a) \in N(R_2).$

Moreover, we have

$$(a^6 - a^3) - (a^2 - a) \in N(R_2),$$

 $(a^6 + a^3) - (a^2 + a) \in N(R_2).$

Thus, $2a^3-2a \in N(R_2)$. Clearly, $2 \in R_2^{-1}$, and then $a-a^3 \in N(R_2)$. Therefore for any $a \in R$, we have $a - a^3 \in N(R)$. In light of

Lemma 2.1, R_2 is strongly 2-nil-clean. \square We note that "three idempotents" in the proceeding theorem can not be replaced by "four idempotents" as the following shows.

Example 2.3. Let $R = \mathbb{Z}_5$. Then every square element in R is the sum of four idempotents and a nilpotent that commute. But R it is not strongly 2-nil-clean.

Proof. Obviously, $\{x^2 \mid x \in R\} = \{0, 1, 4\}$. For any $a \in R$, we see that a^2 is the sum of four idempotents that commute. As $2 \neq 2^3$, R is not strongly 2-nil-clean.

An element $v \in R$ is an involution if $v^2 = 1$. As a consequence of Theorem 2.2, we now derive

Theorem 2.4. The following are equivalent for a ring R:

- (1) R is strongly 2-nil-clean.
- (2) Every square element in R is the sum of an idempotent, an involution and a nilpotent that commute.

Proof. (1) \Rightarrow (2) Let $a \in R$. In view of Theorem 2.2, there exist an idempotent $e \in R$ and a nilpotent $w \in R$ that commute such that $a^2 = e + w$. Hence $a^2 = (1 - e) + (2e - 1) + w$ with $(1 - e)^2 = 1$ and $(2e - 1)^2 = 1$. That is, a^2 is the sum of an idempotent, an involution and a nilpotent that commute.

 $(2) \Rightarrow (1)$ Write $2^2 = e + v + w$, where $e^2 = e, v^2 = 1$ and $w \in N(R)$ that commute. Then

$$16 \equiv e + 2ev + 1 \equiv (4 - v) + 2(4 - v)v + 1 \equiv 3 + 5v (mod \ N(R)).$$

This implies that $13 \equiv 5v \pmod{N(R)}$. Hence $169 \equiv 25v^2 = 25 \pmod{N(R)}$, and then $2^4 \times 3^2 \in N(R)$. That is, $2 \times 3 = 6 \in N(R)$. Write $2^n \times 3^n = 0$ for some $n \in \mathbb{N}$. Then we have $R \cong R_1 \times R_2$, where $R_1 = R/2^n R$ and $R_2 = R/3^n R$.

Step 1. Let $a \in R_1$. Then there exist $e, v, w \in R_1$ such that $a^2 = e + v + w$, $e^2 = e, v^2 = 1$ and $w \in N(R_1)$ that commute. Clearly, $2 \in N(R_1)$. Then we have

 $a^8 \equiv (e+v)^4 \equiv e+1 \pmod{N(R_1)},$ $a^{12} = a^8 a^4 \equiv (e+1)(e+1) \equiv e+1 \pmod{N(R_1)}.$

Hence $a^8(1-a^2)(1+a^2) = a^8(1-a^4) = a^8 - a^{12} \in N(R_1)$, and so $a^6(a-a^3)^2 = a^8(1-a^2)^2 \in N(R_1)$. This implies that $(a-a^3)^8 = a^8(1-a^2)^2 \in N(R_1)$.

4

 $a^6(a-a^3)^2(1-a^2)^6 \in N(R_1)$, i.e., $a-a^3 \in N(R_1)$. According to Lemma 2.1, R_1 is strongly 2-nil-clean.

Step 2. Let $a \in R_2$. Then there exist $e, v, w \in R_2$ such that $a^2 = e + v + w, e^2 = e, v^2 = 1$ and $w \in N(R_2)$ that commute. Since $3 \in N(R_2)$, we have $a^6 \equiv (e+v)^3 \equiv e+v \equiv a^2 \pmod{N(R_2)}$. Hence $a^2 - a^6 \in N(R_2)$. Clearly, $2 \in R_2^{-1}$. Set $p = \frac{a^4 + a^2}{2}, q = \frac{a^4 - a^2}{2}$. We compute that

$$p^{2} - p = \frac{1}{4}(a^{8} + 2a^{6} - a^{4} - 2a^{2}) = \frac{1}{4}(a^{2} + 2)(a^{6} - a^{2}),$$

$$q^{2} - q = \frac{1}{4}(a^{8} - 2a^{6} - a^{4} + 2a^{2}) = \frac{1}{4}(a^{2} - 2)(a^{6} - a^{2}).$$

Hence $p^2 - p, q^2 - q \in N(R_2)$. In light of [12, Lemma 3.5], we can find two idempotents $g, h \in \mathbb{Z}[a]$ such that $p - g, q - h \in N(R_2)$. Hence $a^2 = g - h + w$ for some $w \in \mathbb{Z}[a]$. As $3 \in N(R_2)$, we see that $a^2 = g + h + h + (w - 3h)$ with $w - 3h \in N(R_2)$. Therefore a^2 is the sum of three idempotents and a nilpotent that commute. According to Theorem 2.2, R_2 is strongly 2-nil-clean.

Therefore $R \cong R_1 \times R_2$ is strongly 2-nil-clean, as asserted. \Box

3. Zhou Nil-Clean Rings

The aim of this section is to further characterize Zhou nil-clean rings by means of the additive decompositions of their square elements. An element $p \in R$ is 5-potent if $p^5 = p$. We have

Lemma 3.1. The following are equivalent are equivalent for a ring *R*:

- (1) R is Zhou nil-clean.
- (2) For any $a \in R$, $a a^5 \in N(R)$.
- (3) Every element in R is the sum of a 5-potent and a nilpotent that commute.

Proof. See [2, Theorem 19] and [13, Theorem 2.11].

Lemma 3.2. A ring R is Zhou nil-clean if and only if $7 \in R^{-1}$ and every square element in R is the sum of four idempotents and a nilpotent that commute.

Proof. \implies In view of Lemma 3.1, $30 = 2^5 - 2 \in N(R)$. Since (7, 30) = 1, we can find some $k, l \in \mathbb{N}$ such that 7k + 30l = 1, and

so $7 \in \mathbb{R}^{-1}$. By virtue of [13, Theorem 2.11], $\mathbb{R} \cong A \times B \times C$, where A = 0 or A/J(A) is Boolean with J(A) nil, B = 0 or B/J(B) is a subdirect product of \mathbb{Z}_3 's with J(B) nil; C = 0 or C/J(C) is a subdirect product of \mathbb{Z}_5 's with J(C) nil. In light of [2, Theorem 15], every element in \mathbb{R} is the sum of four idempotents and a nilpotent that commute.

$$48\alpha\beta(\alpha+\beta) \equiv 3\alpha\beta(\alpha+\beta)\alpha\beta \equiv 3\alpha\beta(\alpha+\beta)(mod\ N(R)),$$

and so

$$48 \times 7 \times 15 \equiv 15[3\alpha\beta(\alpha+\beta)] \\ = 45\alpha\beta(\alpha+\beta) \\ \equiv 0(mod \ N(R)).$$

Hence, $2^4 \times 3^2 \times 5 \times 7 \in N(R)$. It follows from $7 \in R^{-1}$ that $2^4 \times 3^2 \times 5 \in N(R)$, and so $2 \times 3 \times 5 \in N(R)$. Write $2^n \times 3^n \times 5^n = 0$ for some $n \in \mathbb{N}$. Then $R \cong R_1 \times R_2 \times R_3$, where $R_1 = R/2^n R$, $R_2 = R/3^n R$, $R_3 = R/5^n R$.

Step 2. By hypothesis, there exist idempotents $e, f, g, h \in R$ and a nilpotent $w \in R$ that commute such that $(a+2)^2 = e+f+g+h+w$, and so $a^2+4a+2 = e-(1-f)+g-(1-h)+w$. Set p = e-(1-f) and q = g-(1-h). Then $a^2+4a+2 = p+q \pmod{N(R)}$, $p^3 = p, q^3 = q$ and pq = qp.

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. We have

$$a^{8} \equiv (p+q)^{4}$$
$$\equiv p^{4} + q^{4}$$
$$\equiv p^{2} + q^{2}$$
$$\equiv a^{4} (mod \ N(R_{1})),$$

Hence $a^3(a-a^5) \in N(R_1)$, and so $(a-a^5)^4 = a^3(a-a^5)(1-a^4)^3 \in N(R_1)$. Therefore $a-a^5 \in N(R_1)$.

Case 2. $a \in R_2$. Then $3 \in N(R_2)$. We have

$$(a^{2} + 4a + 2)^{3} \equiv (p + q)^{3} \\ \equiv p^{3} + q^{3} \\ \equiv p + q \\ \equiv a^{2} + 4a + 2 (mod \ N(R_{2})),$$

Likewise, we have $(a^2 - 4a + 2)^3 - (a^2 - 4a + 2) \in N(R_2)$. So we get

$$(a^2 + 2)^3 + (4a)^3 - (a^2 + 4a + 2) \in N(R_2), (a^2 + 2)^3 - (4a)^3 - (a^2 - 4a + 2) \in N(R_2).$$

Hence $2(4a)^3 - 8a \in N(R_2)$, and so $2^3(16a^3 - a) \equiv 2^3(a^3 - a) \in N(R_2)$. Accordingly, $a^3 - a \in N(R_2)$, and so $a - a^5 = (1 + a^2)(a - a^3) \in N(R_2)$.

Case 3. $a \in R_3$. Then $5 \in N(R_3)$. We have

$$(a^{2} + 4a + 2)^{5} \equiv (p+q)^{5} \\ \equiv p^{5} + q^{5} \\ \equiv p + q \\ \equiv a^{2} + 4a + 2(mod \ N(R_{3})),$$

Likewise, we get $(a^2 - 4a + 2)^5 - (a^2 - 4a + 2) \in N(R_3)$. Then

$$(a^{2}+2)^{5} + (4a)^{5} - (a^{2}+4a+2) \in N(R_{3}), (a^{2}+2)^{5} - (4a)^{5} - (a^{2}-4a+2) \in N(R_{3}).$$

Hence $2(4a)^5 - 8a \in N(R_3)$, and so $2^3(256a^5 - a) = 2^3(a^5 - a) \in N(R)$. Accordingly, $a - a^5 \in N(R_3)$.

Therefore $a - a^5 \in N(R)$ for all $a \in R$. This completes the proof by Lemma 3.1.

We are now ready to prove the following.

Theorem 3.3. The following are equivalent for a ring R:

- (1) R is Zhou nil-clean.
- (2) Every square element in R is the sum of a tripotent and a nilpotent that commute.
- (3) Every square element in R is the sum of two tripotents and a nilpotent that commute.

Proof. (1) \Rightarrow (2) In view of [13, Theorem 2.11], $R \cong R_1 \times R_2$, where R_1 is strongly 2-nil-clean with $2 \in N(R_1)$ and R_2 is Zhou nil-clean with $3 \times 5 \in N(R_2)$.

Let $a \in R_1$. Then a^2 is the sum of an idempotent and a nilpotent that commute.

Let $a \in R_2$. In view of [13, Theorem 2.11], $a - a^5 \in N(R_2)$. Hence, $a^2 - (a^2)^3 = a(a - a^5) \in N(R_2)$. Since $2 \in R_2^{-1}$, it follows by [13, Lemma 2.6] that there exists a tripotent $p \in \mathbb{Z}[a]$ such that $a^2 - p \in N(R_2)$.

Therefore every square element in R is the sum of a tripotent and a nilpotent that commute, as required.

 $(2) \Rightarrow (3)$ This is trivial.

 $(3) \Rightarrow (1)$ By hypothesis, there exist tripotents $e, f \in R$ a nilpotent $w \in R$ that commute such that $2^2 = e + f + w$. We check that

$$15(e+f) \equiv 4(4^2-1) = 4^3 - 4 \equiv 3ef(e+f) (mod \ N(R)).$$

Multiplying both sides by ef gives

$$15ef(e+f) \equiv 3ef(e+f) \pmod{N(R)}.$$

This implies that

 $2^4 \times 3 \times 5 = 4 \times (4^3 - 4) \equiv 12ef(e + f) \equiv 0 (mod \ N(R)).$

It follows that $2 \times 3 \times 5 \in N(R)$. Write $2^n \times 3^n \times 5^n = 0$ for some $n \in \mathbb{N}$. Then

$$R \cong R_1 \times R_2 \times R_3, R_1 = R/2^n R, R_2 = R/3^n R, R_3 = R/5^n R$$

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. By hypothesis, there exist tripotents $p, q \in R_1$ and a nilpotent $w \in R_1$ that commute such that $a^2 = p + q + w$. Hence we have

$$(a^2)^4 \equiv (p+q)^4$$

$$\equiv p^4 + q^4$$

$$\equiv p^2 + q^2$$

$$\equiv a^4 (mod \ N(R_2)),$$

Hence $a^3(a-a^5) \in N(R_1)$; whence, $(a-a^5)^4 = a^3(a-a^5)(1-a^4)^3 \in N(R_1)$. This implies that $a - a^5 \in N(R_1)$.

Case 2. $a \in R_2$. Then $3 \in N(R_2)$. By hypothesis, there exist tripotents $p, q \in R_2$ and a nilpotent $w \in R_2$ that commute such that $a^2 = p + q + w$. Hence we have

$$(a^2)^3 \equiv (p+q)^3$$

$$\equiv p^3 + q^3$$

$$\equiv p+q$$

$$\equiv a^2 (mod \ N(R_2)),$$

This implies that $a(a - a^5) \in N(R_2)$, and so $(a - a^5)^2 = a(a - a^5)(1 - a^4) \in N(R_2)$. Accordingly, $a - a^5 \in N(R_2)$.

Case 3. $a \in R_3$. Then $5 \in N(R_3)$. By hypothesis, there exist tripotents $p, q \in R_3$ and a nilpotent $w \in R_3$ that commute such that $(a+2)^2 = p + q + w$. Hence we get

$$(a^{2} + 4a + 4)^{5} \equiv (p+q)^{5} \\ \equiv p^{5} + q^{5} \\ \equiv p + q \\ \equiv a^{2} + 4a + 4 \pmod{N(R_{3})},$$

Likewise, we have $(a^2 - 4a + 4)^5 \equiv a^2 - 4a + 4 \pmod{N(R_3)}$. We derive that

$$(a^2 - a - 1)^5 - (a^2 - a - 1) \in N(R_3), (a^2 + a - 1)^5 - (a^2 + a - 1) \in N(R_3).$$

This implies that

$$(a^{2}-1)^{5} - a^{5} - (a^{2}-1-a) \in N(R_{3}), (a^{2}-1)^{5} + a^{5} - (a^{2}-1+a) \in N(R_{3}).$$

Thus we have $2a^5 - 2a \in N(R_3)$. Clearly, $2 \in R_3^{-1}$, and therefore $a - a^5 \in N(R_3)$.

According to Lemma 3.1, $R \cong R_1 \times R_2 \times R_3$ is Zhou nil-clean. \Box

As a consequence, we now derive:

Corollary 3.4. The following are equivalent for a ring R:

- (1) R is Zhou nil-clean.
- (2) Every square element in R is the sum of a tripotent, an involution and a nilpotent that commute.

Proof. (1) \Rightarrow (2) Clearly, $2 \times 15 = 30 \in N(R)$. Then we can find some $n \in \mathbb{N}$ such that

$$R \cong R_1 \times R_2, R_1 = R/2^n R, R_2 = R/15^n R.$$

Case 1. Let $a \in R_1$. Clearly, R_1 is strongly 2-nil-clean. By virtue of Theorem 2.4, a^2 is the sum of an idempotent, an involution u and a nilpotent that commute.

Case 2. Let $a \in R_2$. In view of Theorem 3.3, there exist a tripotent $p \in R$ and a nilpotent $w \in R$ that commute such that $a^2 = p + w$. Clearly, $2 \in R_2^{-1}$. Let $e = \frac{p^2 + p}{2}$ and $f = \frac{p^2 - p}{2}$. Then we directly verify that

$$e^{2} - e = \frac{1}{4}(p^{4} + 2p^{3} - p^{2} - 2p) = \frac{1}{4}(p+2)(p^{3} - p).$$

Hence $e^2 = e$. Likewise, $f^2 = f$. Therefore $a^2 = e - f + w = (1-e) - f + (2e-1) + w$. We check that $[(1-e) - f]^3 = (1-e) - f$ and $(2e-1)^2 = 1$, as desired.

 $(2) \Rightarrow (1)$ Since every involution is a tripotent, we complete the proof by Theorem 3.3.

Example 3.5. Let $R = \{a, b, c, d\}$ be the ring defined by the following operations:

+	a	b	c	d	×	a	b	c	d
a	a	b	С	d	a	a	a	a	a
b	b	a	d	С	b	a	b	С	d
c	С	d	a	b	С	a	С	d	b
d	d	С	b	a	d	a	d	b	c

Then x^3 is an idempotent for all $x \in R$, but R is not Zhou nil-clean.

Proof. For all $x \in R$, we check that $x = x^4$, and so $(x^3)^2 = x^3$. That is, $x^3 \in R$ is an idempotent. Since $c - c^5 = b$ is not nilpotent, R is not Zhou nil-clean.

Example 3.6. Let $R = \{ \begin{pmatrix} x & y \\ y & x+y \end{pmatrix} \mid x, y \in \mathbb{Z}_3 \}$. Then R is a finite field with 9 elements. Let $a \in R$. Then $a = a^9$, and so $a^2 = (a^2)^5$, i.e., a^2 is 5-potent. Therefore every square element in R can be written as the sum of a 5-potent and a nilpotent that commute.

Choose $c = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then $c - c^5 = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}^{-1}$. Hence $c - c^5$ is not nilpotent. According to [13, Theorem 2.11], R is not Zhou nil-clean.

References

- M.S. Abdolyousefi and H. Chen, Rings in which elements are sums of tripotents and nilpotents, J. Algebra Appl., 17, 1850042 (2018), http://dx.doi.org/10.1142/S0219498818500421.
- [2] A.N. Abyzov, Strongly q-nil-clean rings, Siberian Math. J., 60(2019), 197– 208.
- [3] A.N. Abyzov and D.T. Tapkin, On rings with xⁿ x nilpotent, J. Algebra Appl., 2021; http://dx.doi.org/10.1142/S0219498822501110.
- [4] S. Breaz; P. Danchev and Y. Zhou, Rings in which every element in either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15, 1650148 (2016); http://dx.doi.org/10.1142/S0219498816501486.
- [5] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16, 1750178 (2017); http://dx.doi.org/10.1142/S021949881750178X.
- [6] H. Chen and M. Sheibani, Matrices over Zhou nil-clean rings, Comm. Algebra, 46(2018), 1527–1533.
- [7] H. Chen and M. Sheibani, Rings additively generated by idempotents and nilpotents, *Comm. Algebra*, 49(2021), 1781-1787.
- [8] A.B. Gorman and A. Diesl, Ideally nil clean rings, Comm. Algebra, 49(2021), 4788–4799.
- [9] M.T. Kosan; Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra, 220(2016), 633–646.
- Kosan; Τ. [10] M.T. Yildirim and Υ. Zhou. Rings x^n Algebra with xnilpotent, J.Appl., 19(2020);http://dx.doi.org/10.1142/S02119498820500656.
- [11] G. Tang; Y. Zhou and H. Su, Matrices over a commutative ring as the sum of three idempotents or three involutions, *Linear & Multilinear Algebra*, 67(2019), 267–277.
- [12] Z.L. Ying; T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, *Canad. Math. Bull.*, 59(2016), 661–672.
- [13] Y. Zhou, Rings in which elements are sum of nilpotents, idempotents and tripotents, J. Algebra App., 16, 1850009 (2017); http://dx.doi.org/10.1142/S0219498818500093.

School of Mathematics, Hangzhou Normal University, Hang - zhou, China

Email address: <huanyinchenhz@163.com>

FARZANEGAN CAMPUS, SEMNAN UNIVERSITY, SEMNAN, IRAN *Email address:* <m.sheibani@semnan.ac.ir>