RINGS GENERATED BY IDEMPOTENTS AND NILPOTENTS

HUANYIN CHEN AND MARJAN SHEIBANI

Abstract. We present new characterizations of the rings in which every element is the sum of two idempotents and a nilpotent that commute, and the rings in which every element is the sum of two tripotents and a nilpotent that commute. We prove that such rings are completely determined by the additive decompositions of their square elements. These improve the results of Chen and Sheibani[J. Algebra Appl., 16, 1750178(2017)] and Zhou [J. Algebra Appl., 16, 1850009(2017)].

1. Introduction

A ring R is strongly 2-nil-clean ring if every element in R is the sum of two idempotents and a nilpotent that commute. An element $p \in R$ is tripotent if $p^3 = p$. A ring R is Zhou nil-clean ring if every element in R is the sum of two tripotents and a nilpotent that commute. Many elementary properties and structure theorems of such rings were investigated in $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$ $[3, 5, 6, 7, 10, 12, 13]$. In this paper we shall characterize preceding rings by means of the additive decomposition of their square elements. These improve the known results, e.g., [\[2,](#page-10-7) Theorem 16], [\[5,](#page-10-1) Theorem 2.8] and [\[13,](#page-10-6) Theorem 2.11].

In Section 2, we prove that a ring R is strongly 2-nil-clean if and only every square element in R is the sum of two idempotents and a nilpotent that commute if and only if every square element in R is the sum of an idempotent, an involution and a nilpotent that commute.

²⁰¹⁰ Mathematics Subject Classification. 16U99, 16E50.

Key words and phrases. idempotent; tripotent; nilpotent; strongly 2-nilclean ring; Zhou nil-clean ring. 1

In Section 3, we further prove that a ring R is Zhou nil-clean if and only if every square element in R is the sum of two tripotents and a nilpotent that commute if and only if every square element in R is the sum of a tripotent, an involution and a nilpotent that commute.

Throughout, all rings are associative with an identity. We use $N(R)$ to denote the set of all nilpotents in R. $a \in R$ is square if $a = x^2$ for some $x \in R$. $a \equiv b(mod N(R))$ means that $a - b \in N(R)$.

2. strongly 2-nil-clean rings

In this section, we establish new characterizations of strongly 2-nil-clean rings by means of their square elements. We begin with

Lemma 2.1. The following are equivalent for a ring R :

- (1) R is strongly 2-nil-clean.
- (2) For any $a \in R$, $a a^3 \in N(R)$.
- (3) Every element in R is the sum of a tripotent and a nilpotent that commute.

Proof. See [\[5,](#page-10-1) Theorem 2.3 and Theorem 2.8].

Theorem 2.2. The following are equivalent for a ring R :

- (1) R is strongly 2-nil-clean.
- (2) Every square element in R is the sum of an idempotent and a nilpotent that commute.
- (3) Every square element in R is the sum of two idempotents and a nilpotent that commute.
- (4) Every square element in R is the sum of three idempotents and a nilpotent that commute.

Proof. (1) \Rightarrow (2) For any $a \in R$, it follows by Lemma 2.1 that $a - a^{3} \in N(R)$. Hence $a^{2} - (a^{2})^{2} = a(a - a^{3}) \in N(R)$. In view of $[12, \text{Lemma } 3.5], a^2$ is the sum of an idempotent and a nilpotent that commute.

 $(2) \Rightarrow (3) \Rightarrow (4)$ These are trivial.

 $(4) \Rightarrow (1)$ Step 1. By hypothesis, there exist idempotents $e, f, q \in$ R and a nilpotent $w \in R$ that commute such that $2^2 = e + f + g + w$.

Hence $4e = e + ef + eg + ew$, and so $3e = ef + eg + ew$. This implies that $3ef = ef + efg + efw$; whence, $2ef = efg + efw$. Therefore

$$
2ef = (2ef)^{2} - 2ef = (efg + efw)^{2} - (efg + efw) \in N(R).
$$

Likewise, we have $2eg, 2fg \in N(R)$. Accordingly,

$$
12 = 42 - 4
$$

= $(e + f + g + w)2 - (e + f + g + w)$
\equiv 2(ef + eg + fg)(mod N(R)),

i.e., $6^2 = 3 \times 12 \in N(R)$. Hence $6 \in N(R)$. Write $2^n \times 3^n = 0$ for some $n \in \mathbb{N}$. Since $2^n R \bigcap 3^n R = 0$, we have $R \cong R_1 \times R_2$, where $R_1 = R/2^n R$, $R_2 = R/3^n R$.

Step 2. Let $a \in R$. Then there exist idempotents $e, f, g \in R$ and a nilpotent $w \in R$ that commute such that $(a+1)^2 = e+f+g+v$, and so $a^2 + 2a = e - (1 - f) + g + w = e + h - k + w$, where $h = fg, k = (1 - f)(1 - g)$. We easily check that $h^2 = h, k^2 = k$ and $hk = kh = 0$. Hence, we have

$$
(a2 + 2a)3 \equiv (e + h + k + 2eh - 2ek)(e + h - k)
$$

\n
$$
\equiv e + h - k + 6eh
$$

\n
$$
\equiv a2 + 2a(mod N(R)).
$$

Therefore $(a^2 + 2a)^3 - (a^2 + 2a) \in N(R)$. Likewise, $(a - 1)^2$ is the sum of three idempotents and a nilpotent that commute. As the preceding discussion, we have $(a^2 - 2a)^3 - (a^2 - 2a) \in N(R)$.

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. Hence, $(a^3 - a)(a^3 + a) =$ $a^6 - a^2 \in N(R_1)$. This implies that $(a^3 - a)^2 \in N(R_1)$, i.e., $a - a^3 \in$ $N(R_1)$.

Case 2. $a \in R_2$. Since $3 \in N(R_2)$, we get

$$
(a2 - a)3 - (a2 - a) \in N(R2),
$$

$$
(a2 + a)3 - (a2 + a) \in N(R2).
$$

Moreover, we have

$$
(a6 - a3) - (a2 - a) \in N(R2),
$$

$$
(a6 + a3) - (a2 + a) \in N(R2).
$$

Thus, $2a^3 - 2a \in N(R_2)$. Clearly, $2 \in R_2^{-1}$, and then $a - a^3 \in N(R_2)$.

Therefore for any $a \in R$, we have $a - a^3 \in N(R)$. In light of Lemma 2.1, R_2 is strongly 2-nil-clean.

We note that "three idempotents" in the proceeding theorem can not be replaced by "four idempotents" as the following shows.

Example 2.3. Let $R = \mathbb{Z}_5$. Then every square element in R is the sum of four idempotents and a nilpotent that commute. But R it is not strongly 2-nil-clean.

Proof. Obviously, $\{x^2 \mid x \in R\} = \{0, 1, 4\}$. For any $a \in R$, we see that a^2 is the sum of four idempotents that commute. As $2 \neq 2^3$, R is not strongly 2-nil-clean.

An element $v \in R$ is an involution if $v^2 = 1$. As a consequence of Theorem 2.2, we now derive

Theorem 2.4. The following are equivalent for a ring R :

- (1) R is strongly 2-nil-clean.
- (2) Every square element in R is the sum of an idempotent, an involution and a nilpotent that commute.

Proof. (1) \Rightarrow (2) Let $a \in R$. In view of Theorem 2.2, there exist an idempotent $e \in R$ and a nilpotent $w \in R$ that commute such that $a^2 = e + w$. Hence $a^2 = (1 - e) + (2e - 1) + w$ with $(1 - e)^2 = 1$ and $(2e-1)^2 = 1$. That is, a^2 is the sum of an idempotent, an involution and a nilpotent that commute.

(2) ⇒ (1) Write $2^2 = e + v + w$, where $e^2 = e, v^2 = 1$ and $w \in N(R)$ that commute. Then

$$
16 \equiv e + 2ev + 1 \equiv (4 - v) + 2(4 - v)v + 1 \equiv 3 + 5v \pmod{N(R)}.
$$

This implies that $13 \equiv 5v \pmod{N(R)}$. Hence $169 \equiv 25v^2 =$ $25(mod N(R))$, and then $2⁴ \times 3² \in N(R)$. That is, $2 \times 3 = 6 \in N(R)$. Write $2^n \times 3^n = 0$ for some $n \in \mathbb{N}$. Then we have $R \cong R_1 \times R_2$, where $R_1 = R/2^n R$ and $R_2 = R/3^n R$.

Step 1. Let $a \in R_1$. Then there exist $e, v, w \in R_1$ such that $a^2 = e + v + w$, $e^2 = e$, $v^2 = 1$ and $w \in N(R_1)$ that commute. Clearly, $2 \in N(R_1)$. Then we have

> $a^{8} \equiv (e+v)^{4} \equiv e+1 \pmod{N(R_{1})},$ $a^{12} = a^8 a^4 \equiv (e+1)(e+1) \equiv e+1 \pmod{N(R_1)}$.

Hence $a^{8}(1 - a^{2})(1 + a^{2}) = a^{8}(1 - a^{4}) = a^{8} - a^{12} \in N(R_{1}),$ and so $a^6(a-a^3)^2 = a^8(1-a^2)^2 \in N(R_1)$. This implies that $(a-a^3)^8 =$

 $a^6(a-a^3)^2(1-a^2)^6 \in N(R_1)$, i.e., $a-a^3 \in N(R_1)$. According to Lemma 2.1, R_1 is strongly 2-nil-clean.

Step 2. Let $a \in R_2$. Then there exist $e, v, w \in R_2$ such that $a^2 = e + v + w$, $e^2 = e$, $v^2 = 1$ and $w \in N(R_2)$ that commute. Since $3 \in N(R_2)$, we have $a^6 \equiv (e+v)^3 \equiv e+v \equiv a^2 \pmod{N(R_2)}$. Hence $a^2 - a^6 \in N(R_2)$. Clearly, $2 \in R_2^{-1}$. Set $p = \frac{a^4 + a^2}{2}$ $\frac{a^2}{2}, q = \frac{a^4 - a^2}{2}$ $\frac{-a^2}{2}$. We compute that

$$
p^2 - p = \frac{1}{4}(a^8 + 2a^6 - a^4 - 2a^2) = \frac{1}{4}(a^2 + 2)(a^6 - a^2),
$$

\n
$$
q^2 - q = \frac{1}{4}(a^8 - 2a^6 - a^4 + 2a^2) = \frac{1}{4}(a^2 - 2)(a^6 - a^2).
$$

Hence $p^2 - p$, $q^2 - q \in N(R_2)$. In light of [\[12,](#page-10-5) Lemma 3.5], we can find two idempotents $g, h \in \mathbb{Z}[a]$ such that $p - g, q - h \in N(R_2)$. Hence $a^2 = g - h + w$ for some $w \in \mathbb{Z}[a]$. As $3 \in N(R_2)$, we see that $a^2 = g + h + h + (w - 3h)$ with $w - 3h \in N(R_2)$. Therefore $a²$ is the sum of three idempotents and a nilpotent that commute. According to Theorem 2.2, R_2 is strongly 2-nil-clean.

Therefore $R \cong R_1 \times R_2$ is strongly 2-nil-clean, as asserted. \square

3. Zhou nil-clean rings

The aim of this section is to further characterize Zhou nil-clean rings by means of the additive decompositions of their square elements. An element $p \in R$ is 5-potent if $p^5 = p$. We have

Lemma 3.1. The following are equivalent are equivalent for a ring R:

- (1) R is Zhou nil-clean.
- (2) For any $a \in R$, $a a^5 \in N(R)$.
- (3) Every element in R is the sum of a 5-potent and a nilpotent that commute.

Proof. See [\[2,](#page-10-7) Theorem 19] and [\[13,](#page-10-6) Theorem 2.11].

Lemma 3.2. A ring R is Zhou nil-clean if and only if $7 \in R^{-1}$ and every square element in R is the sum of four idempotents and a nilpotent that commute.

Proof. \implies In view of Lemma 3.1, 30 = $2^5 - 2 \in N(R)$. Since $(7, 30) = 1$, we can find some $k, l \in \mathbb{N}$ such that $7k + 30l = 1$, and

so $7 \in R^{-1}$. By virtue of [\[13,](#page-10-6) Theorem 2.11], $R \cong A \times B \times C$, where $A = 0$ or $A/J(A)$ is Boolean with $J(A)$ nil, $B = 0$ or $B/J(B)$ is a subdirect product of \mathbb{Z}_3 's with $J(B)$ nil; $C = 0$ or $C/J(C)$ is a subdirect product of \mathbb{Z}_5 's with $J(C)$ nil. In light of [\[2,](#page-10-7) Theorem 15], every element in R is the sum of four idempotents and a nilpotent that commute.

 \Leftarrow Step 1. By hypothesis, there exists idempotents $e, f, g, h \in R$ and a nilpotent $w \in R$ that commute such that $3^2 = e+f+g+h+w$. Hence $7 = \alpha + \beta + w$, where $\alpha = e - (1 - f)$, $\beta = g - (1 - h)$. Since $e, 1-f, g, 1-h$ are idempotents, we easily check that $\alpha^3 = \alpha, \beta^3 = \beta$ and $\alpha\beta = \beta\alpha$. Then $48 \times 7 = 7^3 - 7 \equiv 3\alpha\beta(\alpha + \beta)(mod N(R)),$ hence, $48(\alpha + \beta) \equiv 3\alpha\beta(\alpha + \beta) (mod N(R))$. Multiplying both sides by $\alpha\beta$ gives

$$
48\alpha\beta(\alpha+\beta) \equiv 3\alpha\beta(\alpha+\beta)\alpha\beta \equiv 3\alpha\beta(\alpha+\beta)(mod N(R)),
$$

and so

$$
48 \times 7 \times 15 \equiv 15[3\alpha\beta(\alpha + \beta)]
$$

= $45\alpha\beta(\alpha + \beta)$
 $\equiv 0 (mod N(R)).$

Hence, $2^4 \times 3^2 \times 5 \times 7 \in N(R)$. It follows from $7 \in R^{-1}$ that $2^4 \times 3^2 \times 5 \in N(R)$, and so $2 \times 3 \times 5 \in N(R)$. Write $2^n \times 3^n \times 5^n = 0$ for some $n \in \mathbb{N}$. Then $R \cong R_1 \times R_2 \times R_3$, where $R_1 = R/2^n R$, $R_2 =$ $R/3^n R$, $R_3 = R/5^n R$.

Step 2. By hypothesis, there exist idempotents $e, f, g, h \in R$ and a nilpotent $w \in R$ that commute such that $(a+2)^2 = e+f+g+h+w$, and so $a^2+4a+2 = e-(1-f)+g-(1-h)+w$. Set $p = e-(1-f)$ and $q = g - (1 - h)$. Then $a^2 + 4a + 2 = p + q \pmod{N(R)}$, $p^3 = p$, $q^3 = q$ and $pq = qp$.

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. We have

$$
a8 \equiv (p+q)4
$$

\equiv p⁴ + q⁴
\equiv p² + q²
\equiv a⁴(mod N(R₁)),

Hence $a^3(a - a^5) \in N(R_1)$, and so $(a - a^5)^4 = a^3(a - a^5)(1 - a^4)^3 \in$ $N(R_1)$. Therefore $a - a^5 \in N(R_1)$.

Case 2. $a \in R_2$. Then $3 \in N(R_2)$. We have

$$
(a2 + 4a + 2)3 \equiv (p + q)3
$$

\equiv p³ + q³
\equiv p + q
\equiv a² + 4a + 2(mod N(R₂)),

Likewise, we have $(a^2 - 4a + 2)^3 - (a^2 - 4a + 2) \in N(R_2)$. So we get

$$
(a2+2)3 + (4a)3 - (a2+4a+2) \in N(R2),
$$

\n
$$
(a2+2)3 - (4a)3 - (a2-4a+2) \in N(R2).
$$

Hence $2(4a)^3 - 8a \in N(R_2)$, and so $2^3(16a^3 - a) \equiv 2^3(a^3 - a) \in$ $N(R_2)$. Accordingly, $a^3 - a \in N(R_2)$, and so $a - a^5 = (1 + a^2)(a$ a^3) $\in N(R_2)$.

Case 3. $a \in R_3$. Then $5 \in N(R_3)$. We have

$$
(a2 + 4a + 2)5 \equiv (p + q)5
$$

\n
$$
\equiv p5 + q5
$$

\n
$$
\equiv p + q
$$

\n
$$
\equiv a2 + 4a + 2(mod N(R3)),
$$

Likewise, we get $(a^2 - 4a + 2)^5 - (a^2 - 4a + 2) \in N(R_3)$. Then

$$
(a2+2)5 + (4a)5 - (a2+4a+2) \in N(R3),(a2+2)5 - (4a)5 - (a2-4a+2) \in N(R3).
$$

Hence $2(4a)^5 - 8a \in N(R_3)$, and so $2^3(256a^5 - a) = 2^3(a^5 - a) \in$ $N(R)$. Accordingly, $a - a^5 \in N(R_3)$.

Therefore $a - a^5 \in N(R)$ for all $a \in R$. This completes the proof by Lemma 3.1. \Box

We are now ready to prove the following.

Theorem 3.3. The following are equivalent for a ring R :

- (1) R is Zhou nil-clean.
- (2) Every square element in R is the sum of a tripotent and a nilpotent that commute.
- (3) Every square element in R is the sum of two tripotents and a nilpotent that commute.

Proof. (1) \Rightarrow (2) In view of [\[13,](#page-10-6) Theorem 2.11], $R \cong R_1 \times R_2$, where R_1 is strongly 2-nil-clean with $2 \in N(R_1)$ and R_2 is Zhou nil-clean with $3 \times 5 \in N(R_2)$.

Let $a \in R_1$. Then a^2 is the sum of an idempotent and a nilpotent that commute.

Let $a \in R_2$. In view of [\[13,](#page-10-6) Theorem 2.11], $a - a^5 \in N(R_2)$. Hence, $a^2 - (a^2)^3 = a(a - a^5) \in N(R_2)$. Since $2 \in R_2^{-1}$, it follows by [\[13,](#page-10-6) Lemma 2.6] that there exists a tripotent $p \in \mathbb{Z}[a]$ such that $a^2 - p \in N(R_2)$.

Therefore every square element in R is the sum of a tripotent and a nilpotent that commute, as required.

 $(2) \Rightarrow (3)$ This is trivial.

 $(3) \Rightarrow (1)$ By hypothesis, there exist tripotents $e, f \in R$ a nilpotent $w \in R$ that commute such that $2^2 = e + f + w$. We check that

$$
15(e + f) \equiv 4(4^{2} - 1) = 4^{3} - 4 \equiv 3ef(e + f)(mod N(R)).
$$

Multiplying both sides by ef gives

$$
15ef(e+f) \equiv 3ef(e+f)(mod\ N(R)).
$$

This implies that

 $2^4 \times 3 \times 5 = 4 \times (4^3 - 4) \equiv 12ef(e + f) \equiv 0 (mod N(R)).$

It follows that $2 \times 3 \times 5 \in N(R)$. Write $2^n \times 3^n \times 5^n = 0$ for some $n \in \mathbb{N}$. Then

$$
R \cong R_1 \times R_2 \times R_3, R_1 = R/2^n R, R_2 = R/3^n R, R_3 = R/5^n R.
$$

Case 1. $a \in R_1$. Then $2 \in N(R_1)$. By hypothesis, there exist tripotents $p, q \in R_1$ and a nilpotent $w \in R_1$ that commute such that $a^2 = p + q + w$. Hence we have

$$
(a2)4 \equiv (p+q)4
$$

\n
$$
\equiv p4 + q4
$$

\n
$$
\equiv p2 + q2
$$

\n
$$
\equiv a4(mod N(R2)),
$$

Hence $a^3(a-a^5) \in N(R_1)$; whence, $(a-a^5)^4 = a^3(a-a^5)(1-a^4)^3 \in$ $N(R_1)$. This implies that $a - a^5 \in N(R_1)$.

Case 2. $a \in R_2$. Then $3 \in N(R_2)$. By hypothesis, there exist tripotents $p, q \in R_2$ and a nilpotent $w \in R_2$ that commute such that $a^2 = p + q + w$. Hence we have

$$
(a2)3 \equiv (p+q)3
$$

\n
$$
\equiv p3 + q3
$$

\n
$$
\equiv p+q
$$

\n
$$
\equiv a2(mod N(R2)),
$$

This implies that $a(a - a^5) \in N(R_2)$, and so $(a - a^5)^2 = a(a - a^5)$ $a^{5}(1 - a^{4}) \in N(R_{2})$. Accordingly, $a - a^{5} \in N(R_{2})$.

Case 3. $a \in R_3$. Then $5 \in N(R_3)$. By hypothesis, there exist tripotents $p, q \in R_3$ and a nilpotent $w \in R_3$ that commute such that $(a+2)^2 = p+q+w$. Hence we get

$$
(a2 + 4a + 4)5 \equiv (p+q)5
$$

\n
$$
\equiv p5 + q5
$$

\n
$$
\equiv p+q
$$

\n
$$
\equiv a2 + 4a + 4(mod N(R3)),
$$

Likewise, we have $(a^2 - 4a + 4)^5 \equiv a^2 - 4a + 4 \pmod{N(R_3)}$. We derive that

$$
(a2 - a - 1)5 - (a2 - a - 1) \in N(R3),
$$

$$
(a2 + a - 1)5 - (a2 + a - 1) \in N(R3).
$$

This implies that

$$
(a2 - 1)5 - a5 - (a2 - 1 - a) \in N(R3),
$$

$$
(a2 - 1)5 + a5 - (a2 - 1 + a) \in N(R3).
$$

Thus we have $2a^5 - 2a \in N(R_3)$. Clearly, $2 \in R_3^{-1}$, and therefore $a - a^5 \in N(R_3)$.

According to Lemma 3.1, $R \cong R_1 \times R_2 \times R_3$ is Zhou nil-clean. \Box

As a consequence, we now derive:

Corollary 3.4. The following are equivalent for a ring R :

- (1) R is Zhou nil-clean.
- (2) Every square element in R is the sum of a tripotent, an involution and a nilpotent that commute.

Proof. (1) \Rightarrow (2) Clearly, $2 \times 15 = 30 \in N(R)$. Then we can find some $n \in \mathbb{N}$ such that

$$
R \cong R_1 \times R_2, R_1 = R/2^n R, R_2 = R/15^n R.
$$

Case 1. Let $a \in R_1$. Clearly, R_1 is strongly 2-nil-clean. By virtue of Theorem 2.4, a^2 is the sum of an idempotent, an involution u and a nilpotent that commute.

Case 2. Let $a \in R_2$. In view of Theorem 3.3, there exist a tripotent $p \in R$ and a nilpotent $w \in R$ that commute such that $a^2 = p + w$. Clearly, $2 \in R_2^{-1}$. Let $e = \frac{p^2 + p}{2}$ $rac{p}{2}$ and $f = \frac{p^2 - p}{2}$ $\frac{-p}{2}$. Then we directly verify that

$$
e2 - e = \frac{1}{4}(p4 + 2p3 - p2 - 2p) = \frac{1}{4}(p+2)(p3 - p).
$$

Hence $e^2 = e$. Likewise, $f^2 = f$. Therefore $a^2 = e - f + w =$ $(1-e) - f + (2e-1) + w$. We check that $[(1-e) - f]^3 = (1-e) - f$ and $(2e-1)^2=1$, as desired.

 $(2) \Rightarrow (1)$ Since every involution is a tripotent, we complete the proof by Theorem 3.3.

Example 3.5. Let $R = \{a, b, c, d\}$ be the ring defined by the following operations:

Then x^3 is an idempotent for all $x \in R$, but R is not Zhou nil-clean.

Proof. For all $x \in R$, we check that $x = x^4$, and so $(x^3)^2 = x^3$. That is, $x^3 \in R$ is an idempotent. Since $c - c^5 = b$ is not nilpotent, R is not Zhou nil-clean.

Example 3.6. Let $R = \begin{cases} x & y \\ y & z \end{cases}$ $y \, x + y$ $\Big\}$ | $x, y \in \mathbb{Z}_3$. Then R is a finite field with 9 elements. Let $a \in R$. Then $a = a^9$, and so $a^2 =$ $(a²)⁵$, i.e., $a²$ is 5-potent. Therefore every square element in R can be written as the sum of a 5-potent and a nilpotent that commute.

Choose $c = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then $c - c^5 = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix}$ -1 -1 \setminus = $\left(\begin{array}{cc} 1 & -1 \\ -1 & 0 \end{array}\right)^{-1}.$ Hence $c - c^5$ is not nilpotent. According to [\[13,](#page-10-6) Theorem 2.11], R is not Zhou nil-clean.

REFERENCES

- [1] M.S. Abdolyousefi and H. Chen, Rings in which elements are sums of tripotents and nilpotents, J. Algebra Appl., 17 , 1850042 (2018), <http://dx.doi.org/10.1142/S0219498818500421.>
- [2] A.N. Abyzov, Strongly q-nil-clean rings, Siberian Math. J., 60(2019), 197– 208.
- [3] A.N. Abyzov and D.T. Tapkin, On rings with $xⁿ x$ nilpotent, *J. Algebra* Appl., 2021; <http://dx.doi.org/10.1142/S0219498822501110.>
- [4] S. Breaz; P. Danchev and Y. Zhou, Rings in which every element in either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15, 1650148 (2016); <http://dx.doi.org/10.1142/S0219498816501486.>
- [5] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16, 1750178 (2017); <http://dx.doi.org/10.1142/S021949881750178X.>
- [6] H. Chen and M. Sheibani, Matrices over Zhou nil-clean rings, Comm. $Algebra, 46(2018), 1527-1533.$
- [7] H. Chen and M. Sheibani, Rings additively generated by idempotents and nilpotents, Comm. Algebra, 49(2021), 1781-1787.
- [8] A.B. Gorman and A. Diesl, Ideally nil clean rings, Comm. Algebra, 49(2021), 4788–4799.
- [9] M.T. Kosan; Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra, 220(2016), 633–646.
- [10] M.T. Kosan; T. Yildirim and Y. Zhou, Rings with x^n x nilpotent, *J. Algebra Appl.*, $19(2020)$; <http://dx.doi.org/10.1142/S02119498820500656.>
- [11] G. Tang; Y. Zhou and H. Su, Matrices over a commutative ring as the sum of three idempotents or three involutions, Linear & Multilinear Algebra, 67(2019), 267–277.
- [12] Z.L. Ying; T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull., 59(2016), 661–672.
- [13] Y. Zhou, Rings in which elements are sum of nilpotents, idempotents and tripotents, J. Algebra App., 16, 1850009 (2017); <http://dx.doi.org/10.1142/S0219498818500093.>

SCHOOL OF MATHEMATICS, HANGZHOU NORMAL UNIVERSITY, HANG zhou, China

Email address: <huanyinchenhz@163.com>

Farzanegan Campus, Semnan University, Semnan, Iran Email address: $\leq m$.sheibani@semnan.ac.ir>