
ar
X

iv
:2

20
2.

02
12

7v
1 

 [
m

at
h.

R
A

] 
 4

 F
eb

 2
02

2

RINGS GENERATED BY IDEMPOTENTS AND

NILPOTENTS

HUANYIN CHEN AND MARJAN SHEIBANI

Abstract. We present new characterizations of the rings in
which every element is the sum of two idempotents and a
nilpotent that commute, and the rings in which every element
is the sum of two tripotents and a nilpotent that commute.
We prove that such rings are completely determined by the
additive decompositions of their square elements. These im-
prove the results of Chen and Sheibani[J. Algebra Appl., 16,
1750178(2017)] and Zhou [J. Algebra Appl., 16, 1850009(2017)].

1. Introduction

A ring R is strongly 2-nil-clean ring if every element in R is the
sum of two idempotents and a nilpotent that commute. An element
p ∈ R is tripotent if p3 = p. A ring R is Zhou nil-clean ring
if every element in R is the sum of two tripotents and a nilpotent
that commute. Many elementary properties and structure theorems
of such rings were investigated in [3, 5, 6, 7, 10, 12, 13]. In this
paper we shall characterize preceding rings by means of the additive
decomposition of their square elements. These improve the known
results, e.g., [2, Theorem 16], [5, Theorem 2.8] and [13, Theorem
2.11].
In Section 2, we prove that a ring R is strongly 2-nil-clean if and

only every square element in R is the sum of two idempotents and
a nilpotent that commute if and only if every square element in R
is the sum of an idempotent, an involution and a nilpotent that
commute.
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In Section 3, we further prove that a ring R is Zhou nil-clean if
and only if every square element in R is the sum of two tripotents
and a nilpotent that commute if and only if every square element
in R is the sum of a tripotent, an involution and a nilpotent that
commute.

Throughout, all rings are associative with an identity. We use
N(R) to denote the set of all nilpotents in R. a ∈ R is square if
a = x2 for some x ∈ R. a ≡ b(mod N(R)) means that a−b ∈ N(R).

2. strongly 2-nil-clean rings

In this section, we establish new characterizations of strongly
2-nil-clean rings by means of their square elements. We begin with

Lemma 2.1. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.
(2) For any a ∈ R, a− a3 ∈ N(R).
(3) Every element in R is the sum of a tripotent and a nilpotent

that commute.

Proof. See [5, Theorem 2.3 and Theorem 2.8]. �

Theorem 2.2. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.
(2) Every square element in R is the sum of an idempotent and

a nilpotent that commute.
(3) Every square element in R is the sum of two idempotents

and a nilpotent that commute.
(4) Every square element in R is the sum of three idempotents

and a nilpotent that commute.

Proof. (1) ⇒ (2) For any a ∈ R, it follows by Lemma 2.1 that
a − a3 ∈ N(R). Hence a2 − (a2)2 = a(a − a3) ∈ N(R). In view
of [12, Lemma 3.5], a2 is the sum of an idempotent and a nilpotent
that commute.

(2) ⇒ (3) ⇒ (4) These are trivial.
(4) ⇒ (1) Step 1. By hypothesis, there exist idempotents e, f, g ∈

R and a nilpotent w ∈ R that commute such that 22 = e+f+g+w.
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Hence 4e = e+ef+eg+ew, and so 3e = ef+eg+ew. This implies
that 3ef = ef + efg + efw; whence, 2ef = efg + efw. Therefore

2ef = (2ef)2 − 2ef = (efg + efw)2 − (efg + efw) ∈ N(R).

Likewise, we have 2eg, 2fg ∈ N(R). Accordingly,

12 = 42 − 4
= (e+ f + g + w)2 − (e+ f + g + w)
≡ 2(ef + eg + fg)(mod N(R)),

i.e., 62 = 3 × 12 ∈ N(R). Hence 6 ∈ N(R). Write 2n × 3n = 0 for
some n ∈ N. Since 2nR

⋂

3nR = 0, we have R ∼= R1 × R2, where
R1 = R/2nR,R2 = R/3nR.
Step 2. Let a ∈ R. Then there exist idempotents e, f, g ∈ R and

a nilpotent w ∈ R that commute such that (a+1)2 = e+f + g+ v,
and so a2 + 2a = e − (1 − f) + g + w = e + h − k + w, where
h = fg, k = (1 − f)(1 − g). We easily check that h2 = h, k2 = k
and hk = kh = 0. Hence, we have

(a2 + 2a)3 ≡ (e + h+ k + 2eh− 2ek)(e+ h− k)
≡ e + h− k + 6eh
≡ a2 + 2a(mod N(R)).

Therefore (a2 + 2a)3 − (a2 + 2a) ∈ N(R). Likewise, (a− 1)2 is the
sum of three idempotents and a nilpotent that commute. As the
preceding discussion, we have (a2 − 2a)3 − (a2 − 2a) ∈ N(R).
Case 1. a ∈ R1. Then 2 ∈ N(R1). Hence, (a3 − a)(a3 + a) =

a6−a2 ∈ N(R1). This implies that (a3−a)2 ∈ N(R1), i.e., a−a3 ∈
N(R1).
Case 2. a ∈ R2. Since 3 ∈ N(R2), we get

(a2 − a)3 − (a2 − a) ∈ N(R2),
(a2 + a)3 − (a2 + a) ∈ N(R2).

Moreover, we have

(a6 − a3)− (a2 − a) ∈ N(R2),
(a6 + a3)− (a2 + a) ∈ N(R2).

Thus, 2a3−2a ∈ N(R2). Clearly, 2 ∈ R−1

2 , and then a−a3 ∈ N(R2).
Therefore for any a ∈ R, we have a − a3 ∈ N(R). In light of

Lemma 2.1, R2 is strongly 2-nil-clean. �
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We note that ”three idempotents” in the proceeding theorem can
not be replaced by ”four idempotents” as the following shows.

Example 2.3. Let R = Z5. Then every square element in R is the

sum of four idempotents and a nilpotent that commute. But R it is

not strongly 2-nil-clean.

Proof. Obviously, {x2 | x ∈ R} = {0, 1, 4}. For any a ∈ R, we see
that a2 is the sum of four idempotents that commute. As 2 6= 23,
R is not strongly 2-nil-clean. �

An element v ∈ R is an involution if v2 = 1. As a consequence
of Theorem 2.2, we now derive

Theorem 2.4. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.
(2) Every square element in R is the sum of an idempotent, an

involution and a nilpotent that commute.

Proof. (1) ⇒ (2) Let a ∈ R. In view of Theorem 2.2, there exist an
idempotent e ∈ R and a nilpotent w ∈ R that commute such that
a2 = e + w. Hence a2 = (1 − e) + (2e − 1) + w with (1 − e)2 = 1
and (2e − 1)2 = 1. That is, a2 is the sum of an idempotent, an
involution and a nilpotent that commute.

(2) ⇒ (1) Write 22 = e + v + w, where e2 = e, v2 = 1 and
w ∈ N(R) that commute. Then

16 ≡ e+ 2ev + 1 ≡ (4− v) + 2(4− v)v + 1 ≡ 3 + 5v(mod N(R)).

This implies that 13 ≡ 5v(mod N(R)). Hence 169 ≡ 25v2 =
25(mod N(R)), and then 24×32 ∈ N(R). That is, 2×3 = 6 ∈ N(R).
Write 2n × 3n = 0 for some n ∈ N. Then we have R ∼= R1 × R2,
where R1 = R/2nR and R2 = R/3nR.

Step 1. Let a ∈ R1. Then there exist e, v, w ∈ R1 such that
a2 = e + v + w, e2 = e, v2 = 1 and w ∈ N(R1) that commute.
Clearly, 2 ∈ N(R1). Then we have

a8 ≡ (e+ v)4 ≡ e + 1( mod N(R1)),
a12 = a8a4 ≡ (e+ 1)(e+ 1) ≡ e+ 1( mod N(R1)).

Hence a8(1− a2)(1 + a2) = a8(1 − a4) = a8 − a12 ∈ N(R1), and so
a6(a − a3)2 = a8(1 − a2)2 ∈ N(R1). This implies that (a − a3)8 =
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a6(a − a3)2(1 − a2)6 ∈ N(R1), i.e., a − a3 ∈ N(R1). According to
Lemma 2.1, R1 is strongly 2-nil-clean.
Step 2. Let a ∈ R2. Then there exist e, v, w ∈ R2 such that

a2 = e+ v+w, e2 = e, v2 = 1 and w ∈ N(R2) that commute. Since
3 ∈ N(R2), we have a

6 ≡ (e+v)3 ≡ e+v ≡ a2(mod N(R2)). Hence

a2 − a6 ∈ N(R2). Clearly, 2 ∈ R−1

2 . Set p = a
4+a

2

2
, q = a

4
−a

2

2
. We

compute that

p2 − p = 1

4
(a8 + 2a6 − a4 − 2a2) = 1

4
(a2 + 2)(a6 − a2),

q2 − q = 1

4
(a8 − 2a6 − a4 + 2a2) = 1

4
(a2 − 2)(a6 − a2).

Hence p2 − p, q2 − q ∈ N(R2). In light of [12, Lemma 3.5], we can
find two idempotents g, h ∈ Z[a] such that p − g, q − h ∈ N(R2).
Hence a2 = g − h + w for some w ∈ Z[a]. As 3 ∈ N(R2), we see
that a2 = g + h + h + (w − 3h) with w − 3h ∈ N(R2). Therefore
a2 is the sum of three idempotents and a nilpotent that commute.
According to Theorem 2.2, R2 is strongly 2-nil-clean.
Therefore R ∼= R1 ×R2 is strongly 2-nil-clean, as asserted. �

3. Zhou nil-clean rings

The aim of this section is to further characterize Zhou nil-clean
rings by means of the additive decompositions of their square ele-
ments. An element p ∈ R is 5-potent if p5 = p. We have

Lemma 3.1. The following are equivalent are equivalent for a ring

R:

(1) R is Zhou nil-clean.
(2) For any a ∈ R, a− a5 ∈ N(R).
(3) Every element in R is the sum of a 5-potent and a nilpotent

that commute.

Proof. See [2, Theorem 19] and [13, Theorem 2.11]. �

Lemma 3.2. A ring R is Zhou nil-clean if and only if 7 ∈ R−1

and every square element in R is the sum of four idempotents and

a nilpotent that commute.

Proof. =⇒ In view of Lemma 3.1, 30 = 25 − 2 ∈ N(R). Since
(7, 30) = 1, we can find some k, l ∈ N such that 7k + 30l = 1, and
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so 7 ∈ R−1. By virtue of [13, Theorem 2.11], R ∼= A×B×C, where
A = 0 or A/J(A) is Boolean with J(A) nil, B = 0 or B/J(B) is
a subdirect product of Z3’s with J(B) nil; C = 0 or C/J(C) is a
subdirect product of Z5’s with J(C) nil. In light of [2, Theorem 15],
every element in R is the sum of four idempotents and a nilpotent
that commute.

⇐= Step 1. By hypothesis, there exists idempotents e, f, g, h ∈ R
and a nilpotent w ∈ R that commute such that 32 = e+f+g+h+w.
Hence 7 = α+ β +w, where α = e− (1− f), β = g− (1−h). Since
e, 1−f, g, 1−h are idempotents, we easily check that α3 = α, β3 = β
and αβ = βα. Then 48 × 7 = 73 − 7 ≡ 3αβ(α + β)(mod N(R)),
hence, 48(α+β) ≡ 3αβ(α+β)(mod N(R)). Multiplying both sides
by αβ gives

48αβ(α+ β) ≡ 3αβ(α+ β)αβ ≡ 3αβ(α+ β)(mod N(R)),

and so
48× 7× 15 ≡ 15[3αβ(α+ β)]

= 45αβ(α+ β)
≡ 0(mod N(R)).

Hence, 24 × 32 × 5 × 7 ∈ N(R). It follows from 7 ∈ R−1 that
24×32×5 ∈ N(R), and so 2×3×5 ∈ N(R). Write 2n×3n×5n = 0
for some n ∈ N. Then R ∼= R1×R2×R3, where R1 = R/2nR,R2 =
R/3nR,R3 = R/5nR.

Step 2. By hypothesis, there exist idempotents e, f, g, h ∈ R and
a nilpotent w ∈ R that commute such that (a+2)2 = e+f+g+h+w,
and so a2+4a+2 = e−(1−f)+g−(1−h)+w. Set p = e−(1−f) and
q = g−(1−h). Then a2+4a+2 = p+q(mod N(R)), p3 = p, q3 = q
and pq = qp.

Case 1. a ∈ R1. Then 2 ∈ N(R1). We have

a8 ≡ (p+ q)4

≡ p4 + q4

≡ p2 + q2

≡ a4(mod N(R1)),

Hence a3(a− a5) ∈ N(R1), and so (a− a5)4 = a3(a− a5)(1− a4)3 ∈
N(R1). Therefore a− a5 ∈ N(R1).
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Case 2. a ∈ R2. Then 3 ∈ N(R2). We have

(a2 + 4a+ 2)3 ≡ (p+ q)3

≡ p3 + q3

≡ p+ q
≡ a2 + 4a+ 2(mod N(R2)),

Likewise, we have (a2−4a+2)3− (a2−4a+2) ∈ N(R2). So we get

(a2 + 2)3 + (4a)3 − (a2 + 4a+ 2) ∈ N(R2),
(a2 + 2)3 − (4a)3 − (a2 − 4a+ 2) ∈ N(R2).

Hence 2(4a)3 − 8a ∈ N(R2), and so 23(16a3 − a) ≡ 23(a3 − a) ∈
N(R2). Accordingly, a

3 − a ∈ N(R2), and so a− a5 = (1+ a2)(a−
a3) ∈ N(R2).
Case 3. a ∈ R3. Then 5 ∈ N(R3). We have

(a2 + 4a+ 2)5 ≡ (p+ q)5

≡ p5 + q5

≡ p+ q
≡ a2 + 4a+ 2(mod N(R3)),

Likewise, we get (a2 − 4a+ 2)5 − (a2 − 4a+ 2) ∈ N(R3). Then

(a2 + 2)5 + (4a)5 − (a2 + 4a+ 2) ∈ N(R3),
(a2 + 2)5 − (4a)5 − (a2 − 4a+ 2) ∈ N(R3).

Hence 2(4a)5 − 8a ∈ N(R3), and so 23(256a5 − a) = 23(a5 − a) ∈
N(R). Accordingly, a− a5 ∈ N(R3).
Therefore a− a5 ∈ N(R) for all a ∈ R. This completes the proof

by Lemma 3.1. �

We are now ready to prove the following.

Theorem 3.3. The following are equivalent for a ring R:

(1) R is Zhou nil-clean.
(2) Every square element in R is the sum of a tripotent and a

nilpotent that commute.
(3) Every square element in R is the sum of two tripotents and

a nilpotent that commute.
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Proof. (1) ⇒ (2) In view of [13, Theorem 2.11], R ∼= R1×R2, where
R1 is strongly 2-nil-clean with 2 ∈ N(R1) and R2 is Zhou nil-clean
with 3× 5 ∈ N(R2).

Let a ∈ R1. Then a2 is the sum of an idempotent and a nilpotent
that commute.

Let a ∈ R2. In view of [13, Theorem 2.11], a − a5 ∈ N(R2).
Hence, a2 − (a2)3 = a(a − a5) ∈ N(R2). Since 2 ∈ R−1

2 , it follows
by [13, Lemma 2.6] that there exists a tripotent p ∈ Z[a] such that
a2 − p ∈ N(R2).

Therefore every square element in R is the sum of a tripotent
and a nilpotent that commute, as required.

(2) ⇒ (3) This is trivial.
(3) ⇒ (1) By hypothesis, there exist tripotents e, f ∈ R a nilpo-

tent w ∈ R that commute such that 22 = e + f + w. We check
that

15(e+ f) ≡ 4(42 − 1) = 43 − 4 ≡ 3ef(e+ f)(mod N(R)).

Multiplying both sides by ef gives

15ef(e+ f) ≡ 3ef(e+ f)(mod N(R)).

This implies that

24 × 3× 5 = 4× (43 − 4) ≡ 12ef(e+ f) ≡ 0(mod N(R)).

It follows that 2× 3× 5 ∈ N(R). Write 2n × 3n × 5n = 0 for some
n ∈ N. Then

R ∼= R1 ×R2 × R3, R1 = R/2nR,R2 = R/3nR,R3 = R/5nR.

Case 1. a ∈ R1. Then 2 ∈ N(R1). By hypothesis, there exist
tripotents p, q ∈ R1 and a nilpotent w ∈ R1 that commute such
that a2 = p + q + w. Hence we have

(a2)4 ≡ (p + q)4

≡ p4 + q4

≡ p2 + q2

≡ a4(mod N(R2)),

Hence a3(a−a5) ∈ N(R1); whence, (a−a5)4 = a3(a−a5)(1−a4)3 ∈
N(R1). This implies that a− a5 ∈ N(R1).
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Case 2. a ∈ R2. Then 3 ∈ N(R2). By hypothesis, there exist
tripotents p, q ∈ R2 and a nilpotent w ∈ R2 that commute such
that a2 = p+ q + w. Hence we have

(a2)3 ≡ (p+ q)3

≡ p3 + q3

≡ p+ q
≡ a2(mod N(R2)),

This implies that a(a − a5) ∈ N(R2), and so (a − a5)2 = a(a −
a5)(1− a4) ∈ N(R2). Accordingly, a− a5 ∈ N(R2).
Case 3. a ∈ R3. Then 5 ∈ N(R3). By hypothesis, there exist

tripotents p, q ∈ R3 and a nilpotent w ∈ R3 that commute such
that (a+ 2)2 = p+ q + w. Hence we get

(a2 + 4a+ 4)5 ≡ (p+ q)5

≡ p5 + q5

≡ p+ q
≡ a2 + 4a+ 4(mod N(R3)),

Likewise, we have (a2 − 4a + 4)5 ≡ a2 − 4a + 4(mod N(R3)). We
derive that

(a2 − a− 1)5 − (a2 − a− 1) ∈ N(R3),
(a2 + a− 1)5 − (a2 + a− 1) ∈ N(R3).

This implies that

(a2 − 1)5 − a5 − (a2 − 1− a) ∈ N(R3),
(a2 − 1)5 + a5 − (a2 − 1 + a) ∈ N(R3).

Thus we have 2a5 − 2a ∈ N(R3). Clearly, 2 ∈ R−1

3 , and therefore
a− a5 ∈ N(R3).
According to Lemma 3.1, R ∼= R1×R2×R3 is Zhou nil-clean. �

As a consequence, we now derive:

Corollary 3.4. The following are equivalent for a ring R:

(1) R is Zhou nil-clean.
(2) Every square element in R is the sum of a tripotent, an

involution and a nilpotent that commute.
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Proof. (1) ⇒ (2) Clearly, 2 × 15 = 30 ∈ N(R). Then we can find
some n ∈ N such that

R ∼= R1 ×R2, R1 = R/2nR,R2 = R/15nR.

Case 1. Let a ∈ R1. Clearly, R1 is strongly 2-nil-clean. By virtue
of Theorem 2.4, a2 is the sum of an idempotent, an involution u
and a nilpotent that commute.

Case 2. Let a ∈ R2. In view of Theorem 3.3, there exist a
tripotent p ∈ R and a nilpotent w ∈ R that commute such that

a2 = p+w. Clearly, 2 ∈ R−1

2 . Let e = p
2+p

2
and f = p

2
−p

2
. Then we

directly verify that

e2 − e =
1

4
(p4 + 2p3 − p2 − 2p) =

1

4
(p+ 2)(p3 − p).

Hence e2 = e. Likewise, f 2 = f . Therefore a2 = e − f + w =
(1−e)−f +(2e−1)+w. We check that [(1−e)−f ]3 = (1−e)−f
and (2e− 1)2 = 1, as desired.

(2) ⇒ (1) Since every involution is a tripotent, we complete the
proof by Theorem 3.3. �

Example 3.5. Let R = {a, b, c, d} be the ring defined by the fol-

lowing operations:

+ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

× a b c d

a a a a a

b a b c d

c a c d b

d a d b c

Then x3 is an idempotent for all x ∈ R, but R is not Zhou nil-clean.

Proof. For all x ∈ R, we check that x = x4, and so (x3)2 = x3.
That is, x3 ∈ R is an idempotent. Since c− c5 = b is not nilpotent,
R is not Zhou nil-clean. �

Example 3.6. Let R = {

(

x y
y x+ y

)

| x, y ∈ Z3}. Then R is a

finite field with 9 elements. Let a ∈ R. Then a = a9, and so a2 =
(a2)5, i.e., a2 is 5-potent. Therefore every square element in R can

be written as the sum of a 5-potent and a nilpotent that commute.
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Choose c =

(

0 1
1 1

)

. Then c− c5 =

(

0 −1
−1 −1

)

=

(

1 −1
−1 0

)

−1

.

Hence c − c5 is not nilpotent. According to [13, Theorem 2.11], R
is not Zhou nil-clean.

References

[1] M.S. Abdolyousefi and H. Chen, Rings in which elements are sums
of tripotents and nilpotents, J. Algebra Appl., 17, 1850042 (2018),
http://dx.doi.org/10.1142/S0219498818500421.

[2] A.N. Abyzov, Strongly q-nil-clean rings, Siberian Math. J., 60(2019), 197–
208.

[3] A.N. Abyzov and D.T. Tapkin, On rings with x
n−x nilpotent, J. Algebra

Appl., 2021; http://dx.doi.org/10.1142/S0219498822501110.
[4] S. Breaz; P. Danchev and Y. Zhou, Rings in which every element in either

a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl.,
15, 1650148 (2016); http://dx.doi.org/10.1142/S0219498816501486.

[5] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16,
1750178 (2017); http://dx.doi.org/10.1142/S021949881750178X.

[6] H. Chen and M. Sheibani, Matrices over Zhou nil-clean rings, Comm.

Algebra, 46(2018), 1527–1533.
[7] H. Chen and M. Sheibani, Rings additively generated by idempotents and

nilpotents, Comm. Algebra, 49(2021), 1781-1787.
[8] A.B. Gorman and A. Diesl, Ideally nil clean rings, Comm. Algebra,

49(2021), 4788–4799.
[9] M.T. Kosan; Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings,

J. Pure Appl. Algebra, 220(2016), 633–646.
[10] M.T. Kosan; T. Yildirim and Y. Zhou, Rings

with x
n − x nilpotent, J. Algebra Appl., 19(2020);

http://dx.doi.org/10.1142/S02119498820500656.

[11] G. Tang; Y. Zhou and H. Su, Matrices over a commutative ring as the sum
of three idempotents or three involutions, Linear & Multilinear Algebra,
67(2019), 267–277.

[12] Z.L. Ying; T. Kosan and Y. Zhou, Rings in which every element is a sum
of two tripotents, Canad. Math. Bull., 59(2016), 661–672.

[13] Y. Zhou, Rings in which elements are sum of nilpotents, idem-
potents and tripotents, J. Algebra App., 16, 1850009 (2017);
http://dx.doi.org/10.1142/S0219498818500093.

http://dx.doi.org/10.1142/S0219498818500421.
http://dx.doi.org/10.1142/S0219498822501110.
http://dx.doi.org/10.1142/S0219498816501486.
http://dx.doi.org/10.1142/S021949881750178X.
http://dx.doi.org/10.1142/S02119498820500656.
http://dx.doi.org/10.1142/S0219498818500093.


12 HUANYIN CHEN AND MARJAN SHEIBANI

School of Mathematics, Hangzhou Normal University, Hang -

zhou, China

Email address : <huanyinchenhz@163.com>

Farzanegan Campus, Semnan University, Semnan, Iran

Email address : <m.sheibani@semnan.ac.ir>


	1. Introduction
	2. strongly 2-nil-clean rings
	3. Zhou nil-clean rings
	References

