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RINGS GENERATED BY IDEMPOTENTS AND
NILPOTENTS

HUANYIN CHEN AND MARJAN SHEIBANI

ABSTRACT. We present new characterizations of the rings in
which every element is the sum of two idempotents and a
nilpotent that commute, and the rings in which every element
is the sum of two tripotents and a nilpotent that commute.
We prove that such rings are completely determined by the
additive decompositions of their square elements. These im-
prove the results of Chen and Sheibani[J. Algebra Appl., 16,
1750178(2017)] and Zhou [J. Algebra Appl., 16, 1850009(2017)].

1. INTRODUCTION

A ring R is strongly 2-nil-clean ring if every element in R is the
sum of two idempotents and a nilpotent that commute. An element
p € R is tripotent if p?> = p. A ring R is Zhou nil-clean ring
if every element in R is the sum of two tripotents and a nilpotent
that commute. Many elementary properties and structure theorems
of such rings were investigated in [3, 5, 6, 7, 10, 12, 13]. In this
paper we shall characterize preceding rings by means of the additive
decomposition of their square elements. These improve the known
results, e.g., [2, Theorem 16|, [5, Theorem 2.8] and [13, Theorem
2.11].

In Section 2, we prove that a ring R is strongly 2-nil-clean if and
only every square element in R is the sum of two idempotents and
a nilpotent that commute if and only if every square element in R
is the sum of an idempotent, an involution and a nilpotent that
commute.
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In Section 3, we further prove that a ring R is Zhou nil-clean if
and only if every square element in R is the sum of two tripotents
and a nilpotent that commute if and only if every square element
in R is the sum of a tripotent, an involution and a nilpotent that
commute.

Throughout, all rings are associative with an identity. We use
N(R) to denote the set of all nilpotents in R. a € R is square if
a = x* for some x € R. a = b(mod N(R)) means that a—b € N(R).

2. STRONGLY 2-NIL-CLEAN RINGS

In this section, we establish new characterizations of strongly
2-nil-clean rings by means of their square elements. We begin with

Lemma 2.1. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.

(2) For anya € R, a —a®> € N(R).

(3) Ewvery element in R is the sum of a tripotent and a nilpotent
that commute.

Proof. See [5, Theorem 2.3 and Theorem 2.8]. O
Theorem 2.2. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.
(2) Every square element in R is the sum of an idempotent and

a nilpotent that commute.
(3) Every square element in R is the sum of two idempotents

and a nilpotent that commute.
(4) Every square element in R is the sum of three idempotents

and a nilpotent that commute.

Proof. (1) = (2) For any a € R, it follows by Lemma 2.1 that
a—a®> € N(R). Hence a* — (a*)? = a(a — a®) € N(R). In view
of [12, Lemma 3.5], a* is the sum of an idempotent and a nilpotent
that commute.

(2) = (3) = (4) These are trivial.

(4) = (1) Step 1. By hypothesis, there exist idempotents e, f, g €
R and a nilpotent w € R that commute such that 2% = e+ f+g+w.
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Hence 4e = e+ef+eg+ew, and so 3e = ef +eg+ew. This implies
that 3ef =ef + efg + efw; whence, 2ef = efg + efw. Therefore

2ef = (2ef)? —2ef = (efg+efw)* — (efg +efw) € N(R).
Likewise, we have 2eg,2fg € N(R). Accordingly,

12 = 42— 4
e+ f+g+w?—(e+f+g+w)
2(ef +eg+ fg)(mod N(R)),

ie., 62 =3x12€ N(R). Hence 6 € N(R). Write 2" x 3" = 0 for
some n € N. Since 2"R()3"R = 0, we have R = R; X Ry, where
Ry =R/2"R, Ry = R/3"R.

Step 2. Let a € R. Then there exist idempotents e, f,g € R and
a nilpotent w € R that commute such that (a+1)?> = e+ f+ g+,
and so a®> +2a =e— (1 — f)+g+w = e+ h—k+ w, where
h=fg,k=(1-f)(1-g). We easily check that h> = h, k*> = k
and hk = kh = 0. Hence, we have

(a*+2a)® = (e+h+k+2eh—2ek)(e+h—k)
e+ h —k+ 6eh
a* + 2a(mod N(R)).

Therefore (a® + 2a)® — (a® + 2a) € N(R). Likewise, (a — 1)? is the
sum of three idempotents and a nilpotent that commute. As the
preceding discussion, we have (a® — 2a)® — (a* — 2a) € N(R).
Case 1. a € Ry. Then 2 € N(R;). Hence, (a®* — a)(a® + a) =
a’—a” € . 1s 1mplies that (a° —a)* € Le.,a—a’ €
6 _ 42 ¢ N(Ry). This implies that (a® —a)? € N(Ry), i.e., a—a?
N(Ry).
Case 2. a € Ry. Since 3 € N(Ry), we get
(a*> —a)® — (a®> — a) € N(Ry),
(> +a)® — (a* +a) € N(Ry).
Moreover, we have
(a% —a®) — (a®> — a) € N(Ry),
(a® +a®) — (a* +a) € N(Ry).
Thus, 2a®—2a € N(R,). Clearly, 2 € R;*, and then a—a® € N(Ry).

Therefore for any a € R, we have a — a® € N(R). In light of
Lemma 2.1, R, is strongly 2-nil-clean. (]
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We note that ”three idempotents” in the proceeding theorem can
not be replaced by ”four idempotents” as the following shows.

Example 2.3. Let R = Zs. Then every square element in R is the
sum of four idempotents and a nilpotent that commute. But R it is
not strongly 2-nil-clean.

Proof. Obviously, {z* | # € R} = {0,1,4}. For any a € R, we see
that a? is the sum of four idempotents that commute. As 2 # 23,
R is not strongly 2-nil-clean. 0

An element v € R is an involution if v = 1. As a consequence
of Theorem 2.2, we now derive

Theorem 2.4. The following are equivalent for a ring R:

(1) R is strongly 2-nil-clean.
(2) Every square element in R is the sum of an idempotent, an
involution and a nilpotent that commute.

Proof. (1) = (2) Let a € R. In view of Theorem 2.2, there exist an
idempotent e € R and a nilpotent w € R that commute such that
a’>=e+w. Hence a®> = (1 —¢) + (26 — 1) + w with (1 —¢e)? =1
and (2¢ — 1) = 1. That is, a* is the sum of an idempotent, an
involution and a nilpotent that commute.

(2) = (1) Write 22 = e + v + w, where € = ¢,0> = 1 and
w € N(R) that commute. Then

6=e+2ev+1=(4—v)+2(4—v)v+1=3+5v(mod N(R)).

This implies that 13 = 5v(mod N(R)). Hence 169 = 250? =
25(mod N(R)), and then 2*x3% € N(R). That is, 2x3 =6 € N(R).
Write 2" x 3" = 0 for some n € N. Then we have R = R; X Rs,
where Ry = R/2"R and Ry, = R/3"R.

Step 1. Let a € Ry. Then there exist e,v,w € R; such that
a> =e+v+w, e =ev?=1and w € N(R;) that commute.
Clearly, 2 € N(R;). Then we have

a® = (e+v)!=e+1( mod N(Ry)),

a? = d®a* = (e+1)(e+1) =e+1( mod N(R)).

Hence a®(1 — a? a*) =a®(1 —a*) = a® — a'? € N(R;), and so
a®(a —a®)?* = a®(1 — a®)* € N(R;). This implies that (a — a®)® =
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a’(a — a®)*(1 —a®)% € N(Ry), i.e., a — a® € N(Ry). According to
Lemma 2.1, R, is strongly 2-nil-clean.

Step 2. Let a € Rg. Then there exist e,v,w € Ry such that
> =e+v+tw, e’ = & v’ =1and w € N(Rg) that commute. Since
3€ N(Ry), wehave a® = (e+v)> =e+v=a (mod N(Ry)). Hence
a® —a% € N(Ry). Clearly, 2 € Ry'. Set p = ¢ +“2,q = “4_“ . We
compute that

p2—p—%(a + 248 — —2a):%(a +2)(a® — a?),
4 4

¢ —q=5(a®—2a° — a* + 2a*) = ;(a® — 2)(a® — @?).

Hence p? — p,¢*> — q¢ € N(Ry). In light of [12, Lemma 3.5], we can
find two idempotents g, h € Z[a] such that p — g,q — h € N(Ry).
Hence a®> = g — h + w for some w € Z[a]. As 3 € N(Ry), we see
that a®> = g+ h + h + (w — 3h) with w — 3h € N(Ry). Therefore
a? is the sum of three idempotents and a nilpotent that commute.
According to Theorem 2.2, Rs is strongly 2-nil-clean.

Therefore R = R; X Ry is strongly 2-nil-clean, as asserted.  [J

3. ZHOU NIL-CLEAN RINGS

The aim of this section is to further characterize Zhou nil-clean
rings by means of the additive decompositions of their square ele-
ments. An element p € R is 5-potent if p® = p. We have

Lemma 3.1. The following are equivalent are equivalent for a ring
R:

(1) R is Zhou nil-clean.

(2) For anya € R, a —a® € N(R).

(3) Ewvery element in R is the sum of a 5-potent and a nilpotent
that commute.

Proof. See [2, Theorem 19] and [13, Theorem 2.11]. O

Lemma 3.2. A ring R is Zhou nil-clean if and only if 7 € R~
and every square element in R is the sum of four idempotents and
a nilpotent that commute.

Proof. = In view of Lemma 3.1, 30 = 2° — 2 € N(R). Since
(7,30) = 1, we can find some k,l € N such that 7k 4+ 30l = 1, and
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so 7 € R™'. By virtue of [13, Theorem 2.11], R = A x B x C', where
A=0o0r A/J(A) is Boolean with J(A) nil, B = 0 or B/J(B) is
a subdirect product of Zs’s with J(B) nil; C' = 0 or C/J(C) is a
subdirect product of Zs’s with J(C') nil. In light of [2, Theorem 15],
every element in R is the sum of four idempotents and a nilpotent
that commute.

<= Step 1. By hypothesis, there exists idempotents e, f,g,h € R
and a nilpotent w € R that commute such that 3% = e+ f+g-+h-+w.
Hence 7= a+ 4w, wherea =e— (1 —f), =g — (1 —h). Since
e,1—f, g, 1—h are idempotents, we easily check that a® = a, 8% = 8
and a8 = Ba. Then 48 X 7 = 7% — 7 = 3af(a + B)(mod N(R)),
hence, 48(a+ ) = 3af(a+ B)(mod N(R)). Multiplying both sides
by af gives

48af(a+ B) = 3af(a+ B)af = 3af(a+ ) (mod N(R)),

and so
48 x 7 x 15 = 15[3afB(a + B)]
45a6(a + )

0(mod N(R)).

Hence, 2* x 32 x 5 x 7 € N(R). It follows from 7 € R~! that
21%x32x5 € N(R), and so 2x3x5 € N(R). Write 2" x 3" x 5" = 0
for some n € N. Then R = R; X Ry X R3, where Ry = R/2"R, Ry =
R/3"R,R3 = R/5"R.

Step 2. By hypothesis, there exist idempotents e, f, g, h € R and
anilpotent w € R that commute such that (a+2)? = e+ f+g+h+w,
and so a®*+4a+2 = e—(1—f)+g—(1—h)+w. Set p = e—(1—f) and
q=g—(1—=nh). Then a®*+4a+2 = p+q(mod N(R)),p* =p,¢*> = q
and pg = gp.

Case 1. a € Ry. Then 2 € N(R;). We have

= (p+9q)*
pt+qt
p*+ ¢
a*(mod N(Ry)),

Hence a*(a—a’) € N(Ry), and so (a —a®)* = a®*(a—a®)(1 —a')? €
N(R,). Therefore a — a® € N(R;).

~—
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Case 2. a € Ry. Then 3 € N(R,). We have
(p+aq)°
P+

P+q
a® + 4a + 2(mod N(Ry)),

(a® + 4a + 2)3

Likewise, we have (a® —4a+2)% — (a®* —4a+2) € N(Ry). So we get

(a* +2)3 + (4a) — (a®> + 4a + 2) € N(Ry),
(a* +2)3 — (4a)® — (a* — 4a +2) € N(Ry).

Hence 2(4a)® — 8a € N(Ry), and so 23(16a® — a) = 23(a® — a) €
N(Ry). Accordingly, a® —a € N(Ry), and so a — a® = (1 + a?)(a —
CL3) c N(Rg)

Case 3. a € Rs. Then 5 € N(R3). We have

(@®+4a+2)° = (p+q)°

P’ +q°

p+q

a® +4a + 2(mod N(R3)),

Likewise, we get (a? — 4a + 2)° — (a*> — 4a + 2) € N(R3). Then

(a* +2)° + (4a)® — (a® + 4a + 2) € N(R3),
(a® 4+ 2)° — (4a)® — (a®> — 4a +2) € N(R3).

Hence 2(4a)® — 8a € N(R3), and so 23(256a° — a) = 23(a® — a) €
N(R). Accordingly, a — a®> € N(Rj3).

Therefore a — a® € N(R) for all a € R. This completes the proof
by Lemma 3.1. U

We are now ready to prove the following.
Theorem 3.3. The following are equivalent for a ring R:

(1) R is Zhou nil-clean.

(2) Every square element in R is the sum of a tripotent and a
nilpotent that commute.

(3) Ewvery square element in R is the sum of two tripotents and
a nilpotent that commute.
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Proof. (1) = (2) In view of [13, Theorem 2.11], R = R; X Ry, where
Ry is strongly 2-nil-clean with 2 € N(R;) and Ry is Zhou nil-clean
with 3 X 5 € N(R;y).

Let a € Ry. Then a? is the sum of an idempotent and a nilpotent
that commute.

Let a € Ry. In view of [13, Theorem 2.11], a — a® € N(Ry).
Hence, a? — (a?)® = a(a — a®) € N(R,). Since 2 € R;", it follows
by [13, Lemma 2.6] that there exists a tripotent p € Z[a] such that
a’—p € N(Ry).

Therefore every square element in R is the sum of a tripotent
and a nilpotent that commute, as required.

(2) = (3) This is trivial.

(3) = (1) By hypothesis, there exist tripotents e, f € R a nilpo-
tent w € R that commute such that 22 = e + f + w. We check
that

15(e+ f) =4(4*> - 1) =4 —4 = 3ef(e + f)(mod N(R)).
Multiplying both sides by ef gives
15ef(e + f) = 3ef(e+ f)(mod N(R)).
This implies that
2' x3x5=4x (4 —4) =12¢ef(e + f) = 0(mod N(R)).

It follows that 2 x 3 x 5 € N(R). Write 2" x 3" x 5" = 0 for some
n € N. Then

R = Rl X Rg X Rg,Rl = R/QnR, R2 = R/?)nR, Rg = R/5nR

Case 1. a € R;. Then 2 € N(R;). By hypothesis, there exist
tripotents p,q € R; and a nilpotent w € R; that commute such
that a? = p + ¢ + w. Hence we have

(@) = (p+q)*

pt+d

P+ ¢

a*(mod N(Ry)),

Hence a®(a—a®) € N(R,); whence, (a—a°)* = a*(a—a®)(1—a")? €
N(R;). This implies that a — a® € N(R;).
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Case 2. a € Ry. Then 3 € N(Rs). By hypothesis, there exist
tripotents p,q € Ry and a nilpotent w € Ry that commute such
that a®> = p + ¢ +w. Hence we have

(@*)? = (p+q)°

P+ ¢

p+gq

a*(mod N(Ry)),

This implies that a(a — a®) € N(Ry), and so (a — a®)? = a(a —
a®)(1 —a*) € N(Ry). Accordingly, a — a® € N(Ry).

Case 3. a € R3. Then 5 € N(R3). By hypothesis, there exist
tripotents p,q € R3 and a nilpotent w € Rj3 that commute such
that (a +2)? = p+ ¢ + w. Hence we get

(a> +4a+4)° = (p+q)°

P+

p+q

a® + 4a + 4(mod N(R3)),

Likewise, we have (a? — 4a + 4)% = a® — 4a + 4(mod N(R3)). We
derive that

(a> —a—1)°—(a*>—a—1) € N(Ry),
(a*>+a—1)°—(a®?+a—1) € N(R3).

This implies that

(a* —1)° —a® — (a®* =1 —a) € N(R3),
(a* —1)° +a® — (a* —1+a) € N(R3).
Thus we have 2a° — 2a € N(R3). Clearly, 2 € R;', and therefore
a—a’ € N(Ry).
According to Lemma 3.1, R = Ry X Ry X R3 is Zhou nil-clean. [

As a consequence, we now derive:

Corollary 3.4. The following are equivalent for a ring R:

(1) R is Zhou nil-clean.
(2) Every square element in R is the sum of a tripotent, an
wnvolution and a nilpotent that commute.
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Proof. (1) = (2) Clearly, 2 x 15 = 30 € N(R). Then we can find
some n € N such that

R= Rl X RQ,Rl = R/QnR, Rg = R/15nR

Case 1. Let a € R;. Clearly, Ry is strongly 2-nil-clean. By virtue
of Theorem 2.4, a? is the sum of an idempotent, an involution u
and a nilpotent that commute.

Case 2. Let a € Ry. In view of Theorem 3.3, there exist a
tripotent p € R and a nilpotent w € R that commute such that

2 2
a* =p+w. Clearly, 2 € R;'. Let e = 22 and f = P22, Then we
directly verify that
1 1
¢ —e=1("+2" = =2) = L0+ 2)(P" — p)-

Hence e¢? = e. Likewise, f2 = f. Therefore a> = ¢ — f + w =
(1—e)— f+(2¢—1)+w. We check that [(1—e)— f]* = (1—¢)—f
and (2e — 1)? = 1, as desired.

(2) = (1) Since every involution is a tripotent, we complete the
proof by Theorem 3.3. O

Example 3.5. Let R = {a,b,c,d} be the ring defined by the fol-
lowing operations:

SHESIIRS IESHES
o Qe
o QL oo
R QOO0
SO | &
Q0o oo | X
SRS IRl e
o > 9|
RO 2O
o O Q|

d a d

Then 3 is an idempotent for all x € R, but R is not Zhou nil-clean.

a

Proof. For all x € R, we check that z = 2%, and so (%)% = 3.
That is, 2° € R is an idempotent. Since ¢ —¢® = b is not nilpotent,
R is not Zhou nil-clean. 0

_ r oy .
Example 3.6. LetR-{(y x—l—y) | z,y € Zs}. Then R is a

finite field with 9 elements. Let a € R. Then a = a°, and so a* =
(a*)®, i.e., a® is 5-potent. Therefore every square element in R can
be written as the sum of a 5-potent and a nilpotent that commute.
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1
(01 s (0 -1\ (1 -1
Choosec-(ll).Thenc—C—(_l _1)—<_1 0) .

Hence ¢ — ¢® is not nilpotent. According to [13, Theorem 2.11], R
is not Zhou nil-clean.
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