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Abstract

Ivlev’s pioneering work started in the 1970’s showed a new and promissory way
in the study of modal logic from the perspective of many-valued logics. Continuing
our previous work on Ivlev-like non-normal modal logics with non-deterministic
semantics, we present in this paper tableau systems for Tm, S4m and S5m, the
non-normal versions of T, S4 and S5, respectively, as well as for their corresponding
first-order extensions Tm*, S4m* and S5m*.

Introduction

Under a traditional perspective, we can distinguish logical operators into two major
groups. In the first one, we have the most usual connectives and quantifiers, which
are called extensional. They seek to symbolically represent the meaning of certain expres-
sions in natural language, such as: “and”, “or”, “not”, “implies”, as well as “for all” and
“exists”. In the second group, we have the intensional connectives, for example: “it is
necessary that”, “it is obligatory that”, “believes in”, and so on.

The most important difference between these logical operators, as noted by Frege,
is that only in the case of extensional operators does the truth value of the complex
sentence depend exclusively on the truth value of its parts. This, however, is not the case
for intensional operators, which makes a formal semantic approach for them much more
difficult.

In the specific case of modal logic, let us remember that, although the extensional
semantics of classical logic was very well established in the mid-thirties of the twentieth
century with the works of Tarski, only in the sixties the clear and intuitive semantics
presented by Kripke managed to formally represent the meaning of expressions such as
“it is necessary that” and “it is possible that”. Such semantics, which came to be called
relational semantics or possible worlds semantics, caused a real revolution in the way we
understand intensional operators. So much so that in [Blackburn et al., 2001], the authors
defend the slogan that modal logic is relational semantics.

Such a slogan, while warrantable because of the resounding success of relational se-
mantics, ignores an alternative to Kripkean semantics that has been unknown for decades
by much of the modal logic community, but that caught the attention of some of them
in recent years. This interest is reflected in the growing number of publications on the
so-called non-deterministic semantics for modal logics. Such semantics can be seen as an
alternative to the Kripkean approach of capturing the meaning of intensional sentences.
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This is because the requirement of the Fregean principle of extensionality — namely,
that the truth value of a complex sentence depends exclusively on the truth value of its
constituent parts — is here weakened in the following sense: instead of having a single
truth-value for each complex sentence, we have non-empty sets of possible truth-values.1

The valuations must then choose some value among the possible ones.
As far as modal logic is concerned, Ivlev in [Ivlev, 1973], [Ivlev, 1985], [Ivlev, 1988],

and [Ivlev, 2013] seems to have been one of the first to think of a set of truth values to
capture the formal meaning of the intensional operators “it is necessary that” and “it is
possible that”. In any case, this alternative approach to modal logic has been ignored
by the community for decades, although it has had a timid but growing interest in these
semantics in recent years.

In previous works, we sought to continue contributing to the development of non-
deterministic semantics for modal logics. First, we presented a non-deterministic six-
valued semantics for deontic operators in [Coniglio et al., 2015] and [Coniglio et al., 2017].
Then, we verified the viability of this type of semantics for modal systems even weaker than
deontic ones, with 8 values in [Coniglio et al., 2020]. Finally, we extended our approach to
first-order modal logic with equality in [Coniglio et al., 2021]. Closely related results were
obtained independently in [Omori and Skurt, 2016] and [Omori and Skurt, 2020]). New
results in this subject were presented in [Grätz, 2021b] and [Pawlowski and La Rosa, 2021]
(see Section 4.3).

This article is organized as follows. In Section 1 we present the notion of non-
deterministic semantics and some linguistic intuitions behind some four-valued Ivlev-like
modal systems. In Section 2 we present non-deterministic semantics concerning the quan-
tified extension of these systems. In Section 3 we present a list of axioms and inference
rules which are used to define the Hilbert calculi for all these systems, and some of their
metatheorems are stated. In Section 4 we present the analytical tableaux method for
propositional and quantified versions of these systems. Finally, in the last section we
compare our results with some decidability results from classical logic, many-valued logic,
and Kripkean modal logics.

1 Some four-valued Ivlev-like modal systems

Let us define first, what we will consider here as a propositional modal language. Let
P = {p0, p1, . . .} be an infinite denumerable set of propositional variables. The set ForP
of propositional modal formulas is generated as follows: (i) any element of P is an atomic
formula; (ii) if ϕ is a formula, then (¬ϕ) and (�ϕ) are formulas; (iii) if ϕ and ψ are
formulas, then (ϕ → ψ) is a formula; (iv) nothing else is a formula. We will omit
parenthesis when the readability is unambiguous.

Ivlev’s modal semantics is a generalization of the multi-valued matrices. After the
seminal articles [Avron and Lev, 2001] and [Avron and Lev, 2005], this semantic is called
non-deterministic matrix semantics (see also [Avron and Zamansky, 2011]).

Definition 1.1. A non-deterministic matrix (Nmatrix) for a propositional language L is
a triple M = 〈V,D,O〉 such that:

• V is a non-empty set of truth values;

1In technical terms, the connectives are interpreted as multiperators (or multifunctions) instead of
operators (or functions).
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• D (designated truth values) is a non-empty proper subset of V;

• For any n-ary connective #, O includes a correspondent interpretation function
#̃ : Vn → ℘(V) \ {∅}

Valuations over a given non-deterministic matrix are defined in a very intuitive way.

Definition 1.2 (See [Avron and Zamansky, 2011]). Let M = 〈V,D,O〉 be a Nmatrix
over ForP . A valuation over M is a function v : ForP → V such that, for every n-ary
connective # and every ϕ1, . . . , ϕn ∈ ForP :

v(#(ϕ1, . . . , ϕn)) ∈ #̃(v(ϕ1), . . . , v(ϕn))

A valuation over a Nmatrix M satisfies a formula ϕ iff v(#(ϕ1, . . . , ϕn)) ∈ D. We also
say that ϕ is valid over a Nmatrix M iff all the valuations satisfy ϕ. A Nmatrix M is
a model of a set Γ of formulas iff there is a valuation that satisfy every element of Γ.
Finally, ϕ is a semantic consequence of Γ over a a Nmatrix M iff every valuation that is
a model of Γ satisfies ϕ.

Normally, modal logic are extensions of Propositional Classical Logic CL. Thus, it
is expected that all formulas that are valid in CL should continue being valid over M.
Because of this, the propositional operators must respect the following clauses for any
a, b ∈ V:

(i) a ∈ D iff ¬̃ a ⊆ V \ D

(ii) a ∈ D and b /∈ D iff a →̃ b ⊆ V \ D

In order to analyze these restrictive clauses in a modal context, let us consider the four
values proposed by Ivlev:

T: necessarily true

t: contingently true

f: contingently false

F: necessarily false / impossible

such that D = {T, t}. It is clear that the restrictions (i) and (ii) above seem very week.
Take, for instance, just the operator for negation ¬̃. Consider the sentence:

1 plus 1 is equal to 2 (1)

It seems to be natural to attribute to (1) the value ‘necessarily true’, since we are prone
to accept that mathematical truths are not contingent, but necessary. But consider now
the negation of (1):

1 plus 1 is not equal to 2 (2)

If (1) is necessarily true, then (2) should be necessarily false, that is, impossible. To guar-
antee this, we must force that the negation of ‘necessarily true’ is ‘necessarily false’. The
reciprocal should also intuitively apply: the negation of something impossible should be
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necessary. An analogous requirement seems reasonable in the case of contingent propo-
sitions so that the negation of ‘contingently true’ should be ‘contingently false’ and vice
versa. These considerations lead us to the following truth table for the operator ¬̃:

¬̃

T F

t f

f t

F T

The argument for constraining the operator →̃ is a bit more complex. Take, for instance,
the sentence:

If 1 plus 1 is equal to 2, then 2 minus 1 is equal to 1 (3)

Suppose (3) is necessarily true. From (2) and (3), it seems reasonable to assume that we
should infer that “2 minus 1 equals 1” must be necessarily true.

There are situations, however, in which semantic intuition leaves us in the darkness,
especially when dealing with complex sentences involving different levels of modal truths,
such as the following:

If 1 plus 1 is equal to 2, then it’s raining in Moscow at 0h01 on January 1, 2032. (4)

It is very difficult to say whether, according to our linguistic intuitions, (4) should receive
the value necessarily true or contingently true in, namely, 2022.

Anyway, we will explore here just one of Ivlev’s possible interpretations for modal
implication by four values. First, because the reader will be able to check that this Nmatrix
is semantically intuitive, as we already argued in [Coniglio et al., 2020]. In addition, some
Ivlev implication tables are too strong from the point of view of relational semantics, that
is, it ends up making certain propositional formulas valid that are not valid even in the
strongest normal modal system in relational semantics, which is S5. Finally, the reader
will be able to check that the non-deterministic implication below proposed by Ivlev
coincides with the one proposed independently by Kearns in the eighties in [Kearns, 1981].
For these reasons, from now on we will adopt the following Nmatrix for the operator →̃ :

→̃ T t f F

T T t f F

t T {T, t} f f

f T {T, t} {T, t} t

F T T T T

Finally, the multioperator assigned to � must capture the notion of necessary in natural
language. Consider, for instance, the sentence:

Socrates is mortal. (5)

Suppose we consider, in some sense, sentence (5) to be necessarily true. Thus, we would
infer that the sentence
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Socrates is necessarilly mortal. (6)

is true. But if (5) is necessarily true, should (6) be a sentence necessarily true or only
contingently true? Reciprocally, if (5) is contingently true, then (6) is false, but should
(6) be only contingently false or impossible?

These modal puzzles seem to be a consequence of the fact that iterated modalities
are very rare in natural language. This seems to be one of the causes of the enormous
quantity of propositional modal systems that exist in the literature.

Ivlev was aware of this fact, so he presented more than one table to interpret the
operador �. Here we are going to work with the following tables:2

�̃1 �̃2 �̃3

T {T, t} T T

t {f, F} {f, F} F

f {f, F} {f, F} F

F {f, F} {f, F} F

Taking these operators into account, we can define three distinct Ivlev-like modal
logics with a corresponding four-valued Nmatrix semantics:

• M(Tm) = 〈{T, t, f, F}, {T, t}, {¬̃, →̃, �̃1}〉

• M(S4m) = 〈{T, t, f, F}, {T, t}, {¬̃, →̃, �̃2}〉

• M(S5m) = 〈{T, t, f, F}, {T, t}, {¬̃, →̃, �̃3}〉

We have analyzed these systems in [Coniglio et al., 2015], [Coniglio et al., 2017] and
[Coniglio et al., 2020] (see also [Omori and Skurt, 2016] and [Pawlowski and La Rosa, 2021]).

2 Extensions to quantified languages

In [Coniglio et al., 2021] the extension of the modal systems Tm, S4m and S5m to first-
order languages was analyzed. We briefly recall the main definitions and basic results
obtained therein.

Let us begin by using our semantic intuitions to understand a sentence quantified in
natural language, like the sentence below:

Everybody is mortal. (7)

Sentence (7) will be necessarily true when it is necessarily true for each individual in
the domain. But sentence (7) will only be contingently true if: (i) there is at least one
individual in the domain who is contingently mortal; and (ii) every individual in the
domain is mortal, necessarily or only contingently. We say that (7) is contingently false
if at least one individual in the domain is not mortal. Furthermore, any individual in

2
�1 and �3 were proposed in [Ivlev, 1988], while �2 was proposed in [Coniglio et al., 2015]. The

intuition behind �2 becomes clearer in the context of swap structures, see [Coniglio and Golzio, 2019].
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the domain could be mortal, that is, it is not impossible for any individual to be mortal.
Finally, (7) is impossible when it is not possible for at least one individual to be mortal.

Keeping these intuitions in mind, let us briefly recall the semantics of first-order struc-
tures for Tm≈ introduced in [Coniglio et al., 2021]. By simplicity, and given that in this
paper we are mainly interested in tableau systems for some quantified Ivlev-like modal
logics, the equality predicate ≈ will not be considered, and the signatures will not include
symbols for functions. From now on, we will call Tm∗ the first-order extension of Tm
without the equality predicate or any symbol for functions.

Formally, a (basic) predicate signature is a collection Θ formed by the following sym-
bols: (i) a non-empty set of predicate symbols P, with the corresponding arity ̺(P ) ≥ 1
for each P ∈ P; (ii) a possible empty set of individual constants C. It will also assumed
a fixed infinite denumerable set V ar = {x1, x2, . . .} of individual variables.3

A term τ in a predicate language Θ is a variable or a constant. Given a predicate
signature Θ, the set For(Θ) of well-formed formulas (wffs) is also defined recursively as
follows: (i) for each n-ary predicate P , if τ1, . . . , τn are terms, then Pτ1 . . . τn is a wff
(called atomic); (ii) if ϕ is a wff and x is a variable, then (¬ϕ), (�ϕ) and (∀xϕ) are also
wffs; (iii) if ϕ and ψ are wffs, then (ϕ → ψ) is also a wff; (iv) nothing else is a wff. As
before, parenthesis will be omitted when readability is unambiguous.

Recall from [Coniglio et al., 2021] that quantifiers are interpreted in Tm* by means of
the following (deterministic) multioperators Q̃d

4 : (P({T, t, f, F})\{∅}) → (P({T, t, f, F})\
{∅}), for Q ∈ {∀, ∃}:

X ∀̃d
4(X)

{T} T
{t} t

{T, t} t
{f, t} f

{f, t, T} f
{f} f

{f, T} f
F ∈ X F

X ∃̃d
4(X)

T ∈ X T
{t} t

{t, F} t
{t, f} t

{t, f, F} t
{f} f

{f, F} f
{F} F

Such quantifiers are deterministic by definition, and correspond, respectively, to the de-
terministic conjunction and disjunction of the members of X according to the order given
by the chain F ≤ f ≤ t ≤ T. As it was done in [Coniglio et al., 2021], by simplicity only
the universal quantifier will be considered in Tm*, and ∃xϕ will be an abbreviation for
¬∀x¬ϕ.

Definition 2.1. Let Θ be a predicate signature. A four-valued modal structure over Θ
is a pair A = 〈U, ·A〉, such that U is a non-empty set (the domain of the structure) and
·A is an interpretation function for the symbols of Θ, which is defined as follows:

• For each n-ary predicate P , PA : Un → {T, t, f, F} is a function;

• For each individual constant c, cA is an element of U .

3It should be noted that most part of modal logic manuals — for instance
[Hughes and Cresswell, 1996], [Fitting and Mendelsohn, 1998] and [Garson, 2006] — only consider
basic predicate signatures, that is, do not consider function symbols among the symbols of their language
(an exception is [Carnielli and Pizzi, 2008, p. 241]).
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Definition 2.2. Let A = 〈U, ·A〉 be a four-valued modal structure over a signature Θ as
in Definition 2.1, and let CA = {cA : c ∈ C}. Let Ū = {ā : a ∈ U \CA} be a set of new
constant symbols (i.e., disjoint from C), and let ΘU be the signature obtained from Θ by
adding the set Ū of constants. Let AU = 〈U, ·AU 〉 be the expansion of A to ΘU by setting
that āAU = a for every ā ∈ Ū . If CA = U then, by definition, ΘU = Θ and AU = A.

Remark 2.3. If A is a four-valued modal structure over Θ and AU is defined as above,
both structures should validate the same closed formulas over Θ. This will be guaranteed
by using valuations over Sen(ΘU), to be defined below. Observe that C ∪ Ū is the set
of constants of ΘU and, for every a ∈ U , there is a constant c in ΘU such that cAU = a.
That is, (C ∪ Ū)AU = U .

Definition 2.4 (da Costa). Let ϕ and ψ be formulas. If ϕ can be obtained from ψ
by means of addition or deletion of void quantifiers,4 or by renaming bound variables
(keeping the same free variables in the same places), we say that ϕ and ψ are variant of
each other, and it will denoted by ϕ ∼ ψ.

From now on, we will write ϕ[x/τ ] to denote the formula obtained from ϕ by replacing
simultaneously every free occurrence of the variable x by the term τ , provided that τ is
free for x in ϕ.5 Note that, in the present framework, τ is either an individual variable or
a constant symbol. If τ is a constant, then τ is always free for x in any formula. If τ is
a variable z then τ is free for x in ϕ if the following holds: if a free occurrence of x in ϕ
lies in the scope of a quantifier ∀y, then y 6= z.

Definition 2.5. Let A and AU be a four-valued modal structure as in Definition 2.2.
A Tm*-valuation over A is a function v : Sen(ΘU) → {T, t, f, F} defined recursively as
follows:6

1. For atomic formulas of the form Pc1 . . . cn, v(Pc1 . . . cn) = PA(cAU

1 , . . . , cAU

n );

2. v(¬ϕ) ∈ ¬̃ v(ϕ);

3. v(�ϕ) ∈ �̃1 v(ϕ);

4. v(ϕ→ ψ) ∈ v(ϕ) →̃ v(ψ);

5. For formulas of the form ∀xϕ, consider the set X(ϕ, x, v) =
{

v(ϕ[x/c]) : c ∈ C∪Ū
}

.

Then, v(∀xϕ) ∈ ∀̃d
4

(

X(ϕ, x, v)
)

, where ∀̃d
4 is defined as above.

6. If ϕ ∼ ϕ′ then v(ϕ) = v(ϕ′).

With a slight change in the definition above, we can define valuations for the other modal
systems studied here:

Definition 2.6. Let A and AU be a four-valued modal structure as in Definition 2.2. A
S4m*-valuation over A is a function v : Sen(ΘU) → {T, t, f, F} defined recursively exactly
as in Definition 2.5, with a single change in clause 2:

4That is, a quantifier ∀xϕ or ∃xϕ such that x does not occur free in ϕ (recalling that ∃xϕ stands for
¬∀x¬ϕ).

5Recall that a term τ is free for a variable x in a formula ϕ if the following holds: if a free occurrence
of x in ϕ lies in the scope of a quantifier ∀y, then y does not occur in τ .

6The notion of valuations over a Nmatrix and a first-order structure considered here is slightly different
of the one considered in [Coniglio et al., 2021]. Specifically, we will not require the satisfaction of the
substitution lemma, see Remark 3.4 below.

7



2. v(�ϕ) ∈ �̃2 v(ϕ);

Definition 2.7. Let A and AU be a four-valued modal structure as in Definition 2.2. A
S5m*-valuation over A is a function v : Sen(ΘU) → {T, t, f, F} defined recursively exactly
as in Definition 2.5, with a single change in clause 2:

2. v(�ϕ) ∈ �̃3 v(ϕ);

From now on, we will use Lm (Lm*, resp.) to indistinctly denote Tm, S4m or S5m
(Tm*, S4m* or S5m*, resp.).

Definition 2.8. Let Γ∪ {ϕ} ⊆ For(Θ) such that V ar(Γ∪{ϕ}) ⊆ {x1, . . . , xn}. Then, ϕ
is a semantic consequence of Γ in a quantified modal logic Lm*, denoted by Γ |=Lm∗ ϕ,
if, for every four-valued modal structure A over Θ and for a Lm*-valuation v over A,
if v(γ[x1/c1 · · ·xn/cn]) ∈ {T, t} for every γ ∈ Γ and every c1, . . . , cn ∈ C ∪ Ū then
v(ϕ[x1/c1 · · ·xn/cn]) ∈ {T, t} for every c1, . . . , cn ∈ C ∪ Ū .

3 Hilbert calculi

In this section, we present the Hilbert calculi for the modal logics to be studied along this
paper. It should be observed that Tm and S5m were introduced in [Ivlev, 1988] under
the names of Sa+ and Sb+, respectively.7

Let consider the following axiom schemas and inference rules:

Axiom schemas:

(Ax1) ϕ→ (ψ → ϕ)

(Ax2) (ϕ→ (ψ → ξ)) → ((ϕ→ ψ) → (ϕ→ ξ))

(Ax3) (¬ψ → ¬ϕ) → ((¬ψ → ϕ) → ψ)

(Ax4) ∀xϕ → ϕ[x/τ ] if τ is free for x in ϕ

(Ax5) ∀x(ϕ → ψ) → (ϕ→ ∀xψ) if ϕ contains no free occurrences of x

(Ax6) ϕ→ ψ if ϕ ∼ ψ

(K) �(ϕ→ ψ) → (�ϕ→ �ψ)

(K1) �(ϕ→ ψ) → (�¬ψ → �¬ϕ))

(K2) ¬�¬(ϕ → ψ) → (�ϕ→ ¬�¬ψ)

(M1) �¬ϕ → �(ϕ→ ψ)

(M2) �ψ → �(ϕ→ ψ)

(M3) ¬�¬ψ → ¬�¬(ϕ→ ψ)

(M4) ¬�¬¬ϕ → ¬�¬(ϕ → ψ)

(T) �ϕ→ ϕ

(4) ¬�¬�ϕ → �ϕ

(5) �ϕ→ ��ϕ

7As observed in [Omori and Skurt, 2016], the inference rules considered by Ivlev concerning the re-
placement of ϕ by ¬¬ϕ inside any formula are not sound, and they must be changed by the axioms (DN1)
and (DN2) below.
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(DN1) �ϕ→ �¬¬ϕ

(DN2) �¬¬ϕ → �ϕ

(BF) ∀x�ϕ → �∀xϕ

(CBF) �∀xϕ → ∀x�ϕ

(NBF) ∀x¬�¬ϕ → ¬�¬∀xϕ

(PBF) ¬�¬∀xϕ → ∀x¬�¬ϕ

Inference rules:

MP : ψ follows from ϕ and ϕ→ ψ

Gen : ∀xϕ follows from ϕ

Taking into account the above axioms and rules, we can consider the following systems:

• CL = {(Ax1), (Ax2), (Ax3),MP}

• CL*= CL ∪ {(Ax4), (Ax5),Gen}

• Tm = CL ∪ {(K), (K1), (K2)(M1), (M2), (M3), (M4), (T), (DN1), (DN2)}

• Tm*= Tm ∪ {(Ax4), (Ax5), (BF), (CBF), (NBF), (PBF),Gen}

• S4m = Tm ∪ {(4)}

• S4m*= Tm*∪{(4)}

• S5m = S4m ∪ {(5)}

• S5m*= S4m*∪{(5)}

The notion of derivation in a logic L is defined as usual. We will use the conventional
notation Γ ⊢L ϕ in order to express that there is a derivation in L of ϕ from Γ.

Any logic Lm satisfies the Deduction metatheorem (DMT):

Theorem 3.1 (Deduction Metatheorem (DMT) for Lm). Suppose that there exists in
Lm a derivation of ψ from Γ ∪ {ϕ}. Then Γ ⊢Lm ϕ→ ψ.8

As it could be expected, given that no inference rule was added to CL* to obtain Lm*,
each Lm* satisfies the restricted version of the Deduction metatheorem (DMT), as usually
presented in CL*:

Theorem 3.2 (Deduction Metatheorem (DMT) for Lm*). Suppose that there exists in
Lm* a derivation of ψ from Γ ∪ {ϕ}, such that no application of the rule (Gen) has, as
its quantified variable, a free variable of ϕ (in particular, this holds when ϕ is a sentence).
Then Γ ⊢Lm* ϕ→ ψ.9

8A detailed version of this proof for CL, which also holds for Lm, can be found in [Mendelson, 2015,
Proposition 1.9].

9A detailed version of this proof for CL*, which also holds for Lm*, can be found in [Mendelson, 2015,
Proposition 2.5 and Corollaries 2.6 and 2.7].
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Theorem 3.3 (Soundness and Completeness for Lm). Let Γ ∪ {α} ⊆ ForP be a set of
formulas. Then: ϕ is a semantic consequence of Γ over the Nmatrix M(Lm) iff Γ ⊢Lm ϕ.

A detailed proof of this result can be found in [Coniglio et al., 2015, Coniglio et al., 2017].

Remark 3.4. The Tm*-valuations considered in [Coniglio et al., 2021] require, in addi-
tion to the clauses in Definition 2.5, the satisfaction of the Leibniz rule for the equality
predicate ≈, as well as the satisfaction of the substitution lemma, namely: v(ϕ[x/τ ], s) =
v(ϕ, sxa) where s is any assignment for variables (that is, a function s : V ar → U ,
where U is the domain of the given first-order structure), a is the value assigned to
the term τ in the given first-order structure by using s, and sxa is the assignment obtained
from s by assigning the value a to x. It is easy to translate the semantical framework
of [Coniglio et al., 2021] to the present one: if ϕ = ϕ(x1, . . . , xn, x) is a formula having (at
most) the variables x1, . . . , xn, x occurring free, s is an assignment for variables and a ∈ U
then v(ϕ, s) and v(ϕ, sxa) correspond in the present setting to v(ϕ[x1/c1 · · ·xn/cn x/c])
and v(ϕ[x1/c1 · · ·xn/cn x/ā]), respectively (here, c1, . . . , cn, c ∈ C∪ Ū and ā ∈ Ū). Hence,
the semantical framework in [Coniglio et al., 2021] can be translated to the present one,
but taking into consideration that, in the former, the valuations satisfy the substitution
lemma and the Leibniz rule. This produces subtle differences between both approaches:
if c1 6= c2 in C are such that cA1 = a = cA2 then, according to Definition 2.5, the values
v(ϕ[x/c1]) and v(ϕ[x/c2]) are allowed to be different. On the other hand, in the frame-
work considered in [Coniglio et al., 2021] we have in this case, by the substitution lemma,
that v(ϕ[x/c1], s) = v(ϕ, sxa) = v(ϕ[x/c2], s), for every valuation v and every assignment s.
Despite these small technical differences, both semantical consequence relations coincide,
characterizing Tm* (without the equality predicate ≈, as we shall see in Theorem 3.5
below). It should be observed that the changes done in the present semantical frame-
work w.r.t. the one considered in [Coniglio et al., 2021] simplify the definition of the
tableau systems, as well as the corresponding proofs of soundness and completeness to be
presented in the next sections of the paper.

Theorem 3.5 (Soundness and Completeness for Lm*). Let Γ ∪ {α} ⊆ For(Θ) be a set
of formulas. Then: Γ |=Lm* ϕ iff Γ ⊢Lm* ϕ.

10

Proof.
(Soundness) It is easy to see that the notion of valuation considered here is sufficient to
guarantee the soundness of the axioms and inference rules of Lm*, taking into account
that no function symbols are allowed in the signatures. In special, it validates axiom (Ax4)
(in which the substitution lemma plays a fundamental role in [Coniglio et al., 2021]).
Thus, let ψ = ∀xϕ → ϕ[x/τ ] be an instance of axiom (Ax4) over Θ (hence τ is a term free
for x in ϕ). Let A be a four-valued modal structure over Θ with domain U , and let v be
a Lm*-valuation over A. Let ~x = x1 . . . xn be a finite sequence of distinct variables such
that V ar(ψ) ⊆ {x1, . . . , xn} and let ~c = c1 . . . cn be a finite sequence of constants in C∪Ū .
We want to prove that v(ψ[~x/~c]) ∈ {T, t}. If x does not occur free in ϕ then the result
is clearly true. Indeed, in such case, v(∀xϕ[~x/~c]) = v(ϕ[~x/~c]) = v(ϕ[x/τ ][~x/~c]). Now,
suppose that x occurs free in ϕ. If x = xi for some 1 ≤ i ≤ n let ~x′ = x1 . . . xi−1xi+1 . . . xn
and ~c′ = c1 . . . ci−1ci+1 . . . cn. Otherwise, let ~x′ = ~x and ~c′ = ~c. With this notation, it

10Recall that a proof of this result for the case of Tm* with identity predicate ≈ can be found
in [Coniglio et al., 2021]. That proof can be easily adapted to S4m* and S5m*. However, such results
concern the semantical framework defined therein which, as observed in Remark 3.4, differs slightly from
the present setting.
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is easy to see that ∀xϕ[~x/~c] = ∀x(ϕ[~x′/~c′]). Hence, v(∀xϕ[~x/~c]) = v(∀x(ϕ[~x′/~c′])). If
v(∀xϕ[~x/~c]) ∈ {f, F} then, by Definition of →̃, v(ψ[~x/~c]) ∈ {T, t}. Suppose now that
v(∀xϕ[~x/~c]) = v(∀x(ϕ[~x′/~c′])) ∈ {T, t}. We want to prove that v(ϕ[x/τ ][~x/~c]) ∈ {T, t}.
Let X = {v(ϕ[~x′/~c′][x/c]) : c ∈ C ∪ Ū}. By Definition 2.5(5), v(∀xϕ[~x/~c]) ∈ ∀̃d

4(X),
whence ∀̃d

4(X) ⊆ {T, t}. Thus, by definition of ∀̃d
4, X ⊆ {T, t}. That is,

(∗) v(ϕ[~x′/~c′][x/c]) ∈ {T, t} for every c ∈ C ∪ Ū .

We have two cases to analyze:

(1) τ is a variable y free for x in ϕ. Then, y = xj for some 1 ≤ j ≤ n, given that
V ar(ϕ[x/τ ]) ⊆ {x1, . . . , xn}; or

(2) τ is a constant c0 ∈ C. In both cases v(ϕ[x/τ ][~x/~c]) = v(ϕ[~x′/~c′][x/ck]) ∈ X , where
k = j (in case (1)) or k = 0 (in case (2)). By (∗), v(ϕ[x/τ ][~x/~c]) ∈ {T, t}. This shows
that v(ψ[~x/~c]) ∈ {T, t} as required.

The validity of the other axioms can be proved by an easy adaptation (and simplifi-
cation) of the proof of soundness of Tm* given in [Coniglio et al., 2021, Subsection 2.4].
The reader can check the details.

(Completeness) The proof for Lm* by using for the structures and valuations consid-
ered here can be easily adapted from the one obtained in [Coniglio et al., 2021] as follows
(in order to fix ideas, only the case of Tm* will be considered). Recall first the following
notions and results: let L be a Tarskian and finitary logic defined over a set of formulas
For, and let ϕ ∈ For. A set of formulas ∆ ⊆ For is ϕ-saturated in L if ∆ 0L ϕ but
∆, ψ ⊢L ϕ for every ψ ∈ For \ ∆. By a well-known result by Lindenbaum and  Loś
(see [Wójcicki, 1984, Theorem 22.2]), if Γ 0L ϕ then there exists a ϕ-saturated set ∆ in
L such that Γ ⊆ ∆, whenever L is Tarskian and finitary. In particular, we have:

Fact 1: Let Γ ∪ {ϕ} ⊆ For(Θ) such that Γ 0Tm* ϕ. Then, there exists a set of formulas
∆ such that Γ ⊆ ∆ and ∆ is ϕ-saturated in Tm*.

It is easy to prove that a ϕ-saturated set ∆ in Tm* is a closed theory (that is: ψ ∈ ∆ iff
∆ ⊢Tm* ψ) and the following holds: ψ ∈ ∆ iff ¬ψ /∈ ∆, and ψ → γ ∈ ∆ iff either ψ /∈ ∆
or γ ∈ ∆.

Given a set of formulas Γ ⊆ For(Θ) and a set C0 ⊆ C of constants, Γ is said to be a C0-
Henkin theory in Tm* if, for every formula ψ with at most a free variable x, there exists a
constant c ∈ C0 such that Γ ⊢Tm* ψ[x/c] → ∀xψ. Let ΘC′ be the signature obtained from
Θ by adding a set C ′ of new constants, and let ⊢C′

Tm*
be the corresponding consequence

relation of Tm* over ΘC′. By a standard argument it can proved the following:

Fact 2: Every Γ ⊆ For(Θ) can be conservatively extended to a C ′-Henkin theory Γ′ ⊆
For(ΘC′) in Tm*. That is: Γ ⊆ Γ′, Γ′ is a C ′-Henkin theory in Tm* over ΘC′ , and
Γ ⊢Tm* ϕ iff Γ′ ⊢C′

Tm*
ϕ for every ϕ ∈ For(Θ). Moreover, if Γ′ ⊆ Γ′′ ⊆ For(ΘC′) then Γ′′

is also a C ′-Henkin theory in Tm*.
Now, let Γ ∪ {ϕ} ⊆ For(Θ) such that Γ 0Tm* ϕ. We will prove that Γ 6|=Tm* ϕ. In

order to do this, let us observe first that,by Fact 2, there exists a C ′-Henkin theory Γ′ in
Tm* over ΘC′ for a new set of constant symbols C ′ such that Γ′ extends conservatively
Γ. From this, Γ′

0
C′

Tm*
ϕ and so, by Fact 1, there exists a ϕ-saturated theory ∆ in Tm*

over ΘC′ extending Γ′. By the last part of Fact 2, ∆ is also a C ′-Henkin theory over ΘC′

in Tm*.
The canonical four-valued modal structure A∆ = 〈C ∪ C ′, ·A∆〉 over ΘC′ is defined as

follows: cA∆ = c for every constant symbol c ∈ C ∪ C ′ and, for every n-ary predicate
symbol P , the function PA∆ is defined as follows:
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PA∆(c1, . . . , cn) =























T, if P (c1, . . . , cn) ∈ ∆ and �P (c1, . . . , cn) ∈ ∆;

t, if P (c1, . . . , cn) ∈ ∆ and ¬�P (c1, . . . , cn) ∈ ∆;

f, if ¬P (c1, . . . , cn) ∈ ∆ and ¬�¬P (c1, . . . , cn) ∈ ∆;

F, if ¬P (c1, . . . , cn) ∈ ∆ and �¬P (c1, . . . , cn) ∈ ∆.

Observe that, for every ψ, either ψ ∈ ∆ or ¬ψ ∈ ∆ (but not both simultaneously). This
shows that PA∆ is well-defined. Let A be the reduct of A∆ to Θ. Then cA = c for every
constant symbol c ∈ C and PA = PA∆ for every predicate symbol P . Moreover, since
U = C ∪ C ′ is the domain of A and cA∆ = c for every c ∈ C ∪ C ′ then Ū , ΘU and AU

as in Definition 2.2 will be identified, respectively, with C ′, ΘC′ and A∆. The canonical
valuation over A is the function v∆ : Sen(ΘC′) → {T, t, f, F} defined as follows:

v∆(ψ) =























T, if ψ ∈ ∆ and �ψ ∈ ∆;

t, if ψ ∈ ∆ and ¬�ψ ∈ ∆;

f, if ¬ψ ∈ ∆ and ¬�¬ψ ∈ ∆;

F, if ¬ψ ∈ ∆ and �¬ψ ∈ ∆.

Then, v∆ is a valuation over A (or, equivalently, over A∆). The proof of this fact is
similar, but simpler, than the one given in [Coniglio et al., 2021, Lemma 2.27]. By the
very definition, v∆(ψ) ∈ {T, t} iff ψ ∈ ∆. Let ψ ∈ Γ, and let x1, . . . , xn be a list of
variables containing all the variables occurring free in ψ. Given c1, . . . , cn ∈ C ∪ C ′

we infer that ψ[~x/~c] ∈ ∆, by combining (Gen) and (Ax4) and by the fact that ∆ is a
closed theory containing Γ. That is, v∆(ψ[~x/~c]) ∈ {T, t} for every ψ ∈ Γ and every
c1, . . . , cn ∈ C ∪ C ′. On the other hand, ϕ 6∈ ∆ and so v∆(ϕ) ∈ {F, f}. If ϕ is a closed
formula then v∆(ϕ[~x/~c]) ∈ {F, f} for every c1, . . . , cn ∈ C ∪ C ′. Otherwise, let x1, . . . , xn
be the list of all the variables occurring free in ϕ, and let ϕ0 = ∀x1 · · · ∀xn−1ϕ. By (Ax4),
∀xnϕ0 6= ∆ and so there exists a constant cn ∈ C ′ such that ϕ0[xn/cn] 6∈ ∆, since ∆ is a
C ′-Henkin theory in Tm*. Let ϕ1 = ∀x1 · · · ∀xn−2ϕ[xn/cn]. By the same reasoning, there
exists a constant cn−1 ∈ C ′ such that ϕ1[xn−1/cn−1] 6∈ ∆. Continuing with this reasoning
inductively, we finally found constants c1, . . . , cn ∈ C ′ such that ϕ[~x/~c] 6∈ ∆. This means
that v∆([~x/~c]) ∈ {F, f}. By Definition 2.5, this implies that Γ 6|=Tm* ϕ.

4 Analytic Tableaux

In this section, tableau systems for the four-valued non-deterministic modal systems pre-
sented in the previous sections will be presented. We will start by introducing in the first
subsection a tableau system for the modal logics Tm and Tm*. In the second subsection,
detailed proof of the completeness of the tableau system for Tm* will be given. Finally,
in Subsection 4.3 we will present the rules of the respective tableau systems for the logics
S4m* and S5m*, without showing the respective completeness of the method. Indeed,
the proof of completeness is very similar to the case of Tm*, so we decided to spare the
reader the tedious work of accompanying repetitive demonstrations.
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4.1 Tableaux for Tm and Tm*

We will now describe an efficient proof procedure for Tm and Tm* based on analytic
tableaux. The present approach was adapted from [Smullyan, 1995] and its generalization
to many-valued logics introduced in [Carnielli, 1987].11 Let φ be a formula and let L
indistinctly denote any truth value T, t, f or F; thus L:ϕ is a signed formula.

Consider the following tableau rules for Tm:

T:¬ϕ

F:ϕ

t:¬ϕ

f:ϕ

f:¬ϕ

t:ϕ

F:¬ϕ

T:ϕ

T:�ϕ

T:ϕ

t:�ϕ

T:ϕ

f:�ϕ

t:ϕ | f:ϕ | F:ϕ

F:�ϕ

t:ϕ | f:ϕ | F:ϕ

T:(ϕ→ ψ)

F:ϕ | t:ϕ, t:ψ | f:ϕ, t:ψ | f:ϕ, f:ψ | T:ψ

t:(ϕ→ ψ)

T:ϕ, t:ψ | t:ϕ, t:ψ | f:ϕ, t:ψ | f:ϕ, f:ψ

f:(ϕ→ ψ)

T:ϕ, f:ψ | t:ϕ, f:ψ | t:ϕ, F:ψ

F:(ϕ→ ψ)

T:ϕ, F:ψ

It should be clear that the rules above are directly obtained from the definition of the
multioperators in the Nmatrix M(Tm). This methodology is analogous to the tableau
rules obtained in [Smullyan, 1995] from the deterministic two-valued semantics for clas-
sical logic, and its extension to tableau systems generated by deterministic finite-valued
semantics proposed in [Carnielli, 1987].

A branch of a tableau for Tm generated by a finite set of signed formulas is said to
be closed if it contains two signed formulas L:ϕ and L′:ϕ such that L 6= L′.

The signed tableau rules of Tm* consist of those for Tm, plus rules for dealing with
the quantifiers, to be described below. Along this section, Θ will denote any predicate
signature, while C̄ = {cn : n ≥ 1} will denote an infinite denumerable set of constants
disjoint with C. The signature obtained from Θ by adding the new set of constants C̄
will be denoted by Θ(C̄). From now on, we will consider signed formulas of the form L:ϕ,
where ϕ is a closed formula over Θ(C̄).

Definition 4.1. Let A = 〈U, ·A〉 be a four-valued modal structure over Θ(C̄) (recall
Definition 2.1) such that (C ∪ C̄)A = U . Given a Tm*-valuation v over A, we say that a
signed formula L:ϕ is true in v if v(ϕ) = L; otherwise, it is false in v. If ϕ is a formula over
Θ(C̄) in which x is the unique variable possibly occurring free, then the closed formula
ϕ[x/c] will be denoted by ϕ(c).

11Based on the ideas proposed in the present paper, in [Coniglio and Toledo, 2021] were introduced
(n + 2)-valued tableau systems for da Costa’s paraconsistent logics Cn. General approaches to tableau
proof systems for finite non-deterministic matrices can be found in [Pawlowski, 2020] and [Grätz, 2021a].
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Remark 4.2.
(1) Note that, by Remark 2.3, the structure AU over ΘU = Θ(Ū) obtained from A as in
Definition 2.2 is such that (C ∪ Ū)AU = U . Then, the kind of structures considered in
Definition 4.1 are enough to analyze the logic Tm*, since (AU)U = AU . This fact will be
used in the proof of soundness of the tableau system for Tm* (see Theorem 4.7 below).
(2) Using the previous notation, and from the tables defining the universal quantifier, we
obtain the following, for every closed formula over Θ(C̄) of the form ∀xϕ:

- T:∀xϕ is true in v iff T:ϕ(c) is true in v, for every c ∈ C ∪ C̄;

- t:∀xϕ is true in v iff t:ϕ(c) is true in v for some c ∈ C ∪ C̄ and, for every c′ ∈
(C ∪ C̄) \ {c}, either T:ϕ(c′) is true in v or t:ϕ(c′) is true in v;

- f:∀xϕ is true in v iff f:ϕ(c) is true in v for some c ∈ C ∪ C̄, and F:ϕ(c′) is false in v
for every c′ ∈ C ∪ C̄;

- F:∀xϕ is true in v iff F:ϕ(c) is true in v for some c ∈ C ∪ C̄.

By Remark 4.2, when defining a set of tableau rules for Tm*, all the rules for quantifiers
(with exception of F:∀xϕ) will be reusable, that is, they can be potentially used with all
the constants. The rule for F:∀xϕ can be used just one time and with a fresh constant,
just like happens with tableaux for CL* for the signed formulas F(∀xϕ) and T(∃xϕ) (see
[Smullyan, 1995]).

The previous considerations lead us to the following tableau rules for dealing with
quantifiers in Tm*:

(T∀)
T:∀xϕ

T:ϕ(c)
(F∀)

F:∀xϕ

F:ϕ(c)

(t∀)
t:∀xϕ

t:ϕ(c), t:ϕ(c′) | t:ϕ(c), T:ϕ(c′)

(f∀)
f:∀xϕ

f:ϕ(c), f:ϕ(c′) | f:ϕ(c), T:ϕ(c′) | f:ϕ(c), t:ϕ(c′)

Provisos:

1. In (T∀), c can be any constant. This rule is reusable, that is, it can be used several
times with different constants on each branch in which the antecedent of the rule
appears.

2. In (t∀), c must be a constant that has not yet appeared in the branch, and c′ can be
any constant different from c. This rule is reusable, that is, it can be used several
times with different constants on each branch in which the antecedent of the rule
appears, in the following sense. After branching when apply the rule for the first
time, each of the two branches can split into two new branches: the left-side new
branch contains the signed formula t:ϕ(c′′), while the right-side branch contains the
signed formula T:ϕ(c′′′) for any c′′ and c′′′ different from c.
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3. In (f∀), c must be a constant that has not yet appeared in the branch, and c′ can
be any constant different from c. This rule is reusable, that is, it can be used
several times with different constants on each branch in which the antecedent of the
rule appears, in the following sense. After branching when apply the rule for the
first time, each of the three branches can splits into three new branches: the first
new branch (from left to right) contains the signed formula f:ϕ(c′′), the second new
branch contains the signed formula T:ϕ(c′′′), and the third new branch contains the
signed formula t:ϕ(c′′′′), for any c′′, c′′′ and c′′′′ different from c.

4. In (F∀), c must be a constant that has not yet appeared in the branch. This rule
can be used only once on each branch in which the antecedent of the rule appears.

Definition 4.3. A branch of a tableau for Tm* generated by a signed formula is said
to be closed if it contains two signed formulas L:ϕ and L′:ϕ′ such that ϕ ∼ ϕ′ (recall
Definition 2.4), and L 6= L′. In particular, a branch is closed if it contains two signed
formulas L:ϕ and L′:ϕ such that L 6= L′.12 A tableau is closed if any branch is closed.

Definition 4.4. A closed formula ϕ over Θ is said to be provable by tableaux in Tm*,
denoted by |=T (Tm*) ϕ, if there exists a closed tableau in Tm* starting from L:ϕ for every
L ∈ {F, f}. Given a finite set Γ = {γ1, . . . , γn} of closed formulas over Θ, we say that ϕ
is provable from Γ by tableaux in Tm*, denoted by Γ |=T (Tm*) ϕ, if the closed formula
(γ1 → (γ2 → . . .→ (γn → ϕ) . . .)) is provable by tableaux in Tm*.

To prove the soundness of the tableau system for Tm*, some definitions are required.

Definition 4.5. Let A = 〈U, ·A〉 be a four-valued modal structure over Θ(C̄) such that
(C ∪ C̄)A = U , and let v be a Tm*-valuation over A. We say that a branch θ of a tableau
for Tm* is true under v, or v satisfies θ, if every signed formula occurring in θ is true in
v. A tableau F for Tm* is said to be true under v, or v satisfies F , if some branch of F
is true under v.

Remark 4.6.
(1) Observe that, by the previous definitions, a closed branch of a tableau is unsatisfiable.
Hence, any closed tableau is unsatisfiable.
(2) If ϕ is a non-atomic formula, there is exactly one tableau rule, say R, appliable to a
signed formula of the form L(ϕ). It is straightforward to see that if a valuation v satisfies
L(ϕ), then it also satisfies all the formulas of at least one of the branches resulting from
the application of such rule R to L(ϕ).

Assume that ϕ is a closed sentence such that 6|=Tm* ϕ. From this, and taking into account
part (1) of Remark 4.2, there exists some structure A over Θ(C̄) with (C ∪ C̄)A = U , as
well as a Tm*-valuation v0 over it such that v0(ϕ) ∈ {F, f}. That is, v0 satisfies L:ϕ for
some L ∈ {F, f}. Now, suppose that F is a completed tableau in Tm* starting from L:ϕ.
By definition, F is obtained from a finite sequence of tableaux F0, . . . ,Fn = F , where
F0 = L:ϕ. Suppose that v is a Tm*-valuation such that v satisfies Fk. From part (2)
of Remark 4.6, it is easy to see that v also satisfies Fk+1, for every 0 ≤ k ≤ n − 1. In
particular, this property holds for the valuation v0. Since v0 satisfies F0, it follows that
v0 satisfies F . Hence, by part (1) of Remark 4.6, F cannot be closed. In other words,
every completed tableau for L:ϕ is open, for some L ∈ {F, f}. This means that 6|=T (Tm*) ϕ.
Equivalently: |=T (Tm*) ϕ implies that |=Tm* ϕ. This lead us to the following result:

12Since, by definition, ϕ ∼ ϕ for every ϕ.
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Theorem 4.7 (Soundness of tableaux for Tm*). Let Γ ∪ {ϕ} be a finite set of closed
formulas over Θ. If Γ |=T (Tm*) ϕ then Γ |=Tm* ϕ.

Proof. Taking into consideration the definition of |=T (Tm*), as well as the fact that |=Tm*

satisfies the deduction metatheorem for sentences, it is enough to prove the result for
Γ = ∅. But it follows from the considerations above.

4.2 Completeness of the tableau system for Tm*

In this subsection, the proof of completeness of the tableau system introduced for Tm*
will be obtained. As in the proof for first-order classical logic (see [Smullyan, 1995, Ch. V,
§3]), a suitable adaptation to the present framework of the notion of Hintikka sets will be
useful to our purposes.

Definition 4.8. A set Γ of signed formulas over Θ(C̄) is said to be a Hintikka set for
Tm* in the universe C ∪ C̄ if the following holds:

1. If L:ϕ and L′:ϕ′ belong to Γ such that ϕ ∼ ϕ′, then L = L′. In particular, if L:ϕ and
L′:ϕ belong to Γ then L = L′.

2. If L:¬ϕ belongs to Γ then ¬L:ϕ belongs to Γ, where ¬L denotes the unique element
of the set ¬̃ L.

3. If T:�ϕ or t:�ϕ belong to Γ then T:ϕ belongs to Γ.

4. If F:�ϕ or f:�ϕ belong to Γ then L:ϕ belongs to Γ for a unique L ∈ {t, f, F}.

5. If T:(ϕ → ψ) belongs to Γ then: either F:ϕ belongs to Γ, or T:ψ belongs to Γ, or
t:ϕ and t:ψ belong to Γ, or f:ϕ and t:ψ belong to Γ, or f:ϕ and f:ψ belong to Γ.

6. If t:(ϕ → ψ) belongs to Γ then: either T:ϕ and t:ψ belong to Γ, or t:ϕ and t:ψ
belong to Γ, or f:ϕ and t:ψ belong to Γ, or f:ϕ and f:ψ belong to Γ.

7. If f:(ϕ→ ψ) belongs to Γ then: either T:ϕ and f:ψ belong to Γ, or t:ϕ and f:ψ belong
to Γ, or t:ϕ and F:ψ belong to Γ.

8. If F:(ϕ→ ψ) belongs to Γ then T:ϕ and F:ψ belong to Γ.

9. If T:∀xϕ belongs to Γ then T:ϕ(c) belongs to Γ, for every c ∈ C ∪ C̄;

10. If t:∀xϕ belongs to Γ then t:ϕ(c) belongs to Γ for some c ∈ C ∪ C̄ and, for every
c′ ∈ (C ∪ C̄) \ {c}, either T:ϕ(c′) belongs to Γ or t:ϕ(c′) belongs to Γ;

11. If f:∀xϕ belongs to Γ then f:ϕ(c) belongs to Γ for some c ∈ C ∪ C̄ and, for every
c′ ∈ (C ∪ C̄) \ {c}: either T:ϕ(c′) belongs to Γ, or t:ϕ(c′) belongs to Γ, or f:ϕ(c′)
belongs to Γ, and F:ϕ(c′) does not belong to Γ;

12. If F:∀xϕ belongs to Γ then F:ϕ(c) belongs to Γ for some c ∈ C ∪ C̄.

Definition 4.9. Let Θ be a predicate signature. The complexity c(ϕ) of a formula ϕ ∈
For(Θ) is defined recursively as follows: c(ϕ) = 0 if ϕ is atomic; c(¬ϕ) = c(�ϕ) =
c(∀xϕ) = c(ϕ) + 1; and c(ϕ→ ψ) = c(ϕ) + c(ψ) + 1.
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Lemma 4.10. Let Γ be a Hintikka set for Tm* in the universe C ∪ C̄, and let A =
〈U, ·A〉 be a four-valued modal structure over Θ(C̄) such that (C ∪ C̄)A = U (hence, by
Definition 2.2, Θ(C̄)U = Θ(C̄) and AU = A). Let Γ0 = {ϕ ∈ Sen(Θ(C̄)) : L:ϕ ∈ Γ},
and let v : Γ0 → {T, t, f, F} be a function defined as follows: v(ϕ) = L iff L:ϕ ∈ Γ. Then,
v is well-defined and there exists a Tm*-valuation v̄ : Sen(Θ(C̄)) → {T, t, f, F} over A

extending v.

Proof. By item 1 of Definition 4.8, v is a well-defined function. Moreover, if ϕ ∼ ϕ′ and
both belong to Γ0 then v(ϕ) = v(ϕ′). In particular, if ϕ′ = Q1x1 . . . Qkxkψ where k ≥ 0
and Qi ∈ {∀, ∃}13 such that ψ is closed (hence ψ ∼ ϕ) then ψ ∈ Γ0 and v(ϕ′) = v(ψ) =
v(ϕ), taken into account that ¬̃ is deterministic and the value of ¬̃¬̃ a is precisely a. This
fact will be used along this proof.

The definition of v̄(ϕ) will be done by induction on the complexity c(ϕ) of ϕ ∈
Sen(Θ(C̄)). Moreover, at each step it will defined v̄(ϕ′) := v̄(ϕ) for every ϕ′ ∈ Sen(Θ(C̄))
such that ϕ ∼ ϕ′ and c(ϕ′) ≥ c(ϕ). To this respect observe that, if Q1x1 . . . Qkxkψ ∼ ϕ,
Qi ∈ {∀, ∃}, ψ is a closed sentence and v̄(ϕ) was already defined then we can define
v̄(Q1x1 . . . Qkxkψ) = v̄(ψ) = v̄(ϕ) in a coherent way.

Thus, assume first that ϕ is an atomic closed formula in Sen(Θ(C̄)). If ϕ ∈ Γ0 then
put v̄(ϕ) = v(ϕ); if ϕ /∈ Γ0 then define v̄(ϕ) arbitrarily (for instance, v̄(ϕ) = T). For every
ϕ′ ∈ Sen(Θ(C̄)) such that ϕ ∼ ϕ′ and c(ϕ′) ≥ c(ϕ) define v̄(ϕ′) = v(ϕ). As observed
above, if any of such ϕ′ is in Γ0 then v̄(ϕ′) = v(ϕ′). This completes the definition of v̄ for
atomic sentences and all of its variants).

Assume that v̄ was defined for every sentence ψ in Sen(Θ(C̄)) such that c(ψ) ≤ n (as
well as for all of its variants with arbitrary complexity), by extending v and satisfying
the clauses for valuation (induction hypothesis — IH). Namely: v̄(ψ) = v(ψ) if ψ ∈ Γ0

and c(ψ) ≤ n; if ψ ∼ γ then v̄(γ) = v̄(ψ); v̄(¬ψ) ∈ ¬̃ v̄(ψ); v̄(�ψ) ∈ �̃1 v̄(ψ); v̄(∀xψ) ∈
∀̃d
4

(

X(ψ, x, v̄)
)

, where X(ψ, x, v̄) =
{

v̄(ψ[x/c]) : c ∈ C ∪ C̄
}

;14 and v̄(ψ → γ) ∈
v̄(ψ) →̃ v̄(γ). Now, consider a formula ϕ such that c(ϕ) = n + 1. We will show how to
define v̄(ϕ) as well as v̄(ψ) for every ψ ∼ ϕ with c(ψ) ≥ n+ 1.

Case ϕ = ¬ψ. Then, v̄(ψ) was already defined. Define now v̄(ϕ) as being the unique
element of ¬̃ v̄(ψ). Note that, if ϕ ∈ Γ0 then ψ ∈ Γ0, v̄(ψ) = v(ψ) (by (IH) and v̄(ϕ) =
v(ϕ), by Definition 4.8. If γ ∼ ϕ with c(γ) ≥ n + 1 define v̄(γ) = v̄(ϕ). Observe that
γ = Q1x1 . . . Qkxk¬δ where k ≥ 0, Qi ∈ {∀, ∃} and δ ∼ ψ and so v̄(δ) = v̄(ψ), hence this
definition is coherent.

Case ϕ = �ψ. Then, v̄(ψ) was already defined. If ϕ ∈ Γ0 then ψ ∈ Γ0 and v(ϕ) ∈
�̃1 v(ψ), by Definition 4.8; in this case define v̄(ϕ) = v(ϕ). Now, if ϕ /∈ Γ0 but γ ∈ Γ0

for some γ ∼ ϕ, then γ = Q1x1 . . . Qkxk�γ
′ such that k ≥ 0, Qi ∈ {∀, ∃} and γ′ ∼ ψ.

In this case γ′ ∈ Γ0, by Definition 4.8, and so v(γ′) = v(ψ) such that v(γ) ∈ �̃1 v(γ′).
Define v̄(ϕ) = v(γ′). If γ /∈ Γ0 for every γ ∼ ϕ define v(ϕ) ∈ �̃1 v(ψ) arbitrarily. Finally,
define v̄(γ) = v̄(ϕ) for every γ such that γ ∼ ϕ and c(γ) ≥ n + 1 (by observing that
γ = Q1x1 . . . Qkxk�γ

′ where k ≥ 0, Qi ∈ {∀, ∃} and γ′ ∼ ψ, hence this definition is
coherent).

Case ϕ = ∀xψ. Note that all the values in the set X = {v̄(ψ[x/c]) : c ∈ C ∪ C̄} where
already defined. As observed above, if x is not free in ψ then v̄(ϕ) was already defined

13If k = 0 then the sequence of quantifiers is empty. Recall that ∃xγ stands for ¬∀x¬γ.
14In particular, if x does not occur free in ψ then v̄(Qxψ) = v̄(ψ) for Q ∈ {∀, ∃}, since ∀̃d4

(

{L}
)

= {L}
for every L and ¬̃ is deterministic such that the value of ¬̃¬̃ a is precisely a. This is coherent with the
fact that Qxψ ∼ ψ.
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and v̄(ϕ) = v̄(ψ), since ϕ ∼ ψ. Now, suppose that x occurs free in ψ. We have several
subcases to analyze.

• Case ϕ ∈ Γ0. There are two subcases to analyze:

– Case v(ϕ) = F. Then ψ[x/c] ∈ Γ0 for some c ∈ C ∪ C̄ such that v̄(ψ[x/c]) =
v(ψ[x/c]) = F. By defining v̄(ϕ) = v(ϕ) we get that v̄(ϕ) ∈ ∀̃d

4

(

X
)

.

– Case v(ϕ) 6= F. Then ψ[x/c] ∈ Γ0 and v̄(ψ[x/c]) = v(ψ[x/c]), for every c ∈
C ∪ C̄, hence v(ϕ) ∈ ∀̃d

4

(

X
)

, by Definition 4.8. In this case define v̄(ϕ) = v(ϕ),

hence v̄(ϕ) ∈ ∀̃d
4

(

X
)

.

• Case ϕ /∈ Γ0. By (IH), v̄(ψ[x/c]) = v(ψ[x/c]) for every c ∈ C ∪ C̄ such that
ψ[x/c] ∈ Γ0. Observe that, if γ ∼ ϕ, then γ = Q1x1 . . . Qkxkδ, where k ≥ 1,
Qj ∈ {∀, ∃} and δ ∼ ψ[x/xi] for some 1 ≤ i ≤ k such that xi is free for x in ψ, and
xi is the only variable occurring free in δ. Then v̄(δ[xi/c]) = v̄(ψ[x/c]) for every
c ∈ C ∪ C̄, by (IH). Moreover, v̄(ψ[x/c]) = v(δ[xi/c]) for every c ∈ C ∪ C̄ such that
δ[xi/c] ∈ Γ0. We have two subcases to analyze:

– There is some γ ∈ Γ0 such that γ ∼ ϕ. Then γ = Q1x1 . . . Qkxkδ, where
Qj ∈ {∀, ∃}, δ ∼ ψ[x/xi] for some 1 ≤ i ≤ k and v̄(ψ[x/c]) = v(δ[xi/c]) for
every c ∈ C ∪ C̄ such that δ[xi/c] ∈ Γ0, as observed above. Then v(γ), which
is given according to Definition 4.8, is such that v(γ) ∈ ∀̃d

4

(

X
)

. In this case

define v̄(ϕ) = v(γ), and so v(ϕ) ∈ ∀̃d
4

(

X
)

.

– For every γ ∈ Γ0 is not the case that γ ∼ ϕ. In this case define v̄(ϕ) ∈ ∀̃d
4

(

X
)

arbitrarily.

Finally, if γ ∼ ϕ with c(γ) ≥ n + 1 define v̄(γ) = v̄(ϕ). As observed above, γ =
Q1x1 . . . Qkxkδ, where k ≥ 1, Qj ∈ {∀, ∃} and δ ∼ ψ[x/xi] for some 1 ≤ i ≤ k. Then
v̄(δ[xi/c]) = v̄(ψ[x/c]) for every c ∈ C∪ C̄, by (IH), and so the value v̄(γ) is coherent with
Definition 2.5.

Case ϕ = γ → ψ. There are two main cases to analyze:

• Case ϕ ∈ Γ0. It produces two subcases:

– Case v(ϕ) = T. Then: either ψ ∈ Γ0 and v(ψ) = T, or γ ∈ Γ0 and v(γ) = F.
Given that L →̃T = F →̃ L = {T} for every L then, by defining v̄(ϕ) = v(ϕ),
we guarantee that v̄(ϕ) ∈ v̄(γ) →̃ v̄(ψ), by (IH).

– Case v(ϕ) 6= T. Then γ ∈ Γ0, ψ ∈ Γ0, v̄(γ) = v(γ) and v̄(ψ) = v(ψ), by
(IH) and by Definition 4.8. Then, by defining v̄(ϕ) = v(ϕ) we guarantee that
v̄(ϕ) ∈ v̄(γ) →̃ v̄(ψ), by Definition 4.8.

• Case ϕ /∈ Γ0. We have two subcases to analyze:

– There is some δ ∈ Γ0 such that δ ∼ ϕ. Then δ = Q1x1 . . . Qkxk(γ′ → ψ′),
where γ′ ∼ γ, ψ′ ∼ ψ, Qi ∈ {∀, ∃} and k ≥ 0. By (IH), v̄(γ′) = v̄(γ) and
v̄(ψ′) = v̄(ψ). According to Definition 4.8, and as observed in the previous
case (where ϕ ∈ Γ0), we have that γ′ → ψ′ ∈ Γ0, α ∈ Γ0 for some α ∈ {γ′, ψ′}
and v̄(α) = v(α) if α ∈ Γ0 ∩ {γ′, ψ′}. Moreover, v(δ) = v(γ′ → ψ′). Then, by
defining v̄(ϕ) = v(δ) we guarantee that v̄(ϕ) ∈ v̄(γ) →̃ v̄(ψ), by means of an
analysis similar to the previous case.
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– For every γ ∈ Γ0 is not the case that γ ∼ ϕ. In this case define v̄(ϕ) ∈
v̄(γ) →̃ v̄(ψ) arbitrarily. Observe that, if either γ′ ∈ Γ0 for some γ′ ∼ γ or
ψ′ ∈ Γ0 for some ψ′ ∼ ψ then v̄(γ) = v(γ′) or v̄(ψ) = v(ψ′), respectively, by
(IH). Hence this definition is coherent.

Finally, let δ ∼ ϕ such that c(δ) ≥ n+1. Then δ = Q1x1 . . . Qkxk(γ′ → ψ′), where γ′ ∼ γ,
ψ′ ∼ ψ, Qi ∈ {∀, ∃} and k ≥ 0. By defining v̄(δ) = v̄(ϕ) and by (IH), we have that
v̄(δ) = v̄(γ′ → ψ′) ∈ v̄(γ′) →̃ v̄(ψ′), as required.

From this construction, it is clear that v̄ : Sen(Θ(C̄)) → {T, t, f, F} is a Tm*-valuation
over A extending v.

Theorem 4.11 (Hintikka’s Lemma for Tm*). Let Γ be a Hintikka set for Tm* in the
universe C ∪ C̄. Then, there is a four-valued modal structure A = 〈U, ·A〉 over Θ(C̄)
where (C ∪ C̄)A = U , and a Tm*-valuation v̄ over it such that L:ϕ is true in v̄ for every
L:ϕ ∈ Γ.

Proof. Let U = C∪C̄ and let A = 〈U, ·A〉 be a four-valued modal structure over Θ defined
as follows:

- For each n-ary predicate P , PA : Un → {T, t, f, F} is defined as follows: PA(a1, . . . , an) =
L if L:Pa1 . . . an ∈ Γ, and it gets an arbitrary value in {T, t, f, F} otherwise;

- For each individual constant c ∈ C ∪ C̄, cA = c.

It is worth observing that PA is well-defined, by item 1 of Definition 4.8. Since (C∪C̄)A =
U then, by Definition 2.2, Θ(C̄)U = Θ(C̄) and AU = A. Let Γ0 = {ϕ ∈ Sen(Θ(C̄)) :
L:ϕ ∈ Γ}, and let v : Γ0 → {T, t, f, F} be a function defined as follows: v(ϕ) = L iff
L:ϕ ∈ Γ. By Lemma 4.10, v is well-defined, and there exists a Tm*-valuation v̄ over A

extending v. That is, v̄ is a Tm*-valuation over A such that L:ϕ is true in v̄ for every
L:ϕ ∈ Γ.

Finally, to prove the completeness of the tableau system for Tm*, the notion of system-
atic tableaux proposed by Smullyan for his tableau system for classical first-order logic
(see [Smullyan, 1995, p. 59]) must be adapted to the specific rules of this logic. For techni-
cal reasons that will be clear below, besides signed formulas L:ϕ, we will consider marked
signed formulas, which are labeled signed formulas of the form t:∀xψ:[c] or f:∀xψ:[c] such
that ψ is a formula in which x is the only variable (possibly) occurring free, and c is a
constant of the signature.

Definition 4.12. Let L′:γ be a signed formula over a signature Θ. Let C = {c1, . . . , cn} be
the (possibly empty) set of constants occurring in γ, and consider an infinite denumerable
set C̄ = {cn+1, cn+2, . . .} of new constants (observe that C ∪ C̄ is considered to be linearly
ordered). The procedure for defining a systematic tableau F in Tm* for L′:γ, which
is a (possibly infinite) tree of signed formulas or marked signed formulas over Θ(C̄) of
degree 5,15 is defined as follows:
(1) Put the signed formula L′:γ at the beginning of the tree, forming an initial branch θ
of F , thus completing stage 1 of the procedure with a tableau F1.
(2) Assume that a tableau Fn (that is, a tree of degree 5) was already completed at the
nth stage of the procedure. If Fn is closed, the procedure stops. If Fn is not closed,

15Meaning that each node has, at most, 5 child nodes. This is an obvious consequence of the tableau
rules defined above.
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but every non-atomic signed formula was used on every open branch, the procedure also
stops.16 Otherwise, pick a non-atomic signed formula L:ϕ or a marked signed formula
t:∀xψ:[c] or f:∀xψ:[c] of minimal level (which means that such expression is located as
high as possible) in the tree Fn which has not yet been used; having more than one of
such unused expressions at the same minimal level of the tree, pick the leftmost one. Then,
extend every open branch θ containing such occurrence of L:ϕ, t:∀xψ:[c] or f:∀xψ:[c], as
follows (clauses 1-7 refer to L:ϕ, 8 refers to t:∀xψ:[c] and 9 refers to f:∀xψ:[c]):

1. If either ϕ is �δ and L ∈ {T, t}, or ϕ is ¬δ, extend θ to (θ, L′′:δ′), where L′′:δ′ is the
consequence of the respective tableau rule.

2. If ϕ is δ → ψ and L 6= F extend θ by 5, 4 or 3 branches (if L is T, t or f, respectively)
with the corresponding signed formulas on each branch, according to the specific
tableau rule.

3. If L:ϕ is F:(δ → ψ), extend θ to (θ, T:δ, F:ψ).

4. If ϕ is ∀xδ and L = F, extend θ to (θ, F:δ(c)), where c is the first constant that has
not yet appeared on θ.

5. If ϕ is ∀xδ and L = T, extend θ to (θ, T:δ(c), T:∀xδ), where c is the first constant
such that T:δ(c) does not occur on θ.

6. If ϕ is ∀xδ and L = t, extend θ to (θ, t:δ(c), t:∀xδ:[c]), where c is the first constant
that has not yet appeared in θ.

7. If ϕ is ∀xδ and L = f, extend θ to (θ, f:δ(c), f:∀xδ:[c]), where c is the first constant
that has not yet appeared in θ.

8. If the first non-atomic unused expression is t:∀xψ:[c], extend θ to the two branches
(θ, t:ψ(c′), t:∀xψ:[c]) and (θ, T:ψ(c′′), t:∀xψ:[c]), where c′ is the first constant differ-
ent from c such that t:ψ(c′) does not occur on θ, and c′′ is the first constant different
from c such that T:ψ(c′′) does not occur on θ.

9. If the first non-atomic unused expression is f:∀xψ:[c], extend θ to the three branches
(θ, f:ψ(c′), f:∀xψ:[c]), (θ, T:ψ(c′′), f:∀xψ:[c]), and (θ, t:ψ(c′′′), f:∀xψ:[c]), where c′ is
the first constant different from c such that t:ψ(c′) does not occur on θ, c′′ is the
first constant different from c such that T:ψ(c′′) does not occur on θ, and c′′′ is the
first constant different from c such that t:ψ(c′′′) does not occur on θ.

After performing step (2), the corresponding expression of the tree chosen in each of these
steps (namely, L:ϕ, t:∀xψ:[c] or f:∀xψ:[c]) is declared to be used, thus concluding the stage
n+ 1 of the procedure.

As in the case of Smullyan’s systematic tableau procedure for classical first-order logic,
the purpose of repeating an occurrence of a signed formula T:∀xψ after an instance T:ψ(c)
is to allow their reuse with another constant (given that the original occurrence of T:∀xψ
is declared to be used). This procedure guarantees that any instance T:ψ(c) will appear in
an open branch of a finished systematic tableau in Tm*. The same technique is applied
to guarantee that the signed formula t:∀xψ will be reused. However, in this case an initial

16Observe that the procedure cannot stop at this point if a reusable signed formula or a marked signed
formula appears in an open branch of Fn, as such an expression can still be used.
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instance t:ψ(c) with a new constant c is added, together with the expression t:∀xψ:[c].
This expression contains the signed formula t:∀xψ to be reused, plus a mark [c] indicating
that the rule was used for the first time with the fresh constant c. When this rule is
reused after this stage (as indicated on item 8 of step (2)), the tableau splits into two
branches: the left-side branch contains an instance t:ψ(c′) which does not occur on θ,
although c′ 6= c is not necessarily new in the branch, while the right-side branch contains
an instance T:ψ(c′′) which does not occur on θ, although c′′ 6= c is not necessarily new in
the branch. The constant c in the mark informs that ψ(x) cannot be instantiated once
again with c. Below each of these two formulas, the expression t:∀xψ:[c] is repeated on
each of the two new branches, allowing new rule reuse (given that the original occurrence
of t:∀xψ:[c] is declared to be used). This procedure guarantees that, for any constant c′,
L:ψ(c′) will appear in an open branch of a finished systematic tableau in Tm* with a
unique label L ∈ {T, t}. A similar technique is employed for rule (f∀) ensuring that, for
any constant c′, L:ψ(c′) will appear in an open branch of a finished systematic tableau in
Tm* with a unique label L 6= F.

Definition 4.13. A finished systematic tableau in Tm* is a systematic tableau in Tm*
which is either infinite (hence it contains at least an infinite branch, by König’s lemma), or
it is finite but it cannot be extended further employing the systematic procedure described
in Definition 4.12 (that is, on every open branch every non-atomic signed formula was
used).

Remark 4.14. It is worth noting that if a finished systematic tableau F in Tm* is
infinite then the procedure described in Definition 4.12 for defining it cannot stop in any
finite step k. Indeed, the tableau Fk obtained in step k of the definition of F is finite,
since it is a tree of degree 5 and k is finite. Observe that if θ is a finite open branch of a
finished systematic tableau F in Tm*, then no reusable signed formula or marked signed
formula occurs in θ. Otherwise, such an expression would give origin, in a later step of the
construction of F , to an unused occurrence in θ of a reusable signed formula or of a marked
signed formula and then θ could be extended ad infinitum by the systematic procedure
given in Definition 4.12, which contradicts the fact that θ is finite. From the previous
considerations, it is clear that every occurrence of a (reusable or not) non-atomic signed
formula or of a marked signed formula in an open branch of a (infinite or not) finished F
was used at some point of the construction of F .

Proposition 4.15. Let L0:ϕ0 be a signed formula over Θ, and let C̄ be as in Defini-
tion 4.12. Let θ be an open branch of a finished systematic tableau F in Tm* for L:ϕ,
and let Γ0 be the set of signed formulas occurring in θ (so, marked signed formulas as
t:∀xψ:[c] or f:∀xψ:[c] occurring in θ are not included in Γ0). Then, Γ0 is a Hintikka set
for Tm* in the universe C ∪ C̄.

Proof. Since θ is open then, by Definition 4.3: if L:ϕ and L′:ϕ′ belong to Γ0 such that ϕ
and ϕ′ are variant, then L = L′. In particular, if L:ϕ and L′:ϕ belong to Γ0 then L = L′.
This shows that Γ0 satisfies clause 1 of Definition 4.8. If L:ϕ ∈ Γ0 for ϕ of the form ¬ψ,
�ψ or γ → ψ then, by the tableau rules for Tm (which are included in the tableau system
for Tm*), and taking into consideration that F is a finished systematic tableau, L:ϕ was
used at some stage of the procedure for defining θ (as observed in Remark 4.14), hence it
is immediate to see that clauses 2 to 8 of Definition 4.8 are fullfilled. If T:∀xϕ ∈ Γ0 then,
since F is a finished systematic tableau and θ is open, this signed formula was used with
all the available constants, as discussed in Remark 4.14. That is, T:ϕ(c) ∈ Γ0 for every
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c ∈ C ∪ C̄, showing that Γ0 satisfies clause 9 of Definition 4.8. If t:∀xϕ ∈ Γ0 then, given
that F is a finished systematic tableau and θ is an open branch, θ contains t:ϕ(c) for some
constant c, and the marked signed formula t:∀xϕ:[c] also occurs in θ (see Remark 4.14).
Since the latter was used with all available constants other than c we have that, for every
c′ ∈ (C ∪ C̄) \ {c}: either T:ϕ(c′) belongs to Γ0 or t:ϕ(c′) belongs to Γ0. This shows
that Γ0 satisfies clause 10 of Definition 4.8. Now, if f:∀xϕ ∈ Γ0 then, given that F is a
finished systematic tableau and θ is an open branch, f:∀xϕ was used (see Remark 4.14)
and so f:ϕ(c) ∈ Γ0 for some c ∈ C ∪ C̄, plus the marked signed formula t:∀xϕ:[c]. Given
that the latter was used with all available constants other than c it follows that, for
every c′ ∈ (C ∪ C̄) \ {c}: either T:ϕ(c′) belongs to Γ0, or t:ϕ(c′) belongs to Γ0, or f:ϕ(c′)
belongs to Γ0, and F:ϕ(c′) does not belong to Γ0. This proves that Γ0 satisfies clause 11
of Definition 4.8. Finally, if F:∀xϕ ∈ Γ0 then, since F is a finished systematic tableau and
θ is an open branch, F:∀xϕ was used, as observed in Remark 4.14, and so F:ϕ(c) ∈ Γ0 for
some c ∈ C ∪ C̄. From this, Γ0 also satisfies clause 12 of Definition 4.8. That is, Γ0 is a
Hintikka set for Tm in the universe C ∪ C̄.

Corollary 4.16. Let L:ϕ be a signed formula over Θ, and let C̄ be as in Definition 4.12.
Let θ be an open branch of a finished systematic tableau in Tm* for L:ϕ, and let Γ0 be the
set of signed formulas occurring in θ (so, marked signed formulas as t:∀xψ:[c] or f:∀xψ:[c]
are not included in Γ0). Then, there is a structure A for Tm* over Θ(C̄) and a valuation
v̄ over it such that L:γ is true in v̄ for every L:γ ∈ Γ0.

Proof. It is an immediate consequence of Proposition 4.15 and Theorem 4.11.

Observe that, as a consequence of the definitions, if ϕ is provable by tableaux in Tm*
then the systematic tableau for L:ϕ must close after a finite number of steps, for L ∈ {F, f}
(and the converse is also true, of course). This produces the following:

Theorem 4.17 (Completeness of tableaux for Tm*). Let Γ∪{ϕ} be a finite set of closed
formulas over Θ. If Γ |=Tm* ϕ then Γ |=T (Tm*) ϕ.

Proof. By definition of |=T (Tm*), and since |=Tm* satisfies the deduction metatheorem for
sentences, it is enough to prove the result for Γ = ∅. Thus, let F be a finished systematic
tableau in Tm* for L:ϕ, where L ∈ {F, f}. If F has an open branch θ then the set Γ0 of
signed formulas occurring in θ is simultaneously satisfiable by a valuation v̄ over a first-
order structure A for Tm*. In particular, L:ϕ is true in v̄, meaning that v̄(ϕ) ∈ {F, f}.
That is, 6|=Tm* ϕ. From this, if |=Tm* ϕ then the systematic tableau for L:ϕ closes in a
finite number of steps, for any L ∈ {F, f}. Indeed, since every branch of F is closed, every
branch of F is finite. Then, by König’s lemma, F must be finite. That is, ϕ is provable
by tableaux in Tm*.

4.3 Tableaux for S4m, S4m*, S5m and S5m*

The rules for S4m are the same for Tm, except for the operator �. In this case, the rules
are as follows:

T:�ϕ

T:ϕ

t:�ϕ

×

f:�ϕ

t:ϕ | f:ϕ | F:ϕ

F:�ϕ

t:ϕ | f:ϕ | F:ϕ
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where the symbol × in the rule for t:�ϕ indicates that the branch closes. This rule reflects
the fact that a formula of the type �ϕ cannot receive the value t in M(S4m).

If we add the quantified rules for Tm* to the set of rules for S4m, we obtain the
tableau rules for S4m*.

The rules for S5m are also the same for Tm, except for the operator �. In this case,
the rules are as follows:

T:�ϕ

T:ϕ

t:�ϕ

×

f:�ϕ

×

F:�ϕ

t:ϕ | f:ϕ | F:ϕ

Once again, the symbol × indicates that the branch closes in the corresponding rule.
Indeed, in M(S5m) it is impossible for a formula of the type �ϕ to receive the value t
or the value f.

If we add the quantified rules for Tm* to the set of rules for S5m, we obtain the
tableau rules for S5m*.

As observed above, the proof of the following result will be omitted here, but it can
be obtained by slight modifications of the one presented for Tm*

Theorem 4.18 (Soundness and Completeness of tableaux for S4m* and S5m*).
Let L ∈ {S4m*,S5m*} and let Γ∪ {ϕ} be a finite set of closed formulas over Θ. Then:
Γ |=L ϕ if and only if Γ |=T (L) ϕ.

Final Remarks

In this paper we introduce analytic tableaux for several (propositional and quantified)
non-normal modal logics with non-deterministic semantics. First, we introduce tableau
systems for the non-deterministic propositional modal systems Tm, S4m, and S5m. The
reader can easily check that all rules are decidable, since the tableaux trees never go into
an infinite loop. We believe that such result can be easily extended to six-valued Ivlev-like
systems such as the deontic Dm (see [Coniglio et al., 2015] and [Coniglio et al., 2017]),
or even to eight-valued systems such as Km (see [Coniglio et al., 2020]).

Comparing the tableau systems of the Kripkean modal logics with the ones for the
respective Ivlev-like systems, the latter seem to have a non-negligible advantage. While
the former require the use of rules between trees (see [Fitting and Mendelsohn, 1998,
Chap. 2]), the tableaux for Tm, S4m, and S5m use rules only for the branches. This
shows that the algorithmic complexity of this proof method grows only as a function of
the size of the formulas, as occurs in classical logic or finite many-valued logics. This kind
of result is crucial when thinking about computational applications for these logics.

The tableau systems for propositional logics are extended to the quantified versions
of the systems mentioned above, namely Tm*, S4m* and S5m*. We know that CL∗ is
undecidable. This is easy to check: considering the tableaux rules for classical predicate
logic, we verify that, for instance, the formula ∀x∃yRxy → ∃x∀yRxy cannot be refuted.
Indeed, when we try to finish a tableau tree to refute this formula, we can see that the
rules lead us to an infinite loop. Since the three quantified modal systems presented here
are extensions of classical logic, they are undecidable as well.

Although CL∗ is not decidable, the monadic fragment of it is decidable (see, for
example, [Boolos et al., 2002, Chap. 21]). This result also holds for the Gn hierarchy
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of Gödel n-valued logics, as proved in [Baaz et al., 2007], and it seems to hold for any
monadic fragment of multivalued logic.

It is natural to ask whether the same result would hold for the monadic fragment
of some first-order modal systems, in particular the ones presented here. Kripke proved
in [Kripke, 1962] a pretty strong result: any monadic fragment of an S5* subsystem is
undecidable. But Tm*, S4m* and S5m* are not subsystem of S5*, since (NBF) does
not hold in S5*. Whether or not the monadic fragments of the three modal systems
studied here are decidable is still an open question, although we have strong reasons to
believe that they are not.

It seems that there is a very big difference between classical logic and finite-valued
logics, on the one hand, and relational semantics and non-deterministic semantics, on the
other. Indeed, since classical and finite-valued logics are extensional, they are unable to
semantically express intensional operators. This could suggests a rather strong result: any
monadic fragment of intensional semantics would be undecidable. In any case, concerning
modal logic, these results lead us to agree with Kripke, who said that “in the domain of
modal logic, decidable monadic systems simply do not arise”. This important question
deserves further analysis.

Concerning the full (normal) version of the propositional modal systems discussed here,
it should be noticed that, recently, Grätz has modified the four-valued Nmatrix semantics
with level valuations for S4 introduced by Kearns in [Kearns, 1981], obtaining so a three-
valued Nmatrix semantics with level valuations in which the criteria for choosing the level
valuations is effective (see [Grätz, 2021b]). This constitutes a novel decision procedure
for modal systems T and S4, overcoming a criticism to the original method of Kearns
we made in [Coniglio et al., 2017, Section 4], precisely concerning its status as a decision
procedure. In turn, in [Pawlowski and La Rosa, 2021] it was proposed a new four-valued
Nmatrix for a weaker version of Ivlev’s Tm called T−, which is axiomatized just by
removing the Necessitation rule (NEC) from the standard axiomatization of T. They
consider 16 axiomatic extensions of T− as well as the corresponding modification in the
basic four-valued Nmatrix, recovering so (by adding (NEC), at the axiomatic level, and
by considering level valuations, on the semantical side) the systems T, TB, S4, and S5,
together with two other new systems.

To summarize, we believe that the many results for Ivlev-like modal systems presented
in the literature involving Nmatrix semantics, as well as the recent results on Kearns’
Nmatrix semantics with level valuations for normal modal systems above mentioned,
open up concrete and exciting new perspectives for the study of modal logics in general.
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ments of Gödel logics: Decidability and undecidability results. In Dershowitz, N.
and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reason-
ing LPAR 2007, volume 4790 of Lecture Notes in Artificial Intelligence, pages 77–91.
Springer Berlin Heidelberg.

[Blackburn et al., 2001] Blackburn, P., Rijke, M., and Venema, Y. (2001). Modal Logic.
Cambridge University Press, Cambridge.

[Boolos et al., 2002] Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability
and logic. Cambridge University Press.

[Carnielli, 1987] Carnielli, W. A. (1987). Systematization of finite many-valued logics
through the method of tableaux. The Journal of Symbolic Logic, 52(2):473–493.

[Carnielli and Pizzi, 2008] Carnielli, W. A. and Pizzi, C. (2008). Modalities and mul-
timodalities, volume 12 of Logic, epistemology, and the unity of science. Springer,
Dordrecht.

[Coniglio et al., 2015] Coniglio, M. E., Fariñas del Cerro, L., and Peron, N. M. (2015).
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Modal logic with non-deterministic semantics: Part II –Quantified case. Logic Journal
of the IGPL. Published online: 11 June 2021. https://doi.org/10.1093/jigpal/jzab020.

[Coniglio and Golzio, 2019] Coniglio, M. E. and Golzio, A. C. (2019). Swap structures
semantics for Ivlev-like modal logics. Soft Computing, 23(7):2243–2254.

[Coniglio and Toledo, 2021] Coniglio, M. E. and Toledo, G. V. (2021). Two decision pro-
cedures for da Costa’s Cn logics by Restricted Nmatrix semantics. Studia Logica. First
published online: November 12, 2021. https://doi.org/10.1007/s11225-021-09972-z.

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-Order
Modal Logic, volume 277 of Synthese Library. Kluwer Academic Publishers.

[Garson, 2006] Garson, J. W. (2006). Modal Logic for Philosophers. Cambridge University
Press.

[Grätz, 2021a] Grätz, L. (2021a). Analytic tableaux for non-deterministic semantics. In
Das, A. and Negri, S., editors, Automated Reasoning with Analytic Tableaux and Related
Methods, volume 12842 of Lecture Notes in Artificial Intelligence, pages 38–55. Springer
International Publishing.

25



[Grätz, 2021b] Grätz, L. (2021b). Truth tables for modal logics T and S4, by using three-
valued non-deterministic level semantics. Journal of Logic and Computation. First
published online: December 13, 2021. DOI: https://doi.org/10.1093/logcom/exab068.

[Hughes and Cresswell, 1996] Hughes, G. E. and Cresswell, M. J. (1996). A New Intro-
duction to Modal Logic. Routledge, London and New York.

[Ivlev, 1973] Ivlev, Ju. V. (1973). Tablitznoe postrojenie propozicionalnoj modalnoj logiki
(Truth-tables for systems of propositional modal logic, in Russian). Vest. Mosk. Univ.,
Seria Filosofia, 6.

[Ivlev, 1985] Ivlev, Ju. V. (1985). Sodierzatelnaja semantika modalnoj logiki (Contentive
semantic of modal logic, in Russian). Moscow.

[Ivlev, 1988] Ivlev, Ju. V. (1988). A semantics for modal calculi. Bulletin of the Section
of Logic, 17(3/4):114–121.

[Ivlev, 2013] Ivlev, Ju. V. (2013). Generalization of Kalmar’s method for quasi-matrix
logic. Logical Investigations, 19:281–307.

[Kearns, 1981] Kearns, J. (1981). Modal semantics without possible worlds. The Journal
of Symbolic Logic, 46(1):77–86.

[Kripke, 1962] Kripke, S. A. (1962). The undecidability of monadic modal quantification
theory. Zeitschrift für mathemathische Logik und Grundlagen der Mathematik, 8:113–
116.

[Mendelson, 2015] Mendelson, E. (2015). Introduction to Mathematical Logic. Discrete
Mathematics and Its Applications. Chapman and Hall/CRC, 6 edition.

[Omori and Skurt, 2016] Omori, H. and Skurt, D. (2016). More modal semantics without
possible worlds. IfCoLog Journal of Logics and their Applications, 3(5):815–846.

[Omori and Skurt, 2020] Omori, H. and Skurt, D. (2020). A semantics for a failed ax-
iomatization of K. In Olivietti, N., Verbrugge, R., Negri, S., and Sandu, G., editors,
Advances in Modal Logic, volume 13, pages 481–501. College Publications.

[Pawlowski, 2020] Pawlowski, P. (2020). Tree-like proof systems for finitely-many valued
non-deterministic consequence relations. Logica Universalis, 14(4):407–420.

[Pawlowski and La Rosa, 2021] Pawlowski, P. and La Rosa, E. (2021). Modu-
lar non-deterministic semantics for T, TB, S4, S5 and more. Journal of
Logic and Computation. First published online: December 22, 2021. DOI:
https://doi.org/10.1093/logcom/exab079.

[Smullyan, 1995] Smullyan, R. M. (1995). First-Order Logic. Dover Publications, Mi-
neola, N.Y. USA. Corrected republication of the Springer-Verlag, New York, 1968
edition.
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