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Abstract—Reconfigurable Intelligent Surfaces (RISs) are an
emerging technology for future wireless communication systems,
enabling improved coverage in an energy efficient manner.
RISs are usually metasurfaces, constituting of two-dimensional
arrangements of metamaterial elements, whose individual re-
sponse is commonly modeled in the literature as an adjustable
phase shifter. However, this model holds only for narrowband
communications, and when wideband transmissions are utilized,
one has to account for the frequency selectivity of metamaterials,
whose response usually follows a Lorentzian-like profile. In this
paper, we consider the uplink of a wideband RIS-empowered
multi-user Multiple-Input Multiple-Output (MIMO) wireless sys-
tem with Orthogonal Frequency Division Multiplexing (OFDM)
signaling, while accounting for the frequency selectivity of RISs.
In particular, we focus on designing the controllable parameters
dictating the Lorentzian response of each RIS metamaterial
element, in order to maximize the achievable sum rate. We devise
a scheme combining block coordinate descent with penalty dual
decomposition to tackle the resulting challenging optimization
framework. Our simulation results reveal the achievable rates
one can achieve using realistically frequency selective RISs in
wideband settings, and quantify the performance loss that occurs
when using state-of-the-art methods which assume that the RIS
elements behave as frequency-flat phase shifters.

Index Terms—Reconfigurable intelligent surface, frequency se-
lectivity, multi-user MIMO, rate optimization, wideband systems.

I. INTRODUCTION

Future generations of wireless communications are subject
to a multitude of diverse performance requirements. These in-
clude ultra-high data rate, energy efficiency, wide network cov-
erage and connectivity, as well as ultra-low reliability and end-
to-end latency [1]. One of the main challenges in meeting these
demands stems from the difficulty to guarantee coverage when
serving multiple users in harsh non-line-of-sight environments,
as commonly encountered in various urban setups [2]. A
key emerging technology that is envisioned to enable energy-
efficient improved coverage in future wireless communications
is the Reconfigurable Intelligent Surface (RIS) [3], [4]. Such
metasurfaces are capable of realizing reconfigurable reflection
patterns, allowing the dynamic control of the propagation of
information-bearing electromagnetic waves [5], thus paving
the way to the recent vision of smartly programmable and
sustainable wireless environments [6].

This work has been supported by the EU H2020 RISE-6G project under
grant number 101017011.

The ability of RISs to impact radio wave propagation in
a power-efficient and low-cost manner gave rise to growing
interests in RIS-empowered communication systems [3], [4].
Most communication-oriented studies for such systems assume
a simplistic model for the responses of the RIS constituting
elements, which are commonly modeled as controllable phase
shifters that do not vary with frequency [7]–[9]. In practice,
however, metamaterial-based RISs can only realize such re-
flection responses in relatively narrow bands centralized at a
given resonant frequency [10], and their reflection patterns
depends on the incident wave’s angle [11]. Consequently,
when using wideband transmissions, one must account for
the frequency selective response of the metamaterial. Very
recently, the authors in [12] considered a frequency-dependent
model for the amplitude and phase shift variations of the
RIS elements, and studied the sum-rate maximization problem
with Orthogonal Frequency Division Multiplexing (OFDM).
However, a metamaterial’s frequency response usually takes a
Lorentzian form [13]. While the Lorentzian spectral behavior
of metasurfaces in wideband communications was recently
considered for their application as active massive Multiple-
Input Multiple-Output (MIMO) antennas [14]–[16], it has not
been studied to date in wireless communication systems with
passive metamaterial-based RISs.

Motivated by the above, in this paper, we capitalize on the
inherent frequency selectivity of metasurfaces and exploit it for
optimizing wideband multi-user MIMO communications with
passive RISs. We first introduce a physics-compliant model for
the Lorentzian frequency response of the RIS metamaterial
elements, which captures the parameters one can externally
control to modify the surface’s reflection profile. Then, we
present an optimization framework for setting the RIS control-
lable parameters in order to maximize the achievable average
sum rate in the uplink of wideband RIS-empowered multi-user
MIMO systems with OFDM signaling. Our algorithm tackles
the challenging coupling of the parameters in the Lorentzian
response via combining Block Coordinate Descent (BCD) with
the Penalty Dual Decomposition (PDD) method [17] in an
alternating fashion. Our numerical results demonstrate that the
proposed design allows to achieve notably improved achiev-
able sum-rate performance compared to using conventional
RIS configuration approaches, which assume elements acting
as frequency-flat phase shifters.
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Fig. 1. The frequency response of the proposed RIS element model as a
function of the frequency in GHz for various values of the quality factor Qn.

Throughout the paper, boldface lower-case and boldface
upper-case letters represent vectors and matrices, respectively,
while In is the n × n (n ≥ 2) identity matrix and notation
X � 0 indicates that X is positive semi-definite. The trans-
pose, Hermitian transpose, trace, determinant, and the real part
of a complex quantity are written as (·)T , (·)H , Tr (·), | · |,
and <{·}, respectively, while C is the set of complex numbers,
 ,
√
−1 is the imaginary unit, [X]i,j denotes X’s (i, j)-th

element, vec(X) vectorizes X, and vecd(X) denotes the vector
obtained by the diagonal elements of the square X.

II. RIS RESPONSE AND SYSTEM MODELING

A. Metamaterial’s Frequency Response Model
Passive RISs are often realized using metasurfaces [5], [6].

Their constituting metamaterials, with externally controllable
parameters, enable diverse reflection patterns for various oper-
ation objectives [18]. To model feasible reflection profiles with
metamaterial-based RISs (referred to, henceforth, as RISs), we
consider a surface with N elements, and let sn[i] and rn[i]
with n ∈ {1, 2, . . . , N} , N be the impinging signal at the
n-th RIS element and its reflected version, respectively, at the
discrete time instance i. The response of each n-th element is
typically modeled as a tunable frequency-flat phase shifter, i.e.,
rn[i] , φn[i]sn[i] with φn[i] , eψn[i], where ψn[i] ∈ [0, 2π)
can be configured individually. However, this extensively used
model, serves as a narrowband approximation for the RIS
element response; in practice, each metamaterial element has
been shown to behave as a resonant circuit [10].

The resonant elements (described as inductor-capacitor res-
onators in circuit theory) of a metasurface exhibit a frequency
dispersive property. By assuming electrically small metama-
terial elements to implement the RIS, we can model each
element as a polarizable dipole, whose frequency response
takes the following Lorentzian form:

φn(ω) =
Fnω

2

ω2
n − ω2 + κnω

, (1)

where Fn, ωn, and κn are the element-dependent oscil-
lator strength, angular resonance frequency, and damping
factor, respectively, which can be externally controllable.
The quality factor Qn , ωn

κn
determines the bandwidth

Fig. 2. The wideband RIS-empowered MIMO OFDM system with K UTs.

that an RIS element can influence. Smaller Qn values re-
sult in flatter frequency responses (as commonly considered
in the RIS literature), while large Qn’s indicate narrower
frequency profiles; this behavior is illustrated in Fig. 1.
By defining the vectors r[i] ,

[
r1[i] r2[i] · · · rN [i]

]T
and

s[i] ,
[
s1[i] s2[i] · · · sN [i]

]T
, as well as the diagonal matrix

Φ[i] , diag
{
φ1[i]φ2[i] · · · φN [i]

}
, we can write the output

signals at the N RIS metamaterial elements as follows:

r[i] = Φ[i] ? s[i], (2)

where the operand ? stands for the multivariate convolution.

B. System and Channel Models
We consider an RIS-empowered multi-user MIMO OFDM

system operating in the uplink direction, as illustrated in Fig. 2.
A Base Station (BS) with NR antennas serves K single-
antenna User Terminals (UTs) with the help of the passive
RIS of the previous section. Let xk[i] be the transmitted signal
from the k-th UT, with k = 1, 2, . . . ,K, at the time instance i.
We assume frequency selective wireless channels with finite
memory of Q time instances. In particular, let hk[i] ∈ CN
be the multivariate impulse response modeling the channel
between the RIS and the k-th UT, while F[i] ∈ CNR×N and
G[i] ,

[
g1[i]g2[i] · · · gK [i]

]
∈ CNR×K (with gk[i] ∈ CNR

referring to the k-th UT) denote the multivariate impulse
responses of the RIS-BS channel and the direct channels be-
tween the BS and UTs, respectively. The NR-element discrete-
time received signal vector at the BS can be expressed as [19]

y[i] =

Q−1∑
τ=0

F[τ ]r[i− τ ] +
Q−1∑
τ=0

G[τ ]x[i− τ ] + w[i]

= F[i] ? r[i] + G[i] ? x[i] + w[i], (3)

where x[i] ,
[
x1[i]x2[i] · · · xK [i]

]T
and w[i] denotes the

zero-mean additive Gaussian noise vector with covariance
matrix σ2INR

. The signal impinging at the RIS is given by

s[i] =

K∑
k=1

Q−1∑
τ=0

hk[τ ]xk[i− τ ], (4)

yielding, by using (2), the following reflected signal:

r[i] =

K∑
k=1

Φ[i] ? hk[i] ? xk[i]. (5)

By defining the N ×K matrix sequence J[i] such that J[i] ,[
h1[i]h2[i] · · · hK [i]

]
, (5) can be re-written as r[i] = Φ[i] ?



J[i]?x[i]. Consequently, the channel input-output relationship
(3) for a fixed RIS configuration Φ[i] is given by

y[i] , (F[i] ?Φ[i] ? J[i] + G[i]) ? x[i] + w[i]. (6)

III. SUM-RATE MAXIMIZATION

A. Problem Formulation
We consider the problem of tuning the frequency-selective

RIS to optimize the achievable sum-rate performance. To
formulate this communication objective, we assume that the
UTs utilize wideband modulations, and use Cx(ω) to denote
the Power Spectral Density (PSD) of x[i]. We also assume
that the BS has full Channel State Information (CSI), i.e., it
knows the channel input-output relationship (6) and the PSD
of the transmitted signals, which uses to configure the RIS via
its controller [6]. Following these assumptions, we can express
the achievable sum rate for the considered system as [14]:

R̃ ,
1

2π

∫ 2π

0

log
∣∣INR

+ σ−2D(ω)D(ω)H
∣∣ dω. (7)

where D(ω) ,
(
F̃(ω) + G(ω)

)
C1/2

x (ω) with F̃(ω) and
G(ω) being the multivariate discrete-time Fourier transform of
F[i]?Φ[i]?J[i] and G[i], respectively. The maximization of the
achievable sum rate with respect toCx(ω) is the sum-capacity,
which can be approached using multi-carrier modulations, i.e.,
OFDM. By dividing the spectrum into B finite frequency
bins, the sum-rate performance in (7) can be approximated
as follows:

R ,
1

B

B∑
b=1

log
∣∣INR

+ σ−2D(ωb)D(ωb)
H
∣∣ . (8)

The latter expression depends on the RIS configuration
{Φ(ωb)}Bb=1, which is encapsulated in {D(ωb)}Bb=1. We next
write the sum rate in (8) asR(Φ̃) with Φ̃ , [ϕ1ϕ2 · · · ϕB ] ∈
CN×B , where ϕb , [φ1(ωb)φ2(ωb) · · · φN (ωb)]

T is obtained
from (1) for a given ωb. As discussed in Subsection II-A, the
response of the RIS metamaterial elements is dictated by the
parameters {Fn, ωn, κn}Nn=1. Consequently, the configuration
of the RIS that maximizes the achievable sum-rate per ωb is
the solution of the following optimization problem:

OP : max
{Fn,ωn,κn}Nn=1

R(Φ̃)

s.t. [Φ̃]n,b =
Fnω

2
b

ω2
n − ω2

b + κnωb
,

|[Φ̃]n,b| ≤ 1,∀n ∈ N ,∀b ∈ B,

where B , {1, 2, . . . B}. In the sequel, we present an algo-
rithm for designing the parameters of the considered frequency
selective RIS.

B. Proposed RIS Design Solution
To tackle the non-linear objective function and the non-

convex constraints in OP , we first transform the former into
a more tractable form, based on the following Lemma [20]:

Lemma 1. Suppose that M ∈ Cn×n with M � 0 is
defined as:

M =
(
UHBC− In

) (
UHBC− In

)H
+ UHRU, (9)

for some U,B ∈ Cm×n, C ∈ Cn×n, and R ∈ Cm×m with
R � 0. Let also the scalar function f(S,U) , log|S| −
Tr(SM) + Tr(In) with S ∈ Cn×n. It then holds that:

log
∣∣In + (BC)HR−1BC

∣∣ = max
U,S�0

f(S,U), (10)

where (10) is maximized by setting Sopt = M−1.

By introducing the auxiliary variables1 Sb ∈ CK×K and
Ub ∈ CNR×K ∀b ∈ B, and defining the mean squared error
matrix Mb ,

(
UH
b Db − IK

) (
UH
b Db − IK

)H
+ σ2UH

b Ub,
the sum rate in (8) can be equivalently expressed as follows:

R = max
{Ub,Sb�0},φ̃

B∑
b=1

(log|Sb| − Tr(SbMb) +K) , (11)

where Lemma 1 is applied for each summand in (8) and the
factor B is omitted without loss of optimality. Even with the
transformed objective function (11), OP is still non-convex
due to its coupled variables. However, it can be shown to
be convex with respect to each block of variables, namely
{Ub,Sb}, for a fixed φ̃ , vec(Φ̃). Therefore, to optimize
the auxiliary matrix variables, we adopt a BCD approach, as
presented in the sequel.

1) Optimizing w.r.t. {Ub}: By fixing Sb and φ̃, applying
some algebraic manipulations, and omitting constant terms,
we arrive at the following expression for the optimum Ub in
(11):

Uopt
b =argmax

Ub

−Tr(SbU
H
b DbD

H
b Ub) + Tr(SbU

H
b Db)

+ Tr(SbD
H
b Ub)− Tr(Sb)− σ2 Tr(SbU

H
b Ub)

(a)
= (σ2INR

+ DbD
H
b )−1Db, (12)

where (a) is obtained by comparing the derivative to zero.
2) Optimizing w.r.t. {Sb}: According to Lemma 1, Sb =

M−1
b , so it suffices to substitute Uopt

b in the expression of Mb

and take the inverse. After some straightforward manipulations
and by invoking the matrix inversion lemma, it follows that:

Sopt
b = IK + σ−2DH

b Db. (13)

3) Optimizing w.r.t. ˜{φ}: After some algebraic manipula-
tions on the equivalent rate expression in (11), it can be shown
that each of its B terms, as a function of Φb, is equal to:

Rb =− Tr(ΦH
b R1,bΦbR2,b)− Tr(Φb(R3,b −R4,b))

− Tr(ΦH
b (R3,b −R4,b)

H) + cb,
(14)

where R1,b , FHb UbSbU
H
b Fb, R2,b , JbJ

H
b , R3,b ,

JbG
H
b UbSbU

H
b Fb, R4,b , JbSbU

H
b Fb, and the constant

terms cb , −Tr(SbU
H
b GbG

H
b Ub) + Tr(SbU

H
b Gb) +

Tr(SbG
H
b Ub)−Tr(Sb)−σ2 Tr(SbU

H
b Ub). Then, by defining

Ab , R1,b�RT
2,b, bb , vecd(R3,b−R4,b), and utilizing the

1From now on, subscript b denotes dependence on the frequency bin ωb.



identities [21, Th. 1.11], the sum-rate optimization problem in
the Lorentzian parameters can be re-written as follows:

OP ′ : min
{Fn,ωn,κn}Nn=1

φ̃
H

Ãφ̃+ 2<
{
φ̃
H

b̃∗
}
− c̃

s.t. [Φ̃]n,b =
Fnω

2
b

ω2
n − ω2

b + κnωb
,

|[Φ̃]n,b| ≤ 1,∀n ∈ N ,∀b ∈ B,

where Ã , blkdiag{Ab}Bb=1, b̃ , [bT1 ,b
T
2 , . . . ,b

T
B ]
T , and

c̃ ,
∑B
b=1 cb.

The reformulated optimization problem OP ′ is simpler than
OP , because its objective function is a convex quadratic
function with respect to φ̃. The convexity is justified by
observing that Ã � 0, since it is the Hadamard product of
positive semi-definite matrices [21, Th. 1.9]. On the other
hand, the objective needs to be optimized with respect to
the Lorentzian parameters, which dictate φ̃ in a non-linear
manner, based on the Lorentzian form in (1). Thus, to solve
OP ′, we adopt the PDD method [17], which is an Augmented
Lagrangian (AL) method. This method is suitable for OP ′
because its equality and inequality constraints can be separated
into two sub-problems, which can be solved iteratively until
convergence. Capitalizing on the PDD method, with penalty
parameter ρ, the OP ′’s AL problem is expressed as

OP ′AL : min
φ̃,{Fn,ωn,κn}Nn=1

g , φ̃
H

Ãφ̃+ 2<
{
φ̃
H

b̃∗
}
− c̃

+
1

2ρ

∥∥∥φ̃−d̃ ({Fn, ωn, κn})+ρλ
∥∥∥2

s.t. |[Φ̃]n,b| ≤ 1,∀n ∈ N ,∀b ∈ B,

where d̃ ∈ CNB is the vector corresponding to the equality
constraint of OP ′ and λ denotes the dual variable vector
associated with the equality constraint φ̃ = d̃. Then, OP ′AL

can be solved based on a two-layer iteration, with the inner
layer alternatively updating φ̃ and the desired Lorentzian
parameters, while the outer layer updates ρ and λ.

In the inner layer, whose first task is to optimize OP ′AL

with respect to φ̃, without restricting its elements to exhibit
the Lorentzian response, the resulting problem is expressed as:

OP ′
AL,φ̃

: min
φ̃

g s.t. |[Φ̃]n,b| ≤ 1,∀n ∈ N ,∀b ∈ B,

which is convex, since the objective is the sum of a convex
quadratic plus a norm function under convex constraints. To
solve it, we propose a Projected Gradient (PG) approach. In
particular, at each `-th iteration step with ` = 0, 1, . . . , we
consider the following steps:

x(`) = ProjF

(
φ̃

(`)
− β∇φ̃g

(
φ̃

(`)
))

, (15)

φ̃
(`+1)

= φ̃
(`)

+ α(`)
(
x(`) − φ̃

(`)
)
, (16)

where β > 0, α(`) ∈ (0, 1] is a step size chosen according to
the Armijo rule along the feasible direction [22], and ProjF
denotes the element-wise projection operator onto the feasible
set F of OP ′

AL,φ̃
, according to which, if the argument’s

modulus is greater than one, it is normalized.

Algorithm 1 Proposed PDD-based Method Solving OP ′AL

1: Input: pout, εin > 0, εout > 0, Ã, b̃, as well as feasible
φ̃

(0)
, F (0)

n , ω(0)
n , κ(0)n , λ(0), ρ, and µ.

2: for pout = 1, 2, . . .
3: Set the inner iteration number pin = 0.
4: for pin = 1, 2, . . .

5: Compute φ̃
(pin) solving OP ′

AL,φ̃
via PG,

according to (15) and (16).

6: Compute
{
F̂

(pin)
n , ω̂

(pin)
n , κ̂

(pin)
n

}N
n=1

solving
(17) via Levenberg-Marquardt.

7: if
∣∣∣(g (φ̃(pin)

)
− g

(
φ̃

(pin−1)
))
/g

(
φ̃

(pin)
)∣∣∣ ≤ εin,

8: break;
9: end if

10: end for
11: Set φ̃

(pout)
= φ̃

(pin).
12: Set d̃(pout) using (1) with

{
F̂

(pin)
n , ω̂

(pin)
n , κ̂

(pin)
n

}
.

13: Set λ(pout) = λ(pout−1) + ρ−1
(
φ̃

(pout) − d̃(pout)
)

.
14: Compute the decreased penalty parameter ρ← µρ.
15: if

∥∥∥φ̃(pout) − d̃(pout)
∥∥∥
∞
≤ εout,

16: break;
17: end if
18: end for
19: Output: F (pout)

n , ω(pout)
n , and κ(pout)n ∀n ∈ N .

Algorithm 2 Proposed BCD Method Solving OP
1: Input: m = 0, ε > 0, Mmax, and feasible
{F (0)

n , ω
(0)
n , κ

(0)
n }.

2: for m = 1, 2, . . . ,Mmax

3: for b = 1, 2, . . . , B
4: Compute D

(m)
b = Gb + FbΦ

(m)
b Jb.

5: Compute U
(m)
b ∀b ∈ B according to (12).

6: Compute S
(m)
b ∀b ∈ B according to (13).

7: Compute A
(m)
b = R

(m)
1,b � (RT

2,b)
(m),

b
(m)
b , vecd(R

(m)
3,b −R

(m)
4,b ), and cb.

8: end for
9: Compute {F (m)

n , ω
(m)
n , κ

(m)
n } using Algorithm 1.

10: if
∣∣(R(m) −R(m−1)) /R(m)

∣∣ ≤ ε
11: break;
12: end if
13: end for
14: Output: F (m)

n , ω(m)
n , and κ(m)

n ∀n ∈ N .

Then, in the second step of the inner layer, we optimize
OP ′AL with respect to {Fn, ωn, κn}Nn=1. This results in the
following simplified sub-problem, after eliminating the irrele-
vant terms and constants and letting f , φ̃+ ρλ:

{F̂n, ω̂n, κ̂n}Nn=1 = argmin
{Fn,ωn,κn}Nn=1

∥∥∥f − d̃({Fn, ωn, κn})
∥∥∥2 ,
(17)

where the elements of d̃ take the Lorentzian form (1). This
reduced problem belongs to the family of non-linear least-
squares problems, especially when dealing with the angular
frequency ωn and the damping factor κn. To solve this



problem, we employ the Levenberg-Marquardt algorithm.
For the outer layer of the proposed PDD-based algorithm,

the dual variable λ is updated by λ = λ+ ρ−1(φ̃− d̃). Con-
cerning the penalty parameter ρ, it is updated by multiplying
it with a constant scaling factor µ < 1, i.e., ρ← µρ, which is
used to force the equality constraint to be approached during
the subsequent iterations. All above steps solving OP ′AL via
PDD are summarized in Algorithm 1. Finally, Algorithm 2
includes all steps for solving OP’s sum-rate maximization.

The computational complexity of the proposed algorithms
is analyzed based on their algorithmic steps, as follows. In
Algorithm 1, the worst case complexity results from the PG
method and the Levenberg-Marquardt algorithm, i.e., Steps
5 and 6, respectively. In particular, for the PG method, the
required computational cost is O(IPG(BN)1.5) due to the
gradient computation of function g [23], with IPG denoting the
iterations needed for convergence. In addition, the Levenberg-
Marquardt algorithm requires O((3N)3) computations [24],
which is justified by taking into account that for each RIS
element three parameters are optimized. Then, the total com-
plexity of Algorithm 1 is CPDD = O(IoutIin(IPG(BN)1.5 +
(3N)3)), where Iout and Iin express the numbers of outer and
inner PDD iterations, respectively. Similarly, the complexity of
the overall Algorithm 2 is given by COP = O(BMmax(N

3
R+

K3 +CPDD)), due to the matrix inversions in Steps 5 and 6.
C. Discussion

The proposed Algorithm 2 enables to optimize
metamaterial-based RISs in a manner that is aware of
their frequency selectivity. This affects the RIS phase
profiles when applied to wideband signals. Our numerical
evaluations, reported in the following Section IV, demonstrate
that our approach yields higher rates compared to utilizing
conventional RIS configuration methods, designed assuming
that the RIS elements behave as controllable phase shifters
in wideband communications, where the frequency selectivity
of the RIS is not negligible.

Our design is particularly tailored to control the parame-
ters of each metamaterial element that dictates its frequency
response. In practice, one is often interested in restricting the
search space of these parameters. For instance, the damping
factor is related to the quality factor of the element [10],
which is typically challenging to tune to levels beyond some
threshold. An additional parameter which is known to affect
the reflection pattern of RISs is the incident angle [11], which
can be incorporated into the channel model. Nonetheless, we
leave the adaptation of our design algorithms to account for the
effect of different incident angles and constrained parameter
spaces for future work. Furthermore, while our approach is
suitable to tackle OP , there is no guarantee that it yields the
optimal setting due to the non-convex nature of the problem.
In such cases, one can consider data-driven optimization based
on the proposed algorithm, via, e.g., the learn-to-optimize
framework [25] or by unfolding the iterative optimization into
a neural network [26]. Moreover, Algorithm 2 requires full
CSI, which is often challenging to acquire in RIS-empowered
communications [27], motivating its possible combination with
learning-based CSI-agnostic joint RIS-receiver settings, as
proposed in [28]. We leave these extensions to future research.

Fig. 3. Achievable sum-rate in bps/Hz as a function of the SNR in dB for the
proposed design of a 20-element frequency-selective RIS for the wideband
uplink communication with 4 UTs, NR = 8, B = 16, and Q = 4.

IV. NUMERICAL RESULTS

A. Experimental Setup

In this section, we investigate the performance of our pro-
posed algorithm in configuring for frequency-selective RISs in
order to maximize the achievable sum-rate performance. We
consider Rayleigh fading channels for {F[i]}Q−1i=0 , {J[i]}Q−1i=0 ,
and {G[i]}Q−1i=0 , with Q being the number of delayed taps in
the time-domain impulse response for each link. Each channel
is assumed to consist of independent random entries with
zero mean and unit variance, multiplied by distance dependent
pathloss. The pathloss values are set with the exponent 2.2 for
the RIS-involved channels (i.e., F and J), and with 3 for the
direct channel G. In our simulations, the BS is located in the
origin of the xy plane, whereas the UTs lie on a circle area of
radius 3m and center at the position (15m, 17.5m), with fixed
positions that were randomly generated. The RIS is placed at
the position with coordinates (15m, 12.5m). In addition, we
considered K = 4 users, NR = 8 BS antennas, B = 16
frequency bins, and Q = 4 taps. The Lorentzian parameters
were constrained as: Fn ∈ (0, 1], ωn > 0 and |κn| ≤ 100,
while |ω| ≤ π. The achievable sum-rate performance results
were averaged over 100 independent Monte Carlo realizations.

The convergence thresholds for the proposed algorithms
were set as εin = 10−4, εout = 10−5, and ε = 10−3, while
µ was selected in the interval (0.7, 0.99). For comparison
purposes, we have implemented the frequency-flat RIS phase-
shifting algorithm proposed in [7, Sec. IV]. We evaluated
the resulting RIS configuration benchmark twice: once when
the resulting configuration tunes the RIS reflection pattern at
the central frequency (for both magnitude and phase), while
at the remaining frequencies the RIS takes the wideband
Lorentzian form. This benchmark, which represents the case
where one tunes the RIS for wideband signals using conven-
tional settings designed for frequency-flat RISs, is termed as
”Flat-Lorentzian.” In addition, we also computed as ”Baseline
Frequency Flat” the rate achieved when the RIS is indeed
frequency flat, representing the rate one expects to achieve
using narrowband design approaches. Note that those rates are



Fig. 4. Achievable sum rates in bps/Hz versus the number N of the RIS
metamaterial elements with the proposed design for the wideband uplink
communication with SNR equal to 15 dB, NR = 8, B = 16, and Q = 4.

not actually achievable due to the frequency selectivity under
wideband transmissions.

B. Sum-Rate Performance
We first examine in Fig. 3 the case where the sum rate varies

with respect to the SNR, defined as 1/σ2, using N = 20 RIS
unit elements. It can be seen that, for all evaluated schemes,
the achievable sum-rate performances follow an increasing
trend with increasing SNR. In addition, it is observed that,
when using conventional RIS design methods which assume
frequency-flat responses for wideband communications, one
would expect to achieve superior rates (the red curve in Fig. 3),
while actually achieving much lower sum rates. These rates
are notably outperformed by the proposed design which is
aware of the underlying frequency selectivity. In Fig. 4, we
investigate the sum-rate performance versus the number N
of RIS elements, while fixing the SNR value to 15 dB. As
expected, the behavior of the achievable rate is increasing by
employing more RIS unit elements, for all presented schemes.
We again observe that configuring the RIS, assuming that its
metamaterial elements realize frequency-flat phase shifters for
wideband signals, yields performance which considerably de-
viates from that anticipated, and is notably degraded compared
to our Lorentzian-response-aware RIS configuration design.

V. CONCLUSION

In this paper, we studied the uplink of wideband RIS-
empowered multi-user MIMO communication systems, where
each RIS metametarial element operates as a resonant circuit,
modeled according to a Lorentzian frequency response. We
focused on the achievable sum-rate maximization problem,
aiming to design the externally controlled oscillator strength,
angular resonance frequency, and damping factor of each RIS
element, instead of adjusting only its phase-shift angle. A
BCD-based configuration algorithm was proposed to tackle the
design of the frequency-selective RIS. Our simulation results
demonstrated the sum-rate gains achievable using the proposed
design compared to conventional configuration methods that
assume frequency-flat metamaterials. In future work, we intend
to compare the proposed frequency-selective modeling and
optimization approaches with those in [12].
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