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Abstract

This paper studies the impact of bootstrap procedure on the eigenvalue distributions of the

sample covariance matrix under a high-dimensional factor structure. We provide asymptotic

distributions for the top eigenvalues of bootstrapped sample covariance matrix under mild

conditions. After bootstrap, the spiked eigenvalues which are driven by common factors will

converge weakly to Gaussian limits after proper scaling and centralization. However, the

largest non-spiked eigenvalue is mainly determined by the order statistics of the bootstrap

resampling weights, and follows extreme value distribution. Based on the disparate behavior

of the spiked and non-spiked eigenvalues, we propose innovative methods to test the number

of common factors. Indicated by extensive numerical and empirical studies, the proposed

methods perform reliably and convincingly under the existence of both weak factors and

cross-sectionally correlated errors. Our technical details contribute to random matrix theory

on spiked covariance model with convexly decaying density and unbounded support, or with

general elliptical distributions.

Keywords: Eigenvalue distribution, Hypothesis testing, Principal component analysis,

Randomized test, Spiked covariance model.

1. Introduction

High-dimensional factor models have attracted growing attention in the recent decades

with fruitful applications in statistical learning problems such as covariance matrix estima-

tion, forecasting and model selection. A comprehensive overview of some recent advances in

factor models is summarized by Fan et al. (2021). A fundamental step in factor analysis is to

determine the number of common factors, which is extensively studied in the literature and
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still actively debated. For example, in finance and econometrics, it remains an open question

to judge whether a new factor adds explanatory power for asset pricing; see Feng et al. (2020).

Dropping important factors will result in non-negligible estimation error for the factor scores

and loading spaces; see Bai and Ng (2002); Bai (2003). It also drops information which can

be potentially useful in related statistical applications such as detecting structural breaks

in Baltagi et al. (2017). On the other hand, overestimating the factor number may result

in non-negligible errors, too; see Barigozzi and Cho (2020). In high-dimensional settings,

overestimation also increases the computational burden.

In econometrics, most of the existing methods for determining the number of factors are

based on different growth rates of the factor and noise eigenvalues. That is, the eigenvalues

of the population covariance matrix driven by common factors will diverge to infinity with a

significantly faster rate than those driven by idiosyncratic errors. To list a few examples, the

information criterion by Bai and Ng (2002) and its improved version by Alessi et al. (2010),

the eigenvalue ratio approach by Lam and Yao (2012) and Ahn and Horenstein (2013) are

widely used to estimate factor number in high dimensions. Along this line, sometimes testing

procedures can be more preferred than simply providing a point estimation for the number of

factors; see the randomized test in Trapani (2018) and the random-perturbation-based rank

estimator by Kong (2020). These methods provide significance level of the corresponding

determination by introducing additional randomness into the system.

In high dimensional statistics, to determine the number of factors, another important line

relies on random matrix theory (RMT) on the largest non-spiked eigenvalues of the sample

covariance matrix. It has been shown that they follow the Tracy-Widom law asymptotically

after proper centralization and scaling, so one can test the number of common factors based

on this property. This line dates back to Onatski (2009), which deals with eigenvalues

and spectral densities under the generalized dynamic factor model by Forni et al. (2000).

More recent extensions are the eigenvalue thresholding approaches in Onatski (2010), Cai

et al. (2020) and Ke et al. (2021). These methods usually propose milder conditions on the

strength of factors, but more restrictive assumptions on the dependence structure of noises.

The spiked eigenvalues can be specified even if they are not diverging, as long as they exceed

the typical BBP phase transition boundary; see Baik et al. (2005). Another closely-related

direction is the parallel analysis, which can be a special application of RMT; see Dobriban

and Owen (2019) and references therein.

One major limitation of the RMT-based methods is that the underlying Tracy-Widom

distribution is pretty complicated, depending on unknown parameters of the population co-

variance matrix. The aforementioned approaches usually need to estimate these parameters

first, although Onatski (2009) avoids this problem by transformation. In statistics, it’s well

known that bootstrap is a common way for approximating complicated distributions. A nat-

ural question arises: is it possible to approximate the asymptotic distribution of the sample

eigenvalues by bootstrap? In the current paper, we aim to answer this question by studying
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the impact of bootstrap procedure on the limiting distributions of top sample eigenvalues.

Based on the findings, we further propose new test-based methods to determine the number

of common factors.

Bootstrapping the sample covariance matrix is also considered in Karoui and Purdom

(2019), under a scaled spiked covariance model. Based on their results, the limiting distri-

butions of spiked sample eigenvalues can be consistently approximated by bootstrap only

when the population spiked eigenvalues are well separated from the non-spiked ones. Yao

and Lopes (2021) further relaxes the technical conditions in Karoui and Purdom (2019),

and provides an upper bound for the bootstrap bias in terms of the tail probability of the

eigenvalue distribution before and after bootstrap. In both papers, the bootstrap works only

when the spiked eigenvalues are sufficiently large. Other related works have also consid-

ered bootstrapping the operator norm (Han et al. (2018)) or spectral statistics (Lopes et al.

(2019)) of sample covariance matrix, but they are different from the current paper.

The bootstrapped sample covariance matrix considered in this paper is also closely related

to the separable covariance model in the literature of RMT; see Bai et al. (2019) and Ding

and Yang (2021). It can be written as Ŝ := n−1AZWZ⊤A⊤, where n is the sample size,

Σ = AA⊤ is the population covariance matrix, Z is a random matrix with independent

entries and W is a diagonal matrix composed of the bootstrap resampling weights. If W is

the identity matrix, it reduces to the traditional sample covariance matrix without bootstrap,

which has been extensively studied; see for example Ding and Yang (2018) and Cai et al.

(2020). In this paper, W is a diagonal random matrix. Johansson (2007) has studied the

largest eigenvalue of a random diagonal matrix plus a scaled Gaussian Unitary Ensemble

matrix, but it’s different from the case of bootstrap.

1.1. Our contributions

Firstly, in view of bootstrapping the sample covariance matrix, this paper is a valuable

supplement to Karoui and Purdom (2019) and Yao and Lopes (2021). For the spiked sample

eigenvalues after bootstrap, following Karoui and Purdom (2019) and Yao and Lopes (2021)

it remains unknown what happens when the population eigenvalues are weak. Our Corollary

1 fills this gap by providing asymptotic limit rather than upper bound for the bootstrap

bias. We also provide limiting distributions for the spiked sample eigenvalues with explicit

formulas for the scaling and centralization parameters in the paper. Moreover, for the non-

spiked sample eigenvalues, it is the first time that the limiting distributions after bootstrap

have been revealed. The results not only contribute to factor models, but also to principal

component analysis (PCA) or more general spiked covariance models. We also relax some

technical conditions in Karoui and Purdom (2019) and Yao and Lopes (2021), e.g., we allow

the spiked eigenvalues to diverge with different rates.

Secondly, the theoretical framework of the current paper is totally different from that of

the separable covariance model in Bai et al. (2019) and Ding and Yang (2021). They require
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that the limiting spectral density of Ŝ exhibits the “square root” type behavior around the

edge of its support. Under bootstrap, the spectral density of W is usually convex at the edge

and the “square root” characteristic does not hold anymore. This is the major reason why

the non-spiked eigenvalues after bootstrap converge to extreme value distributions rather

than the Tracy-Widom law. Spectral property of sample covariance matrix with convexly

decaying density has been studied in Kwak et al. (2021). Unfortunately, they require Σ

to be the identity matrix and the spectral distribution of W has bounded support, which

excludes the case of bootstrap. Up to our knowledge, we are the first to consider general Σ

with spiked eigenvalues, allowing the spectral distribution of W to have unbounded support.

Ŝ is also closely related to elliptical distributions if the columns of Z are from Gaussian or

spherical distribution. Some related results can be found in Hu et al. (2019) and Wen et al.

(2022), where the variances of the entries in W are required to be nearly 0. In the current

paper, the diagonal entries of W are from non-degenerated distributions. Therefore, our

technical details will also contribute to the spectral analysis of sample covariance matrix

with general elliptical distributions.

Thirdly, in practice, we provide new direction for testing the number of common factors,

which is useful in very general scenarios. The proposed approaches in this paper are accurate

even if the factors are weak. Moreover, we allow the existence of bounded outliers in the

spectrum of the idiosyncratic error covariance matrix. This is a major difference of our

approaches from the existing RMT-based methods. As a sacrifice, we require the eigenvalues

driven by common factors to be diverging, which is more stringent than typical assumptions

in the RMT literature. The reason is that the phase transition boundary after bootstrap

is determined mainly by the order statistics of the bootstrap resampling weights. In other

words, it’s possible to increase or decrease the typical BBP phase transition boundary by

bootstrapping from different distribution families. Therefore, this paper also provides a new

direction for documenting the number of factors with different strength.

Conventions. c denotes a small positive constant varying in different lines. [a] denotes

the largest integer not larger than a. an ≲ bn means an ≤ c−1bn (or an ≤ Op(bn) if an
or bn is random) while an ≍ bn means that c ≤ an/bn ≤ c−1 for sufficiently large n. For a

(Hermitian) matrix A, tr(A) denotes the trace, λi(A) denotes the i-th largest eigenvalue.
d→

and
p→ are for convergence in distribution and probability, respectively. (n∨p) = max{n, p}.

∥ · ∥ and ∥ · ∥F are for spectral and Frobeniuos norms, respectively.

2. Factor model and bootstrap

We consider high-dimensional factor model which can be written in the form of

xij = L
⊤
i fj +ψ

⊤
i ϵj, 1 ≤ i ≤ p, 1 ≤ j ≤ n, (1)
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where Li’s are r-dimensional factor loadings, fj’s are r-dimensional latent factor scores, ψi’s

are p-dimensional deterministic vectors and ϵj’s are p-dimensional idiosyncratic errors. r is

the number of common factors, which is of the major interest in the current paper. The model

can also be written in matrix form as X = LF⊤ +ΨE := AZ, where X = (x1, . . . ,xn) =

(xij)p×n, L
⊤ = (L1, . . . ,Lp), F

⊤ = (f1, . . . ,fn), Ψ
⊤ = (ψ1, . . . ,ψp), Ep×n = (ϵ1, . . . , ϵn),

Ap×(r+p) = (L,Ψ) and Z⊤ = (F,E⊤). Some assumptions are given as follows.

Assumption 1. There exist a constant 0 < c ≤ 1 such that:

(a). F = CF0 for some n×n deterministic matrix C satisfying ∥C∥ ≤ c−1 and n−1∥C∥2F = 1.

The entries of F0 and E are independent (not necessarily identically distributed) real-valued

random variables with mean 0, variance 1 and bounded eighth moments.

(b). r is fixed as min{n, p} → ∞.

(c). ∥Ψ∥ ≤ c−1, λ[cp](ΨΨ⊤) ≥ c, [nλi(L
⊤L)]−1(n ∨ p) log n = o(1) for any 1 ≤ i ≤ r, and

λi(L
⊤L)/λi+1(L

⊤L) ≥ 1 + c for any 1 ≤ i ≤ r − 1.

We assume a separable structure in (1) for the idiosyncratic errors, which is common in

the literature especially when the non-spiked eigenvalues are of concern. Similar assumptions

are found in Cai et al. (2020) and Ke et al. (2021). Assumption 1(a) requires bounded eighth

moments mainly to ensure we can find proper estimators for the asymptotic variances of the

bootstrapped sample eigenvalues. This assumption can be potentially relaxed to bounded

fourth moments using truncation technique as in Cai et al. (2020). We don’t pursue this

direction in the current paper. We assume E to have independent entries but allow the factor

process to be serially dependent under a separable scheme through the matrix C, covering

partially the auto-regressive and moving average processes. The condition n−1∥C∥2F = 1

is for identification. Assumption 1(b) assumes fixed r which is common in the literature,

especially when the target is to determine the number of common factors; see for example

Onatski (2009), Ahn and Horenstein (2013) and Ke et al. (2021).

Assumption 1(c) deserves more explanation. The spectral norm of Ψ is bounded so that

the idiosyncratic errors are asymptotically negligible compared with the common factors.

The condition [nλi(L
⊤L)]−1(n ∨ p) log n = o(1) ensures that the common factors dominate

in the system, which is critical especially under the high-dimensional settings when p ≫ n;

see also Wang and Fan (2017) and Cai et al. (2020). Usually λi(L
⊤L) depends on the

dimension p, thus this condition can also be viewed as a constraint on the growth rates

of n and p. It also shows how we identify a common factor in this paper. When p ≍ n,

we believe that a spiked eigenvalue is driven by a common factor only when it’s diverging

at rate larger than log p, so that it has non-negligible effects on a number of variables in

the system. This condition is slightly more stringent compared with those in the RMT

literature. It should be acknowledged that much of the statistical literature does not require

growing spikes, while applied studies in econometrics usually make stronger assumptions on

the relative growth rate of factor and noise eigenvalues. We follow the latter to ensure that
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large idiosyncratic noise will not be identified as common factor. Consider a toy example

where xij = ϵij ∼ N (0, σ2
i ) independently with σ2

1 = (1+ c)(1+
√
p/n)2 for a constant c > 0

while σ2
i = 1 for i ̸= 1. Then, there is no “common” factor at all although the leading

eigenvalue exceeds the BBP-type phase transition boundary. Assumption 1(c) helps avoid

such mis-specification. The eigenvalues of L⊤L are assumed to be distinct and allowed to

diverge with different rates, so that the corresponding eigenvectors are identifiable.

LetΣ = AA⊤. IfC is the identity matrix, {xj} will be a stationary process such thatΣ is

the population covariance matrix E(x1x
⊤
1 ). Under Assumption 1, Σ has r spiked eigenvalues

significantly larger than the remaining non-spiked ones. Similar property holds for the sample

covariance matrix, making it possible to estimate or test the number of factors. The exact

limiting behavior of the sample eigenvalues is usually complicated and potentially dependent

on unknown parameters. In this paper, we are interested in bootstrapping the observations

(x1, . . . ,xn) and studying the eigenvalues of the bootstrapped sample covariance matrix. A

standard bootstrap procedure resamples the columns of X with replacement. Each column

is chosen with probability n−1 in each run. We repeat the resampling procedure n times

independently to obtain a new p × n matrix. Then, the bootstrapped sample covariance

matrix can be written as

Ŝ = n−1

n∑
j=1

wjxjx
⊤
j = n−1XWX⊤, (2)

where X is the original data and W = diag(w1, . . . , wn) is a diagonal matrix with wj’s being

the corresponding resampling weights. We define two types of bootstrap procedures.

Definition 2.1. We say that Ŝ is from a multiplier bootstrap procedure, if in (2) wj’s are

independent and identically distributed (i.i.d.) from exponential distribution Exp(1). We

say that Ŝ is from a standard bootstrap procedure if w = (w1, . . . , wn) follows n-dimensional

multinomial distribution with n trials and event probabilities (n−1, . . . , n−1).

Under multiplier bootstrap, wj’s are i.i.d. which simplifies the technical proofs. We

use exponential distribution to ensure that Ŝ is semi-positive definite, while our approaches

can be extended to more general distribution families such as Possion. Under standard

bootstrap, wj’s are no longer independent but still identically distributed. The expectation

and covariance satisfy E(wj) = 1, Var(wj) = 1 − n−1, and Cov(wj, wl) = −n−1 for j ̸= l.

In the following, we will study the limiting distributions of both the spiked and non-spiked

eigenvalues of the bootstrapped sample covariance matrix, and accordingly propose test-

based procedures to determine the number of common factors.
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3. Testing with spiked eigenvalues

3.1. Limiting representation

The non-zero eigenvalues of Ŝ are the same as those of its companion matrix, defined by

Ŝ = n−1W1/2Z⊤A⊤AZW1/2. Further define the eigenvalue decomposition

A⊤A = ΓΛΓ⊤ = Γ1Λ1Γ
⊤
1 + Γ2Λ2Γ

⊤
2 , (3)

where Γ = (Γ1,Γ2) = (γ1, . . . ,γr+p) is the eigenvector matrix, Λ = diag(λ1, . . . , λr+p) is

composed of the eigenvalues in descending order. Γ1 and Λ1 are associated with the leading

r eigenvectors and eigenvalues, respectively. Let λ̂i be the ith largest eigenvalue of Ŝ. The

next lemma shows some preliminary properties of λ̂i.

Lemma 3.1. Under Assumption 1, as min{n, p} → ∞ we have (nλi)
−1(n ∨ p) log n = o(1)

and λi/λi+1 ≥ 1 + c for any 1 ≤ i ≤ r while c ≤ λ[cp] ≤ · · · ≤ λr+1 ≤ c−1 for some c > 0.

Further, no matter under the multiplier or standard bootstrap, we always have

λ̂i/λi − 1 = Op

(
(n ∨ p) log n

nλi
+

1√
n

)
, i ≤ r, and λ̂r+1 ≤ Op

(
(n ∨ p) log n

n

)
.

By Lemma 3.1, λ̂i/λi converges to 1 for 1 ≤ i ≤ r. However, the convergence rate can be

very slow and Lemma 3.1 is not very helpful in deriving distributional property. Motivated

by Cai et al. (2020), we define θi as the solution to

θi
λi

=

[
1− 1

nθi

p∑
k=1

λr+k

1− λ−1
i λr+k

]−1

, θi ∈ [λi, 2λi], 1 ≤ i ≤ r.

Under Assumption 1, the existence and uniqueness of θi can be verified easily by the mean

value theorem. Cai et al. (2020) has shown that θi is a closer approximation to the associated

eigenvalue of the sample covariance matrix without bootstrap compared with λi. Under our

settings, to address the effect of bootstrap, let ζ̂i be the solution to

ζ̂i =
1

n

n∑
j=1

wj

[
1− wj

nθi

p∑
k=1

λr+k

1− θ−1
i λr+kζ̂i

]−1

, ζ̂i ∈
[
1

n
trW,

2

n
trW

]
, 1 ≤ i ≤ r.

We remark that ζ̂i is dependent on the random weights wj’s and claim the next lemma.

Lemma 3.2. Under Assumption 1, for 1 ≤ i ≤ r, the solution ζ̂i exists with probability

tending to 1 as min{n, p} → ∞. Moreover, θi/λi = 1 +Op((nλi)
−1trΛ2), and

ζ̂i −
θi
λi

=
1

n

n∑
j=1

(wj − 1) +

(
trΛ2

nλi

)2

× E[w2
1(w1 − 1)] + op(1)×

(
trΛ2

nλi

)2

+ op(
1√
n
).
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Before moving forward, we need the next assumption.

Assumption 2. Assume that for any 1 ≤ i ≤ r, there exists constant c > 0 such that

ξi :=
1

n

n∑
j=1

{ r+p∑
k=1

γ4ik[νjk − 3(E(z2jk))2] + 3[

r+p∑
k=1

γ2ikE(z2jk)]2
}
− 1 ≥ c,

where (γi1, . . . , γi,r+p)
⊤ = γi is the eigenvector defined in (3) and νjk = E(z4jk).

Assumption 2 is a technical condition to ensure that the limiting distributions of λ̂i are

not degenerate. When C = I and xj’s are i.i.d., ξi reduces to
∑r+p

k=1 γ
4
ik(ν1k − 3) + 2, which

is also in Assumption 4 of Cai et al. (2020). It’s notable that ν1k ≥ 1 always holds while∑r+p
k=1 γ

4
ik ≤ (

∑r+p
k=1 γ

2
ik)

2 ≤ 1. Therefore, under such cases, Assumption 2 holds as long as

ν1k ≥ 1 + c or maxk |γik| ≤ 1− c for some c > 0. We have the next theorem.

Theorem 3.3 (Limiting representation). Under Assumptions 1 and 2, as min{n, p} → ∞,

no matter under the standard or multiplier bootstrap, we always have for any 1 ≤ i ≤ r,

λ̂i
θi

− 1 =
1

n
γ⊤
i ZWZ⊤γi −

1

n
trW− θi

λi
+ ζ̂i +Op

(
1√
n

(n ∨ p) log n
nλi

+
1

n

)
+ op

(
p2

(nλi)2

)
. (4)

Based on Lemma 3.2 and Theorem 3.3, one can verify that λ̂i/θi − 1 = Op{[(nλi)−1(n ∨
p)]2 + n−1/2} for any 1 ≤ i ≤ r, which is a faster rate compared with that in Lemma 3.1.

Moreover, the asymptotic distribution of λ̂1 is mainly determined by the right hand side

(RHS) of (4), which depends on both the sample matrix X and the random weights wj’s.

However, the calculations of θi and ζ̂i rely on the population eigenvalues {λk}r+p
k=1, which are

unknown. In real applications, it will be more preferred to study the limiting distribution of

λ̂i conditional on the sample matrix X.

3.2. Conditional on samples

Since θi is unknown but close to λi, a natural idea is to replace it with the ith largest eigen-

value of sample covariance matrix before bootstrap, i.e., n−1XX⊤. Using the decomposition

(3), the non-zero eigenvalues of n−1XX⊤ are the same as those of S̃ = n−1ΓΛ1/2Γ⊤ZZ⊤ΓΛ1/2Γ⊤,

or its companion matrix S̃ = n−1X⊤X. In the current paper, quantities marked by “hat” al-

ways stand for “after bootstrap”, while those marked by “tilde” stand for “before bootstrap”.

We denote the eigenvalues and eigenvectors of S̃ as λ̃i (descending) and ũi respectively, while

the eigenvectors of S̃ are γ̃i. The first step is to investigate the limiting properties of the

quantities λ̃i, γ̃i, and ũi for 1 ≤ i ≤ r.

Lemma 3.4 (Without bootstrap). Under Assumptions 1 and 2, as min{n, p} → ∞, for the

eigenvalues and eigenvectors of S̃ and S̃, we have:
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(a). λ̃i/λi = 1 + op(1) for 1 ≤ i ≤ r while λ̃r+1 = Op(1). Moreover,

√
n

(
λ̃i
θi

− 1

)
=

1√
n

(
γ⊤
i ZZ

⊤γi − n

)
+Op

(
(n ∨ p)
nλi

+
1√
n

)
, 1 ≤ i ≤ r.

(b). For any 1 ≤ i, j ≤ r and i ̸= j, we have

γ⊤
i γ̃j ≤Op

(
p

n
√
λiλj

λi
max{λi, λj}

+

√
λiλj√

n×max{λi, λj}

)
, (γ̃⊤

j γj)
2 = 1 +Op

(
p

nλj
+

1

n

)
.

(c). Write ũ⊤
i = (ũi1, . . . , ũin) and σ̃

2
i =

∑n
j=1 ũ

4
ij. Then, σ̃2

i = n−1(ξi + 1) + op(n
−1) for

any 1 ≤ i ≤ r, where ξi is defined in Assumption 2.

Lemma 3.4 provides comprehensive results on the asymptotic behavior of the spiked

eigenvalues λ̃i for 1 ≤ i ≤ r and the corresponding eigenvectors γ̃i, ũi. The limiting repre-

sentation of λ̃i and the convergence of γ̃i are also shown in Cai et al. (2020), but they haven’t

provided the convergence rates in (b). Denote P∗ as the probability measure conditional on

the sample X. Then, we can define
d∗→,

p∗→, op∗(1) and Op∗(1) accordingly under P∗. Now we

present the limiting distribution of λ̂i/λ̃i for i ≤ r conditional on X.

Theorem 3.5 (Conditional on sample). Suppose that Assumptions 1 and 2 hold as min{n, p} →
∞. Conditional on X, if (nλi)

−1p = o(n−1/4) for some 1 ≤ i ≤ r, under the multiplier boot-

strap, with probability tending to one we have

σ̃−1
i (λ̂i/λ̃i − 1)

d∗−→ N (0, 1). (5)

On the other hand, if n−1/4 = o[(nλi)
−1p], with probability tending to 1 we have

P∗(|σ̃−1
i (λ̂i/λ̃i − 1)| ≤ s) → 0, (6)

for any constant s ∈ R. Similar results to (5) and (6) hold under the standard bootstrap by

replacing σ̃i with
√
σ̃2
i − n−1.

Remark 1. By “probability tending to one” hereafter, we mean that there exist a series of

events {Ξn} holding with probability tending to one under the measure {Xn}, such that (5)

and (6) hold conditional on these events.

The condition (nλi)
−1p = o(n−1/4) in Theorem 3.5 is satisfied when λi is sufficiently large.

Under such cases, the spiked sample eigenvalues after bootstrap always converge weakly

to Gaussian limits after proper scaling and centralization, no matter under the multiplier

ot standard bootstrap. The only difference between the two bootstrap schemes is on the

asymptotic variance. This is because the resampling weights wj’s are weakly dependent under
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the standard bootstrap. It’s worth noting that the scaling and centralization parameters in

(5) totally depend on the sample matrix X, which is observable. Moreover, the condition

(nλi)
−1p = o(n−1/4) is almost sharp according to (6).

3.3. Bias of bootstrap

As a byproduct, Theorem 3.5 also helps in understanding why the bootstrap technique

may fail to approximate the distribution of sample eigenvalues, shown in Karoui and Purdom

(2019) and Yao and Lopes (2021). Following Yao and Lopes (2021), we compare the limiting

distributions of λ−1
i (λ̂i − λ̃i) and λ

−1
i (λ̃i − λi). We remark that in their settings, the leading

r spiked eigenvalues λi are of constant order while the remaining ones are asymptotically

vanishing. It’s parallel to a spiked covariance model by rescaling the eigenvalues. This is

the reason why we add the scaling coefficient λ−1
i . The following corollary quantifies the

difference between the two limiting distributions.

Corollary 1 (Bias of bootstrap). Suppose that Assumptions 1 and 2 hold as min{n, p} → ∞.

For any constant s ∈ R and 1 ≤ i ≤ r, under the standard bootstrap, we have

P∗
(√

n× λ−1
i (λ̂i − λ̃i) ≤ s

)
= FG

(
s√
ξi

−
√
n

ξi
× tr2Λ2

(nλi)2
× E[w2

1(w1 − 1)]

)
+ op(1), (7)

where FG(·) is the cumulative distribution function (CDF) of standard Gaussian variable.

(7) also holds under the multiplier bootstrap by replacing ξi with ξi + 1. On the other hand,

without bootstrap, we have

P
(√

n× λ−1
i (λ̃i − λi) ≤ s

)
= FG

(
s√
ξi

−
√
n

ξi

trΛ2

nλi

)
+ o(1). (8)

By Corollary 1, the standard bootstrap procedure is asymptotically consistent as long

as (nλi)
−1trΛ2 = o(n−1/2), because the two tail probabilities are asymptotically equal.

This condition is slightly sharper than that in Yao and Lopes (2021), where they require

(nλ1)
−1tr(Σ) = o(n−1/2). More importantly, Corollary 1 provides asymptotic bias for the

bootstrap procedures when the factors are weak. For instance, when n−3/4p≪ λi ≪ n−1/2p,

P∗(
√
n× λ−1

i (λ̂i − λ̃i) ≤ s)− P(
√
n× λ−1

i (λ̃i − λi) ≤ s) = FG(sξ
−1/2
i ) + op(1). (9)

If the common factors are extremely weak, i.e., λi ≪ n−3/4p, Corollary 1 indicates that the

two tail probabilities will both converge to 0 for any s ∈ R. However, the coherence of

the two tail probabilities under such cases doesn’t mean that the bootstrap can accurately

approximate the limiting distribution of λ̃i. Another interesting finding is that the multiplier

bootstrap is always biased, mainly because the asymptotic variances of the two limiting

distributions don’t match.
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3.4. Testing procedure

We now provide the testing procedure to determine the number of common factors. By

Theorem 3.5, the asymptotic distribution in (5) holds when the factors are strong and r ≥ i.

Therefore, we consider the null hypothesis and the alternative one as

H0i : r ≥ i, v.s. H1i : r < i, for some i ≥ 1. (10)

We reject the null hypothesis H0i as long as σ̃−1
i |λ̂i/λ̃i − 1| ≥ F−1

G (1 − α/2) under a prede-

termined significance level α, where F−1
G (·) is the quantile function of the standard normal

distribution. By letting i = 1, we can test the existence of common factors.

Furthermore, in order to determine the number of factors r, we implement the testing

procedure sequentially as in Onatski (2009). Specifically, for i = 1, . . . , rmax where rmax is

a predetermined upper bound (fixed), we sequentially calculate σ̃−1
i |λ̂i/λ̃i − 1| until H0i is

rejected at some i = k. Then, r̂ = k − 1 is the estimated number of common factors. The

significance level α is usually small in order to control the type one error. Our simulation

studies show that the results are not sensitive to the value of α for α ∈ [0.01, 0.1]. However,

in finite samples, the above procedure tends to overestimate the number of factors when

p/n is small. To improve the performance, we propose to slightly modify the criterion.

Specifically, if p/n < 0.5, we reject H0i when σ̃−1
i |(λ̂i + cn)/λ̃i − 1| ≥ F−1

G (1 − α/2) for

some cn = Op(n
−1/2), to enhance the power of the tests in (10) for i > r. In this paper,

cn = 2σ̃2
0(1 +

√
p/n)2n−1/2, where σ̃2

0 = (np)−1∥X∥2F .

4. Testing with non-spiked eigenvalues

4.1. Limiting behavior of largest non-spiked eigenvalue

Testing with non-spiked eigenvalues is another important direction for determining the

number of common factors; see Onatski (2009), Cai et al. (2020) and Ke et al. (2021).

Without bootstrap, the largest non-spiked eigenvalues of the sample covariance matrix have

been shown to follow the Tracy-Widom law. However, after bootstrap, the limiting behavior

of λ̂i for i > r remains an open problem. In this section, we fill this gap under the multiplier

bootstrap. For the standard bootstrap, it’s more challenging because wj’s are dependent

and the marginal distribution is discrete. We leave it as future work.

Theoretical analysis of the non-spiked sample eigenvalues is much more challenging be-

cause there is no clear gap between λr+1, . . . , λr+p. Similarly to Cai et al. (2020), we need

more assumptions. Let Σ2 = Γ2Λ2Γ
⊤
2 and mΣ2(z) be the unique solution in C+ to

mΣ2(z) = − 1

z − n−1tr[{I+mΣ2(z)Σ2}−1Σ2]
, z ∈ C+.
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Then, mΣ2(z) is the limit of the Stieltjes transform associated with n−1Z⊤Σ2Z, and cor-

responds to a probability function Fm(·). Let λ+ = inf{x ∈ R : Fm(x) = 1} and d+ =

− limz∈C+→λ+
mΣ2(z). See Assumption 8 in Cai et al. (2020) for more details on Fm(·), λ+

and d+, which motivates us to propose the next assumption.

Assumption 3. Further assume that:

(a) The empirical spectral distribution of Σ2 converges to some probability distribution

FΣ2 not degenerate at 0.

(b) There are at most finite number of eigenvalues λi satisfying lim supn→∞ λid+ ≥ 1.

(c) p/n = ϕn → ϕ ∈ (0,∞) as min{n, p} → ∞ for some constant ϕ while the moments

supi,j E|zij|q <∞ for any integer q > 0.

Assumption 3(a) ensures the existence of non-degenerate mΣ2(z) and FΣ2 . Assumption

3(b) is actually more general than Assumption 8 in Cai et al. (2020), where lim supn→∞ λr+1d+ <

1. Assumption 3(b) is equivalent to allowing a finite number of eigenvalues of Σ2 to be sep-

arated from the support of FΣ2 , as long as they are still bounded as required in Assumption

1(c). In other words, we allow the existence of outliers in the spectrum of idiosyncratic error

covariance matrix. In econometrics, these outliers may exist due to some large marginal

variances or the cross-sectional correlations of the idiosyncratic errors. As claimed in the

introduction, this is also a major difference between our bootstrapped method and those

based on traditional RMT, such as Onatski (2009), Cai et al. (2020) and Ke et al. (2021).

Such a refinement mainly benefits from the largest resampling weight, which is of order log n

thus reducing the effects of bounded outliers in Σ2. Assumption 3(c) requires that p and n

are of the same order, which is a common assumption in the RMT literature. The moment

condition can be potentially relaxed, which is not the major concern of the current paper.

Like in Section 3, we need to find a proper approximation to λ̂r+1. Let Tn be the set of

all permutations of {1, . . . , n}. Then, the orders of {w1, . . . , wn} follow uniform distribution

on Tn. We use {t1, . . . , tn} ∈ Tn to denote the orders such that wt1 ≥ · · · ≥ wtn . We define

λ0 as the unique solution to the following equation:

1

wt1

=
1

n

p∑
i=1

λr+i

[
λ0 −

λr+i

n

n∑
j=2

wtj

1− wtj/wt1

]−1

, λ0 ∈
[
λr+1

n

n∑
j=2

wtj

1− wtj/wt1

,∞
)
. (11)

The definition of λ0 is motivated by Theorem 1.1 in Couillet and Hachem (2014) and (2.10)

in Yang (2019). We start with the simple case where r = 0. That is, X = ΨE and λ̂r+1

is equal to the largest eigenvalue of n−1Σ
1/2
2 EWE⊤Σ

1/2
2 , where Σ2 = Γ2Λ2Γ

⊤
2 = Ψ⊤Ψ.

Lemma 4.1 below will indicate that λ0 is a good approximation to λ̂r+1.

Lemma 4.1. Under Assumptions 1 and 3, if r = 0, we have

√
n(λ̂r+1/λ0 − 1) = n−1/2(ϕnλ̄)

−1(x⊤
t1
xt1 − pλ̄) + op(1),
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as n→ ∞ under the multiplier bootstrap, where ϕn = p/n and λ̄ = p−1
∑p

i=1 λr+i.

Lemma 4.1 indicates that the ratio λ̂r+1/λ0 converges to 1 with rate n−1/2, while λ0
is random and dependent on the resampling weights wj’s. To conclude the asymptotic

distribution of λ̂r+1, it suffices to discuss the fluctuation of λ0. See the next lemma.

Lemma 4.2. Under the same assumptions as in Lemma 4.1, as n→ ∞ we have

λ0 =ϕnλ̄wt1 + (nϕnλ̄)
−1

p∑
i=1

λ2r+i +Op(
1

log n
),

=⇒ λ̂r+1 =ϕnλ̄wt1 + (nϕnλ̄)
−1

p∑
i=1

λ2r+i +Op

(
1

log n
+

log n√
n

)
.

Therefore, as n→ ∞,

P
(
λ̂r+1 − (nϕnλ̄)

−1
∑p

i=1 λ
2
r+i

ϕnλ̄
− log n > x

)
→ exp(− exp(−x)), x ∈ R. (12)

(12) also holds with probability tending to one if replacing P with P∗.

By Lemmas 4.1 and 4.2, the limiting distribution of the largest non-spiked eigenvalue

after bootstrap is determined by the order statistics of resampling weights. More precisely,

it depends on the largest weight wt1 , which converges weakly to the Gumbel distribution

after centralization and scaling. This is consistent with the conclusion in Kwak et al. (2021),

although the limiting distributions are not the same. The Tracy-Widom law in traditional

RMT doesn’t hold anymore, because the exponential distribution is convex at the edge with

unbounded support. However, Lemmas 4.1 and 4.2 are only for the special case r = 0.

Theorem 4.3 below provides the results for general cases where r ≥ 0.

Theorem 4.3. Under Assumptions 1 and 3 and the multiplier bootstrap, as n → ∞, for

any fixed r ≥ 0 and small constant c > 0, it holds that λ̂r+1 − φ̂1 = Op(n
−2/3+c), where φ̂i is

the ith largest eigenvalue of n−1Σ
1/2
2 ZWZ⊤Σ

1/2
2 .

φ̂1 is from the model without common factors. When the entries of F are serially inde-

pendent, the results in Lemmas 4.1 and 4.2 hold directly for φ̂1. If F = CF0 and Assumption

1 holds, this will only generate an error of rate Op(n
−1/2+c) to φ̂1 for arbitrary small c > 0,

which has negligible effect on its asymptotic distribution. Then, we conclude that Lemmas

4.1 and 4.2 also hold for the general factor models with r ≥ 0.

4.2. Testing procedure

One can not test the number of common factors directly based on Lemma 4.1, Lemma

4.2 or Theorem 4.3. Firstly, the centralization and scaling parameters in (12) rely on the
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unknown population eigenvalues λi’s. Secondly, the convergence rates in Lemmas 4.1 and

4.2 are actually very slow. In finite samples, the error is non-negligible and the theoretical

critical values are not reliable. In the following, we fix the two problems by repeating the

bootstrap procedure and using approximated critical values.

When testing with non-spiked eigenvalues, the null hypothesis will be different. Motivated

by Onatski (2009), consider the null hypothesis and the alternative one as

H∗
0i : r = i− 1, H∗

1i : r ≥ i, for some i ≥ 1. (13)

Then, under H∗
0i, Lemma 4.2 will hold for λ̂i, which is at most of order log n. On the

contrary, under H∗
1i, Lemma 3.1 shows that λ̂i ≍ λi ≫ log n. Therefore, one may reject the

null hypothesis H∗
0i as long as λ̂i > cα for some critical value cα. Our target is to provide a

reasonable approximation to cα given significance level α ∈ (0, 1).

By Theorem 4.3, under H∗
0i, the asymptotic distribution of λ̂i will be exactly the same as

that of φ̂1. If Σ2 is given, the limiting distribution of φ̂1 can be approximated by a standard

Monte Carlo method. In fact, we don’t need to know Σ2 exactly. Given any fixed integer

k ≥ 0, define λ
(k)
0 as the solution to

1

wt1

=
1

n

p∑
i=k+1

λr+i

[
λ
(k)
0 − λr+i

n

n∑
j=2

wtj

1− wtj/wt1

]−1

, λ
(k)
0 ∈

[
λr+k+1

n

n∑
j=2

wtj

1− wtj/wt1

,∞
)
.

That is, we remove the leading k eigenvalues λr+1, . . . , λr+k from Σ2. It’s not hard to

verify λ
(k)
0 − λ0 = Op(n

−1+c) for any constant c > 0. Therefore, if we define Σ
(k)
2 =∑p

i=k+1 λr+iγr+iγ
⊤
r+i, the largest eigenvalue of n

−1(Σ
(k)
2 )1/2ZWZ⊤(Σ

(k)
2 )1/2 will have exactly

the same limiting distribution as that of φ̂1. In other words, if we remove the leading k eigen-

values from the population covariance matrix Σ for some constant k ≥ r, the asymptotic

distribution of the largest non-spiked eigenvalue will not change. Empirically, the population

covariance matrix is unknown, so we implement this step on the sample covariance matrix

S̃ or directly on X, illustrated in Algorithm 1.

Algorithm 1 Find limiting distribution for φ̂1

Require: data matrix Xp×n, a fixed rmax, number of Monte Carlo experiments R.

Ensure: approximation to the limiting distribution of φ̂1.

1: Do Singular-Value-Decomposition for X as X = UxDxVx =
∑min{n,p}

i=1 dx,iux,iv
⊤
x,i. Re-

move the leading rmax singular values and define X̃ =
∑min{n,p}

i=rmax+1 dx,iux,iv
⊤
x,i.

2: For j = 1, . . . , R, generate w1, . . . , wn i.i.d. from exponential distribution Exp(1). Cal-

culate the largest eigenvalue of n−1X̃WX̃⊤, denoted as φ̂j
1.

3: Output the empirical distribution of {φ̂j
1}1≤j≤R.
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With Algorithm 1, we reject the null hypothesis H∗
0i as long as λ̂i > ĉ1−α, where ĉ1−α

is the (1 − α)th sample quantile of {φ̂j
1}1≤j≤R. By letting i = 1, we can test the existence

of factors. On the other hand, in order to determine the number of common factors, it’s

not necessary to use the sequential tests. Since the eigenvalues are in descending order,

we can use the same thresholding approach as in Onatski (2010), Cai et al. (2020) and Ke

et al. (2021) by simply defining r̂ =
∑rmax

i=1 I(λ̂i > ĉ1−α), where I(·) is the indicator function.
In finite samples, the outputted φ̂j

1’s from Algorithm 1 tend to be smaller than the real

φ̂1, because we have deleted more singular values than needed. In real applications, the

procedure can be implemented recursively by updating rmax with r̂ obtained from the last

step until convergence. The reported results in the numerical and empirical studies are from

the recursive procedure.

5. Decision rule

The proposed approaches to determining r are based on the bootstrapped sample eigen-

values λ̂i’s, whose limiting distributions are mainly dependent on the randomness of wj’s.

To obtain λ̂i, so far we have only considered implementing the bootstrap procedure once.

As a randomized approach, the result can be unstable especially when the sample size n is

small. Due to the randomness of wj’s, people may report different conclusions even if they

are implementing exactly the same procedure on the same data. In fact, if infinite users

conduct the test on the same data, the reported p-values will be uniformly distributed on

[0, 1]. See also the criticism in Geyer and Meeden (2005) and He et al. (2021). In statistics,

a common method to improve the stability is to conduct the bootstrap more times.

We start with the sequential test procedure with spiked eigenvalues in Section 3. Recall

the hypotheses in (10). Given i, we independently repeat the bootstrap resampling procedure

B times, obtain B sample eigenvalues {λ̂bi}Bb=1 and define

Ds
i (α,B) = B−1

B∑
b=1

I{|σ̃−1
i (λ̂bi/λ̃i − 1)| ≤ F−1

G (1− α/2)}.

Then, conditional on samples,Ds
i (α,B) can be regarded as the average of some i.i.d. Bernoulli

random variables. Obviously, as B → ∞,

Ds
i (α,B) → P∗{|σ̃−1

i (λ̂1i /λ̃i − 1)| ≤ F−1
G (1− α/2)}. (14)

Based on Theorems 3.5, under H0i we have Ds
i (α,B) → 1 − α if (nλi)

−1p = o(n−1/4) while

Ds
i (α,B) → 0 under H1i for any α ∈ (0, 1) as (n,B) → ∞ with a fast rate of

√
B. Therefore,

any constant in (0, 1 − α) can be a good threshold to distinguish H0i from H1i. We reject

H0i as long as Ds
i (α,B) ≤ Cth for some predetermined Cth ∈ (0, 1 − α). This is no longer

a regular test. Instead, we call it a decision rule for the number of common factors. As
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stated by Geyer and Meeden (2005), it’s sufficient to report Ds
i (α,B) in real applications.

The selection of Cth depends on the users’ tolerance of under/over estimation errors, quite

similar to the determination of significance level in a standard test. Large Cth is in favor of

H1i but with higher risk of underestimating the number of common factors. Small Cth will

lead to the opposite result. In this paper, we always use the middle value Cth = (1− α)/2.

The decision rule is also applicable to the thresholding method in Section 4 by defining

Dns
i (α,B) = B−1

B∑
b=1

I(λ̂bi < ĉ1−α), r̂ =
rmax∑
i=1

I{Dns
i (α,B) < Cth},

where ĉ1−α is given by Algorithm 1.

In addition to de-randomizing the results, the decision rule is also very important in

improving the accuracy of r̂. For the tests with spiked eigenvalues, the condition (nλi)
−1p =

o(n−1/4) in Theorem 3.5 indicates that the size and power may be unsatisfactory under weak

factors or strong noises. Equivalently, Ds
i (α,B) may not be very close to 1−α and 0 under

the two hypotheses. However, the conclusion from the decision rule will not be affected as

long as Ds
i (α,B) is still well separated by Cth. In other words, the decision rule allows more

errors in the individual test. On the other hand, for the tests with non-spiked eigenvalues,

it’s similar. The approximated critical value ĉ1−α may not be accurate in finite samples,

especially when α is small or rmax is large. Then, Dns
i (α,B) may not be very close to 1− α

or 0, but the determined factor number can be still very accurate. The empirical effects of

the decision rule will be further studied by simulating examples in the Supplement.

Before ending this section, we discuss the computational complexity of the proposed

methods. For the tests with spiked eigenvalues, computing λ̃i’s and σ̃i’s typically costs

O(nprmax) operations. The calculation of λ̂i’s will cost additional O(nprmax) operations if

we ignore the generation of resampling weights wj’s. Therefore, the total computational

cost is O(nprmax) if the bootstrap is implemented only once, which is comparable to the

methods in the literature. When the decision rule is applied, the computational cost grows

to O(Bnprmax). For the approach based on non-spiked eigenvalues, the major computational

cost is from Algorithm 1. Step 1 of Algorithm 1 needs to specify the leading rmax singular

values and vectors of X, which requires O(nprmax) operations. Step 2 will cost additional

O(nprmax) operations. Then, the total computational cost is O(Rnprmax). If the decision

rule is applied, the total computational cost will be O((R +B)nprmax).

6. Numerical studies

In the simulation, we generate data according to

X = ϑLΦF⊤ + E. (15)
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In (15), ϑ ≥ 0 is a parameter controlling the strength of common factors. When ϑ = 0,

no common factors exist and X is from pure noise process. L is the p × r loading matrix

with r = 3, whose entries are from i.i.d. N (0, 1). Φ = diag(1.5, 1.2, p−a) is a diagonal

matrix to ensure the spiked eigenvalues are not identical so that Assumption 1(c) holds,

where 0 ≤ a < 0.5 is a parameter controlling the strength of the third common factor. By

letting a > 0, we allow the existence of weak factor. F⊤ = (f1, . . . ,fn) is the factor score

matrix from auto-regressive (AR) process, i.e., ft = βfft−1 + ht with ht
i.i.d.∼ N (0, Ir), so

that Assumption 1(a) holds. According to our assumptions, the idiosyncratic error matrix

E = (ϵ1, . . . , ϵn) is generated by ϵt
i.i.d.∼ N (0,Σϵ), where all the diagonal entries of Σϵ are

equal to 1 while the off-diagonal entries are equal to ρ/p for some constant ρ > 0. The

parameter ρ controls the cross-sectional correlations of the idiosyncratic errors. When ρ is

large, there will be an outlier in the eigenvalues of idiosyncratic error covariance matrix,

which is not regarded as being driven by common factors although it may exceed the BBP

phase transition boundary.

6.1. Determining the number of common factors

In total, we have proposed three methods to determine the number of factors: test with

Spiked eigenvalues, Multiplier bootstrap and Decision rule (r̂SMD), test with Spiked eigenval-

ues, Standard bootstrap and Decision rule (r̂SSD), and Eigenvalue Thresholding with Mul-

tiplier bootstrap and Decision rule (r̂ETMD). To implement the procedures, we let rmax = 8,

α = 0.05, B = 200 and R = 400. More numerical studies in the Supplement indicate that

the proposed methods are not sensitive to the above tuning parameters. We will compare our

methods with some state-of-the-art approaches mentioned in the introduction: the informa-

tion criterion in Bai and Ng (2002) with ICp2 rule (r̂IC) and its improved version by Alessi

et al. (2010) (r̂ABC), the eigenvalue ratio approach in Ahn and Horenstein (2013) (r̂ER), the

sequential tests in Trapani (2018) (r̂TRAP ) and Onatski (2009) (r̂ON), the eigenvalue thresh-

olding methods in Onatski (2010) (r̂ED), Cai et al. (2020) (r̂ETC), Ke et al. (2021) (r̂ETZ),

and the deterministic parallel analysis by Dobriban and Owen (2019) (r̂DDPA+). For data

generating, we set βf = 0.2 and try different combinations of (ϑ, a, ρ) as n = p grows. Table

1 reports the averaged estimations of the factor number over 500 replications by different

methods under diversified settings, while in the Supplement we report the corresponding

proportions of under and over estimation.

Table 1 shows clearly the advantage of the proposed approaches over the competitors.

Overall speaking, the proposed approaches can accurately determine the number of common

factors for a wide range of parameter settings, as long as n is sufficiently large. r̂ETMD is

slightly more reliable than r̂SMD and r̂SSD, especially when ρ or a > 0 and n, p are small.

The competitors perform unsatisfactorily. Methods based on very large eigenvalue gap, such

as r̂IC , r̂ER and r̂TRAP , may lose accuracy significantly when a > 0, i.e., weak factor exists,

leading to underestimation. It should be acknowledged that r̂IC and r̂TRAP will also work
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Table 1: The averaged estimations of factor number by different approaches over 500 replica-
tions. The true number of factors is r = 3 when ϑ ̸= 0.

ϑ ρ a n = p r̂SMD r̂SSD r̂ETMD r̂IC r̂ABC r̂ER r̂TRAP r̂ON r̂ED r̂ETC r̂ETZ r̂DDPA+

0 0 0 100 0 0 0 0 0 0 0 0.036 0.038 0.002 0.012 0
0 0 0 200 0 0 0 0 0 0 0 0.054 0.05 0 0 0
0 0 0 300 0 0 0 0 0 0 0 0.032 0.024 0 0.006 0
0 3 0 100 0.29 0.266 0 0 0.218 0 0 0.06 1.008 0.778 0.982 0.95
0 3 0 200 0.002 0.002 0 0 0.15 0 0 0.074 1.028 0.894 1.004 0.988
0 3 0 300 0 0 0 0 0.124 0 0 0.112 1.018 0.966 1 0.998
1 0 0 100 3 3 3 3 3 3 2.296 3.028 3.01 3 3 2.96
1 0 0 200 3 3 3 3 3 3 3 3.026 3.014 3.002 3 2.976
1 0 0 300 3 3 3 3 3 3 3 3.052 3.014 3 3 2.996
1 0 0.25 100 3 3 2.992 2.016 3 2 1.98 2.704 3.01 3 3 2.988
1 0 0.25 200 3 3 3 2.024 3 2 2 3.026 3.03 3 3.002 2.988
1 0 0.25 300 3 3 3 2.852 3 2 2 3.04 3.018 3 3 3
1 3 0 100 3.538 3.454 3 3 3.224 3 2.208 3.056 3.972 3.786 3.884 3.93
1 3 0 200 3.002 3 3 3 3.124 3 3 3.092 4.01 3.914 3.996 3.964
1 3 0 300 3 3 3 3 3.086 3 3 3.112 4.006 3.956 4 3.994
1 3 0.25 100 3.6 3.506 2.998 2.008 3.262 2 1.98 1.852 3.96 3.794 3.892 3.934
1 3 0.25 200 3.006 3.002 3 2.024 3.14 2 2 2.32 4.01 3.88 3.998 3.972
1 3 0.25 300 3 3 3 2.848 3.112 2 2 2.788 4.006 3.952 4 4

under weak factors with proper tuning parameters. However, it remains a challenge to select

parameters for them, especially in real applications. For fair comparison, we don’t pay

much attention to tuning. The improved information criterion r̂ABC performs more reliably

than r̂IC when a > 0, but slightly less accurately when a = 0 due to the selection bias

of an extra tuning parameter. The performance of r̂ON is not bad in most scenarios, but

there is always a positive proportion of under or over estimation and it requires larger n

to converge. This is because the sequential tests in Onatski (2009) are implemented with a

positive significance level α = 0.01. Our methods will be less affected by α after applying the

decision rule. The eigenvalue thresholding methods, such as r̂ED, r̂ETC and r̂ETZ , are more

likely to overestimate r when ρ > 0, i.e., the idiosyncratic error covariance matrix contains

an outlier eigenvalue. These methods will regard the outlier as a new factor. Such a property

can be appealing in some applications, but in factor models the outlier may not add sufficient

explanatory power besides resulting in more computational burden and potential errors. The

deterministic parallel analysis r̂DDPA+ performs similarly to the eigenvalue thresholding ones,

mainly because it’s also based on the RMT. In conclusion, the proposed methods, especially

r̂ETMD, perform convincingly and reliably in very general scenarios.

6.2. Sensitivity to data generating parameters

We further compare the performance of the above methods under more scenarios, by

considering a wider range of parameter settings for data generating. This is also helpful in

understanding when the proposed methods will fail to work. In Table 1, the benchmark

setting will be n = 200, p/n = ϕ = 1, ϑ = 1 , ρ = 0 and a = 0. We will change one of

(ϕ, ϑ, ρ, a) but fixing the others in each experiment, to investigate whether the performance

of the methods is sensitive to the data generating parameters. The proportions of exact

estimation over 500 replications by different methods are plotted in Figure 1 under various
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parameter settings. For better illustration, we only show the results of r̂SMD, r̂ETMD, r̂ABC ,

r̂ON and r̂DDPA+ , because the remaining competitors perform either comparably or worse in

Table 1, while r̂SSD is always very close to r̂SMD.
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Figure 1: The proportions of exact estimation of r over 500 replications by different methods
with various data generating parameters.

In Figure 1(a), all methods are very robust to the parameter ϕ. r̂DDPA+ performs the

best when the factors are weak (small ϑ or large a), but losing accuracy significantly when

ρ is large. On the contrary, r̂ETMD is the most stable when the noises have strong cross-

sectional dependence, but less reliable under weak factors. From the figures, we can see that

no method can always outperform the others, which is understandable in finite samples due

to the ambiguity between weak factors and strong idiosyncratic errors. At least, we can

conclude that the proposed methods provide new direction for determining the number of

common factors, and perform comparably and stably under most scenarios.

7. Real data example

We use the proposed approaches to analyze a financial data set, which is an open re-

source from Kenneth R. French’s web page at http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french. It contains monthly returns of 100 portfolios formed on capital size

and book-to-market ratio. We focus on the period from January-1964 to December 2022. We

standardize the return series one by one and impute missing values by linear interpolation

(missing rate 0.23%), leading to a data matrix Xp×n with p = 100 and n = 708.

Figure 2(a) shows the eigenvalues of the sample covariance matrix associated with X.

There is one extremely large eigenvalue, indicating the existence of at least one powerful

common factor. The second and third largest eigenvalues also deviate slightly from the bulk,

but they are much smaller than the first one. We use the proposed three approaches to

determine the number of common factors. The estimated factor numbers and the compu-

tational costs (in seconds) are shown in Table 2, including the results of competitors from

the literature. The tuning parameters are the same as those in Table 1. The proposed three
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methods, r̂SMD, r̂SSD, r̂ETMD and two competitors r̂IC , r̂TRAP output the same result that

r̂ = 3. r̂ER and r̂ON only report the existence of one factor. r̂ABC , r̂ED and r̂DDPA report 4

factors while r̂ETC and r̂ETZ report even more factors. The results are consistent with our

findings from the numerical studies. In terms of computation, the proposed r̂SMD and r̂SSD
are moderately expensive. r̂ETMD and r̂ETZ are more costly due to the additional bootstrap

step to obtain the approximated critical value.
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Figure 2: Figures for the Fama-French portfolio data set: (a) eigenvalues of sample covariance
matrix. (b) multiple correlation coefficients between the common factors from the data set and
the market risk factor (Mkt − RF), SMB and HML, respectively as r̂ increases. (c) boxplots of
the explanatory power (adjusted R-squared) to the 100 return series when new factors come into
system. (d) out-of-sample imputing error (RMSE) as r̂ grows.

Table 2: Estimated number of common factors and the computational cost (in seconds) for the
Fama-French portfolio return data set by different methods.

r̂SMD r̂SSD r̂ETMD r̂IC r̂ABC r̂ER r̂TRAP r̂ON r̂ED r̂ETC r̂ETZ r̂DDPA

r̂ 3 3 3 3 4 1 3 1 4 7 6 4
Cost (s) 1.035 0.961 6.276 0.029 0.261 0.024 0.052 0.335 0.027 0.057 9.961 0.040

It’s well-known in finance that the return of a portfolio is potentially driven by the Fama-

French 3 factors, i.e., market risk factor, SMB factor and HML factor, which is consistent

with the number of factors estimated by the proposed methods. To check this, we calculate

the multiple correlation coefficient (MCC) between the factor score series and each of the

Fama-French 3 factors. The factor scores are estimated by PCA given r̂ while the monthly

returns of the Fama-French 3 factors are provided by Kenneth’s web page. Figure 2(b) shows

the respective MCCs with r̂ growing. It’s seen that the leading three factors from this data

set are highly-correlated with the Fama-French 3 factors, while adding the fourth factor only

slightly increase the MCC with SMB.

Next, we investigate how new factors contribute to explaining the variation of the return

series. For each series, given r̂, we regress the portfolio return on the estimated factor

scores, and use the increased adjusted R-squared to represent the explained variation when

20



more factors are used in the regression. Figure 2(c) shows the boxplots of the increased

explanatory power to the 100 return series as r̂ grows. It’s seen that the explanatory power

of the third factor is non-negligible, while the gain from the fourth factor is minor.

Lastly, we verify how new factors help in imputing missing values. We randomly select

50% of the portfolios, denoted by a set P , and 50% of the time periods, denoted by a set N .

We take xij as missing when i ∈ P and j ∈ N . Borrowing the idea from Bai and Ng (2021),

we first use {xij, j ̸= N} to estimate the factor loading space L̂ by PCA given r̂, and then

estimate F̂ based on {xij, i ̸= P} and L̂. The missing entries are imputed by x̂ij = L̂
⊤
i f̂j for

i ∈ P and j ∈ N . The out-of-sample imputing error is calculated in terms of Root of Mean

Squared Error (RMSE). Because the missing set is selected randomly, we repeat the above

procedure 500 times and report the mean of RMSE in Figure 2(d) to reduce sampling bias.

It’s shown that the imputing error is minimized at r̂ = 4. However, the improvement from

r̂ = 3 to r̂ = 4 is minor.

In conclusion, we believe that r̂ = 3 or r̂ = 4 will be the reasonable decision for this

data set. However, the gain from the fourth common factor is relatively minor in the above

experiments. r̂ = 3 might be a more suitable choice, which is also consistent with the asset

pricing theory. In the Supplement, we analyze another real data set in macroeconomics,

where r̂SMD, r̂SSD and r̂ETMD sill report the same and reasonable result, but r̂IC and r̂TRAP

lead to underestimation of the factor number. The proposed three methods are not sensitive

to tuning parameters in both examples.

8. Conclusion and discussion

The current paper contributes to understanding the effects of bootstrap to the eigenvalue

distribution of sample covariance matrix under high-dimensional factor models or spiked co-

variance models. It also contributes to the literature of determining the number of common

factors or spikes. In the current paper, we require the spiked eigenvalues driven by common

factors to be diverging, which is more stringent than typical assumptions in the literature

of BBP phase transition; see Bloemendal et al. (2016). One reason is that the bootstrap

procedure changes the phase transition boundary. A novel and interesting finding is that

the exact phase transition boundary seems to mainly depend on the order statistics of the

bootstrap resampling weights. By bootstrapping from different distributions, it’s possible

to increase or decrease the typical BBP phase transition boundary. To verify this, in the

Supplement, we have done more simulation studies on the performance of r̂ETMD by boot-

strapping from more general distribution families such as Poisson(1). It shows that the

bootstrap procedure still works, but with different requirement on the strength of common

factors. In other words, the bootstrap procedure provides a new direction for documenting

the number of factors with different strength. We are interested in studying the exact phase

transition boundary under the bootstrap framework with general resampling weights. We
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would also like to relax the constraint on independent idiosyncratic errors and study more

general time series settings. It’s also of interest to consider the sample correlation matrix

instead of covariance matrix after bootstrap using similar techniques in Bao (2019), which

usually possesses scale invariant property. We leave these as future works.
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10. Supplementary material

The supplementary material is composed of five sections. Section A provides additional

simulation results and real data analysis. Section B proves the theoretical results in Section

3 of the main paper, corresponding to the test with spiked eigenvalues. Section C contains

some useful technical lemmas used in Section B. Section D provides preliminary definitions

and technical lemmas for the results in Section 4 of the main paper, corresponding to the test

with non-spiked eigenvalues. Section E completes the proof. In the proof, ∥A∥ =
√
λ1(AA⊤)

denotes the spectral norm and ∥A∥F =
√

tr(AA⊤) denotes the Frobenius norm. diag(A) is

the diagonal matrix whose diagonal elements are the same as those of A. c and C indicate

some small and large constants which may vary in different lines, respectively.

A. Additional simulation results and real data analysis

A.1. Simulation: bootstrap from more distribution families

Lemma 4.2 in the main paper has indicated that λ̂r+1 depends on the order statistics of

the bootstrap resmapling weights wj’s under the multiplier bootstrap scheme. When wj
i.i.d.∼

N (0, 1), w(1) follows the Gumbel distribution and diverges with rate log n. This is also one of

the reasons why we require the eigenvalues driven by common factors to be diverging, while

this assumption is not proposed in the literature of typical BBP-type phase transition. In

other words, the bootstrap procedure will change the phase transition boundary. As claimed

in the main paper, the proposed methods can be naturally generalized by bootstrapping

from other distributions. We verify this argument in the following experiment.

We mainly focus on r̂ETMD to avoid the calculation of asymptotic variances for r̂SSD and

r̂SMD. Instead of bootstrapping fromExp(1), now we will also try Poisson(1), Uniform(0.5, 1.5)

and X 2(1) in Algorithm 1. To see how the bootstrap resampling weights affect the phase tran-

sition boundary, we slightly modify the data-generating parameters in Figure 1(b), where

22



the data are from factors plus i.i.d. noises. To be specific, we take the left singular vec-

tors of L as the new loading matrix L̃, and generate F and E from i.i.d. N (0, 1). Then

X = ϑL̃F⊤+E. Under such cases, the leading population eigenvalues will be ϑ2+1 while the

typical BBP phase transition boundary is (1+
√
p/n)2 = 4 when n = p. We will investigate

how the performance of r̂ETMD varies when bootstrapping from different distributions as ϑ

grows. The parallel analysis method r̂DDPA+ from Dobriban and Owen (2019) is taken as a

benchmark to show the typical BBP phase transition. The proportions of exact estimation

are shown in Figure 3 over 500 replications by different methods.
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Figure 3: Proportions of exactly estimating r when bootstrapping from different distributions
using r̂ETMD, over 500 replications as ϑ grows. “Unif”, “Poi”, “Exp” and “Chisq” stand for boot-
strapping from Uniform(0.5, 1.5), Poisson(1), Exp(1) and X 2(1), respectively. The dashed
vertical line shows the typical phase transition boundary.

It’s seen that when bootstrapping from different distributions, r̂ETMD will still work, but

requiring different factor strength. This is understandable because the eigenvalue threshold-

ing method only works when the spiked eigenvalues exceed the phase transition boundary.

Motivated by Lemma 4.2, the phase transition boundary after bootstrap mainly depends on

resampling weights. Figure 3 shows that the transition boundary grows gradually when boot-

strapping from Uniform(0.5, 1.5), Poisson(1), Exp(1) and X 2(1). One potential reason is

that the tail of the density becomes thicker and thicker, and the expectation of the associated

leading order statistics becomes larger and larger. In other words, the bootstrap procedure

actually provides a flexible way to increase or decrease the phase transition boundary. As

a result, we are able to document the number of common factors with different strength,

just by resampling from different distributions. Another interesting finding is that when

bootstrapping from Uniform(0.5, 1.5), r̂ETMD can still accurately determine r with a large

frequency even if ϑ is below the typical phase transition boundary.

A.2. Simulation: robustness to tuning parameters

We are also interested in how the proposed methods rely on the tuning parameters,

i.e., the predetermined upper bound rmax, the significance level α, the number of bootstrap
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replications B and R. For better illustration, we will focus on the most challenging case in

Table 1 where ϑ = 1, ρ = 3, a = 0.25 and n = p = 200. Similarly to Figure 1, we plot

the proportions of exact estimation over 500 replications for the proposed three methods

when one tuning parameter changes but the others are fixed. The benchmark setting for

the parameters are rmax = 8, α = 0.05, B = 200 and R = 400. The results are reported

in Figure 4, where the proposed methods are very accurate under all the considered tuning

parameter settings with over 90% exact estimations.
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Figure 4: The proportions of exactly estimating r over 500 replications by the proposed three
methods with different tuning parameters.

It’s worth mentioning that our approaches do not require α to be asymptotically vanishing

by adding the decision rule. This is different from those traditional test-based methods in

Onatski (2009),Trapani (2018), or the thresholding methods in Cai et al. (2020) and Ke

et al. (2021). With the decision rule, we allow more errors for the size and power of the

tests. Figure 5 plots the values of Ds
i (α,B) and Dns

i (α,B) in the decision rule, for the

proposed three methods r̂SMD, r̂SSD and r̂ETMD when i = 1, . . . , 8. The data generating

parameters are the same as those in Table 1 with ϑ = 1, a = 0.25, ρ = 3 and n = p = 400.

It’s seen that in each panel, the three spiked eigenvalues and non-spiked eigenvalues are

well separated by the decision rule. This is the reason why we can achieve nearly perfect

estimation in most settings. However, if we only implement the bootstrap once, Figure 5 (a)

and (b) show that there is a large probability that the fourth eigenvalue may be identified

as a spiked eigenvalue, because Ds
4(α,B) can deviate from the theoretical converging point

0. Fortunately, the decision rule fixes this problem by repeating the bootstrap procedure to

stabilize the results.

A.3. Simulation: proportions of under/over estimation

Table 3 is a supplement to the Table 1 in the main paper, which compares the proportions

of under/over estimation of r by different approaches, over 500 replications. The conclusions

are the same as those in the main paper.
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Figure 5: Boxplots of the values Ds
i (α,B) and Dns

i (α,B) from the decision rule over 500
replications, for the leading 8 eigenvalues.

Table 3: The proportions of under estimation (out of the bracket) and over estimation (in the
bracket) for the factor number by different approaches, over 500 replications.

ϑ ρ a n = p r̂SMD r̂SSD r̂ETMD r̂IC r̂ABC r̂ER r̂TRAP r̂ON r̂ED r̂ETC r̂ETZ r̂DDPA+

0 0 0 100 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0.012) 0(0.036) 0(0.002) 0(0.012) 0(0)
0 0 0 200 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0.012) 0(0.048) 0(0) 0(0) 0(0)
0 0 0 300 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0.01) 0(0.024) 0(0) 0(0.006) 0(0)
0 3 0 100 0(0.29) 0(0.266) 0(0) 0(0) 0(0.218) 0(0) 0(0) 0(0.03) 0(0.976) 0(0.778) 0(0.98) 0(0.95)
0 3 0 200 0(0.002) 0(0.002) 0(0) 0(0) 0(0.15) 0(0) 0(0) 0(0.056) 0(0.996) 0(0.892) 0(1) 0(0.988)
0 3 0 300 0(0) 0(0) 0(0) 0(0) 0(0.124) 0(0) 0(0) 0(0.098) 0(1) 0(0.966) 0(1) 0(0.998)
1 0 0 100 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.242(0) 0(0.012) 0(0.01) 0(0) 0(0) 0.014(0.002)
1 0 0 200 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0.01) 0(0.014) 0(0.002) 0(0) 0.008(0)
1 0 0 300 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0.018) 0(0.014) 0(0) 0(0) 0.002(0)
1 0 0.25 100 0(0) 0(0) 0.008(0) 0.984(0) 0(0) 1(0) 1(0) 0.238(0.012) 0(0.01) 0(0) 0(0) 0.004(0)
1 0 0.25 200 0(0) 0(0) 0(0) 0.976(0) 0(0) 1(0) 1(0) 0.002(0.01) 0(0.03) 0(0) 0(0.002) 0.004(0)
1 0 0.25 300 0(0) 0(0) 0(0) 0.148(0) 0(0) 1(0) 1(0) 0(0.012) 0(0.018) 0(0) 0(0) 0(0)
1 3 0 100 0(0.538) 0(0.454) 0(0) 0(0) 0(0.224) 0(0) 0.274(0) 0(0.044) 0(0.95) 0(0.786) 0(0.884) 0.002(0.936)
1 3 0 200 0(0.002) 0(0) 0(0) 0(0) 0(0.124) 0(0) 0(0) 0(0.062) 0(0.998) 0(0.914) 0(0.996) 0.006(0.982)
1 3 0 300 0(0) 0(0) 0(0) 0(0) 0(0.086) 0(0) 0(0) 0(0.108) 0(1) 0(0.956) 0(1) 0(0.994)
1 3 0.25 100 0(0.6) 0(0.506) 0.002(0) 0.992(0) 0.002(0.264) 1(0) 1(0) 0.92(0.026) 0(0.946) 0(0.794) 0(0.892) 0.004(0.946)
1 3 0.25 200 0(0.006) 0(0.002) 0(0) 0.976(0) 0(0.14) 1(0) 1(0) 0.776(0.072) 0(0.996) 0(0.88) 0(0.998) 0.004(0.984)
1 3 0.25 300 0(0) 0(0) 0(0) 0.152(0) 0(0.112) 1(0) 1(0) 0.332(0.092) 0(1) 0(0.952) 0(1) 0(1)

A.4. Simulation: verifying theorems

Here we verify the major theoretical results in Theorem 3.5, Corollary 1 and Theorem

4.3 using simulating data. We start with Theorem 3.5 and set ϑ = 1, n = p = 400, βf = 0.2,

a = 0.4, ρ = 0. Therefore, the two leading factors are strong and satisfy the condition for

(5) while the third factor is pretty weak satisfying the condition for (6).

Similarly to (14), given the sample matrix X and a constant s, the tail probabilities in

Theorem 3.5 can be approximated by

P̂∗
i (s) := P̂∗

(
λ̂i/λ̃i − 1

σ̃
≤ s

)
=

1

B

B∑
b=1

I

(
λ̂bi/λ̃i − 1

σ̃
≤ s

)
, (16)

by repeating the bootstrap procedure B times for some large B. In the simulation, we
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let B = 400. We report the averaged P̂∗
i (s) over 500 replications for −2 ≤ s ≤ 2 and

i = 1, 2, 3 in Figure 6 under the two bootstrap schemes, and compare the curves with the

CDF of standard normal variable. It’s seen from Figure 6 (a) and (b) that P̂∗
i (s) is very close

to the CDF of standard normal distribution when i = 1, 2. In other words, the first and

second largest eigenvalues after bootstrap are asymptotically Gaussian after proper scaling

and centralization, which verifies (5). However, in Figure 6(c), P̂∗
3(s) is always close to 0,

which verifies (6) because the third common factor is very weak when a = 0.4.
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Figure 6: Averaged P̂∗
i (s) over 500 replications for verifying Theorem 3.5. “SB” stands for

standard bootstrap while “MB” stands for multiplier bootstrap. The dashed line is the CDF of
standard normal distribution.

Next, we verify bootstrap bias in Corollary 1. To simplify the calculation of population

covariance matrix, we let βf = 0. We will focus on the third eigenvalue to see how the two

tail probabilities change when a grows. The other data generating parameters are set the

same as in Figure 6. Similarly to (16) and slightly abusing the notation, we let

P̂∗
3(s) :=

1

B

B∑
b=1

I

(√
n× λ−1

3 (λ̂b3 − λ̃3) ≤ s

)
,

and report the averaged P̂∗
3(s) over 500 replications in Figure 7 for different values of s

and a under the two bootstrap schemes. We compare the results with the benchmark tail

probability in (8), which is approximated by the frequency of the event {
√
n×λ−1

3 (λ̃3−λ3) ≤
s} happening over the 500 replications. Figure 7(a) indicates that when a = 0, the standard

bootstrap is roughly unbiased because the tail probability curve is very close to that without

bootstrap. However, the tail probability curve of the multiplier bootstrap always has a small

bias, as expected. When a grows to 0.25 so that the third factor becomes weaker, the tail

probabilities start to deviate from each other. As claimed in (9), P̂∗
3(s) under the standard

bootstrap tends to be slightly larger than the benchmark tail probability under such cases,
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especially when s is close to 0 so that the bias terms
√
n/ξ3 × (nλ3)

−1trΛ2 on the RHS of

(8) can dominate in finite samples. When a further increases, all the tail probabilities tend

to 0 in Figure 7.
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Figure 7: The averaged tail probabilities for the third sample eigenvalue after and before boot-
strap over 500 replications for verifying Corollary 1, as the third common factor gradually becomes
weak. “SB” and “MB” stand for the standard and multiplier bootstrap respectively, while “BM’
stands for the benchmark tail probability in (8).
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Figure 8: The averaged P̂∗
r+1(α) for the largest non-spiked eigenvalue over 500 replications with

different values of α and rmax.

Lastly, we verify Theorem 4.3. To be more consistent with the proposed approach, we

will directly compare the empirical distributions of λ̂r+1 and {φ̂j
1}Rj=1 from Algorithm 1. To

be more specific, given the sample matrix X, we run Algorithm 1 and obtain a series of

sample quantiles ĉ1−α from {φ̂j
1}Rj=1 with different values of α and R = 400. Then, similarly
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to (16), we further repeat the bootstrap procedure B times and let

P̂∗
r+1(α) = B−1

B∑
b=1

I(λ̂br+1 < ĉ1−α).

Figure 8 plots the averaged P̂∗
r+1(α) over 500 replications with different values of α and rmax.

The data generating parameters are the same as in Figure 7, except that we let βf = 0.2. By

Figure 8 (a) and (b), the empirical probabilities P̂∗
r+1(α) are very close to 1− α as long as a

is not too large, indicating that the Algorithm 1 can accurately approximate the distribution

of λ̂r+1. The accuracy decreases when we use larger rmax, as expected. When a = 0.4 so that

the third common factor is very weak, Algorithm 1 loses accuracy. This is because we are

in finite samples and the condition (nλi)
−1p log n = o(1) will not hold anymore under this

case.

A.5. Real example 2: macroeconomic indices

In the second real example, we analyze a macroeconomic data set, namely the FRED-

MD data set, which was introduced by McCracken and Ng (2016). It’s an open resource

from https://research.stlouisfed.org/econ/mccracken/fred-databases/, containing

monthly series of 127 macroeconomic variables since January 1959. This data set is gener-

ally regarded as the standard case of stronger factor structures among all common empirical

applications in the related literature. We refer to the original paper for more details. Fol-

lowing the code in McCracken and Ng (2016), we transform the data to stationary series,

drop 5 variables with largest missing rates, and remove all the outliers which deviate from

the sample medians by more than 10 interquartile ranges. We focus on the period from

January 1961 to December 2021, covering 732 months. The series are standardized while

the missing entries are imputed by linear interpolation. Eventually, a data matrix Xp×n is

obtained, with p = 122 and n = 732.

Similarly to the financial example in the main paper, we plot the sample eigenvalues in

Figure 9(a). It’s more visible that 7 eigenvalues deviate from the bulk, and the gaps of the

leading 7 eigenvalues are not as significant as those in the financial example. The estimated

numbers of factors by different methods and the computational costs are reported in Table

4, with the same tuning parameters as in Table 2 except that rmax = 12. The proposed three

methods and r̂ON , r̂DDPA+ lead to an estimate of r̂ = 7, which is the majority vote.

Table 4: Estimated number of common factors and the computational cost (in seconds) for the
FRED-MD data set by different methods.

r̂SMD r̂SSD r̂ETMD r̂IC r̂ABC r̂ER r̂TRAP r̂ON r̂ED r̂ETC r̂ETZ r̂DDPA

r̂ 7 7 7 1 1 1 0 7 5 16 2 7
Cost (s) 1.597 1.580 6.056 0.034 0.492 0.030 0.035 1.425 0.031 0.051 16.858 0.053
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Figure 9: Figures for the FRED-MD data set: (a) eigenvalues of sample covariance matrix.
(b) boxplot of the increased explained variation (adjusted R-squared) of the 122 macroeconomic
in 8 groups when the 7th factor comes into system. (c) replication of (b) when the 8th factor
comes into system (d) averaged diffusion-indexes forecasting error (RMSE) for the macroeconomic
indices in group 8 when r̂ grows.

To show why r̂ = 7 is a reasonable result, we calculate the explanatory power of the

factors, in terms of the incremental of adjusted R-squared, similarly to the financial example.

The 122 variables are categorized into 8 groups in McCracken and Ng (2016) according to

economic implication. Figure 9 (b) and (c) are boxplots of the explanatory power of the 7th

and 8th factors, respectively to the variables in 8 groups. It’s seen that the 7th common

factor contributes significantly to explaining the variation of macroeconomic variables in

group 8, while the gain from the 8th factor is minor to all the 8 groups.

Lastly, we investigate how new factors contribute to forecasting macroeconomic indices.

Motivated by the diffusion-indexes forecasting in Stock and Watson (2002), we forecast xi
based on xi,t+1 = αi+β

⊤
i fi,t+ γi(L)xi,t+ ϵi,t for 1 ≤ i ≤ p, where {fi,t} is the factor process

estimated from panel data excluding xi given r̂, γi(L) is the lag polynomials, and ϵi,t is the

noise. For simplicity, we let γi(L) = γi in this experiment. Motivated by Figure 9(b), we

are more interested in how new factors contribute in forecasting the variables in group 8.

Then, for each macroeconomic series in group 8, we use 70% samples to train the model

and estimate αi,βi, γi, and calculate the forecasting error based on the remaining samples.

Figure 9(d) shows the averaged forecasting error (RMSE) for the macroeconomic indices in

group 8 when r̂ grows. It’s clearly seen that the forecasting error is minimized at r̂ = 7. In

conclusion, we believe that r̂ = 7 is reasonable for this data set, coinciding with the scree-plot

in Figure 9(a). In fact, in the literature, the FRED-MD data set is generally regarded to

contain 6 to 8 common factors, which is also consistent with the economic group structure.

A.6. Real data: robustness to tuning parameters

Tables 5 and 6 report the results of r̂SMD, r̂SSD and r̂ETMD for the two real examples

when different tuning parameters are used. Motivated by our simulation results, we are more
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Table 5: Estimated number of common factors by r̂ETMD for the Fama-French portfolio data
set with different tuning parameters.

r̂SMD r̂SSD r̂ETMD

rmax 6 7 9 10 6 7 9 10 6 7 9 10

α = 0.02 4 3 4 4 4 3 4 4 3 3 3 3
α = 0.04 3 3 3 3 3 3 3 3 3 3 3 3
α = 0.06 3 3 3 3 3 3 3 3 3 3 3 3
α = 0.08 3 3 3 3 3 3 3 3 4 4 4 3
α = 0.10 3 3 3 3 3 3 3 3 4 4 4 4

Table 6: Estimated number of common factors by r̂ETMD for the FRED-MD data with different
tuning parameters.

r̂SMD r̂SSD r̂ETMD

rmax 8 10 14 16 8 10 14 16 8 10 14 16

α = 0.02 7 7 16 7 7 7 16 7 4 4 4 4
α = 0.04 7 7 7 7 7 7 7 7 7 7 4 7
α = 0.06 7 7 7 7 7 7 7 7 7 7 7 7
α = 0.08 7 7 7 7 7 7 7 7 7 7 7 7
α = 0.10 7 7 7 7 7 7 7 7 7 7 7 7

interested in the tuning of rmax and α while fixing B = 200, R = 400. The outputs are quite

stable, i.e., r̂ = 3 for the financial data set and r̂ = 7 for the macroeconomic data set in

most settings.

B. Proof of results in Section 3

B.1. Proof of Lemma 3.1: preliminary results on λ̂i

We start with the population eigenvalues λi. Recall that A = (L,Ψ). By Assumption 1

and Weyl’s theorem, we have

λi
λi(L⊤L)

− 1 ≤ ∥ΨΨ⊤∥
λi(L⊤L)

= o(1), 1 ≤ i ≤ r,

and c ≤ λ[cp](ΨΨ⊤) ≤ λ[cp] ≤ λr+1 ≤ λ1(ΨΨ⊤) ≤ c−1. Then, λr/λr+1 ≥ 1 + c. Moreover,

for 1 ≤ i ≤ r − 1,

λi
λi+1

=
λi

λi(L⊤L)

λi(L
⊤L)

λi+1(L⊤L)

λi+1(L
⊤L)

λi+1

=
λi(L

⊤L)

λi+1(L⊤L)
[1 + op(1)] ≥ 1 + c.

Now we consider λ̂i. Recall the decomposition

Ŝ = n−1W1/2Z⊤(Γ1Λ1Γ
⊤
1 + Γ2Λ2Γ

⊤
2 )ZW

1/2 := Ŝ1 + Ŝ2.
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We first show that ∥Ŝ2∥ ≤ Op[n
−1(n ∨ p) log n]. Lemma C.4 will indicate that

∥Ŝ2∥ ≤ C∥n−1Z⊤Z∥ ×max
j
wj ≤ Op

(
n−1(n ∨ p)

)
×max

j
wj.

Then, it’s sufficient to consider maxj wj.

For the standard bootstrap, by Jensen’s equality, for any α > 0

exp(αEmax
j
wj) ≤E

(
exp(αmax

j
wj)

)
≤ E

(∑
j

exp(αwj)
)
= nE

(
exp(αw1)

)
. (17)

Note that w1 ∼ Binomial(n, n−1), whose moment generating function is

E
(
exp(αw1)

)
=

(
1− n−1 + n−1 exp(α)

)n ≤ ee
α−1 + c, (18)

for sufficiently large n. Therefore,

Emax
j
wj ≤ α−1(log n+ eα − 1 + c) ≤ O(log n) =⇒ ∥Ŝ2∥ ≤ Op

(
n−1(n ∨ p) log n

)
. (19)

For multiplier bootstrap, the proof is similar and omitted.

Therefore, by Weyl’s theorem,∣∣∣∣ λ̂iλi − λi(Ŝ1)

λi

∣∣∣∣ ≤ ∥Ŝ2∥
λi

= Op

(
(n ∨ p) log n

nλi

)
→ 0, 1 ≤ i ≤ r, (20)

while λ̂r+1 ≤ Op[n
−1(n ∨ p) log n]. It remains to consider λi(Ŝ1), or equivalently the ith

largest eigenvalue of n−1Λ
1/2
1 Γ⊤

1 ZWZ⊤Γ1Λ
1/2
1 . Let K̂1(x) = xΛ−1

1 − n−1Γ⊤
1 ZWZ⊤Γ1. By

definition, det{K̂1[λi(Ŝ1)]} = 0. Note that

n−1Γ⊤
1 ZWZ⊤Γ1 − I = n−1Γ⊤

1 Z(W − I)Z⊤Γ1 + n−1Γ⊤
1 ZZ

⊤Γ1 − I.

By Lemma C.1 and the independence of wj’s (or weak dependence under the standard

bootstrap), one can verify that

∥n−1Γ⊤
1 Z(W − I)Z⊤Γ1∥ = Op(n

−1/2). (21)

On the other hand, Lemma C.1 will show that ∥n−1Γ⊤
1 ZZ

⊤Γ1 − I∥ = Op(n
−1/2). Then, the
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matrix K̂1(x) can be written as
x
λ1

− 1 +Op(n
−1/2) Op(n

−1/2) · · · Op(n
−1/2)

Op(n
−1/2) x

λ2
− 1 +Op(n

−1/2) · · · Op(n
−1/2)

...
...

. . .
...

Op(n
−1/2) Op(n

−1/2) · · · x
λr

− 1 +Op(n
−1/2)

 . (22)

Let x = λ1(1− c) for some sufficiently small c > 0. By Assumption 1(c), for any 2 ≤ k ≤ r,

x/λk = x/λ1 × λ1/λk ≥ (1− c)(1 + 2c) > 1 + c− 2c2 > 0,

as long as c < 0.5, which further implies that det K̂1(x) < 0 with probability tending to one.

On the other hand, if x = λ1(1 + c) for some sufficiently small c > 0, we can conclude that

det K̂1(x) > 0 with probability tending to one. Therefore, with probability tending to one,

there must be an eigenvalue λi(Ŝ1) in the interval [λ1(1 − c), λ1(1 + c)]. Indeed, this is the

largest one λ1(Ŝ1). Further, when x is in this interval, we always have |x/λi − 1| ≥ c0 for all

i ̸= 1 and some small constant c0 > 0 by Assumption 1(c). Therefore, by Leibniz’s formula

for determinant and (22), we have

det K̂1(λ1(Ŝ1)) =
λ1(Ŝ1)

λ1
− 1 +Op(n

−1/2) +Op(n
−1) = 0.

That is, λ1(Ŝ1)/λ1 = 1+Op(n
−1/2). Similarly, we can conclude that λi(Ŝ1)/λi = 1+Op(n

−1/2)

for any 2 ≤ i ≤ r. Combined with (20), we conclude the lemma.

B.2. Proof of Lemma 3.2: θi and ζ̂i

Proof. We start with θi. By definition, for 1 ≤ i ≤ r,

θi
λi

− 1 =
θi
λi

× 1

nθi

p∑
k=1

λr+k

1− λ−1
i λr+k

≤ 2

nθi

p∑
k=1

λr+k

1− λ−1
i λr+k

= O

(
trΛ2

nθi

)
= O

(
trΛ2

nλi

)
.

Next, for ζ̂i, by (17), (18) and (19), we have maxj wj ≤ O(log n) with probability tending

to 1. Therefore, the existence and uniqueness of ζ̂i are easily verified by the mean value
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theorem. Moreover,

ζ̂i −
θi
λi

=
1

n

n∑
j=1

θi
λi

wj − 1− wj

nθi

∑p
k=1[

λr+k

1−θ−1
i λr+k ζ̂i

− λr+k

1−λ−1
i λr+k

]

1− wj

nθi

∑p
k=1

λr+k

1−θ−1
i λr+k ζ̂i

=
1

n

n∑
j=1

θi
λi

wj − 1

1− wj

nθi

∑p
k=1

λr+k

1−θ−1
i λr+k ζ̂i

− ζ̂i − θi/λi
θi

× 1

n

n∑
j=1

θi
λi

wj

nθi

∑p
k=1[

λ2
r+k

[1−θ−1
i λr+k ζ̂i][1−λ−1

i λr+k]
]

1− wj

nθi

∑p
k=1

λr+k

1−θ−1
i λr+k ζ̂i

=
θi
λi

1

n

n∑
j=1

wj − 1

1− wj

nθi

∑p
k=1

λr+k

1−θ−1
i λr+k ζ̂i

− ζ̂i − θi/λi
θi

× op(1). (23)

In the following, we calculate the first term on the RHS. By Assumption 1(c), we have

1

nθi

p∑
k=1

λr+k

1− θ−1
i λr+kζ̂i

=
trΛ2

nθi
× [1 + op(1)] = op(1).

Therefore, by Taylor’s expansion for the function f(x) = (1− x)−1, we have

1

n

n∑
j=1

wj − 1

1− wj

nθi

∑p
k=1

λr+k

1−θ−1
i λr+k ζ̂i

=
1

n

n∑
j=1

(wj − 1) +
1

nθi

p∑
k=1

λr+k

1− θ−1
i λr+kζ̂i

× 1

n

n∑
j=1

wj(wj − 1)

+

(
1

nθi

p∑
k=1

λr+k

1− θ−1
i λr+kζ̂i

)2

× 1

n

n∑
j=1

w2
j (wj − 1) + op(1)×

(
1

nθi

p∑
k=1

λr+k

1− θ−1
i λr+kζ̂i

)2

.

Under the multiplier bootstrap,

1

n

n∑
j=1

wh
j (wj − 1)− Ewh

1 (w1 − 1) = Op(
1√
n
), , h = 0, 1, 2. (24)

Under the standard bootstrap, wj1 | wj2 ∼ Bin(n− wj2 , (n− 1)−1) for any j1 ̸= j2. Then,

E
(
wh

j1
(wj1 − 1)− Ewh

1 (w1 − 1)

)(
wh

j2
(wj2 − 1)− Ewh

1 (w1 − 1)

)
=E

[(
Ewh

j1
(wj1 − 1) | wj2 − Ewh

1 (w1 − 1)

)(
wh

j2
(wj2 − 1)− Ewh

1 (w1 − 1)

)]
.
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Note that

E(wh
j1
| wj2)− Ewh

1 =
h∑

l=0

(
h

l

)
(n− wj2)

l 1

(n− 1)l
−

h∑
l=0

(
h

l

)
= OL1(n

−1).

Then, after some elementary calculations, we conclude that (24) also holds under the stan-

dard bootstrap. Further, for h = 0, 1, Ewh
j (wj − 1) = O(n−1). Then, using the fact that

θi/λi = 1 + o(1), (23) can be written as(
ζ̂i −

θi
λi

)
× [1 + op(1)] =

1

n

n∑
j=1

(wj − 1) +

(
trΛ2

nθi

)2

× Ew2
1(w1 − 1)

+ op(
1√
n
) + op(1)×

(
trΛ2

nθi

)2

,

which concludes the lemma because n−1
∑

j(wj − 1) = Op(n
−1/2).

B.3. Proof of Theorem 3.3: limiting representation for λ̂i, 1 ≤ i ≤ r

Proof. We aim to find the limiting representation of λ̂i/θi for i ≤ r. The proof technique is

borrowed from Theorem 2.4 of Cai et al. (2020), which can be regarded as the special case

where W = I.

It suffices to prove the result for λ̂1, while the others can be handled similarly. By

definition, λ̂1 is the largest eigenvalue satisfying

det
(
λ̂1 − n−1W1/2Z⊤(Γ1Λ1Γ

⊤
1 + Γ2Λ2Γ

⊤
2 )ZW

1/2
)
= 0.

By Lemma 3.1, det(λ̂1 − Ŝ2) ̸= 0 with probability tending to one, where Ŝ2 is defined in the

proof of Lemma 3.1 as n−1W1/2Z⊤Γ2Λ2Γ
⊤
2 ZW

1/2. Then,

det
(
Λ−1

1 − n−1Γ⊤
1 ZW

1/2[λ̂1I− Ŝ2]
−1W1/2Z⊤Γ1

)
= 0.

Write δi = (λ̂i − θi)/θi and K(x) = [I− x−1Ŝ2]
−1. By the matrix inverse formula

(A−B)−1 = A−1 + (A−B)−1BA−1, (25)

as long as the associated inverses exist, we have detM(θ1) = 0 where

M(θ1) =θ1Λ
−1
1 − n−1Γ⊤

1 ZW
1/2K(θ1)W

1/2Z⊤Γ1 + δ1n
−1Γ⊤

1 ZW
1/2K(λ̂1)K(θ1)W

1/2Z⊤Γ1.

(26)
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Lemma C.5 will show that

n−1Γ⊤
1 ZW

1/2K(θ1)W
1/2Z⊤Γ1

=
1

n
Γ⊤

1 ZWZ⊤Γ1 −
(
1

n
trW

)
Ir + ζ̂1Ir +Op

(
1√
n
× (n ∨ p) log n

nθ1
+

1

n

)
,

where the Op is under Frobenius norm. Then, by (21), we have

n−1Γ⊤
1 ZW

1/2K(θ1)W
1/2Z⊤Γ1 = ζ̂1Ir +Op(n

−1/2).

Return to (26). Lemma C.6 will further show that

δ1n
−1Γ⊤

1 ZW
1/2K(λ̂1)K(θ1)W

1/2Z⊤Γ1 = δ1[I+ op(1)].

Recall that δ1 = op(1). Consequently, the off-diagonal entries of M(θ1) all converge to 0 with

rate

Op(n
−1/2) + δ1[1 + op(1)]. (27)

The first diagonal entry of M(θ1) can be written as

−n−1γ⊤
1 ZWZ⊤γ1 +

1

n
trW+

θ1
λ1

− ζ̂1 +Op

(
1√
n
× (n ∨ p) log n

nθ1
+

1

n

)
+ δ1[1 + op(1)]. (28)

For the other diagonal entries, note that∣∣∣∣ θ1λj − θ1
λ1

∣∣∣∣ ≥ c, 2 ≤ j ≤ r,

for some constant c > 0. Therefore, we have

[M(θ1)]jj ≥ c+ op(1), j ̸= 1. (29)

Recall that detM(θ1) = 0. Then, by (27), (28), (29), the Leibniz’s formula for determinant

and the fact that δ1 = op(1), we conclude that

δ1[1 + op(1)] = n−1γ⊤
1 ZWZ⊤γ1 −

1

n
trW − θ1

λ1
+ ζ̂1 +Op

(
1√
n
× (n ∨ p) log n

nθ1
+

1

n

)
.

Note that ζ̂1 − θ1/λ1 = Op((nλ1)
−2p2) by Lemma 3.2, while

n−1γ⊤
1 ZWZ⊤γ1 −

1

n
trW

=n−1γ⊤
1 Z(W − I)Z⊤γ1 + n−1γ⊤

1 ZZ
⊤γ1 − 1 + 1− 1

n
trW = Op(

1√
n
).
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Combined with the rate in Lemma 3.1, we have verified the theorem for i = 1. For 2 ≤ i ≤ r,

it’s similar and we omit details.

B.4. Proof of Lemma 3.4: without bootstrap

Proof. Part (a): eigenvalues. The proof is almost the same as that for Lemma 3.1 and

Theorem 3.3, by replacing W with I; see also Cai et al. (2020). Therefore, we omit the

details.

Part (b): eigenvectors γ̃i for 1 ≤ i ≤ r. Let’s start with γ⊤
i γ̃j for some 1 ≤ i ̸= j ≤ r.

By the definition of eigenvector,

λ̃jγ
⊤
i γ̃j = n−1γ⊤

i ΓΛ
1/2Γ⊤ZZ⊤ΓΛ1/2Γ⊤γ̃j

=
λi
n
γ⊤
i ZZ

⊤γiγ
⊤
i γ̃j +

r∑
k ̸=i

√
λiλk
n

γ⊤
i ZZ

⊤γkγ
⊤
k γ̃j +

√
λi
n
γ⊤
i ZZ

⊤Γ2Λ
1/2
2 Γ⊤

2 γ̃j. (30)

We already know that n−1γ⊤
i ZZ

⊤γi = 1 + Op(n
−1/2) and n−1γ⊤

i ZZ
⊤γk = Op(n

−1/2) for

i ̸= k. Moreover,

E∥n−1γ⊤
i ZZ

⊤Γ2∥2 =
r+p∑

k=r+1

E|n−1γ⊤
i ZZ

⊤γk|2 ≤ O(p/n).

Therefore, by the Cauchy–Schwartz inequality

|γ⊤
k γ̃j| ≤ 1,

∣∣∣∣ 1nγ⊤
i ZZ

⊤Γ2Λ
1/2
2 Γ⊤

2 γ̃j

∣∣∣∣ ≤ Op(
√
p/n). (31)

If i > j, we can write

γ⊤
i γ̃j

[
1− λi

λ̃j
(1 +Op(n

−1/2))

]
≤

√
λ1λi

λ̃j
Op(n

−1/2) +

√
λi

λ̃j
Op(

√
p/n).

Otherwise, when i < j we have

γ⊤
i γ̃j

[
λ̃j
λi

− 1−Op(n
−1/2)

]
≤

√
λ1λi
λi

Op(n
−1/2) +

√
λi
λi

Op(
√
p/n).

Note that λi/λ̃j ≤ (1 + c)−1[1 + op(1)] for i > j while λ̃j/λi − 1 ≤ −c/(1 + c)[1 + op(1)] for

i < j. Therefore, we conclude that

γ⊤
i γ̃j ≤ Op

(
1√
n

√
λ1λi

max{λi, λj}
+

√
λi

max{λi, λj}

√
p

n

)
= Op

( √
(λ1 + p)λi√

n×max{λi, λj}

)
. (32)
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The rate in (32) can further help bound γ⊤
k γ̃j in (31) for k ̸= j. Following this idea and

letting an =
√

(λ1 + p)λi/(
√
n×max{λi, λj}), we will have

γ⊤
i γ̃j ≤Op

( √
λiλj√

nmax{λi, λj}
+ an

√
λiλ1√

nmax{λi, λj}
+

√
pλi√

nmax{λi, λj}

)
≤Op

(√
(p+ λj + anλ1)λi√
nmax{λi, λj}

)
.

Repeating the above step, eventually we have

γ⊤
i γ̃j ≤ Op

( √
(p+ λj)λi√

nmax{λi, λj}

)
. (33)

Next, we consider Γ⊤
2 γ̃j for 1 ≤ j ≤ r. Similarly to (30),

λ̃jΓ
⊤
2 γ̃j = n−1Γ⊤

2 ΓΛ
1/2Γ⊤ZZ⊤ΓΛ1/2Γ⊤γ̃j

=

√
λj

n
Λ

1/2
2 Γ⊤

2 ZZ
⊤γjγ

⊤
j γ̃j +

r∑
k ̸=j

√
λk
n

Λ
1/2
2 Γ⊤

2 ZZ
⊤γkγ

⊤
k γ̃j +

1

n
Λ

1/2
2 Γ⊤

2 ZZ
⊤Γ2Λ

1/2
2 Γ⊤

2 γ̃j.

Recall that ∥n−1Γ⊤
2 ZZ

⊤γj∥2 ≤ Op(p/n). Then,[
I− 1

nλ̃j
Λ

1/2
2 Γ⊤

2 ZZ
⊤Γ2Λ

1/2
2

]
Γ⊤

2 γ̃j

=

√
λj

nλ̃j
Λ

1/2
2 Γ⊤

2 ZZ
⊤γjγ

⊤
j γ̃j +

r∑
k ̸=j

√
λk

nλ̃j
Λ

1/2
2 Γ⊤

2 ZZ
⊤γkγ

⊤
k γ̃j

≤Op

(√
λj

λ̃j

√
p

n
+
∑
k ̸=j

√
λk

λ̃j

√
p

n
×

√
(p+ λj)λk√

nmax{λk, λj}

)
≤Op

(√
p

nλj

)
,

where the Op is under Frobenius norm. Note that∥∥∥∥ 1

nλ̃j
Λ

1/2
2 Γ⊤

2 ZZ
⊤Γ2Λ

1/2
2

∥∥∥∥ = op(1).

Therefore, we can conclude that

∥Γ⊤
2 γ̃j∥ ≤ Op

(√
p

nλj

)
. (34)
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Based on (34), we can further improve the rate in (31) to∣∣∣∣ 1nγ⊤
i ZZ

⊤Γ2Λ
1/2
2 Γ⊤

2 γ̃j

∣∣∣∣ ≤ Op

(
p

n
√
λj

)
,

which further improves the rate in (33) to

γ⊤
i γ̃j ≤ Op

(
p

n
√
λiλj

λi
max{λi, λj}

+

√
λiλj√

n×max{λi, λj}

)
, 1 ≤ i ̸= j ≤ r. (35)

Based on (35), for any 1 ≤ j ≤ r, we have

1 = γ̃⊤
j γ̃j = γ̃

⊤
j ΓΓ

⊤γ̃j = (γ̃⊤
j γj)

2 +
r∑

k ̸=j

(γ̃⊤
j γk)

2 + ∥γ̃⊤
j Γ2∥2,

=⇒(γ̃⊤
j γj)

2 = 1 +Op

(
p

nλj
+

1

n

)
. (36)

Part (c): eigenvectors ũi for 1 ≤ i ≤ r. By the definition of eigenvector,

ũi =
1√
nλ̃i

Z⊤ΓΛ1/2Γ⊤γ̃i.

Let ui = n−1/2Z⊤γi. Then, for 1 ≤ j ≤ (p+ r),√
λ̃i√
λi
ũij = uijγ

⊤
i γ̃i +

r∑
k ̸=i

√
λk√
nλi

z⊤j γkγ
⊤
k γ̃i +

1√
nλi

z⊤j Γ2Λ
1/2
2 Γ⊤

2 γ̃i. (37)

We will show that the first term on the right hand side (RHS) will dominate. Firstly, for

any 1 ≤ i ≤ r, Lemma C.3 will show that
∑n

j=1 u
4
ij = (E

∑n
j=1 u

4
ij)[1 + op(1)], while

E
n∑

j=1

u4ij = n−1(ξi + 1) ≍ n−1,

under Assumption 2. Then, by (36),

n∑
j=1

(uijγ
⊤
i γ̃i)

4 =

( n∑
j=1

u4ij

)
(γ⊤

i γ̃i)
4 =

(
E

n∑
j=1

u4ij

)
[1 + op(1)] ≍ n−1. (38)
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Secondly, for each k ∈ {1, . . . , r} \ {i}, we have

n∑
j=1

( √
λk√
nλi

z⊤j γkγ
⊤
k γ̃i

)4

= (
n∑

j=1

u4kj)×
(
λk
nλi

)2

(γ⊤
k γ̃i)

4 ≤ op(n
−1), (39)

where we use (35) and Lemma C.3 again.

The third term on the RHS of (37) will be more complicated. Let Zj be the (p+ r)× n

random matrix by replacing zj with 0 in Z,

S̃j,21 = n−1Λ
1/2
2 Γ⊤

2 ZjZ
⊤
j Γ1Λ

1/2
1 , S̃j,22 = n−1Λ

1/2
2 Γ⊤

2 ZjZ
⊤
j Γ2Λ

1/2
2 ,

Hj,22 = I− λ̃−1
i S̃j,22, anj = (nλ̃i)

−1z⊤j Γ2Λ
1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 zj.

Then, by definition,

Γ⊤
2 γ̃i =

1

nλ̃i
Λ

1/2
2 Γ⊤

2 ZZ
⊤ΓΛ1/2Γ⊤γ̃i = λ̃−1

i S̃j,21Γ
⊤
1 γ̃i + λ̃−1

i S̃j,22Γ
⊤
2 γ̃i

+
1

nλ̃i
Λ

1/2
2 Γ⊤

2 zjz
⊤
j Γ1Λ

1/2
1 Γ⊤

1 γ̃i +
1

nλ̃i
Λ

1/2
2 Γ⊤

2 zjz
⊤
j Γ2Λ

1/2
2 Γ⊤

2 γ̃i.

Therefore,

1√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22Γ
⊤
2 γ̃i

=
1

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22S̃j,21Γ
⊤
1 γ̃i +

1

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22S̃j,22Γ
⊤
2 γ̃i

+ anj
1√
nλi

z⊤j Γ1Λ
1/2
1 Γ⊤

1 γ̃i + anj
1√
nλi

z⊤j Γ2Λ
1/2
2 Γ⊤

2 γ̃i. (40)

However, by the definition of Hj,22, we have

H−1
j,22 = I+H−1

j,22λ̃
−1
i S̃j,22.

Using the above decomposition in the first line of (40) and after cancellation, we have

(1− anj)
1√
nλi

z⊤j Γ2Λ
1/2
2 Γ⊤

2 γ̃i

=
1

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22S̃j,21Γ
⊤
1 γ̃i + anj

1√
nλi

z⊤j Γ1Λ
1/2
1 Γ⊤

1 γ̃i. (41)

We need to discuss the magnitude of maxj |an,j|. Note that maxj ∥S̃j,22∥ ≤ ∥n−1ZZ⊤∥ ≤
Op(max{p/n, 1}). Then, maxj ∥H2,jj∥ = 1 + op(1) and minj ∥H2,jj∥ = 1 + op(1) because
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λ̃j → ∞. Further,

max
j

∥H−1
2,jj∥ ≤ 1

1− op(1)
≤ 1 + op(1).

Further, we have

max
j

|an,j| ≤ λ−1
j [1 + op(1)]max

j
n−1∥zj∥2max

j
∥H−1

j,22∥ ≤ Op(
n ∨ p
nλi

) = op(1),

and maxj |(1− an,j)
−1| ≤ 1 + op(1).

Return to the RHS of (41). For the first term, we write

1

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22S̃j,21Γ
⊤
1 γ̃i =

r∑
k ̸=i

√
λk

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γkγ

⊤
k γ̃i

+
1

λ̃i
√
n
z⊤j Γ2Λ

1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γiγ

⊤
i γ̃i.

On one hand, for any k ̸= i,

n∑
j=1

( √
λk

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γkγ

⊤
k γ̃i

)4

≤λ
2
k

λ̃2i
(γ⊤

k γ̃i)
4 ×

n∑
j=1

(
1√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γk

)4

≤op(1)×Op

(
1

nλ4i
max

j
∥H−1

j,22∥4∥n−1ZZ⊤∥4
)

= op(n
−1),

where in the third line we use the results in (35) and the fact that

n∑
j=1

(
z⊤j Γ2Λ

1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γk

)4

=
n∑

j=1

(
[(f⊤

j ,0
⊤) + (0⊤, ϵ⊤j )]Γ2Λ

1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γk

)4

≤Op

(
max

j
∥H−1

j,22∥4∥n−1ZZ⊤∥4
n∑

j=1

∥(f⊤
j ,0

⊤)Γ2∥4 +
n∑

j=1

E∥Γ2Λ
1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γk∥4

)
≤Op

(
nmax

j
∥H−1

j,22∥4∥n−1ZZ⊤∥4
)
,

by using the fact that ϵj is independent of H
−1
j,22 and Zj in the third line. Similarly, by (36)
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we have

n∑
j=1

(
1

λ̃i
√
n
z⊤j Γ2Λ

1/2
2 H−1

j,22Λ
1/2
2 Γ⊤

2 n
−1ZjZ

⊤
j γiγ

⊤
i γ̃i

)4

≤Op

(
1

nλ4i
max

j
∥H−1

j,22∥4∥n−1ZZ⊤∥4
)

= op(n
−1).

Therefore, we conclude that

n∑
j=1

(
1

λ̃i
√
nλi

z⊤j Γ2Λ
1/2
2 H−1

j,22S̃j,21Γ
⊤
1 γ̃i

)4

= op(n
−1).

For the second term on the RHS of (41), it’s similar and easier, so we conclude that

n∑
j=1

(
anj

1√
nλi

z⊤j Γ1Λ
1/2
1 Γ⊤

1 γ̃i

)4

= op(n
−1),

without showing further details. Then, by (41), we have

n∑
j=1

(
1√
nλi

z⊤j Γ2Λ
1/2
2 Γ⊤

2 γ̃i

)4

≤ max
j

|(1− anj)
−4| × op(n

−1) = op(n
−1). (42)

Combining (38), (39), (42) and returning to (37), we have

σ̃2
i =

n∑
j=1

ũ4ij =
n∑

j=1

E(u4ij) + op(n
−1) = n−1(ξi + 1)[1 + op(1)] ≍ n−1,

which concludes the lemma.

B.5. Proof of Theorem 3.5: conditional on sample

Proof. Following the proof of Theorem 3.3, with probability tending to one we have

λ̂i
θi

− 1 =
1

n

(
γ⊤
i ZWZ⊤γi − trW

)
+ ζ̂i −

θi
λi

+ op∗(
1√
n
) + op∗

(
p2

(nθi)2

)
, 1 ≤ i ≤ r,

conditional on X. On the other hand, by Lemma 3.4(1), with probability tending to one,

λ̃i
θi

− 1 =
1

n

(
γ⊤
i ZZ

⊤γi − n

)
+ o(

1√
n
) = o(1), 1 ≤ i ≤ r.
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Therefore, if (nλi)
−1p = o(n−1/4), by Lemma 3.2 we have

λ̂i

λ̃i
=
λ̂i
θi

× θi

λ̃i
=

1 + 1
n

(
γ⊤
i ZWZ⊤γi − n

)
+ op∗(n

−1/2)

1 + 1
n

(
γ⊤
i ZZ

⊤γi − n

)
+ o(n−1/2)

=
1
n
γ⊤
i Z(W − I)Z⊤γi

1 + 1
n

(
γ⊤
i ZZ

⊤γi − n

)
+ o(n−1/2)

+ 1 + op∗(n
−1/2)

=[1 + o(1)]× 1

n
γ⊤
i Z(W − I)Z⊤γi + 1 + op∗(n

−1/2), (43)

with probability tending to one conditional on sample. Therefore, it remains to find the

limiting distribution of

n−1/2γ⊤
i Z(W − I)Z⊤γi =

√
n

n∑
j=1

u2ij(wj − 1),

conditional on X. To this end, we handle the multiplier and standard bootstrap separately.

For the multiplier bootstrap, wj’s are from i.i.d. Exp(1) so that

E
(√

n
n∑

j=1

u2ij(wj − 1) | X
)

= 0,

E
(
[
√
n

n∑
j=1

u2ij(wj − 1)]2 | X
)

= n
n∑

j=1

u4ij = nσ̃2
i + o(1) = nσ̃2

i [1 + o(1)] → ξi + 1,

with probability tending to 1. It remains to verify the Lindeberg condition. For any ϵ > 0,

1

nσ̃2
i

n∑
j=1

E
(
[
√
nu2ij(wj − 1)]2I[|

√
nu2ij(wj − 1)| > ϵσ̃i

√
n] | X

)

≤ 1

nσ̃2
i

n∑
j=1

E
(
[
√
nu2ij(wj − 1)]4 | X

)
[ϵσ̃i

√
n]4

≤ O

(
1

n2

n∑
j=1

(
√
nuij)

8

)
→ 0,

with probability tending to 1, where we use the fact that E(
√
nuij)

8 ≤ C under the bounded

eighth moment condition. Then, the Lindeberg condition is satisfied and

λ̂i/λ̃i − 1

σ̃

d∗−→ N (0, 1).
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For the standard bootstrap, wj’s are from multinomial distribution so that

E
(√

n
n∑

j=1

u2ij(wj − 1) | X
)

=0,

E
(
[
√
n

n∑
j=1

u2ij(wj − 1)]2 | X
)

=n
n∑

j=1

u4ij −
n∑

j1=1

u2ij1

n∑
j2 ̸=j1

u2ij2

=(n− 1)σ̃2
i − (

n∑
j=1

u2ij)
2 + o(1) = [nσ̃2

i − 1][1 + o(1)] → ξi,

with probability tending to 1. Now we verify the Lindeberg condition. We can write w =

(w1, . . . , wn)
⊤ as a sum of n independent random vectors, i.e.,

w = w1 + · · ·wn,

where eachwl = (wl1, . . . , wln)
⊤ is n-dimensional vector following n-dimensional multinomial

distribution with 1 trial and event probability (n−1, . . . , n−1). Then,

wj =
n∑

l=1

wlj =⇒
√
n

n∑
j=1

u2ijwj =
n∑

j=1

n∑
l=1

√
nu2ijwlj =

n∑
l=1

( n∑
j=1

√
nu2ijwlj

)
,

where wlj is the j-th entry of wl. Fix i and let Qnl =
∑n

j=1

√
nu2ijwlj. Then Qn1, . . . , Qnn

are independent and it suffices to verify

n∑
l=1

E
(
Q2

nlI(|Qnl| > ϵ) | X
)

→ 0,

for any ϵ > 0. By the definition of Qnl,

P∗
(
Qnl =

√
nu2ij

)
= n−1 for any 1 ≤ j ≤ n.

Therefore,
n∑

l=1

E
(
Q4

nl | X
)

=
n∑

l=1

1

n

n∑
j=1

(
√
nu2ij)

4 → 0,

with probability tending to 1. Similarly to the proof under multiplier bootstrap, this verifies

the Lindeberg condition and concludes the first part of the theorem.
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Next, if n−1/4 = o[(nλi)
−1p], similarly to (43) we will have

λ̂i

λ̃i
=

(
ζ̂i −

θi
λi

)
× [1 + op(1)] + 1.

Therefore, by Lemma 3.2,

√
n

(
λ̂i

λ̃i
− 1

)
=

√
n×

(
trΛ2

nλi

)2

× E[w2
1(w1 − 1)]× [1 + op(1)] → ∞,

which concludes the theorem.

B.6. Proof of Corollary 1 : bias of bootstrap

Proof. For the bootstrapped eigenvalues λ̂i, 1 ≤ i ≤ r, similarly to (43) we always have

λ̂i

λ̃i
=[1 + op(1)]×

[
1

n
γ⊤
i Z(W − I)Z⊤γi −

1

n
trW + 1 + ζ̂i −

θi
λi

]
+ 1 + op(n

−1/2).

Therefore, under the standard bootstrap, by Lemma 3.2, we always have

P∗
(√

n× λ−1
i (λ̂i − λ̃i) ≤ s

)
=P∗

(
1√
n
γ⊤
i Z(W − I)Z⊤γi ≤ s

λi

λ̃i
[1 + op(1)] +

1√
n
(trW − n)−

√
n(ζ̂i −

θi
λi
)

)
=P∗

(
1√
n
γ⊤
i Z(W − I)Z⊤γi ≤ s[1 + op(1)]−

√
n× tr2Λ2

(nλi)2
× E[w2

1(w1 − 1)]× [1 + op(1)]

)
=FG

(
sξ

−1/2
i − ξ

−1/2
i

√
n× tr2Λ2

(nλi)2
× E[w2

1(w1 − 1)]

)
+ op(1).

On the other hand, for λ̃i (without bootstrap), by Lemma 3.4(a), we have

√
n

(
λ̃i
θi

− 1

)
=

√
n

n∑
j=1

(u2ij − Eu2ij) + op(1) =
1√
n

n∑
j=1

(
(
√
nuij)

2 − E(
√
nuij)

2

)
+ op(1).

Moreover, by Lemma C.3 we will have

E
(
(
√
nuij)

2 − E(
√
nuij)

2

)2

= ξi + o(1).
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Therefore, it’s not hard to verify that

√
n

(
λ̃i
θi

− 1

)
d−→ N (0, ξi). (44)

Further, by the definition of θi, we have

θi
λi

− 1 =
trΛ2

nθi
× [1 + o(1)] =⇒ 1− λi

θi
=

trΛ2

nθi
× [1 + o(1)].

Therefore,

P
(√

n× λ−1
i (λ̃i − λi) ≤ s

)
=P

(√
n× θi

λi

( λ̃i
θi

− 1 + 1− λi
θi

)
≤ s

)
=P

(√
n×

( λ̃i
θi

− 1
)
≤ s

λi
θi

−
√
n
trΛ2

nθi
× [1 + o(1)]

)
=FG

(
sξ

−1/2
i − ξ

−1/2
i

√
n
trΛ2

nλi

)
+ o(1),

which concludes the corollary.

C. Technical lemmas for the proof in Section 3

Lemma C.1. Under Assumptions 1 and 2, For any 1 ≤ i ̸= k ≤ r, we have

E(n−1γ⊤
i ZZ

⊤γi − 1)2 ≤ O(n−1), E(n−1γ⊤
i ZZ

⊤γk)
2 ≤ O(n−1).

Proof. Write γ⊤
i = (γ⊤

i1,γ
⊤
i2), where γi1 is composed of the first r entries. Then, γ⊤

i Z =

γ⊤
i1F

⊤ + γ⊤
i2E, and

n−1γ⊤
i ZZ

⊤γi − 1 =γ⊤
i1(n

−1F⊤F− I)γi1 + γ
⊤
i2(n

−1EE⊤ − I)γi2 + 2n−1γ⊤
i1F

⊤E⊤γi2.

By the independence of the entries in E, for any γi2, we have

E(γ⊤
i2ϵj)

2 = ∥γi2∥2, E(n−1γ⊤
i2EE

⊤γi2) = ∥γi2∥2,

E(n−1γ⊤
i2EE

⊤γi2 − ∥γi2∥2)2 = E
(
1

n

n∑
j=1

[(γ⊤
i2ϵj)

2 − ∥γi2∥2]
)2

≤ O(n−1).

On the other hand, because F = CF0 with the entries of F0 being independent and

n−1tr(C⊤C) = 1, by elementary moment calculations we have

E[γ⊤
i1(n

−1F⊤F− I)γi1]
2 ≤ O(n−2∥C⊤C∥2F ) ≤ O(n−1∥C∥4 ≤ O(n−1).
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Further by the independence between F and E, the intersection term will also be asymptotic

negligible. The proof for i ̸= k is similar and omitted. Then, the lemma holds.

Lemma C.2. Under Assumption 1, for any 1 ≤ j ≤ n and (r + p) × (r + p) deterministic

symmetric matrix A, we have

E(z⊤j Azj − trA)4 ≤ O(∥A∥4F ).

Proof. Write z0j
⊤
= (f 0

j
⊤
, ϵ⊤j ), where f

0
j is the j-th row vector of F0. Let Aff be the left-top

r × r block of A. Then,

E(z⊤j Azj − trA)4 ≲E(z0j
⊤
Az0j − trA)4 + E(f 0

j
⊤
Afff

0
j )

4 + E(fj⊤Afffj)
4

≤O(∥A∥4F ) + E(∥f 0
j ∥8 + ∥fj∥8)×O(∥A∥4) ≤ O(∥A∥4F ),

where in the second line we use the facts that the entries of z0j are independent with the

bounded 8th moments and r is fixed.

Lemma C.3. Let ui = n−1/2Z⊤γi. Under Assumptions 1 and 2, for 1 ≤ i ≤ r we have

E
n∑

j=1

u4ij = n−1(ξi + 1),
n∑

j=1

u4ij − E
n∑

j=1

u4ij = op(n
−1). (45)

Proof. By definition,
√
nuij = z

⊤
j γi, where the entries of zj are independent given j. Then,

n∑
j=1

E|
√
nuij|4 =

n∑
j=1

E|z⊤j γi|4 =
n∑

j=1

p+r∑
k1,k2,k3,k4

E(γik1γik2γik3γik4zjk1zjk2zjk3zjk4)

=
n∑

j=1

[ p+r∑
k=1

γ4ikνjk + 3

p+r∑
k1=1

p+r∑
k2 ̸=k1

γ2ik1γ
2
ik2
E(z2jk1)E(z

2
jk2

)

]

=
n∑

j=1

{ p+r∑
k=1

γ4ik[νjk − 3(Ez2jk)2] + 3[

p+r∑
k=1

γ2ikE(z2jk)]2
}

= n(ξi + 1),

which proves the first result in (45). For the second, define the conditional expectation

Eh(·) = E(· | f 0
1 , ϵ1, . . . ,f

0
h , ϵh). Then,

n∑
j=1

u4ij − E
n∑

j=1

u4ij =
n∑

h=1

(Eh − Eh−1)
n∑

j=1

u4ij. (46)

Write γ⊤
i = (γ⊤

i1,γ
⊤
i2) as in Lemma C.1. Then,

(
√
nuij)

4 = |f⊤
j γi1|4 + 4(f⊤

j γi1)
3ϵ⊤j γi2 + 6(f⊤

j γi1)
2(ϵ⊤j γi2)

2 + 4(f⊤
j γi1)(ϵ

⊤
j γi2)

3 + |ϵ⊤j γi2|4.
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Write ϑjh =
∑

l ̸=hCjlγ
⊤
i1f

0
l . Then,

|f⊤
j γi1|4 = (Cjhγ

⊤
i1f

0
h + ϑjh)

4

=(Cjhγ
⊤
i1f

0
h)

4 + 4(Cjhγ
⊤
i1f

0
h)

3ϑjh + 6(Cjhγ
⊤
i1f

0
h)

2ϑ2
jh + 4(Cjhγ

⊤
i1f

0
h)ϑ

3
jh + ϑ4

jh :=
5∑

l=1

πl,jh.

Note that (Eh − Eh−1)π5,jh = 0 while

E|(Eh − Eh−1)
n∑

j=1

π1,jh|2 ≲(
∑
j

|Cjh|4)2 × E|γ⊤
i1f

0
h |8 ≤ O(1),

E|(Eh − Eh−1)
n∑

j=1

π2,jh|2 ≲(
∑
j

|Cjh|2)(
∑
j

|Cjh|4)× E|γ⊤
i1f

0
h |6(max

j
Eϑ2

jh) ≤ O(1),

E|(Eh − Eh−1)
n∑

j=1

π3,jh|2 ≲(
∑
j

|Cjh|2)(
∑
j

|Cjh|2)× E|γ⊤
i1f

0
h |4(max

j
Eϑ4

jh) ≤ O(1),

E|(Eh − Eh−1)
n∑

j=1

π4,jh|2 ≲E|
∑
j

Cjh(ϑ
3
jh − Eϑ3

jh)|2 ≤ E|
∑
j

Cjh[(γ
⊤
i1fj)

3 − E(γ⊤
i1fj)

3]|2 +O(1).

Using the technique in (46) again, we have

∑
j

Cjh[(γ
⊤
i1fj)

3 − E(γ⊤
i1fj)

3 =
n∑

l=1

(El − El−1)
∑
j

Cjh[(γ
⊤
i1fj)

3

=
n∑

l=1

(El − El−1)
∑
j

Cjh

[
(Cjlγ

⊤
i1f

0
l )

3 + 3(Cjlγ
⊤
i1f

0
l )

2ϑjl + 3(Cjlγ
⊤
i1f

0
l )ϑ

2
jl + ϑ3

jl

]
.

Similarly, (El − El−1)ϑ
3
jl = 0. Write C2 = C⊙C and C3 = C2 ⊙C, where ⊙ stands for the

Hadamard product. Then, after some tedious calculation, we have∑
l

E[
∑
j

Cjh(Cjlγ
⊤
i1f

0
l )

3]2 ≲∥C⊤
·hC3∥2,∑

l

E[
∑
j

Cjh(Cjlγ
⊤
i1f

0
l )

2ϑjl]
2 ≲

∑
l

E[
∑
j

CjhC
2
jlf

⊤
j γi1]

2 + ∥C⊤
·hC3∥2

≲
∑
j

∑
l

C2
jhC

4
jl + ∥C⊤

·hC3∥2 ≤ O(1) + ∥C⊤
·hC3∥2,∑

l

E[(El − El−1)
∑
j

CjhCjlγ
⊤
i1f

0
l ϑ

2
jl]

2 ≲
∑
l

E[(1− E)
∑
j

CjhCjl(f
⊤
j γi1)

2]2 + ∥C⊤
·hC3∥2

≲
∑
j

∑
l

C2
jhC

2
jl + ∥C⊤

·hC3∥2 ≤ O(1) + ∥C⊤
·hC3∥2.
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As a result, by Burkholder’s inequality, we conclude that

E|(Eh − Eh−1)
n∑

j=1

π4,jh|2 ≲ O(1) + ∥C⊤
·hC3∥2,

which further implies that

E|
n∑

h=1

(Eh − Eh−1)|f⊤
j γi1|4|2 ≲

n∑
h=1

∥C⊤
·hC3∥2 +O(n) ≲ ∥C3∥2F +O(n) ≤ O(n).

Similarly, we can also prove that

E
∣∣∣∣ n∑
h=1

(Eh − Eh−1)
n∑

j=1

|f⊤
j γi1|k1|ϵ⊤j γi2|k2

∣∣∣∣2 ≤ O(n), 0 ≤ k1, k2 ≤ 4, k1 + k2 = 4.

Therefore, by (46) and Burkholder’s inequality, we claim that

E
( n∑

j=1

u4ij − E
n∑

j=1

u4ij

)2

≤ o(n−2),

which concludes the lemma.

Lemma C.4. Under Assumption 1, there exists constant C > 0 such that

P
(
∥(n ∨ p)−1EE⊤∥ > C

)
→ 0.

If further maxi,j |ϵij| ≤ (np)1/4−c for some small constant c > 0, we have

P
(
∥(n ∨ p)−1EE⊤∥ > C

)
≤ (n ∨ p)−d,

for any constant d > 0.

Proof. We start with the case p = n. The result follows directly from random matrix theory

on the largest eigenvalue of sample covariance matrix, see for example Theorem 2.7 and

Theorem 3.15 in Ding and Yang (2018). For p > n, we can always find some p × (p − n)

matrix E+ so that (E,E+) is one p× p matrix satisfying all the assumptions under the case

n = p. Then, the result still holds. For p < n, it’s parallel by transposing E.
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Lemma C.5. Under Assumptions 1 and 2, for the decomposition in (26) we have

n−1Γ⊤
1 ZW

1/2K(θ1)W
1/2Z⊤Γ1

=
1

n
Γ⊤

1 ZWZ⊤Γ1 −
(
1

n
trW

)
Ir + ζ̂1Ir +Op

(
1√
n
× (n ∨ p) log n

nθ1
+

1

n

)
,

where the Op is under Frobenius norm.

Proof. To ease notation, in the following proof, op(n
−1/2) stands for

Op

(
1√
n
× (n ∨ p) log n

nθ1
+

1

n

)
.

Step 1: truncation.

We need to truncate the entries of E = (ϵij)p×n by defining

ϵ∗ij = ϵijI(|ϵij| < (np)1/4−c), E∗ = (ϵ∗ij),

for some small constant c > 0. Then, because Eϵij = 0, we have

|Eϵ∗ij| =|Eϵij − Eϵ∗ij| = |EϵijI(|ϵij| ≥ (np)1/4−c)|
≤(np)−7/4+7cEϵ8ijI(|ϵij| ≥ (np)1/4−c) ≤ C(np)−3/2,

for some large constant C > 0. Similarly, we have |1 − E(ϵ∗ij)2| ≤ C(np)−1. Further let

ϵ∗∗ij = (ϵ∗ij − Eϵ∗ij)/
√
E(ϵ∗ij)2 and E∗∗ = (ϵ∗∗ij ). Then, ϵ∗∗ij ’s are independent random vari-

ables with mean 0, variance 1, bounded eighth moment satisfying |ϵ∗∗ij | ≤ (np)1/4−c. Define

Z∗,Z∗∗,K∗,K∗∗ by replacing E with E∗,E∗∗, respectively. Then,

P
(
∥n−1Γ⊤

1 ZW
1/2K(θ1)Z

⊤W1/2Γ1 − n−1Γ⊤
1 Z

∗W1/2K∗(θ1)Z
∗⊤W1/2Γ1∥ ≥ n−2c

)
≤P(E ̸= E∗) ≤ P

(
max
i,j

|ϵij| ≥ (np)1/4−c

)
≤

∑
i,j

P
(
|ϵij| ≥ (np)1/4−c

)
→ 0,

where we use Markov’s equality and the bounded eighth moment condition. Then,

∥n−1Γ⊤
1 ZW

1/2K(θ1)Z
⊤W1/2Γ1 − n−1Γ⊤

1 Z
∗W1/2K∗(θ1)Z

∗⊤W1/2Γ1∥ = op(n
−2),

so that the error is negligible if we replace E with E∗. More tedious calculations will show

that the error is also negligible if we further replace E∗ with E∗∗. Similar technique has been

applied in Section 12 of Cai et al. (2020) and we omit the details. As a result, without loss of

generality, we can assume that |ϵij| ≤ (np)1/4−c for some small constant c > 0 in the proof,
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which only generates an error term of order op(n
−1/2).

Next, we provide an upper bound for ∥W∥. Define an event Ξw = {∥W∥ ≤ 5 log n}.
Under standard bootstrap, by (17) and (18), as long as n is sufficiently large, we have

1− P(Ξw) = P(∥W∥ > 5 log n) = P
(
exp(max

j
wj) > n5

)
≤ n(ee−1 + c)

n5
= o(n−3).

Under multiplier bootstrap, it’s similar to conclude that

1− P(Ξw) = o(n−3). (47)

On the other hand, let Ξ0 = {∥n−1EE⊤∥ ≤ C(n ∨ p)/n}. Then, by Lemma C.4,

1− P(Ξ0) ≤ o((n ∨ p)−4), n→ ∞. (48)

Then, it’s sufficient to consider n−1Γ⊤
1 ZW

1/2K(θ1)Z
⊤W1/2Γ1I(Ξ0)I(Ξw). Similarly, let Ej

be the (p+r)×n matrix by replacing the j-th column of E with 0, and define Ej, S2j, Kj(x)

accordingly by replacing E with Ej. Let Ξj = {∥n−1EjE
⊤
j ∥ ≤ C(n ∨ p)/n}. Then,

1− P(Ξj) ≤ o((n ∨ p)−4), n→ ∞, 1 ≤ j ≤ n. (49)

In the following, we may take the events Ξ0,Ξw,Ξj as given without further explanation.

Step 2: replacing F with F0.

We aim to calculate the error if replacing F with F0. Define Ž = ZW1/2 and

H(x) :=

 xI n−1/2Ž⊤Γ2Λ
1/2
2 n−1/2Ž⊤Γ1

n−1/2Λ
1/2
2 Γ⊤

2 Ž I 0

n−1/2Γ⊤
1 Ž 0 Ir

 =

(
xI n−1/2Ž⊤Ã

n1/2Ã⊤Ž Ip+r

)
,

where Ã = (Γ2Λ
1/2
2 ,Γ1). Then, by Schur’s complement formula, the (3, 3)-block of H−1(θ1)

is exactly equal to the inverse of I− θ−1
1 n−1Γ⊤

1 ZW
1/2K(θ1)Z

⊤W1/2Γ1. That is,

n−1Γ⊤
1 ZW

1/2K(θ1)Z
⊤W1/2Γ1 = θ1(I− [H−1(θ1)]

−1
3,3),

where the subscript (3, 3) indicates a block. By Shur’s complement formula again,

[H−1(θ1)]n+k,n+l = [(I− θ−1
1 n−1Ã⊤ŽŽ⊤Ã)−1]kl, 1 ≤ k, l ≤ r + p.

Write G̃ = n−1Ã⊤ŽŽ⊤Ã. Define Ž0, H0(x) and G̃0 by replacing F with F0, respectively.
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Let ek be the (r + p)-dimensional unit vector with the k-th element being 1. By (25),

[(I− θ−1
1 G̃)−1]kl − [(I− θ−1

1 G̃0)
−1]kl = θ−1

1 e
⊤
k (I− θ−1

1 G̃)−1(G̃− G̃0)(I− θ−1
1 G̃0)

−1el

=θ−1
1 [(G̃− G̃0)kl + θ−1

1 e
⊤
k (G̃− G̃0)(I− θ−1

1 G̃0)
−1G̃0el

+ θ−1
1 e

⊤
k (I− θ−1

1 G̃)−1G̃(G̃− G̃0)(I− θ−1
1 G̃0)

−1el].

Without loss of generality, we let k = l = p+ 1. Then,

e⊤k (G̃− G̃0)(I− θ−1
1 G̃0)

−1G̃0el

=γ⊤
1

[
n−1(F⊤WF− F0⊤WF0) n−1(F− F0)⊤WE⊤

n−1EW(F− F0) 0

]
(I− θ−1

1 G̃0)
−1γ1 ≤ Op(n

−1/2),

where we use the facts that F, F0 and E are mutually independent and θ−1
1 ∥G̃0∥ = op(1).

By similar but more tedious calculations, we can also show that

e⊤k (I− θ−1
1 G̃)−1G̃(G̃− G̃0)(I− θ−1

1 G̃0)
−1el ≤ Op(n

−1/2).

Consequently, we have

[(I− θ−1
1 G̃)−1]kl − [(I− θ−1

1 G̃0)
−1]kl = θ−1

1 [(G̃− G̃0)kl +Op(θ
−2
1 n−1/2),

which further indicates that

[H−1(θ1)]3,3 − [H−1
0 (θ1)]3,3 = (nθ1)

−1Γ⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ+Op(θ

−2
1 n−1/2).

Using (25) again, we have

[H−1(θ1)]
−1
3,3 =[H−1

0 (θ1)]
−1
3,3 − (nθ1)

−1[H−1(θ1)]
−1
3,3Γ

⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ[H−1

0 (θ1)]
−1
3,3 + θ−1

1 op(n
−1/2)

=[H−1
0 (θ1)]

−1
3,3 − (nθ1)

−1Γ⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ+ θ−1

1 op(n
−1/2),

where we use the fact that [H−1(θ1)]
−1
3,3 = I+Op((nθ1)

−1(n ∨ p) log p) and the same rate for

[H−1
0 (θ1)]

−1
3,3. Finally, we can conclude that

n−1Γ⊤
1 ZW

1/2K(θ1)Z
⊤W1/2Γ1 =n

−1Γ⊤
1 Z0W

1/2K0(θ1)Z
⊤
0 W

1/2Γ1

+ n−1Γ⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ+ op(n

−1/2),

where Z0 and K0 are obtained by replacing F with F0, respectively.

In the following, we will replace F with F0, and still write F to ease notation. That is, we

assume the entries of F to be independent. The replacement error will be considered later.

Moreover, we generalize the definition of events Ξ0,Ξj by replacing E with Z.

51



Step 3: first order approximation.

Let b1 and b2 be any two columns of Γ1. Now we aim to provide asymptotic representation

for L := n−1b⊤1 ZW
1/2K(θ1)W

1/2Z⊤b2, where K(θ1) = [I − θ−1
1 W1/2S̃2W

1/2]−1 and S̃2 =

n−1Z⊤Σ2Z with Σ2 = Γ2Λ2Γ
⊤
2 . The idea is to approximate LI(Ξ0)I(Ξw) by its conditional

expectation E[LI(Ξ0)I(Ξw) | W] and calculate the error. Define the conditional expectations

Ej = E(· | z1, . . . ,zj,W), 1 ≤ j ≤ n, and Z = (z1, . . . ,zn). Let ej be the n-dimensional

vector with the j-th entry being 1 and the others being 0. Then,

LI(Ξ0)I(Ξw)− E[LI(Ξ0)I(Ξw) | W] =
n∑

j=1

(Ej − Ej−1)LI(Ξ0)I(Ξw)

=
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 (Zj + zje

⊤
j )W

1/2K(θ1)W
1/2(Zj + zje

⊤
j )

⊤b2I(Ξ0)I(Ξw)

=
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2K(θ1)W
1/2Z⊤

j b2I(Ξ0)I(Ξw)

+
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2K(θ1)W
1/2ejz

⊤
j b2I(Ξ0)I(Ξw)

+
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 zje

⊤
j W

1/2K(θ1)W
1/2Z⊤

j b2I(Ξ0)I(Ξw)

+
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 zje

⊤
j W

1/2K(θ1)W
1/2ejz

⊤
j b2I(Ξ0)I(Ξw)

:=I1 + I2 + I3 + I4. (50)

We aim to prove that the error is negligible if we replace K(θ1) with In in Ik, k = 1, 2, 3, 4.

We start with I1. Under the events Ξw and Ξ0 (or Ξj), we always have ∥γ⊤
j Zj∥2 ≤ C(n∨p)

for any 1 ≤ j ≤ p. Therefore, combining with (48) and (49), we have∣∣∣∣ 1n
n∑

j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2K(θ1)W
1/2Z⊤

j b2[I(Ξ0)− I(Ξj)]I(Ξw)

∣∣∣∣
≤∥K(θ1)∥∥W∥ × 1

n

n∑
j=1

(n ∨ p)
(
|I(Ξ0)− 1|+ |I(Ξj)− 1|

)
≤ op(n

−1),

where we use the bounds in (48) and (49). By the same reason, we will repeatedly exchange

Ξ0 and Ξj in the proof without further explanation. Such a replacement will add at most a

negligible error of order op(n
−1) to L.
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Now return to the definition of I1 in (50). We write

I1 =
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2[K(θ1)−Kj(θ1)]W
1/2Z⊤

j b2I(Ξ0)I(Ξw)

+
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2Kj(θ1)W
1/2Z⊤

j b2I(Ξj)I(Ξw) + op(n
−1).

The leading term in the second line is actually 0 because the expectations under Ej and Ej−1

are equal. For the first line, recall that S̃2 = n−1Z⊤Σ2Z while Z = Zj + zje
⊤
j . Then,

S̃2 =S̃2j +
1

n
Z⊤

j Σ2zje
⊤
j + (

1

n
Z⊤

j Σ2zje
⊤
j )

⊤ +
1

n
ejz

⊤
j Σ2zje

⊤
j

:=S̃2j +R1 +R2 +R3. (51)

Then, by the matrix inverse formula in (25), we have

K(x) = Kj(x) + x−1K(x)W1/2(R1 +R2 +R3)W
1/2Kj(x), (52)

which implies that

I1 − op(n
−1) =

3∑
k=1

I1k

:=
3∑

k=1

1

θ1

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjW

1/2K(θ1)W
1/2RkW

1/2Kj(θ1)W
1/2Z⊤

j b2I(Ξ0)I(Ξw).

It suffices to calculate I1k for k = 1, 2, 3.

By definition, the jth row and column entries of S̃2j are all equal to 0. Then, the jth

row and column vectors of Kj(θj) are equal to ej. As a result,

e⊤j W
1/2Kj(θ1)W

1/2 = wje
⊤
j =⇒ e⊤j W

1/2Kj(θ1)W
1/2Z⊤

j = wje
⊤
j Z

⊤
j = 0, (53)

which implies that I11 = I13 = 0.

It suffices to calculate I12. To this end, we introduce some notation. Define

ab1ej = b
⊤
1 ZjW

1/2K(θ1)W
1/2ej, azjzj = z

⊤
j Σ2ZjW

1/2Kj(θ1)W
1/2Z⊤

j Σ2zj,

āzjzj = tr[Σ2ZjW
1/2Kj(θ1)W

1/2Z⊤
j Σ2],

ab1zj = b
⊤
1 ZjW

1/2K(θ1)W
1/2Z⊤

j Σ2zj, a∗b1zj = b
⊤
1 ZjW

1/2Kj(θ1)W
1/2Z⊤

j Σ2zj. (54)

53



Use (51) and (53) again so that

ab1ej =
wj

nθ1
(ab1zj + z

⊤
j Σ2zjab1ej), ab1zj = a∗b1zj +

1

nθ1
ab1ejazjzj .

Therefore,

ab1ej = α−1
j × wj

nθ1
a∗b1zj , with αj = 1− wj

(nθ1)2
azjzj −

wj

nθ1
z⊤j Σ2zj. (55)

Under the events Ξ0 and Ξw, we have ∥Kj(θ1)∥ ≤ O(1), and further

|azjzj | ≤ C∥z⊤j Σ2Zj∥2 log n ≤ C(n ∨ p)2 log n, |z⊤j Σ2zj| ≤ C(n ∨ p).

Therefore, |α−1
j |I(Ξ0)I(Ξw) ≤ O(1) uniformly over 1 ≤ j ≤ n. By Burkholder’s equality,

E|I12|2 ≤C
n∑

j=1

E
∣∣∣∣ 1

n2θ1
ab1eja

∗
b2zj

I(Ξ0)I(Ξw)

∣∣∣∣2 = C
n∑

j=1

E
∣∣∣∣α−1

j wj

n3θ21
a∗b1zja

∗
b2zj

I(Ξ0)I(Ξw)

∣∣∣∣2
≤C log4 n

n6θ41
×

n∑
j=1

Ew2
j∥b⊤1 Zj∥2∥Zj∥2∥b⊤2 Zj∥2I(Ξ0)I(Ξw) ≤

C

n

(
(n ∨ p) log n

nθ1

)4

,

where the second line is by Lemma C.2 and the dependence between zj and Zj. Therefore,

we conclude that I1 = op(n
−1/2). In other words,

I1 −
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjWZ⊤

j b2I(Ξ0)I(Ξw) = op(n
−1/2).

because the error is negligible to replace Ξj with Ξ0 while

1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjWZ⊤

j b2I(Ξj)I(Ξw) = 0.

Consequently, the error is negligible after replacing K(θ1) in I1 with In.

For I2, I3 and I4, the proof strategy is similar and omitted here. We refer to the proof
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of Theorem 2.4 in Cai et al. (2020) for the details. So we conclude directly that

I2 −
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZjWejz

⊤
j b2I(Ξ0)I(Ξw) ≤ op(n

−1/2),

I3 −
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 zje

⊤
j WZ⊤

j b2I(Ξ0)I(Ξw) ≤ op(n
−1/2),

I4 −
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 zje

⊤
j Wejz

⊤
j b2I(Ξ0)I(Ξw) ≤ op(n

−1/2).

Therefore, we have

LI(Ξ0)I(Ξw)− E[LI(Ξ0)I(Ξw) | W]

=
1

n

n∑
j=1

(Ej − Ej−1)b
⊤
1 ZWZ⊤b2I(Ξ0)I(Ξw) + op(n

−1/2)

=
1

n
b⊤1 ZWZ⊤b2 −

1

n
E(b⊤1 ZWZ⊤b2 | W) + op(n

−1/2)

=
1

n
b⊤1 ZWZ⊤b2 −

1

n
b⊤1 b2tr(W) + op(n

−1/2).

The limiting distributions are now much easier to derive because K(θ1) has been removed.

However, we still need to calculate E[LI(Ξ0)I(Ξw) | W], which is organized below.

Step 4: replacing Z with Gaussian variables.

In this step, we aim to show that

E[LI(Ξ0)I(Ξw) | W] = E[L0I(Ξ0
0)I(Ξw) | W] + op(n

−1/2), (56)

where L0, Ξ0
0 are defined similarly to L, Ξ0 by replacing the entries in Z with i.i.d. standard

Gaussian variables, respectively.

The key technique is the Lindeberg’s replacement strategy. Let Z0 be a p × n random

matrix independent of Z and composed of i.i.d. standard Gaussian variables. Further let

Zk = (z1, . . . ,zk, z
0
k+1, . . . ,z

0
n),

which is composed of the leading k columns of Z and the last (n− k) columns of Z0. Define

Zk
j as the p×n matrix by replacing the j-th column of Zk with 0. Similarly, define Zk, Kk(x),

Sk
2 and Lk by replacing Z with Zk, and Zk

j , K
k
j (x), Sk

2j by replacing Zj with Zk
j accordingly.

Define the events Ξ0
0 = {∥n−1Z0(Z0)⊤∥ ≤ C(n ∨ p)/n} and Ξ0

j = {∥n−1Z0
j(Z

0
j)

⊤∥ ≤ C(n ∨
p)/n}.
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Similarly to Step 3, it suffices to consider

E0[LI(Ξ0)I(Ξw)]− E0[L0I(Ξ0
0)I(Ξw)]

=
n∑

k=1

(
E0[LkI(Ξ0)I(Ξ

0
0)I(Ξw)]− E0[Lk−1I(Ξ0)I(Ξ

0
0)I(Ξw)]

)
+ op(n

−1/2).

To ease notation, in this step we take W as given and assume I(Ξw) = 1. Expanding Lk

using the same technique as in (50) by writing Zk = Zk
k + zke

⊤
k , we have

E0[LkI(Ξ0)I(Ξ
0
0)]

=
1

n
E0b

⊤
1 Z

k
kW

1/2Kk
0(θ1)W

1/2(Zk
k)

⊤b2I(Ξ0)I(Ξ
0
0)

+
1

n
E0b

⊤
1 Z

k
kW

1/2Kk
0(θ1)W

1/2ekz
⊤
k b2I(Ξ0)I(Ξ

0
0)

+
1

n
E0b

⊤
1 zke

⊤
k W

1/2Kk
0(θ1)W

1/2(Zk
k)

⊤b2I(Ξ0)I(Ξ
0
0)

+
1

n
E0b

⊤
1 zke

⊤
k W

1/2Kk
0(θ1)W

1/2ekz
⊤
k b2I(Ξ0)I(Ξ

0
0)

:=J k
1 + J k

2 + J k
3 + J k

4 .

Meanwhile, Zk−1 = Zk
k + z

0
ke

⊤
k so that similarly we have

E0[Lk−1I(Ξ0)I(Ξ
0
0)]

=
1

n
E0b

⊤
1 Z

k
kW

1/2Kk−1
0 (θ1)W

1/2(Zk
k)

⊤b2I(Ξ0)I(Ξ
0
0)

+
1

n
E0b

⊤
1 Z

k
kW

1/2Kk−1
0 (θ1)W

1/2ek(z
0
k)

⊤b2I(Ξ0)I(Ξ
0
0)

+
1

n
E0b

⊤
1 z

0
ke

⊤
k W

1/2Kk−1
0 (θ1)W

1/2(Zk
k)

⊤b2I(Ξ0)I(Ξ
0
0)

+
1

n
E0b

⊤
1 z

0
ke

⊤
k W

1/2Kk−1
0 (θ1)W

1/2ek(z
0
k)

⊤b2I(Ξ0)I(Ξ
0
0)

:=Ak
1 +Ak

2 +Ak
3 +Ak

4.

In the following, we aim to show that∣∣∣∣ n∑
k=1

(J k
i −Ak

i )

∣∣∣∣ = op(n
−1/2), i = 1, 2, 3, 4. (57)

Let’s abuse the notation in (54) slightly by replacing Zj with Zk
k. Then, similarly to the
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proof of Step 3, we have

n∑
k=1

J k
1 −

n∑
k=1

E0n
−1b⊤1 Z

k
kW

1/2Kk
k(θ1)W

1/2Zk
kb2I(Ξ0)I(Ξ

0
0)− op(n

−1/2)

=
n∑

k=1

1

n2θ1
E0ab1eka

∗
b2zk

I(Ξ0)I(Ξ
0
0) =

n∑
k=1

wk

n3θ21
E0α

−1
k a∗b1zka

∗
b2zk

I(Ξ0)I(Ξ
0
0), (58)

where αk is defined similarly to (55). Define

ᾱk = 1− wk

(nθ1)2
āzkzk −

wk

nθ1
tr(Σ2),

so that

α−1
k − ᾱ−1

k = −α−1
k ᾱ−1

k

[
wk

(nθ1)2
(azkzk − āzkzk)−

wk

nθ1
(z⊤k Σ2zk − trΣ2)

]
,

and

E0α
−1
k a∗b1zka

∗
b2zk

I(Ξ0)I(Ξ
0
0) = E0(ᾱ

−1
k + α−1

k − ᾱ−1
k )a∗b1zka

∗
b2zk

I(Ξ0)I(Ξ
0
0).

Since |α−1
k | ≤ C and |ᾱ−1

k | ≤ C under the events Ξ0, Ξ
0
0 and Ξw, we have

E0(α
−1
k − ᾱ−1

k )a∗b1zka
∗
b2zk

I(Ξ0)I(Ξ
0
0)

≤C
√
E0|α−1

k − ᾱ−1
k |2I(Ξ0)I(Ξ0

0)× E0|a∗b1zka
∗
b2zk

|2I(Ξ0)I(Ξ0
0)

≤C
√

(nθ1)−1(n ∨ p)4 log4 n ≤ C√
nθ1

× (n ∨ p)2 log2 n.

Therefore,

n∑
k=1

wk

n3θ21
E0α

−1
k a∗b1zka

∗
b2zk

I(Ξ0)I(Ξ
0
0) =

n∑
k=1

wk

n3θ21
E0ᾱ

−1
k a∗b1zka

∗
b2zk

I(Ξk)I(Ξ
0
k) + op(n

−1/2).

Return to (58) so that

n∑
k=1

J k
1 −

n∑
k=1

E0n
−1b⊤1 Z

k
kW

1/2Kk
k(θ1)W

1/2Zk
kb2I(Ξ0)I(Ξ

0
0)

=
n∑

k=1

wk

n3θ21
E0ᾱ

−1
k a∗b1zka

∗
b2zk

I(Ξk)I(Ξ
0
k) + op(n

−1/2).

57



Similarly, for Ak
1, we will have

n∑
k=1

Ak
1 −

n∑
k=1

E0n
−1b⊤1 Z

k
kW

1/2Kk
k(θ1)W

1/2Zk
kb2I(Ξ0)I(Ξ

0
0)

=
n∑

k=1

wk

n3θ21
E0ᾱ

−1
k a∗b1z0

k
a∗b2z0

k
I(Ξk)I(Ξ

0
k) + op(n

−1/2).

Recall that E0z
⊤
k Azk = E0(z

0
k)

⊤Az0k for any matrix A independent of zk and z0k. Then,

n∑
k=1

wk

n3θ21
E0ᾱ

−1
k a∗b1zka

∗
b2zk

I(Ξk)I(Ξ
0
k) =

n∑
k=1

wk

n3θ21
E0ᾱ

−1
k a∗b1z0

k
a∗b2z0

k
I(Ξk)I(Ξ

0
k),

which further concludes (58) when i = 1. For
∑n

k=1(J k
i −Ak

i ), i = 2, 3, 4, the proof is similar

and omitted here. We conclude directly (57) and refer to Cai et al. (2020) for further details.

It remains to consider E0[L0I(Ξ0
0)I(Ξw)], or E0[L0I(Ξ̂0

0)I(Ξw)] where Ξ̂0
0 is defined as

the event {(n ∨ p)−1∥(Z0)⊤Σ2Z
0∥ ≤ C}. Instead of considering specific b1 and b2, in the

following we calculate the whole matrix

M := E0

(
1

n
Γ⊤

1 Z
0W1/2[I− 1

nθ1
W1/2(Z0)⊤Σ2Z

0W1/2]−1W1/2(Z0)⊤Γ1I(Ξ̂
0
0)I(Ξw)

)
.

Note that the entries of Z0 are i.i.d. from N (0, 1). Therefore, the entries of Γ⊤Z0 are also

i.i.d. from N (0, 1). In other words, Γ⊤
1 Z

0 is independent of Γ⊤
2 Z

0 and Ξ̂0
0. Further note the

fact that Γ⊤
1 Γ1 = I. Then,

M = Ir ×
1

n
trE0

(
W1/2[I− 1

nθ1
W1/2(Z0)⊤Σ2Z

0W1/2]−1W1/2I(Ξ0
0)I(Ξw)

)
.

Since the entries of Z0 are Gaussian, without loss of generality we can regard Σ2 as diagonal

matrix. Then, it suffices to consider

ζ(θ1) := n−1trE0[W
1/2K(θ1)W

1/2I(Ξ0
0)I(Ξw)] = n−1

n∑
j=1

wjE0[K(θ1)]jjI(Ξ
0
0)I(Ξ

0
w),

where K(x) := [I− (nx)−1W1/2(Z0)⊤Λ2Z
0W1/2]−1.

Step 5: calculating ζ(θ1).

Let H(x) = [I − (nx)−1Λ
1/2
2 Z0W(Z0)⊤Λ

1/2
2 ]−1. By Schur’s complement formula, for
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1 ≤ j ≤ n,

[K(θ1)]jj =

([
I 1√

nθ1
W1/2(Z0)⊤Λ

1/2
2

1√
nθ1

Λ
1/2
2 Z0W1/2 I

]−1)
jj

=1 +

(
1

nθ1
W1/2(Z0)⊤Λ

1/2
2 H(θ1)Λ

1/2
2 Z0W1/2

)
jj

=1 +
wj

nθ1
(z0j )

⊤Λ
1/2
2 H(θ1)Λ

1/2
2 z0j .

Define Hj(x) by replacing Z0 with Z0
j . Since Z0W(Z0)⊤ =

∑n
j=1wjz

0
j (z

0
j )

⊤, we have

1

n
(z0j )

⊤Λ
1/2
2 H(θ1)Λ

1/2
2 z0j

=
1

n
(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j +

1

n
(z0j )

⊤Λ
1/2
2 H(θ1)

wj

nθ1
Λ

1/2
2 z0j (z

0
j )

⊤Hj(θ1)Λ2z
0
j

=
1

1− wj

nθ1
(z0j )

⊤Hj(θ1)Λ2z0j

1

n
(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j ,

where the second line is by (25). As n, p→ ∞,

wj

nθ1
(z0j )

⊤Hj(θ1)Λ2z
0
j I(Ξ

0
0)I(Ξw) → 0,

which implies that

E0

∣∣∣∣
wj

nθ1

[
(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j − tr[Λ

1/2
2 Hj(θ1)Λ

1/2
2 ]

]
1− wj

nθ1
(z0j )

⊤Hj(θ1)Λ2z0j
I(Ξ0

0)I(Ξw)

∣∣∣∣
≤CE0

∣∣∣∣ wj

nθ1

[
(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j − tr[Λ

1/2
2 Hj(θ1)Λ

1/2
2 ]

]
I(Ξ0

0)I(Ξw)

∣∣∣∣
≤C log n

nθ1
E0∥Λ1/2

2 Hj(θ1)Λ
1/2
2 I(Ξ0

0)∥F ≤ op(n
−1/2), (59)

where we use the fact that ∥Hj(θ1)∥I(Ξ0
0)I(Ξw) ≤ C. On the other hand,

E0

∣∣∣∣ 1

1− wj

nθ1
(z0j )

⊤Hj(θ1)Λ2z0j
− 1

1− wj

nθ1
tr[Hj(θ1)Λ2]

∣∣∣∣ wj

nθ1
tr(Λ

1/2
2 Hj(θ1)Λ

1/2
2 )I(Ξ0

0)I(Ξw)

=E0

∣∣∣∣ wj

nθ1
[(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j − trΛ

1/2
2 Hj(θ1)Λ

1/2
2 ]

[1− wj

nθ1
(z0j )

⊤Hj(θ1)Λ2z0j ][1−
wj

nθ1
trHj(θ1)Λ2]

∣∣∣∣ wj

nθ1
tr(Λ

1/2
2 Hj(θ1)Λ

1/2
2 )I(Ξ0

0)I(Ξw)

≤Cp log n
nθ1

× E0

∣∣∣∣ wj

nθ1
[(z0j )

⊤Λ
1/2
2 Hj(θ1)Λ

1/2
2 z0j − trΛ

1/2
2 Hj(θ1)Λ

1/2
2 ]

∣∣∣∣I(Ξ0
0)I(Ξw) ≤ op(n

−1/2).
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Consequently, we conclude that

E0[K0(θ1)]jjI(Ξ
0
0)I(Ξw) =1 + E0

wj

nθ1
trHj(θ1)Λ2

1− wj

nθ1
trHj(θ1)Λ2

I(Ξ0
0)I(Ξw) + op(n

−1/2)

=E0
1

1− wj

nθ1
trHj(θ1)Λ2

I(Ξ0
0)I(Ξw) + op(n

−1/2), (60)

and the above convergence rate is actually uniform over j. Further note that

E0

∣∣∣∣ 1

1− wj

nθ1
trHj(θ1)Λ2

− 1

1− wj

nθ1
trH(θ1)Λ2

∣∣∣∣I(Ξ0
0)I(Ξw)

=E0

∣∣∣∣ wj

nθ1
tr[H(θ1)−Hj(θ1)]Λ2

[1− wj

nθ1
trHj(θ1)Λ2][1− wj

nθ1
trH(θ1)Λ2]

∣∣∣∣I(Ξ0
0)I(Ξw)

=E0

∣∣∣∣ (
wj

nθ1
)2(z0j )

⊤Hj(θ1)Λ2H(θ1)z
0
j

[1− wj

nθ1
trHj(θ1)Λ2][1− wj

nθ1
trH(θ1)Λ2]

∣∣∣∣I(Ξ0
0)I(Ξw) ≤ op(n

−1/2).

As a result,

ζ(θ1) =
1

n

n∑
j=1

E0
wj

1− wj

nθ1
tr[H(θ1)Λ2]

I(Ξ0
0)I(Ξw) + op(n

−1/2). (61)

Furthermore, by (47) and (48),

1

n

n∑
j=1

E0

∣∣∣∣ wj

1− wj

nθ1
trH(θ1)Λ2

I(Ξ0
0)I(Ξw)−

wj

1− wj

nθ1
E0trH(θ1)Λ2I(Ξ0

0)I(Ξw)

∣∣∣∣
=
1

n

n∑
j=1

E0

∣∣∣∣ wjI(Ξ
0
0)I(Ξw)

1− wj

nθ1
trH(θ1)Λ2I(Ξ0

0)I(Ξw)
− wjI(Ξ

0
0)I(Ξw)

1− wj

nθ1
E0trH(θ1)Λ2I(Ξ0

0)I(Ξw)

∣∣∣∣+ op(n
−2)

=
1

n

n∑
j=1

E0

∣∣∣∣ w2
j

nθ1
[trH(θ1)Λ2 − E0trH(θ1)Λ2]I(Ξ

0
0)I(Ξw)]

[1− wj

nθ1
trH(θ1)Λ2I(Ξ0

0)I(Ξw)][1− wj

nθ1
E0trH(θ1)Λ2I(Ξ0

0)I(Ξw)]

∣∣∣∣+ op(n
−2)

≤C

√
E0

∣∣∣∣ 1

nθ1
[trH(θ1)Λ2 − E0trH(θ1)Λ2]I(Ξ0

0)I(Ξw)

∣∣∣∣2 + op(n
−2).
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Let E0
j = E(· | z01 , . . . ,z0j ,W). Then,

1

nθ1
[trH(θ1)Λ2 − E0trH(θ1)Λ2]I(Ξ

0
0)I(Ξw) =

n∑
j=1

(E0
j − E0

j−1)
1

nθ1
trH(θ1)Λ2I(Ξ

0
0)I(Ξw)

=
n∑

j=1

(E0
j − E0

j−1)

[
1

nθ1
trHj(θ1)Λ2 +

wj

(nθ1)2
(z0j )

⊤Hj(θ1)Λ2H(θ1)z
0
j

]
I(Ξ0

0)I(Ξw)

=
n∑

j=1

(E0
j − E0

j−1)
wj

(nθ1)2
(z0j )

⊤Hj(θ1)Λ2H(θ1)z
0
j I(Ξ

0
0)I(Ξw) + op(n

−1).

Therefore, by Burkholder’s inequality,

E0

∣∣∣∣ 1

nθ1
[trH(θ1)Λ2 − E0trH(θ1)Λ2]I(Ξ

0
0)I(Ξw)

∣∣∣∣2
≤ C

(nθ1)2

n∑
j=1

E0
j

∣∣∣∣ 1

nθ1
(z0j )

⊤Hj(θ1)Λ2H(θ1)z
0
j I(Ξ

0
0)I(Ξw)

∣∣∣∣2 ≤ C

nθ21
×
(

p

nθ1

)2

.

Then, we conclude that

ζ(θ1) =
1

n

n∑
j=1

wj

1− wj

nθ1
EtrH(θ1)Λ2I(Ξ0

0)I(Ξw)
+ op(n

−1/2). (62)

It remains to calculate n−1EtrH(θ1)Λ2I(Ξ
0
0)I(Ξw). In fact, this is totally parallel to ζ(θ1)

by exchanging W and Λ2 and transposing Z0. Then, we conclude that

1

n
EtrH(θ1)Λ2I(Ξ

0
0)I(Ξw) =

1

n

p∑
i=1

λr+i

1− θ−1
1 λr+iζ(θ1)

+ op(n
−1/2). (63)

In other words,

ζ(θ1) =
1

n

n∑
j=1

wj

1− wj

nθ1

∑p
i=1

λr+i

1−θ−1
1 λr+iζ(θ1)

+ op(n
−1/2).

Recall the definition of ζ̂1,

ζ̂1 =
1

n

n∑
j=1

wj

1− wj

nθ1

∑p
i=1

λr+i

1−θ−1
1 λr+iζ̂1

.
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Then, we have

ζ(θ1)− ζ̂1 − op(n
−1/2) =

1

n

n∑
j=1

wj

nθ1

∑p
i=1[

λr+i

1−θ−1
1 λr+iζ(θ1)

− λr+i

1−θ−1
1 λr+iζ̂1

]

[1− 1
nθ1

∑p
i=1

λr+i

1−λ−1
1 λr+i

][1− wj

nθ1

∑p
i=1

λr+i

1−θ−1
1 λr+iζ(θ1)

]

=
1

n

n∑
j=1

wj

nθ1

∑p
i=1

λ2
r+i

[1−θ−1
1 λr+iζ(θ1)][1−θ−1

1 λr+iζ̂1]

[1− 1
nθ1

∑p
i=1

λr+i

1−λ−1
1 λr+i

][1− wj

nθ1

∑p
i=1

λr+i

1−θ−1
1 λr+iζ(θ1)

]
× 1

θ1
[ζ(θ1)− ζ̂1]

=op(1)[ζ(θ1)− ζ̂1]. (64)

Therefore, we conclude that ζ(θ1)− ζ̂1 − op(n
−1/2).

Step 6: adding back replacement error.

The lemma follows Steps 3 to 5 if F = F0, i.e., the entries of F are independent with

mean 0, variance 1 and bounded eighth moment. For general F, adding back the replacement

error in Step 2, we have

n−1Γ⊤
1 ZW

1/2K(θ1)Z
⊤W1/2Γ1

=n−1Γ⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ1 + n−1Γ⊤

1 Z0W
1/2K0(θ1)Z

⊤
0 W

1/2Γ1 + op(n
−1/2)

=n−1Γ⊤
1 (ŽŽ

⊤ − Ž0Ž
⊤
0 )Γ1 + n−1Γ⊤

1 Z0WZ⊤
0 Γ1 − (n−1trW)× Ir + ζ̂1Ir + op(n

−1/2)

=n−1Γ⊤
1 ZWZ⊤Γ1 − (n−1trW)× Ir + ζ̂1Ir + op(n

−1/2),

which concludes the lemma.

Lemma C.6. Under the conditions of Theorem 3.3, we have

n−1Γ⊤
1 ZW

1/2K(λ̂1)K(θ1)W
1/2Z⊤Γ1 = I+ op∗(1).

Proof. By the matrix inverse formula (A+B)−1 = A−1 − (A+B)−1BA−1,

n−1Γ⊤
1 ZW

1/2K(λ̂1)K(θ1)W
1/2Z⊤Γ1

=n−1Γ⊤
1 ZW

1/2K(θ1)K(θ1)W
1/2Z⊤Γ1 − δ1n

−1Γ⊤
1 ZW

1/2K(λ̂1)K
2(θ1)W

1/2Z⊤Γ1.

By Lemma 3.1, δ1 = op((log n)
−1), thus

δ1n
−1Γ⊤

1 ZW
1/2K(λ̂1)K

2(θ1)W
1/2Z⊤Γ1 = op(1).

On the other hand, similarly to the proof of Lemma C.5,

n−1Γ⊤
1 ZW

1/2K2(θ1)W
1/2Z⊤Γ1 = Ir + op(1),

where we use the fact that ζ̂1 = 1 + op(1). Then, the lemma follows.
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D. Proof of results in Section 4: preliminaries

D.1. Outline of the proof

Our major target is to prove Lemma 4.1 in the main paper, which provides a sufficiently

fast convergence rate for the ratio λ̂r+1/λ0. Therefore, we start with r = 0, i.e., there

are no spiked eigenvalues. Under such cases, X = ΨE = ΨZ, where the entries of Z are

independent with mean 0, variance 1 and bounded moments. To ease notation, without loss

of generality, we assume Ψ = Σ1/2, where Σ is the population covariance matrix. Then, the

bootstrapped sample covariance matrix is

Ŝ = n−1XWX⊤ = n−1Σ1/2ZWZ⊤Σ1/2,

where Σ satisfies Assumptions 1 and 3. Let λ1 ≥ · · · ≥ λp be the eigenvalues of Σ.

Recall the definition of orders {t1, . . . , tn}. We define a series of events Ωn satisfying:

1. |wt1 − wt2| ≥ (log n)−c;

2. C−1 log n ≤ |wt1| ≤ C log n;

3. |wt1 − wt[
√
n]
| ≥ C−1 log n;

4. n−1
∑n

j=1w
h
j ≤ C, for h = 1, 2,

for some constants c, C > 0. Since wj’s are i.i.d. from Exp(1), we have

wtj
d
=

n−j+1∑
i=1

i

n
w̃i,

where w̃i’s are also i.i.d. from Exp(1). Therefore, it’s not hard to verify Ωn holds with

probability tending to one. Our proof will be conditional on the events Ωn, which has

negligible effects on the limiting distributions of λ̂r+1.

Motivated by the gap between wt1 and wt2 , we will regard wt1 as an outlier from the

spectrum of W. Therefore, by definition, when r = 0, λ̂r+1 satisfies

det(λ̂r+1I− Ŝ) = 0 =⇒ 1 + n−1wt1x
⊤
t1
[Ŝ(1) − λ̂r+1I]

−1xt1 = 0,

where Ŝ(1) = n−1
∑

j ̸=1wtjxtjx
⊤
tj

and λ̂1 is not an eigenvalue of Ŝ(1) for simplicity because

wj’s are from continuous distribution. Therefore, to investigate the properties of λ̂r+1, one

needs to find some approximation to [Ŝ(1) − λ̂r+1I]
−1. Since λ̂r+1 is random, usually uniform

convergence of [Ŝ(1) − zI]−1 is required for z in some region of C+. This is referred to

the local law in random matrix theory. However, the scenario considered in the current

paper has at least three differences from those considered in the literature, such as in Yang

(2019). Firstly, the support of wt1 is unbounded, so we don’t have regular edge for the

limiting spectral distribution of Ŝ(1). In other words, λ̂r+1 tends to infinity rather than some
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constant as n → ∞. Secondly, the “square-root” type regularity conditions (see (2.18) in

Yang (2019)) will not always hold. This requires us to use a larger imaginary part of z

(of order log1+c n) in the proof. Thirdly, the stability lemma (such as Lemma 5.11 in Yang

(2019)) is not guaranteed. Instead, we will use the technique introduced in Lee and Schnelli

(2016) and Kwak et al. (2021). After finding the approximation to [Ŝ(1) − λ̂r+1I]
−1, Lemma

4.1 can be verified similarly to the proof of Lemma 3.3.

Given Lemma 4.1, it will be easy to prove Lemma 4.2 by a detailed calculation of the

fluctuations of λ0. It turns out that the limiting distribution of λ̂r+1 is mainly determined

by λ0, and further by wt1 , as shown in Lemma 4.2. To extend the results to the case of

r > 0, we use the technique introduced in Cai et al. (2020). Specifically, for r > 0, λ̂r+1 is

an eigenvalue of Ŝ if and only if

det

(
λ̂r+1I−

1

n
W1/2Z⊤(Γ1Λ1Γ

⊤
1 + Γ2Λ2Γ

⊤
2 )ZW

1/2

)
= 0.

Then, it suffices to verify that the determinant can take the value of 0 when λ̂r+1 is in a

neighborhood of φ̂1, and show that this is exactly the largest non-spiked eigenvalue. The

details are given in Section E.3.

D.2. Definitions

Before the formal proof, we need to introduce some definitions commonly used in the

literature of random matrix theory.

Definition D.1 (High probability event). We say that an n-dependent event En holds with

high probability if for any constant d > 0,

P(En) ⩾ 1− n−d,

for all sufficiently large n. For a high probability, we may take it as given in the proof, which

only brings in negligible errors.

Definition D.2 (Stochastic domination). (a). For two families of nonnegative random vari-

ables

A = {An(t) : n ∈ Z+, t ∈ Tn}, B = {Bn(t) : n ∈ Z+, t ∈ Tn},

where Tn is a possibly n-dependent parameter set, we say that A is stochastically dominated

by B, uniformly on t if for all (small) ε > 0 and (large) d > 0 there exists n0(ε, d) ∈ Z+ such

that as n ≥ n0(ε, d),

sup
t∈Tn

P
(
An(t) > nεBn(t)

)
≤ n−d.

If A is stochastically dominated by B, uniformly on t, we use notation A ≺ B or A = O≺(B).

Moreover, for some complex family A if |A| ≺ B we also write A = O≺(B).
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(b). LetA be a family of random matrices and ζ be a family of nonnegative random variables.

Then, we denote A = O≺(ζ) if A is dominated by ζ under weak operator norm sense, i.e.

|⟨v,Aw⟩| ≺ ζ∥v∥∥w∥ for any deterministic vectors v and w.

(c). For two sequences of numbers {bn}∞n=1, {cn}∞n=1, bn ≺ cn if for all c > 0, bn ≤ nccn for

sufficiently large n.

Next, we introduce the definition of Stieltjes transform. Note that Ŝ1 has a separable

structure. Motivated by Yang (2019), we define

m1c(z) =c

∫
t

−z(1 +m2c(z)t)
dFΣ(t), m2c(z) =

∫
t

−z(1 +m1c(z)t)
exp(−t)dt,

mc(z) =

∫
1

−z(1 + tm2c(z))
dFΣ(t), z ∈ C+.

Indeed,m1c(z),m2c(z) andmc(z) are the limits of some Stieltjes transforms, corresponding to

some deterministic probability functions, shown in Yang (2019). Then, m1c(z) and m2c(z)

have unique solutions in C+ according to Couillet and Hachem (2014) and Yang (2019).

Remember r = 0 so λi’s are bounded. Define the finite sample versions as

m1n(z) =
1

n

p∑
i=1

λi
−z(1 +m2n(z)λi)

, m2n(z) =
1

n

n∑
j=1

wj

−z(1 + wjm1n(z))
,

mn(z) =
1

p

p∑
i=1

1

−z(1 + λim2n(z))
, z ∈ C+.

Note the different notation for complex number z and the entries in Z, i.e., zij. The latter

always has double subscript index. Then, for any z ∈ C+, m1n(z) converges to m1c(z) as

n→ ∞, and similar results hold for m2n(z), mn(z). Let λ(1) be the largest solution satisfying

1 + (wt1 + n−1/2+c)m1n(λ(1)) = 0.

Note the difference between λ(1) and λ0. We first show that there is a solution to the above

equation. By definition,

− 1

wt1 + n−1/2+c
= − 1

n

p∑
i=1

λi

λ(1) − λi

n

∑n
j=1

wj

1−(wt1+n−1/2+c)−1wj

⇒1 =
1

n

p∑
i=1

λi
λ(1)

wt1+n−1/2+c − λi

n

∑
j

wj

wt1+n−1/2+c−wj

. (65)

Therefore, by continuity and monotonicity on λ(1), the equation always has only one solution
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in the interval (
λ1
n

∑
j

wj(wt1 + n−1/2+c)

wt1 + n−1/2+c − wj

,+∞
)
.

Under Ωn, for sufficiently large n,

1

n

∑
j

wj

wt1 + n−1/2+c − wj

=
1

n
(

[
√
n]∑

j=1

+
n∑

j=[
√
n]+1

)
wj

wt1 + n−1/2+c − wj

≤
√
n

n
log1+c n+

1

n

n∑
j=

√
n+1

wj

C−1 log n
≤ C(log n)−1. (66)

Then, combining (65), we conclude that

λ(1)
wt1 + n−1/2+c

∼ 1

n

∑
i

λi := ϕnλ̄, (67)

where ϕn := p/n and λ̄ := p−1
∑p

i=1 λi. Actually, the definition of m1n(z) can be extended

to z ∈ R for z > wt1 by letting the imaginary part Im z ↓ 0. In the following, we aim to

prove that the largest eigenvalue of Ŝ will not exceed λ(1) with high probability. The result

is shown in Lemma D.9.

Return to the sample covariance matrix. Recall the companion matrix defined by

Ŝ = n−1W1/2X⊤XW1/2.

Define the corresponding Green functions by

G(z) = (Ŝ − zI)−1, G(z) = (Ŝ− zI)−1.

In the following, we may suppress the dependence on z and write G, G directly. Define the

Stieltjes transform corresponding to Ŝ and Ŝ as

m̃(z) =
1

n
trG(z), m(z) =

1

p
trG(z),

and two related quantities

m1(z) =
1

n
trG(z)Σ, m2(z) =

1

n

n∑
i=1

wi[G(z)]ii.
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Since Ŝ and Ŝ have at most |n− p| zero non-identical eigenvalues, we have

nm̃(z) = pm(z)− n− p

z
.

Now we introduce the definition of minors in Pillai and Yin (2014).

Definition D.3 (Minors). For any index set T ⊂ {1, . . . , n}, define X(T) as the p× (n− |T|)
subset of X by removing the columns of X indexed by T. However, we keep the names of

indices of X, i.e.,

(X(T))ij = 1(j /∈ T)Xij.

Define Ŝ(T), Ŝ(T), G(T) and G(T) by replacing X with X(T). Further, define m(T)(z), m̃(T)(z),

m
(T)
1 (z), m

(T)
2 (z) using G(T), G(T). Abbreviate ({i}) as (i) and {i} ∪ T as (iT). To ease

notation, we may suppress the dependence on z in the proof.

Then, we have the next lemma.

Lemma D.4 (Resolvent identity). Write yi =
√
wixi. Then,

Gii(z) =
1

−z − zn−1y⊤
i G

(i)yi
,

Gij(z) =zn
−1Gii(z)G(i)

jj (z)y
⊤
i G

(ij)yj, i ̸= j,

Gij(z) =G(k)
ij (z) +

Gik(z)Gkj(z)

Gkk(z)
, i, j ̸= k.

The results also hold after replacing G with G(T).

Proof. See Lemma 2.3 in Pillai and Yin (2014).

D.3. Some useful lemmas

In the following, we present some useful lemmas for the proof related to λ̂r+1, such as the

local law and eigenvalue rigidity properties. These lemma commonly appear in the literature

of random matrix theory, such as Erdős et al. (2012), Pillai and Yin (2014), Ding and Yang

(2018) and Yang (2019) to characterize the fluctuations of a non-spiked sample eigenvalue.

Following the definitions above, actually it suffices to consider z in the region

D := {z = λ(1) + τ + iη : 0 < τ ≤ C log n, n−2/3 ≤ η ≤ (log n)1+c},

for some small constant c > 0. The following lemma holds.

Lemma D.5. For the multiplier bootstrap, if Assumptions 1, 3 and the events Ωn hold, as

n→ ∞ we have

m1n(λ(1) + τ) ∈
[
− 1

wt1 + n−1/2+c
,− 1

1 + c

ϕnλ̄

λ(1) + τ

]
,
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for any 0 ≤ τ ≤ C log n, and

− 1

wt1 + n−1/2+c
< Rem1n(z) < − ϕnλ̄

1 + c

E

(E2 + η2)
,

ϕnλ̄

1 + c

η

E2 + η2
< Imm1n(z) < η|Rem1n(z)| < O(η log−1 n),

|m2n(z)| = o(1), |mn(z)| = o(1),

Imm2n(z) = o(η), Immn(z) = o(η),

for any z = E + iη ∈ D and small constant c > 0, where E := λ(1) + τ .

Proof. We first calculate m1n(λ(1) + τ). Let z = λ(1) + τ . Define

f1n := f1n(z,m1n(z)) := −m1n(z)−
1

n

p∑
i=1

λi

z − λi

n

∑
j

wj

1+m1n(z)wj

= 0. (68)

On one hand, if m1n(λ(1) + τ) = −(wt1 + n−1/2+c)−1, then for τ ≥ 0 we always have f1n ≥ 0.

On the other hand, if

m1n(λ(1) + τ) = − 1

1 + c

ϕnλ̄

λ(1) + τ
,

for some constant c > 0, then similarly to (66) we have

f1n =
1

1 + c

ϕnλ̄

λ(1) + τ
− 1

n

p∑
i=1

λi
(λ(1) + τ)[1 + o(1)]

< 0,

for sufficiently large n, where the o(1) in denominator is uniform on i ∈ [1, p]. Then, by

continuity, for sufficiently large n there is always a solution satisfying

m1n(λ(1) + τ) ∈
[
− 1

wt1 + n−1/2+c
,− 1

1 + c

ϕnλ̄

λ(1) + τ

]
,

for any 0 ≤ τ ≤ C log n, because f1n takes opposite signs at the two end points.

Now we add the imaginary part into the equation. Let z = E+ iη ∈ D and E = λ(1)+ τ .

Taking real part in (68) and writing m1n for m1n(z), we have

Re f1n = −Rem1n −
1

n

p∑
i=1

λi Re(z − λi

n

∑
j

wj

1+m1nwj
)

Re2(z − λi

n

∑
j

wj

1+m1nwj
) + Im2(z − λi

n

∑
j

wj

1+m1nwj
)
= 0,
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while

Re(z − λi
n

∑
j

wj

1 +m1nwj

) =E − λi
n

∑
j

wj[1 + wj Rem1n]

[1 + wj Rem1n]2 + w2
j Im

2m1n

,

Im(z − λi
n

∑
j

wj

1 +m1nwj

) =η +
λi
n

∑
j

w2
j Imm1n

[1 + wj Rem1n]2 + w2
j Im

2m1n

.

If Rem1n = m1n(E), we have∣∣∣∣ 1n∑
j

wj[1 + wj Rem1n]

[1 + wj Rem1n]2 + w2
j Im

2m1n

∣∣∣∣ ≤ ∣∣∣∣ 1n∑
j

wj(wt1 + n−1/2+c)

wt1 + n−1/2+c − wj

∣∣∣∣ ≤ C,

which further indicates that

Re(z − λi
n

∑
j

wj

1 +m1nwj

) > 0,

for sufficiently large n and

Re f1n ≥−m1n(E)−
1

n

p∑
i=1

λi

E − λi

n

∑
j

wj [1+wj Rem1n]

[1+wj Rem1n]2+w2
j Im2 m1n

>−m1n(E)−
1

n

p∑
i=1

λi

E − λi

n

∑
j

wj

[1+wjm1n(E)]

= 0.

On the other hand, if Rem1n = −ϕnλ̄(1 + c)−1E/(E2 + η2) > −ϕnλ̄λ
−1
(1), we will have

1

n

n∑
j=1

wk
j

[1 + wj Rem1n]2
=
1

n

√
n∑

j=1

wk
j

[1 + wj Rem1n]2
+

1

n

n∑
j=

√
n+1

wk
j

[1 + wj Rem1n]2

≤C Re−2m1n(log n)
−2 = E × o(1),

with high probability for any constant k > 0. Then, one can verify that

Re(z − λi
n

∑
j

wj

1 +m1nwj

) = E[1 + o(1)], Im(z − λi
n

∑
j

wj

1 +m1nwj

) = η +O

(
E2 + η2

E log n

)
.

(69)

Therefore, by definition,

Re f1n =
−cϕnλ̄

1 + c
E/(E2 + η2)[1 + o(1)] < 0.
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Then, for sufficiently large n, there is a solution

Rem1n(z) ∈
(
− 1

wt1 + n−1/2+c
,− ϕnλ̄

1 + c

E

(E2 + η2)

)
. (70)

Now we focus on Imm1n. Similarly,

Im f1n(z) = − Imm1n +
1

n

p∑
i=1

λi Im(z − λi

n

∑
j

wj

1+m1nwj
)

Re2(z − λi

n

∑
j

wj

1+m1nwj
) + Im2(z − λi

n

∑
j

wj

1+m1nwj
)
= 0.

When Rem1n satisfies (70), the results in (69) still hold. Then, if Imm1n = −ηRem1n,

Im(z − λi
n

∑
j

wj

1 +m1nwj

) = η +O(η(logn)−2Re−1m1n) = η[1 + o(1)],

which further implies that

Im f1n =ηRem1n +
ϕnλ̄η

E2 + η2
[1 + o(1)] = ηRem1n[1 + o(1)] < 0.

On the other hand, if Imm1n = (1 + c)−1ϕnλ̄η/(E
2 + η2), we still have

Im(z − λi
n

∑
j

wj

1 +m1nwj

) = η[1 + o(1)],

which further implies

Im f1n =− ϕnλ̄

1 + c

η

E2 + η2
+ ϕnλ̄

η

E2 + η2
[1 + o(1)] > 0.

Therefore, for Rem1n satisfying (70), we always have a solution m1n(z) satisfying

ϕnλ̄

1 + c

η

E2 + η2
< Imm1n(z) < η|Rem1n| < Cη log−1 n, z ∈ D. (71)

Recall that m1n converges to m1c while m1c has a unique solution in C+. Since Imm1n > 0,

we claim that for sufficiently large n, the solutions for Rem1n and Imm1n are unique in C+,

which are given by (70) and (71).

Now we calculate m2n and mn. By definition,

m2n =
1

n

∑
j

wj[−E − wj(E Rem1n − η Imm1n) + iη + iwj(E Imm1n + ηRem1n)]

[−E − wj(E Rem1n − η Imm1n)]2 + [−η − wj(E Imm1n + ηRem1n)]2
.
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Then, when η ≤ O(1), by (70) and (71), we have

|m2n| ≤
C

E|Rem1n| log n
= o(1).

On the other hand, if η → ∞,

|m2n| ≤ C
1

n

∑
j

wj

η(1 + wj Rem1n)
≤ O

(
1

η|Rem1n| log n

)
≤ O

(
1

η
+

η

E log n

)
= o(1).

Therefore, we always have |m2n(z)| = o(1) for z ∈ D. By a similar procedure, we can also

prove |mn| = o(1). A more careful but elementary calculation will lead to

Imm2n = o(η), Immn = O(η(log n)−1),

which concludes the lemma.

Now we provide local law for large η.

Lemma D.6 (Average local law for large η). For the multiplier bootstrap, if Assumptions

1, 3 and the events Ωn hold, then uniformly on z ∈ D with η = (log n)1+c, it holds that

m1 −m1n ≺ n−1/2, m2 −m2n ≺ n−1/2, m−mn ≺ n−1/2,

max
i,j

(
G + z−1(I+m1nW)−1

)
ij

≺ n−1/2.

Proof. When η = log1+c n, directly we have max{∥G(T)∥, ∥G(T)∥} ≤ η−1 ≤ (log n)−1−c, for

any T ⊂ {1, . . . , n}. To prove the lemma, we need to find the relationship between m1 and

m2. By Lemma D.4 and the definition of m2, we have

m2 =
1

n

n∑
i=1

wi

−z[1 + n−1y⊤
i G

(i)yi]
=

1

n

n∑
i=1

wi

−z[1 + win−1trG(i)Σ+ Zi]
, where

Zi :=n
−1y⊤

i G
(i)yi − win

−1trG(i)Σ. (72)

Note that yi is independent of G
(i). Then, by large deviation bounds,

Zi ≺
wi

n

(
∥G(i)Σ∥2F

)1/2

≺ n−1/2. (73)

On the other hand,
1

n
trG(i)Σ−m1(z) =

1

n2
y⊤
i G

(i)Gyi ≺ n−1. (74)
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As a result, we write

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1 +O≺(n−1/2)]
=

1

n

n∑
i=1

wi

−z[1 + wim1]
+O≺(n

−1/2), (75)

where we use the fact |1 + wim1| ≥ |1− C log n× η−1| ≥ C−1.

Conversely, we can also usem2 to representm1. Below we show the details. By definition,

Ŝ− zI =
1

n

∑
i

yiy
⊤
i + zm2(z)Σ− z[I+m2(z)Σ].

Taking inverse on both sides,

G = −z−1[I+m2(z)Σ]−1 + z−1G

[
1

n

∑
i

yiy
⊤
i + zm2(z)Σ

]
[I+m2(z)Σ]−1.

By elementary matrix inverse formulas,

Gyi = G(i)yi − n−1Gyiy
⊤
i G

(i)yi =
1

1 + n−1y⊤
i G

(i)yi
G(i)yi.

Therefore, we can write

G =− z−1[I+m2(z)Σ]−1 + z−1 1

n

∑
i

G(i)[yiy
⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m2(z)Σ]−1

+ z−1 1

n

∑
i

wi[G
(i) −G]Σ

1 + n−1y⊤
i G

(i)yi
[I+m2(z)Σ]−1

:=− z−1[I+m2(z)Σ]−1 +R1 +R2. (76)

In the following, we bound the error terms. For R1,

z

n
trR1Σ =

1

n2

∑
i

tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m

(i)
2 (z)Σ]−1Σ

)
+

1

n2

∑
i

tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m2(z)Σ]−1[m

(i)
2 (z)−m2(z)]Σ[I+m

(i)
2 (z)Σ]−1Σ

)
:=R11 +R12.

(77)

Since η = log1+c n, we have ∥G(i)∥ → 0, |m(i)
2 | → 0, and with high probability |1 +
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n−1y⊤
i G

(i)yi| ≥ c. Then, for each i,

1

n
tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m

(i)
2 (z)Σ]−1Σ

)
≺ 1

n
∥Σ∥F ≺ n−1/2,

which further indicates R11 ≺ n−1/2. For R12, note that

m
(i)
2 (z)−m2(z) =

1

n

∑
µ̸=i

wµ[Gµµ − G(i)
µµ] =

1

n

∑
µ̸=i

GiµGµi

Gii

,

while by Lemma D.4,

1

Gii

= −z − zn−1y⊤
i G

(i)yi ≤ C|z|, Gij(z) ≤ C|z|n−1∥G(ij)∥F ≺ n−1/2, i ̸= j.

Therefore, we can conclude that

m
(i)
2 (z)−m2(z) ≺ n−1 ⇒ R12 ≺ n−1 ⇒ z

n
trR1Σ ≺ n−1/2.

For R2, note that

1

n
tr(G(i) −G)Σ[I+m2(z)Σ]−1Σ ≤

∣∣∣∣ 1n2
y⊤
i G

(i)Σ[I+m2(z)Σ]−1ΣGyi

∣∣∣∣ ≺ n−1.

Then, directly we have
1

n
trR2Σ ≺ n−1.

Consequently, we have

m1 =
1

n
trGΣ = −z−1 1

n
tr[I+m2Σ]−1Σ+O≺(n

−1/2) = − 1

n

p∑
i=1

λi
z[1 + λim2]

+O≺(n
−1/2).

(78)

Combine (75) and (78) to get

m2 −m2n =
1

n

n∑
i=1

w2
i [m1 −m1n]

−z[1 + wim1][1 + wim1n]
+O≺(n

−1/2)

=

(
1

n

n∑
i=1

w2
i

−z[1 + wim1][1 + wim1n]

)(
1

n

p∑
i=1

λ2i [m2 −m2n]

−z[1 + λim2][1 + λim2n]

)
+O≺(n

−1/2).

Since |z(1 + wim1n)| ≥ c, |1 + wim1| ≥ c, |1 + λim2| ≥ c, |1 + λim2n| ≥ c, and |z| → ∞, we

conclude that

m2 −m2n = O(|z|−1)(m2 −m2n) +O≺(n
−1/2), (79)
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which further implies m2−m2n ≺ n−1/2. By a parallel procedure, we have m1−m1n ≺ n−1/2.

Next, we show the result for m(z) (abbreviated as m). Indeed, similarly to (78) and (79),

we can easily conclude that

m =
1

p
trG = − 1

n

p∑
i=1

1

z[1 + λim2]
+O≺(n

−1/2) = mn +O≺(n
−1/2).

Since m,m1,m2 are Lipschitz on z with Lipschitz coefficient n2, the results hold uniformly

on z by a standard lattice technique. For example, see the argument below (5.51) in Kwak

et al. (2021).

The last step is to prove the result for G. For the diagonal entries, by Lemma D.4,

Gii =− 1

z[1 + n−1y⊤
i G

(i)yi]
= − 1

z[1 + win−1trG(i)Σ+O≺(n−1/2)]

=− 1

z[1 + wim1 +O≺(n−1/2)]
= − 1

z[1 + wim1n]
+O≺(n

−1/2).

For the off-diagonal entries, we have

|Gij| ≤ z|Gii||G(i)
jj ||n−1y⊤

i G
(ij)yj| ≺ n−1∥G(ij)∥F ≺ n−1/2.

The lemma is then verified.

The next step is to show that the results in Lemma D.6 also hold for small η. We need

the following self-improvement lemma.

Lemma D.7 (Self-improvement). Under multiplier bootstrap, Assumptions 1, 3 and the

events Ωn, for any z ∈ D, if

ψ1 :=max
i,j

(
G + z−1(I+m1nW)−1

)
ij

≺ n−1/2+c,

ψ2 :=|m1 −m1n|+ |m2 −m2n|+ |m−mn| ≺ n−1/2+c,

for some constant 0 < c < 1/5, then we have

ψ1 ≺ n−1/2, ψ2 ≺ n−1/2.

Proof. We essentially follow the same strategy as that in the proof of Lemma D.6. The

major difference is that ∥G∥ ≺ 1 no longer holds because η can be very small. To overcome

this challenge, we will mainly rely on the preliminary bounds of ψ1 and ψ2 to control all the

error terms. Below we show the details.
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We first use m1 to represent m2. By the priori bound of ψ1 and Lemma D.5, we conclude

that |Gii| ≺ 1 and |Gij| ≺ n−1/2+c for i ̸= j. To prove (75) for small η, note that (72) still

holds but we need to reconsider (73) and (74). For Zi,

Zi ≺
wi

n
∥G(i)Σ∥F ≺ n−1∥G(i)∥F ≺ n−1∥G(i)∥F + n−1/2 = n−1/2

√
Im m̃(i)

nη
+ n−1/2

≺n−1/2

(√
Im m̃

nη
+

√
|m̃− m̃(i)|

nη
+ 1

)
≺ n−1/2

(
1 +

√√√√ 1

nη

1

n

∑
j ̸=i

|Gij|2
|Gii|

)
≺n−1/2.

On the other hand,

1

n
trG(i)Σ−m1(z) =

1

n2
y⊤
i G

(i)ΣGyi =
1

n2
y⊤
i G

(i)ΣG(i)yi −
1

n3
y⊤
i G

(i)ΣGyiy
⊤
i G

(i)yi

=
1
n2y

⊤
i G

(i)ΣG(i)yi

1 + n−1y⊤
i G

(i)yi
≺

1
n2∥G(i)∥2F

|1 + n−1y⊤
i G

(i)yi|
≺

1
n2∥G(i)∥2F + n−1

|1 + n−1y⊤
i G

(i)yi|

=

1
nη

Im m̃(i) + n−1

|1 + n−1y⊤
i G

(i)yi|
≺

1
nη

Im m̃+ 1
nη

× n−1+2c + n−1

|1 + n−1y⊤
i G

(i)yi|

≤
1
nη

Imm+ 1
nη
| Im z−1|+ n−1

|1 + n−1y⊤
i G

(i)yi|
≺ n−1 + (nη)−1| Imm− Immn|

|1 + n−1y⊤
i G

(i)yi|
≺n−5/6+c|zGii| ≺ n−1/2.

Therefore,

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1 +O≺(n−1/2)]

=
1

n

n∑
i=1

wi

−z[1 + wim1]
+

1

n

n∑
i=1

wiO≺(n
−1/2)

−z[1 + wim1][1 + wim1 +O≺(n−1/2)]

=
1

n

n∑
i=1

wi

−z[1 + wim1]
+

1

n

wt1O≺(n
−1/2)

−z[1 + wt1m1][1 + wt1m1 +O≺(n−1/2)]

+
1

n

n∑
i=2

wtiO≺(n
−1/2)

−z[1 + wtim1][1 + wtim1 +O≺(n−1/2)]

=
1

n

n∑
i=1

wi

−z[1 + wim1]
+O≺(n

−1/2), (80)
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where we use the facts that

1 + wt1m1 =1 + wt1m1n + wt1(m1 −m1n) ≥ 1− wt1

wt1 + n−1/2+c
+O≺(n

−1/2+c)

≥n−1/2−2c,

and meanwhile for i ≥ 2,

1 + wtim1 =1 + wtim1n + wti(m1 −m1n) ≥ 1 + wt2m1n +O≺(n
−1/2+c)

≥[wt1 − wt2 ]m1n +O≺(n
−1/2+2c) ≥ c(log n)−2.

Next, we aim to represent m1 using m2, i.e., prove (78) based on the priori bounds of ψ1

and ψ2. The decompositions in (76) and (77) still hold, but we need to reconsider how to

bound R11, R12 and R2. For R11, note that

m
(i)
2 =m

(i)
2 −m2 +m2 −m2n +m2n ≺ 1

n

∑
µ̸=i

|Giµ|2

|Gii|
+O≺(n

−1/2+c) +m2n

=m2n +O≺(n
−1/2+c) → 0.

Then, for each i,

1

n
tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m

(i)
2 (z)Σ]−1Σ

)
≺ |zGii|

1

n
∥Σ[I+m

(i)
2 (z)Σ]−1ΣG(i)∥F

≺ 1

n
∥G(i)∥F ≺ n−1/2,

where the last step follows from the bound of Zi. This further indicates that R11 ≺ n−1/2.

On the other hand, for R12, since m
(i)
2 −m2 ≺ n−1+2c and m

(i)
2 → 0 with high probability,

we have

R12 ≺
n−1+2c

n2

∑
i

tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m2(z)Σ]−1Σ[I+m

(i)
2 (z)Σ]−1Σ

)
≺n

−1+2c

n2

∑
i

tr

(
G(i)[yiy

⊤
i − wiΣ]

1 + n−1y⊤
i G

(i)yi
[I+m

(i)
2 (z)Σ]−1Σ[I+m

(i)
2 (z)Σ]−1Σ

)
+O≺

(
n−2+4c

n2

∑
i

|y⊤
i G

(i)yi|+ n∥Σ∥
)

≺n
−1+2c

n2

∑
i

∥G(i)∥F +O≺

(
n−2+4c(η−1 + 1)

)
≺ n−1/2.
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Lastly, for R2,

1

n
tr(G(i) −G)Σ[I+m2(z)Σ]−1Σ ≤

∣∣∣∣ 1n2
y⊤
i G

(i)Σ[I+m2(z)Σ]−1ΣGyi

∣∣∣∣
=

∣∣∣∣ 1

1 + n−1y⊤
i G

(i)yi

1

n2
y⊤
i G

(i)Σ[I+m2(z)Σ]−1ΣG(i)yi

∣∣∣∣
≺|zGii|n−2∥G(i)∥2F ≺ n−1.

Consequently, (78) still holds. The remaining proof is almost the same as that of Lemma

D.6, and we omit the details.

Now we can show the local law for z ∈ D.

Lemma D.8 (Average local law). Let Assumptions 1, 3 and the events Ωn hold. Under the

multiplier bootstrap, it holds uniformly on z ∈ D that ψ1 ≺ n−1/2 and ψ2 ≺ n−1/2, where ψ1

and ψ2 are defined in Lemma D.7.

Proof. We use a standard discrete continuity argument to prove the result. For each z =

E + iη ∈ D, fix E and consider a sequence {ηj} defined by ηj = log1+c n − jn−2. Then, η

must fall in an interval [ηj−1, ηj] for some 1 ≤ j ≤ Cn3.

We start with η0 and use induction to complete the proof. For η0, Lemma D.6 already

indicates the results. Now assume ψ1 ≺ n−1/2 and ψ2 ≺ n−1/2 for some j = K. For any η′

satisfying ηj−1 ≤ η′ ≤ ηj, write z
′ = E + iη′ and zj = E + iηj. We then always have

∥G(z′)− G(zj)∥ ≤ |η′ − ηj|
|ηjη′|

≤ n−2/3, (81)

where we use the fact that η ≥ n−2/3 for z ∈ D. On the other hand,

m1n(z
′)−m1n(zj) =

1

n

∑
i

(
λi

−z′[1 + λim2n(z′)]
− λi

−zj[1 + λim2n(zj)]

)
=
1

n

∑
i

(
λi

−z′[1 + λim2n(z′)]
− λi

−z′[1 + λim2n(zj)]

)
+

1

n

∑
i

(
λi

−z′[1 + λim2n(zj)]
− λi

−zj[1 + λim2n(zj)]

)
:=J1 + J2.
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For J1, we have

J1 =
1

n

∑
i

λ2i
−z′[1 + λim2n(z′)][1 + λim2n(zj)]

[m2n(zj)−m2n(z
′)]

=o(1)× 1

n

∑
i

(
wi

−zj[1 + wim1n(zj)]
− wi

−z′[1 + wim1n(z′)]

)
=o(1)× 1

n

∑
i

(
wi

−zj[1 + wim1n(zj)]
− wi

−zj[1 + wim1n(z′)]

)
+ o(1)× 1

n

∑
i

(
wi

−zj[1 + wim1n(z′)]
− wi

−z′[1 + wim1n(z′)]

)
=o(1)× [m1n(z

′)−m1n(zj)] +O≺(zj − z′)

=o(1)× [m1n(z
′)−m1n(zj)] +O≺(n

−2).

Similarly, for J2, we have

J2 ≺ O(n−2).

Therefore,

|m1n(z
′)−m1n(zj)| ≺ n−2. (82)

By similar procedures, we have

|mn(z
′)−mn(zj)| ≺ n−2, |m2n(z

′)−m2n(zj)| ≺ n−2,

∥(z′)−1(I+m1n(z
′)W)−1 − z−1

j (I+m1n(zj)W)−1∥ ≺ n−2.

Therefore, combining (81), we conclude that

∥G(z′)− (z′)−1(I+m1n(z
′)W)−1∥

≤∥G(z′)− G(zj)∥+ ∥G(zj)− z−1
j (I+m1n(zj)W)−1∥

+ ∥(z′)−1(I+m1n(z
′)W)−1 − z−1

j (I+m1n(zj)W)−1∥ ≺ n−1/2.

Similarly, we have

|m1(z
′)−m1n(z

′)| ≺ n−1/2, |m2(z
′)−m2n(z

′)| ≺ n−1/2, |m(z′)−mn(z
′)| ≺ n−1/2.

Then, by induction and Lemma D.7, we conclude that ψ1 ≺ n−1/2 and ψ2 ≺ n−1/2 for any

z ∈ D. The uniform bound is by standard lattice argument and we omit details.

Lemma D.9 (upper bound for eigenvalues). Let r = 0, and Assumptions 1, 3 and the events

Ωn hold. Under the multiplier bootstrap, with high probability there is no eigenvalue of Ŝ in

the interval (λ(1), C log n) for some large constant C > 0 as n→ ∞.
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Proof. We prove the lemma by indirect argument. Assume that there is an eigenvalue of Ŝ

in the interval, denoted as λ̂. Then, we let z = λ̂+ in−2/3. Since z ∈ D, by Lemma D.5 we

have Immn(z) = o(η) = o(n−2/3). Therefore,

Imm(z) = Immn(z) + Im[m(z)−mn(z)]

≤o(n−2/3) + max
z∈D

|m(z)−mn(z)| = O≺(n
−1/2). (83)

However, by the definition of m(z), we know that

Imm(z) ≥ 1

n
Im

1

λ̂− z
= n−1η−1 = n−1/3,

which is a contradiction to (83). Therefore, there is no eigenvalue in this interval.

Now we can consider the limiting properties of the largest eigenvalue of Ŝ, i.e., λ̂1 for

r = 0. We have the next lemma.

Lemma D.10 (Eigenvalue rigidity). Let r = 0, and Assumptions 1, 3 and the events Ωn

hold. Under the multiplier bootstrap, it holds that |λ̂1 − λ0| ≺ n−1/2+2c.

Proof. By definition, λ̂1 is a non-zero eigenvalue of Ŝ if

det(λ̂1I− Ŝ) = 0.

Define Ŝ(1) as

Ŝ(1) := Ŝ− n−1yt1y
⊤
t1
= n−1Y(1)W(1)(Y(1))⊤,

where yt1 is corresponding to wt1 , Y
(1) is obtained by removing yt1 from Y, and W(1) is

obtained by removing the row and column corresponding to wt1 from W. We can assume

that λ̂1 is not an eigenvalue of Ŝ(1) because wj’s follow continuous distribution. Then,

det(λ̂1I− n−1wt1xt1x
⊤
t1
− Ŝ(1)) = 0 =⇒ 1 + n−1wt1x

⊤
t1
[Ŝ(1) − λ̂1I]

−1xt1 = 0.

Define

h(λ) := 1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 .

We aim to show that h(λ) will change sign when λ grows from λ0−n−1/2+2c to λ0+n
−1/2+2c.

The first step is to find approximation to n−1x⊤
t1
[Ŝ(1) − λI]−1xt1 . Given the order of

wj’s, we provide an upper bound for the eigenvalues of Ŝ(1). Actually, following the proof of

Lemma D.6 to Lemma D.9, a direct upper bound for λ1(Ŝ
(1)) is λ(2), which is defined as

1 + (wt2 + n−1/2+c)m
(1)
1n (λ(2)) = 0,
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where m
(1)
1n (z) is the solution in C+ to

m
(1)
1n (z) =

1

n

p∑
i=1

λi

−z
[
1 + λi

n

∑n
j=2

wtj

−z(1+wtjm
(1)
1n (z))

] , z ∈ C+,

and m
(1)
1n (λ) = limη↓0m

(1)
1n (λ+ iη). With λ(2), we can define a new region D(2) ⊂ C+ replacing

λ(1) with λ(2) in the definition of D.

Before moving forward, we need to calculate the gap between λ0 and λ(2). By definition,

λ0
wt1

=
1

n

p∑
i=1

λi

1− wt1

λ0

λi

n

∑n
j=2

wtj

wt1−wtj

,

λ(2)
wt2 + n−1/2+c

=
1

n

p∑
i=1

λi

1− wt2+n−1/2+c

λ(2)

λi

n

∑n
j=2

wtj

wt2+n−1/2+c−wtj

.

Similarly to (66) and (67), one can conclude that

1

n

n∑
j=2

wtj

wt2 + n−1/2+c − wtj

≤ C(log n)−1,
λ(2)

wt2 + n−1/2+c
≍ C,

1

n

n∑
j=1

wtj

wt1 − wtj

≤ C(log n)−1,
λ0
wt1

≍ C.

Then,

λ0
wt1

−
λ(2)

wt2 + n−1/2+c
=

(
1

n

∑
i

λ2i + o(1)

)
×

(
wt1

λ0

1

n

n∑
j=2

wtj

wt1 − wtj

− wt2 + n−1/2+c

λ(2)

1

n

n∑
j=2

wtj

wt2 + n−1/2+c − wtj

)

=

(
wt1

λ0
− wt2 + n−1/2+c

λ(2)

)
O((log n)−1) +

wt2 + n−1/2+c

λ(2)
× C

n

wt1

n−1/2+c

=O((log n)−1)

(
λ0
wt1

−
λ(2)

wt2 + n−1/2+c

)
+O(n−3/4).

As a result, we write
λ0
wt1

−
λ(2)

wt2 + n−1/2+c
= O(n−3/4).
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This further indicates that

λ0 − λ(2) =wt1

(
λ0
wt1

−
λ(2)

wt2 + n−1/2+c

)
+ λ(2)

(
wt1

wt2 + n−1/2+c
− 1

)
=O(n−3/4+c) +

λ(2)
wt2 + n−1/2+c

(wt1 − wt2 − n−1/2+c).

Therefore, we conclude that

λ0 − λ(2) ≥ c(log n)−c. (84)

Now we calculate the sign of h(λ) when λ takes values of the two end points. Let

λ = λ0 − n−1/2+2c. Then, λ is larger than λ(2) for sufficiently large n. Conditional on the

order of {wi}, we always have xt1 is independent of Ŝ(1) and λ0. Then,

n−1x⊤
t1
[Ŝ(1) − λI]−1xt1 −m

(1)
1 (λ) ≺ n−1∥Ŝ(1) − λI∥F ≺ n−1/2,

where we use the fact |λ−λ1(Ŝ
(1))| ≥ c(log n)−1 because λ1(Ŝ

(1)) ≤ λ(2) similarly to Lemma

D.9. Meanwhile, let z = λ+ in−1/2−c, so z ∈ D(2) and

m
(1)
1 (λ) = m

(1)
1 (λ)−m

(1)
1 (z) +m

(1)
1 (z)−m

(1)
1n (z) +m

(1)
1n (z)−m

(1)
1n (λ) +m

(1)
1n (λ).

Similarly to Lemma D.8, we have |m(1)
1 (z)−m

(1)
1n (z)| ≺ n−1/2. For the fist term, let λ̂

(1)
j and

γ̂
(1)
j be the eigenvalues and eigenvectors of Ŝ(1), so

m
(1)
1 (λ)−m

(1)
1 (z) =

1

n

p∑
j=1

|Σ1/2γ̂
(1)
j |2

(
1

λ̂
(1)
j − λ

− 1

λ̂
(1)
j − z

)
.

Recall that λ− λ̂
(1)
j ≥ c(log n)−c − n−1/2+2c ≥ c log−c n because c is arbitrary. Then,

|m(1)
1 (λ)−m

(1)
1 (z)| ≤ 1

n

p∑
j=1

|Σ1/2γ̂
(1)
j |2

∣∣∣∣ 1

λ̂
(1)
j − λ

− 1

λ̂
(1)
j − z

∣∣∣∣
=
1

n

p∑
j=1

|Σ1/2γ̂
(1)
j |2

∣∣∣∣ in−1/2−c

(λ̂
(1)
j − λ)(λ̂

(1)
j − z)

∣∣∣∣ ≤ 1

n

p∑
j=1

|Σ1/2γ̂
(1)
j |2

∣∣∣∣in−1/2−c +O≺(n
−1)

|λ̂(1)j − z|2

∣∣∣∣
≺ Imm

(1)
1 (z) +O≺(n

−1) ≺ Imm
(1)
1n (z) + n−1/2 ≺ o(η) + n−1/2 ≺ n−1/2.
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Next, by definition,

m
(1)
1n (z)−m

(1)
1n (λ)

=
1

n

p∑
i=1

λi

−z
[
1 + λi

n

∑n
j=2

wtj

−z[1+m1n(z)wtj ]

] − 1

n

p∑
i=1

λi

−λ
[
1 + λi

n

∑n
j=2

wtj

−λ[1+m1n(λ)wtj ]

]
=
1

n

p∑
i=1

λi

−z
[
1 + λi

n

∑n
j=2

wtj

−z[1+m1n(z)wtj ]

] − 1

n

p∑
i=1

λi

−z
[
1 + λi

n

∑n
j=2

wtj

−z[1+m1n(λ)wtj ]

]
+

1

n

p∑
i=1

λi

−z
[
1 + λi

n

∑n
j=2

wtj

−z[1+m1n(λ)wtj ]

] − 1

n

p∑
i=1

λi

−λ
[
1 + λi

n

∑n
j=2

wtj

−λ[1+m1n(λ)wtj ]

] .
Similarly to (82), we have

|m(1)
1n (z)−m

(1)
1n (λ)| ≺ n−1/2.

As a result, we conclude that

m
(1)
1 (λ) = m

(1)
1n (λ) +O≺(n

−1/2).

Then, for λ = λ0 − n−1/2+2c,

1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 = 1 + wt1m

(1)
1n (λ) +O≺(n

−1/2). (85)

It’s then sufficient to consider 1 + wt1m
(1)
1n (λ). We write

1 + wt1m
(1)
1n (λ) =1 + wt1m

(1)
1n (λ0)− wt1 [m

(1)
1n (λ0)−m

(1)
1n (λ)].

82



By definition, 1 + wt1m
(1)
1n (λ0) = 0, while

m
(1)
1n (λ0)−m

(1)
1n (λ)

=
1

n

p∑
i=1

λi

−λ0
[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ0)wtj ]

] − 1

n

p∑
i=1

λi

−λ
[
1 + λi

n

∑n
j=2

wtj

−λ[1+m
(1)
1n (λ)wtj ]

]
=
1

n

p∑
i=1

λi

−λ0
[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ0)wtj ]

] − 1

n

p∑
i=1

λi

−λ0
[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ)wtj ]

]
+

1

n

p∑
i=1

λi

−λ0
[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ)wtj ]

] − 1

n

p∑
i=1

λi

−λ
[
1 + λi

n

∑n
j=2

wtj

−λ[1+m
(1)
1n (λ)wtj ]

]
:=L1 + L2.

For L1 we have,

L1 =
1

n

p∑
i=1

λ2i
1
n

∑n
j=2

[
wtj

−λ0[1+m
(1)
1n (λ0)wtj ]

− wtj

−λ0[1+m
(1)
1n (λ)wtj ]

]
−λ0

[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ0)wtj ]

][
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ)wtj ]

]
=O((log n)−1)× 1

n

n∑
j=2

[
wtj

−λ0[1 +m
(1)
1n (λ0)wtj ]

−
wtj

−λ0[1 +m
(1)
1n (λ)wtj ]

]
=o(1)× [m

(1)
1n (λ0)−m

(1)
1n (λ)].

On the other hand, for L2, we have

L2 =
1

n

p∑
i=1

λi[−λ+ λ0]

λλ0

[
1 + λi

n

∑n
j=2

wtj

−λ0[1+m
(1)
1n (λ)wtj ]

][
1 + λi

n

∑n
j=2

wtj

−λ[1+m
(1)
1n (λ)wtj ]

]
=
1

n

p∑
i=1

λi
λλ0

[1 + o(1)]× n−1/2+2c.

Therefore, we have

[1 + o(1)][m
(1)
1n (λ0)−m

(1)
1n (λ)] =

ϕnλ̄

λ20
[1 + o(1)]n−1/2+2c,
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which further indicates that

1 + wt1m
(1)
1n (λ) = −ϕnλ̄wt1

λ20
[1 + o(1)]n−1/2+2c < 0. (86)

That is to say, when λ = λ0 − n−1/2+2c, with high probability,

1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 < 0.

Now let λ = λ0 + n−1/2+2c, and we aim to show that with high probability

1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 > 0. (87)

By an almost parallel procedure in the proof of (85),

1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 = 1 + wt1m

(1)
1n (λ) +O≺(n

−1/2).

Similarly to (86), we can show that

1 + wt1m
(1)
1n (λ) =

ϕnλ̄wt1

λ20
[1 + o(1)]n−1/2+2c > 0.

Then, for λ = λ0 + n−1/2+2c, with high probability

1 + n−1wt1x
⊤
t1
[Ŝ(1) − λI]−1xt1 > 0.

By continuity, with high probability there always exists an eigenvalue of Ŝ in the interval

[λ0 − n−1/2+2c, λ0 + n−1/2+2c] for any constant c > 0, which is also the largest eigenvalue.

Note that we are conditional on the order of {wi} in the above proof. Recall that the

orders are independent of Y and follow uniform distribution. Write t = {t1, . . . , tn} and

Tn = {t1, . . . , t2n}. Then,

P
(
|λ̂1 − λ0| ≤ n−1/2+2c

)
=

2n∑
j=1

P
(
|λ̂1 − λ0| ≤ n−1/2+2c, t = tj

)

=
2n∑
j=1

P
(
|λ̂1 − λ0| ≤ n−1/2+2c | t = tj

)
P(t = tj)

≥ 1

2n

∑
j

(
1− n−d

)
≥ 1− n−d,

for any d > 0. The lemma is then verified.
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E. Proof of the results in Section 4

Based on the preliminary results in the last section, now we are ready to prove Lemmas

4.1, 4.2 and Theorem 4.3.

E.1. Proof of Lemma 4.1: ratio

Proof. Note that r = 0. Following Lemma D.10, λ̂1 satisfies

h(λ̂1) = 1 + n−1wt1x
⊤
t1
[Ŝ

(1)
1 − λ̂1I]

−1xt1 = 0,

which is equivalent to

0 =
λ0
wt1

+ n−1x⊤
t1

[
λ−1
0 Ŝ

(1)
1 − λ̂1

λ0
I

]−1

xt1 ,

⇒ − λ0
wt1

=
1

n
x⊤
t1

[
1

λ0
Ŝ
(1)
1 − I

]−1

xt1 +
1

n
x⊤
t1

[
1

λ0
Ŝ
(1)
1 − I

]−1
λ̂1 − λ0
λ0

[
1

λ0
Ŝ
(1)
1 − λ̂1

λ0
I

]−1

xt1

:=L1 + L2.

We take the order of {wj} as given and start with an approximation to L1. Write

L1 =

{
1

n
x⊤
t1

[
1

λ0
Ŝ
(1)
1 − I

]−1

xt1 −
1

n
tr

[
1

λ0
Ŝ
(1)
1 − I

]−1

Σ

}
+

1

n
tr

[
1

λ0
Ŝ
(1)
1 − I

]−1

Σ

:=L11 + L12.

By elementary matrix inverse formula in (25),

−L11 =n
−1(x⊤

t1
xt1 − trΣ) +

1

n
x⊤
t1

[
Ŝ
(1)
1 − λ0I

]−1

Ŝ
(1)
1 xt1 −

1

n
tr

[
Ŝ
(1)
1 − λ0I

]−1

Ŝ
(1)
1 Σ.

Given the order of wj’s, xt1 is independent of Ŝ
(1)
1 and λ0. Then,

E
∣∣∣∣ 1nx⊤

t1

[
Ŝ
(1)
1 − λ0I

]−1

Ŝ
(1)
1 xt1 −

1

n
tr

[
Ŝ
(1)
1 − λ0I

]−1

Ŝ
(1)
1 Σ

∣∣∣∣2
≤E

C

n2

∥∥∥∥[Ŝ(1)
1 − λ0I

]−1

Ŝ
(1)
1

∥∥∥∥2

F

= E
C

n2

∑
j

(
λ̂
(1)
j

λ0 − λ̂
(1)
j

)2

≤ c

n

√
E
1

n

∑
j

(λ̂
(1)
j )4E

1

n

∑
j

1

(λ0 − λ̂
(1)
j )4

≤ C

n

√√√√E
1

n
∥(Ŝ(1))2∥2F × E

C2 log2c n

n

∑
j

1

(λ0 − λ̂
(1)
j )2

,
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where we use the fact λ0 − λ̂
(1)
1 ≥ c log−c n in the last line. By definition,

∥(Ŝ(1)
1 )2∥2F ≤ ∥S̃(1)∥4

n∑
j=2

w4
tj
,

and we conclude En−1∥(Ŝ(1))2∥2F ≤ C. On the other hand, let z = λ0 + in−1/3, so

1

n

∑
j

1

(λ0 − λ̂
(1)
j )2

− 1

n

∑
j

1

|z − λ̂
(1)
j |2

=
1

n

∑
j

n−2/3

(λ0 − λ̂
(1)
j )2|z − λ̂

(1)
j |2

≤ C log4c n

n2/3
.

However, we already know that

1

n

∑
j

1

|z − λ̂
(1)
j |2

=
1

η
Imm(1)(z) = O((log n)−1).

Therefore,

−L11 = n−1(x⊤
t1
xt1 − trΣ) +Op

(
log

c
2 n

√
n log

1
4 n

)
= op(n

−1/2).

Next, we consider L12. Let z = λ0 + in−2/3, and recall that γ̂
(1)
j ’s are the eigenvectors of

Ŝ(1). Then, by elementary calculation,

|λ−1
0 L12 −m

(1)
1 (z)| ≤ 1

n

p∑
j=1

|Σ1/2γ̂j|2
∣∣∣∣ 1

λ̂
(1)
j − λ0

− 1

λ̂
(1)
j − z

∣∣∣∣ ≤ C Imm(1)(z)

≤C Imm(1)
n (z) + C|m(1)(z)−m(1)

n (z)|. (88)

We already know that m
(1)
1 (z) and m(1)(z) converge with rate n−1/2+c. However, here we

need a sharper bound. For simplicity, we follow the proof of Lemmas D.6 and D.7 and only

show the key steps. That is, we focus on m(z), m1(z), while the proof for m
(1)
1 (z), m(1)(z)

is essentially similar.

We first improve the rate in Lemma D.6, i.e., η = log1+c n. We rewrite (75) as

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1]
+

1

n

∑
i

wiZi

z[1 + wim1]2
+O≺(n

−1). (89)

Then, following a standard fluctuation averaging argument (e.g., see Lemma 5.13 in Yang

(2019)), we claim that
1

n

∑
i

wiZi

z[1 + wim1]2
≺ n−1.
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Therefore, we can improve the rate in (75) to

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1]
+O≺(n

−1). (90)

Next, to improve the rate in (78), it suffices to reconsider R11. In fact, since yi is independent

of G(i) and m
(i)
2 , similarly to the fluctuation averaging argument, we can conclude that

R11 ≺ n−1. That is to say,

m1 =
1

n

p∑
i=1

λi
−z[1 + λim2]

+O≺(n
−1). (91)

With (90) and (91), following the proof of Lemma D.6, we conclude that ψ2 ≺ n−1 for

η = log1+c n, where ψ2 is defined in Lemma D.7. However, the rate for ψ1 is still n−1/2.

It remains to show the local law also holds for small η. Following the argument in Lem-

mas D.7 and D.8, it suffices to reconsider the self-improvement step in Lemma D.7. We

revise the statement in Lemma D.7 as follows.

Claim 1. Under the same condition in Lemma D.7, for any z ∈ D, if ψ1 ≺ n−1/2+c and

ψ2 ≺ n−2/3+c for some 0 < c < 1/6, we then have

ψ1 ≺ n−1/2, ψ2 ≺ n−2/3.

To prove the claim, we need to improve the rate for m1 and m2 in Lemma D.7. Indeed,

following our proof of Lemma D.7 and (89), once again we can rewrite (80) as

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1]
+

1

n

∑
i

wiZi

z[1 + wim1]2
+O≺(n

−2/3).

By the fluctuation averaging argument,

1

n

∑
i

wiZi

z[1 + wim1]2
≺ ψ2

1 ≺ n−2/3.

Therefore,

m2 =
1

n

n∑
i=1

wi

−z[1 + wim1]
+O≺(n

−2/3).

On the other hand, to obtain sharper rate for m1, it’s still sufficient to reconsider the bound
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of R11, since we have already shown in the proof of Lemma D.7 that

R12 ≺ n−1+2c + n−2+4cη−1 ≺ n−2/3,
1

n
trR2Σ ≺ n−1.

For R11, we can apply the fluctuation averaging argument to obtain that R11 ≺ ψ2
1 ≺ n−2/3

for 0 < c < 1/6. Therefore,

m1 =
1

n

p∑
i=1

λi
−z[1 + λim2]

+O≺(n
−2/3),

which concludes our Claim 1. Then, following the induction step in the proof of Lemma D.8,

we have

m1(z)−m1n(z) ≺ n−2/3, m(z)−mn(z) ≺ n−2/3,

uniformly on z ∈ D. Similar procedures lead to

m
(1)
1 (z)−m

(1)
1n (z) ≺ n−2/3, m(1)(z)−m(1)

n (z) ≺ n−2/3,

uniformly on z = E + iη with λ(2) < E ≤ C log n and n−2/3 ≤ η ≤ log1+c n. Return to (88),

so

|λ−1
0 L12 −m

(1)
1n (z)| ≤ Op(n

−2/3+c), z = λ0 + in−2/3.

Moreover, a similar technique in proving (82) leads to |m(1)
1n (z)−m

(1)
1n (λ0)| ≺ n−2/3. Conse-

quently,

L1 = −n−1(x⊤
t1
xt1 − trΣ) + λ0m

(1)
1n (λ0) + op(n

−1/2).

Next, we calculate L2. By definition and (25),

L2 =
λ̂1 − λ0
λ0

1

n
x⊤
t1

[
1

λ0
Ŝ
(1)
1 − I

]−2

xt1

+

(
λ̂1 − λ0
λ0

)2
1

n
x⊤
t1

[
1

λ0
Ŝ
(1)
1 − I

]−1[
1

λ0
Ŝ
(1)
1 − λ̂1

λ0
I

]−1

xt1

=
λ̂1 − λ0
λ0

(
1

n
tr

[
1

λ0
Ŝ
(1)
1 − I

]−2

Σ+O≺(n
−1/2) +

λ̂1 − λ0
λ0

×O≺(1)

)
.
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Note that

1

n
tr

[
1

λ0
Ŝ
(1)
1 − I

]−2

Σ− 1

n
trΣ

=
2

nλ0
tr

[
I− 1

λ0
Ŝ
(1)
1

]−1

Ŝ
(1)
1 Σ+

1

nλ20
tr

[
I− 1

λ0
Ŝ
(1)
1

]−1

Ŝ
(1)
1

[
I− 1

λ0
Ŝ
(1)
1

]−1

Ŝ
(1)
1 Σ

=
2

nλ0
tr

[
I− 1

λ0
Ŝ
(1)
1

]−1

Ŝ
(1)
1 Σ+ op(1),

where the third line is by a similar technique as bounding L11. On the other hand,

1

nλ0
tr

[
I− 1

λ0
Ŝ
(1)
1

]−1

Ŝ
(1)
1 Σ =

1

n

p∑
j=1

|Σ1/2γ̂
(1)
j |2

λ̂
(1)
j

λ0 − λ̂
(1)
j

≤C
√

1

n

∑
j

(λ̂
(1)
j )2 × 1

n

∑
j

1

(λ0 − λ̂
(1)
j )2

.

It’s easy to see that n−1∥Ŝ(1)∥2F ≤ C. Let z = λ0 + in−1/3. Then,

1

n

∑
j

1

(λ0 − λ̂
(1)
j )2

=
1

n

∑
j

1

|z − λ̂
(1)
j |2

+O≺(n
−2/3) =

1

η
Imm(1)(z) +O≺(n

−2/3)

=
1

η
Imm(1)

n (z) +O≺(η
−1n−1/2) +O≺(n

−2/3) = op(1).

Therefore, we conclude that

L2 =
λ̂1 − λ0
λ0

× [ϕnλ̄+ op(1)],

which further implies that

− λ0
wt1

= −n−1(x⊤
t1
xt1 − trΣ) + λ0m

(1)
1n (λ0) + op(n

−1/2) +
λ̂1 − λ0
λ0

× [ϕnλ̄+ op(1)].

By definition, we have 1 + wt1m
(1)
1n (λ0) = 0. Then,

√
n
λ̂1 − λ0
λ0

=
1

ϕnλ̄

1√
n
(x⊤

t1
xt1 − pλ̄) + op(1).

The above argument is conditional on the order of wj’s. It can be extended to unconditional

results by similar technique in the proof of Lemma D.10. We omit details.

89



E.2. Proof of Lemma 4.2: λ0

Proof. We prove the lemma based on the definition of λ0, i.e.,

m
(1)
1n (λ0) = − 1

wt1

=
1

n

p∑
i=1

λi

−λ0
[
1 + λi

n

∑n
j=2

wtj

−λ0[1−wtj /wt1 ]

] .
After some calculations,

λ0
wt1

=
1

n

∑
i

λi +
1

n

∑
i

λ2
i

n

∑n
j=2

wtj

λ0[1−wtj /wt1 ]

1− λi

n

∑n
j=2

wtj

λ0[1−wtj /wt1 ]

=ϕnλ̄+
1

n

∑
i

λ2i
n

n∑
j=2

wtj

λ0[1− wtj/wt1 ]
+

1

n

∑
i

λ3i

[
1
n

∑n
j=2

wtj

λ0[1−wtj /wt1 ]

]2
1− λi

n

∑n
j=2

wtj

λ0[1−wtj /wt1 ]

.

On the other hand, under the events Ωn we can prove that

1

n

n∑
j=2

wtj

λ0[1− wtj/wt1 ]
=
wt1

λ0

1

n

n∑
j=2

wtj

wt1 − wtj

≤ O((log n)−1),

where we use the fact λ0 > λ(2) ≥ C−1 log n for large n under the events Ωn. Therefore,

λ0
wt1

− ϕnλ̄ =
wt1

λ0
× 1

n

∑
i

λ2i ×
1

n

n∑
j=2

wtj

wt1 − wtj

+O((log n)−2). (92)

Then, C−1 ≤ λ0/wt1 ≤ C for sufficiently large n. We rewrite (92) as

λ0
wt1

− ϕnλ̄ =

[
1

ϕnλ̄
+
ϕnλ̄− λ0

wt1

ϕnλ̄
λ0

wt1

]
O((log n)−1) +O(log−2 n),

which further leads to

[1 + o(1)]

[
λ0
wt1

− ϕnλ̄

]
= O((log n)−1).

Return to (92), so

λ0
wt1

− ϕnλ̄ =
1

ϕnλ̄
× 1

n

∑
i

λ2i ×
1

n

n∑
j=2

wtj

wt1 − wtj

+O(log−2 n).
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Further, a more detailed calculation shows that

1

n

n∑
j=2

wtj

wt1 − wtj

=
1

nwt1

n∑
j=2

wtj

1− wtj/wt1

=
1

nwt1

n∑
j=2

wtj +
1

nwt1

n∑
j=2

w2
tj
/wt1

1− wtj/wt1

=
1

wt1

+Op(log
−2 n).

Therefore, we conclude that

λ0 = ϕnλ̄wt1 +
1

ϕnλ̄

1

n

∑
i

λ2i +Op((log n)
−1).

Lemma 4.1 has already shown that

λ̂1 − λ0 = λ0 ×Op(n
−1/2) = Op(n

−1/2 log n), r = 0.

Therefore, directly we have

λ̂1 = ϕnλ̄wt1 +
1

ϕnλ̄

1

n

∑
i

λ2i +Op

(
1

log n
+

log n√
n

)
,

which concludes the unconditional results. When conditional on X, the results follow a

similar strategy because the limiting distribution is mainly determined by the resampling

weights wj’s.

E.3. Proof of Theorem 4.3: r ≥ 0

Proof. Now we consider the case r > 0. Under such cases,

A⊤A = ΓΛΓ⊤ = Γ1Λ1Γ
⊤
1 + Γ2Λ2Γ

⊤
2 ,

where Γ1 and Λ1 are the eigenvector and eigenvalue matrices corresponding to the r spikes.

Recall the definition Σ2 = Γ2Λ2Γ
⊤
2 . For simplicity, let φj be the eigenvalues of Σ2 (de-

scending). Let φ̂j be the j-th largest eigenvalue of Q̂ := n−1W1/2Z⊤Σ2ZW
1/2, while β̂j is

the corresponding eigenvector. Define φ̂0
j and Q̂0 accordingly by replacing F with F0, where

F = CF0 by Assumption 1.

By Weyl’s theorem, λ̂r+1 ≤ φ̂1. On the other hand, we already know that λ̂r ≫ φ̂1 ≍
log n. Therefore, it suffices to prove that with probability tending to one, there is at least

one eigenvalue of Ŝ in the interval [φ̂1 − n−2/3+c, φ̂1] for arbitrary small constant c > 0.

By definition, λ̂r+1 satisfies

det

(
λ̂r+1I−

1

n
W1/2Z⊤(Γ1Λ1Γ

⊤
1 + Γ2Λ2Γ

⊤
2 )ZW

1/2

)
= 0.
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We assume that λ̂r+1 is not an eigenvalue of Q̂ because wj’s follow continuous distribution.

For simplicity, write Ž = ZW1/2 = (ž1, . . . , žn). Then,

det(I− n−1Λ
1/2
1 Γ⊤

1 Ž[λ̂r+1I− Q̂]−1Ž⊤Γ1Λ
1/2) = 0.

Define

g(λ) = det(Λ−1
1 − n−1Γ⊤

1 Ž[λI− Q̂]−1Ž⊤Γ1) := det(Λ−1
1 −Π(λ)).

We aim to prove that the sign of g(λ) will change if λ grows from φ̂1 − n−2/3+c to φ̂1.

Decompose Π according to

1

n
Γ⊤

1 Ž[λI− Q̂]−1Ž⊤Γ1 =
1

λ− φ̂1

1

n
Γ⊤

1 Žβ̂1β̂
⊤
1 Ž

⊤Γ1 +
n∑

j=2

1

λ− φ̂j

1

n
Γ⊤

1 Žβ̂jβ̂
⊤
j Ž

⊤Γ1

:=Π1(λ) + Π2(λ).

The key step of the proof is to find approximations to Π1 and Π2.

Step 1: calculate Π1.

We start with Π1 and show that

n−1∥Γ⊤
1 Žβ̂1∥2 ≤ Op(n

−3/4+c). (93)

Since r is fixed, it suffices to consider n−1|γ⊤
1 Žβ̂1|2. (93) can be verified if we show that

∥Π(z)∥ ≤ Op(n
c), for z = φ̂1 + iη, where η = n−3/4. (94)

This is because as long as (94) holds,

η−1 1

n
γ⊤
1 Žβ̂1β̂

⊤
1 Ž

⊤γ1 = Im

(
1

φ̂1 − z

1

n
γ⊤
1 Žβ̂1β̂

⊤
1 Ž

⊤γ1

)
≤ | Im(Π(z))11| ≤ Op(n

c).

Therefore, we aim to prove (94) in the following. Without loss of generality, we assume that

w1 ≥ · · · ≥ wn and all the arguments below are conditional on this event. The extension

to unconditional results is similar to the argument in the proof of Lemma D.10. Write
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Ž = ž1e
⊤
1 + Ž(1). Then,

Π(z) =
1

n
Γ⊤

1 (ž1e
⊤
1 + Ž(1))

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

(Ž⊤
(1) + e1ž

⊤
1 )Γ1

=
1

n
Γ⊤

1 ž1e
⊤
1

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

e1ž
⊤
1 Γ1

+
1

n
Γ⊤

1 Ž(1)

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

e1ž
⊤
1 Γ1

+
1

n
Γ⊤

1 ž1e
⊤
1

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

Ž⊤
(1)Γ1

+
1

n
Γ⊤

1 Ž(1)

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

Ž⊤
(1)Γ1

:=Π11(z) +Π12(z) +Π13(z) +Π14(z).

We deal with the four terms one by one. Write Q̂(1) = n−1Ž⊤
(1)Σ2Ž(1). By (25),

e⊤1

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

e1 = e
⊤
1 [zI− Q̂(1)]

−1e1

+ e⊤1 [zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1e
⊤
1 + e1ž

⊤
1 Σ2ž1e

⊤
1 + e1ž

⊤
1 Σ2Ž(1))[zI− Q̂(1)]

−1e1.

It’s easy to see that e⊤1 [zI− Q̂(1)]
−1 = z−1e⊤1 and e⊤1 Ž(1) = 0. Therefore,

e⊤1

[
zI− n−1(Ž⊤

(1) + e1ž
⊤
1 )Σ2(ž1e

⊤
1 + Ž(1))

]−1

e1

=z−1 +
1

nz
e⊤1 [zI− Q̂]−1Ž⊤

(1)Σ2ž1 + e
⊤
1 [zI− Q̂]−1e1 ×

1

nz
ž⊤1 Σ2ž1.

Using (25) once again, we have

1

n
e⊤1 [zI− Q̂]−1Ž⊤

(1)Σ2ž1 =
1

n
e⊤1 [zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1

+
1

n
e⊤1 [zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1e
⊤
1 + e1ž

⊤
1 Σ2ž1e

⊤
1 + e1ž

⊤
1 Σ2Ž(1))[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1

=
1

n
e⊤1 [zI− Q̂]−1e1 ×

1

n
ž⊤1 Σ2Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1.

Consequently, we claim that

|e⊤1 [zI−Q̂]−1e1| =
1

|z − n−1ž⊤1 Σ2Ž(1)[zI− Q̂(1)]−1Ž⊤
(1)Σ2ž1 − n−1ž⊤1 Σ2ž1|

≤ (Im z)−1 ≤ n3/4.
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Further, we have ∥Γ⊤
1 ž1∥ ≤ Op(n

c) by the independence of the entries in z1. Then,

∥Π11(z)∥ ≤ Op(n
−1/4+c).

Next, for Π12(z), by (25) we have

1

n
Γ⊤

1 Ž(1)[zI− Q̂]−1e1 =
1

n
Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1e1

+
1

n
Γ⊤

1 Ž(1)[zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1e
⊤
1 + e1ž

⊤
1 Σ2ž1e

⊤
1 + e1ž

⊤
1 Σ2Ž(1))[zI− Q̂(1)]

−1e1

=
1

nz
Γ⊤

1 Ž(1)[zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1 + e1ž
⊤
1 Σ2ž1).

Further by (25),

1

n2z
Γ⊤

1 Ž(1)[zI− Q̂]−1Ž⊤
(1)Σ2ž1 =

1

n2z
Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1Ž⊤

(1)Σ2ž1

+
1

n2z
Γ⊤

1 Ž(1)[zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1e
⊤
1 + e1ž

⊤
1 Σ2ž1e

⊤
1 + e1ž

⊤
1 Σ2Ž(1))[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1

=
1

n2z
Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1Ž⊤

(1)Σ2ž1 +
1

n2z
Γ⊤

1 Ž(1)[zI− Q̂]−1e1
1

n
ž⊤1 Σ2Ž(1))[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1.

Consequently,

∥ 1
n
Γ⊤

1 Ž(1)[zI− Q̂]−1e1∥ =
∥ 1
n2Γ

⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1∥

|z − n−1ž⊤Σ2ž1 − n−2ž⊤1 Σ2Ž(1))[zI− Q̂(1)]−1Ž⊤
(1)Σ2ž1|

≤∥n−2Γ⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1∥(Im z)−1. (95)

Define Q0, Q̂0
(1) by replacing F with F0, respectively. By the assumption that n−1∥C∥2F =

1, we have ∥Q − Q0∥ = Op(n
−1/2+c). Then, |Re z − λmax(Q0)| ≤ Op(n

−1/2+c). Further,

similarly to Lemma D.10 and (84), we can show that λmax(Q0) − λmax(Q̂0
(1)) ≥ (log n)−c

with probability tending to 1 for any c > 0. That is, ∥[zI − Q̂0
(1)]

−1∥ ≤ Op(n
c). The

same bound holds for Q̂(1) because ∥Q̂(1) − Q̂0
(1)∥ ≤ Op(n

−1/2+c). Return to (95), and write

ž⊤1 = w1(C
⊤
1·F

0, ϵ⊤1 ), where C1· is the first row vector of C. Then

∥n−2Γ⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1∥

≤w1∥n−2Γ⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2∥∥C⊤

1·F
0∥+ w1∥n−2Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1Ž⊤

(1)Σ2(0
⊤, ϵ⊤1 )

⊤∥
≤Op(n

−1+c) +Op(w1∥n−2Γ⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2∥) = Op(n

−1+c),
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where the third line is by the independence of between ϵ1 and Ž(1). As a result,

∥n−2Γ⊤
1 Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Σ2ž1∥ = Op(n

−1+c), ∥n−1Γ⊤
1 Ž(1)[zI− Q̂]−1e1∥ = Op(n

−1/4+c),

which further indicates that

∥Π12(z)∥ ≤ Op(n
−1/4+c), ∥Π13(z)∥ ≤ Op(n

−1/4+c).

Lastly, for Π14(z), we write

Π14(z) =
1

n
Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1Ž⊤

(1)Γ1

+
1

n
Γ⊤

1 Ž(1)[zI− Q̂]−1 1

n
(Ž⊤

(1)Σ2ž1e
⊤
1 + e1ž

⊤
1 Σ2ž1e

⊤
1 + e1ž

⊤
1 Σ2Ž(1))[zI− Q̂(1)]

−1Ž⊤
(1)Γ1

=
1

n
Γ⊤

1 Ž(1)[zI− Q̂(1)]
−1Ž⊤

(1)Γ1 +
1

n2
Γ⊤

1 Ž(1)[zI− Q̂]−1e1ž
⊤
1 Σ2Ž(1)[zI− Q̂(1)]

−1Ž⊤
(1)Γ1 ≤ Op(n

c).

Then, (94) holds, and (93) follows.

Step 2: calculate Π2.

Now we turn to Π2(λ). Let z1 = λ + in−2/3, z2 = λ + n−1/6 + in−2/3 for λ ∈ [φ̂1 −
n−2/3+c, φ̂1]. According to the definitions of λ0 and λ(1) in Section D, similarly define φ0

and φ(1) by replacing Σ with Σ2. Then, if the entries of F are independent, by Lemmas

D.9, D.10 and the fact that |φ0 − φ(1)| ≤ O(n−1/2+c), we have |φ̂1 − φ(1)| ≤ Op(n
−1/2+c).

Moreover, by Weyl’s theorem, φ̂2 ≤ λmax(Q̂(1)) ≤ φ̂1− (log n)−c. Therefore, with probability

tending to 1 we have

Re z2 > φ(1) + n−1/6−c, Re z1 − φ̂2 ≥ (log n)−c. (96)

The results also holds for F = CF0 because the replacement error to the eigenvalues is

upper-bounded by Op(n
−1/2+c). All the convergence rates hereafter are uniform on λ.

By definition, we write

Π2(λ) =
1

n

n∑
j=1

1

z2 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1 +Π2(λ)−
1

n

n∑
j=2

1

z1 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1

+
1

n

n∑
j=2

1

z1 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1 −
1

n

n∑
j=1

1

z2 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1.
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Elementary calculation leads to∣∣∣∣(Π2(λ)−
1

n

n∑
j=2

1

z1 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1

)
ii

∣∣∣∣
≤ 1

n

n∑
j=2

|γ⊤
i Žβ̂j|2

∣∣∣∣ 1

z1 − φ̂j

− 1

λ− φ̂j

∣∣∣∣ ≲ 1

n

n∑
j=2

|γ⊤
i Žβ̂j|2

Im z1
|z1 − φ̂j|2

≤Op(n
−2/3+c)

(
n−1γ⊤

i ŽŽ
⊤γi +Op(n

−3/4+c)

)
≤ Op(n

−2/3+c),

where we use (93) in the last line. Similarly,∣∣∣∣( 1

n

n∑
j=2

1

z1 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1 −
1

n

n∑
j=1

1

z2 − φ̂j

Γ⊤
1 Žβ̂jβ̂

⊤
j Ž

⊤Γ1

)
ik

∣∣∣∣
≤Op(n

−3/4+c+2/3) +
1

n

n∑
j=2

|γ⊤
i Žβ̂j||γ⊤

k Žβ̂j|
∣∣∣∣ 1

z1 − φ̂j

− 1

z2 − φ̂j

∣∣∣∣ ≤ Op(n
−1/12+c).

Therefore,

Π2(λ) =
1

n
Γ⊤

1 Ž[z2I− Q̂]−1Ž⊤Γ1 +Op(n
−1/12+c). (97)

Step 3: finish the proof.

Similarly to Step 2 in the proof of Lemma C.5, write

H(z) :=

 zI n−1/2Ž⊤Γ2Λ
1/2
2 n−1/2Ž⊤Γ1

n−1/2Λ
1/2
2 Γ⊤

2 Ž I 0

n−1/2Γ⊤
1 Ž 0 Ir

 =

(
zI n−1/2Ž⊤Ã

n1/2Ã⊤Ž Ip+r

)
,

where Ã = (Γ2Λ
1/2
2 ,Γ1). Then, the lowest-rightest r× r block of H−1(z2) is exactly equal to

the inverse of I−n−1Γ⊤
1 Ž[z2I−Q̂]−1Ž⊤Γ1. By Shur’s complement formula, for 1 ≤ k, l ≤ r+p,

[H−1(z2)]n+k,n+l = [(I− z−1
2 n−1Ã⊤ŽŽ⊤Ã)−1]kl.

Similarly to (96), we can show that Re z2 ≥ λmax(n
−1Ã⊤ŽŽ⊤Ã) + n−1/6−c ≥ (log n)1−c with

probability tending to 1 for any c > 0. Therefore, ∥I − z−1
2 n−1Ã⊤ŽŽ⊤Ã∥ ≤ Op(n

1/6+2c).

Define Ž0 by replacing F with F0. Then, we also have ∥I−z−1
2 n−1Ã⊤Ž0Ž

⊤
0 Ã∥ ≤ Op(n

1/6+2c).
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Moreover, by (25),

∥(I− z−1
2 n−1Ã⊤ŽŽ⊤Ã)−1 − (I− z−1

2 n−1Ã⊤Ž0Ž
⊤
0 Ã)−1∥

≤∥(I− z−1
2 n−1Ã⊤ŽŽ⊤Ã)−1 1

nz2
Ã⊤(ŽŽ⊤ − Ž0Ž

⊤
0 )Ã(I− z−1

2 n−1Ã⊤Ž0Ž
⊤
0 Ã)−1∥

≤Op(n
1/3+4c)∥n−1Ã⊤(ŽŽ⊤ − Ž0Ž

⊤
0 )Ã∥ ≤ Op(n

−1/6+5c),

where we use the fact that n−1∥Ã⊤(ŽŽ⊤ − Ž0Ž
⊤
0 )Ã∥ ≤ Op(n

−1/2+c) for arbitrary c > 0.

Consequently, we can assume C = I in the following because c can be arbitrary small.

Note that (I− z−1
2 n−1Ã⊤ŽŽ⊤Ã)−1 is exactly the matrix −z2G defined in Section D by

taking Σ = Σ̃ := Ã⊤Ã. Because Re z2 ≥ φ̂1−n−2/3+c+n−1/6 while φ̂1 = λ(1)+O≺(n
−1/2+c),

we have z2 ∈ D with high probability and ∥G∥ ≺ n1/6+c, ∥G(i)∥ ≺ n1/6+c for 1 ≤ i ≤ n.

According to (76), it suffices to consider |z(R1)kl| and |z(R2)kl| for z ∈ D.

We start with |z(R1)kk|. By Lemma D.7, |m2(z) − m2n(z)| ≺ n−1/2+c, while Lemma

D.5 indicates that |m2n(z)| = o(1). Moreover, we already know that (1 + n−1y⊤
i G

(i)yi)
−1 =

−zGii = 1 +m1n(z)wi +O≺(n
−1/2+c). Then, we conclude that

|z(R1)kk| =
∣∣∣∣ 1n∑

i

(1− Ei)(1 +m1n(z)wi)e
⊤
k G

(i)yiy
⊤
i [I+m2n(z)Σ̃]ek

∣∣∣∣+O≺(n
−1/6+c),

where Ei indicates the conditional expectation given zi and W. Note that yi and G(i) is

independent conditional on W. Therefore, by Burkholder’s inequality we will have

|z(R1)kk| ≺ n−1/2∥e⊤k G(i)∥∥[I+m2n(z)Σ̃]ek∥+Op(n
−1/6+c) ≺ n−1/6+c.

The same bound holds for k ̸= l by similar arguments. Next, for |z(R2)kk|, similarly we have

|z(R2)kk| =
∣∣∣∣ 1n∑

i

(1 +m1n(z)wi)wie
⊤
k (G

(i) −G)Σ̃[I+m2n(z)Σ̃]ek

∣∣∣∣+O≺(n
−1/6+c).

Given i,

|e⊤k (G(i) −G)Σ̃[I+m2n(z)Σ̃]ek| = |n−1e⊤k Gyiy
⊤
i G

(i)Σ̃[I+m2n(z)Σ̃]ek|
=|n−1zGiie

⊤
k G

(i)yiy
⊤
i G

(i)Σ̃[I+m2n(z)Σ̃]ek| ≺ n−1∥G(i)∥2 ≺ n−1/6+c.

Therefore, |z(R2)kk| ≺ n−1/6+c and similarly |z(R2)kl| ≺ n−1/6+c for k ̸= l. Consequently, by

(76) we have

[−zG]kl =
(
[I+m2n(z)Σ̃]−1

)
kl
+O≺(n

−1/6+c), z ∈ D,
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which further indicates that

[(I− z−1
2 n−1Ã⊤ŽŽ⊤Ã)−1]kl = ([I+m2n(z)Σ̃]−1)kl +Op(n

−1/6+c),

where the Op is uniform on λ. Note that the lower-right r × r block of Σ̃ is the identity

matrix. Then,(
I− n−1Γ⊤

1 Ž[zI− Q̂]−1Ž⊤Γ1

)−1

=

[
(I+m2n(z)I)

]−1

+Op(n
−1/6+c).

Following the proof of Lemma D.5, one can get that

−C(log n)−1 ≤ Rem2n(z2) ≤ −c(log n)−1, Imm2n(z2) = o(n−2/3).

Eventually, we have uniformly on λ that

n−1Γ⊤
1 Ž[z2I− Q̂]−1Ž⊤Γ1 −m2n(z2)I ≤ Op(n

−1/6+c). (98)

Now, combining (93), (97) and (98), we can write

Λ−1
1 −Π(λ) = Λ−1

1 − 1

λ− φ̂1

1

n
Γ⊤

1 Žβ̂1β̂
⊤
1 Ž

⊤Γ1 +m2n(z2)I+Op(n
−1/12+c),

and n−1∥Γ⊤
1 Žβ̂1∥2 ≤ Op(n

−3/4+c) uniformly on λ for arbitrary c. Therefore, when λ =

φ̂1−n−2/3+c,m2n(z2)I dominates and all the eigenvalues ofΛ−1
1 −Π(λ) are negative. However,

as λ approaches φ̂1, the second term (λ − φ̂1)
−1n−1Γ⊤

1 Žβ̂1β̂
⊤
1 Ž

⊤Γ1 will dominate and the

largest eigenvalue of Λ−1
1 −Π(λ) will become positive. Then, by continuity, there must be

some λ ∈ [φ̂1−n−2/3+c, φ̂1] such that the largest eigenvalue of Λ−1
1 −Π(λ) is equal to 0, i.e.,

g(λ) = 0. The theorem is verified.
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