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Abstract. The sensitivity of phase-sensitive detectors, such as piezoelectric

detectors, becomes increasingly directional as the detector element size increases.

In contrast, pyroelectric sensors, which are phase-insensitive, retain their omni-

directionality even for large element sizes, although they have significantly poorer

temporal resolution. This study uses numerical models to examine whether phase-

insensitive detectors can be used advantageously in ultrasound tomography, specifically

absorption tomography, when the number of detectors is sparse. We present

measurement models for phase-sensitive and phase-insensitive sensors and compare the

quality of the absorption reconstructions between these sensor types based on image

contrast metrics. We perform the inversion using synthetic data with a Jacobian-based

linearised matrix inversion approach.

1. Introduction

Ultrasound tomography (UST) is an emerging approach for tomographic reconstructions

which functions through the measurement of ultrasound waves after interaction with a

target of interest. UST has found particular interest in the imaging of soft tissues, such

as breasts, where ultrasound transmission tomography has been employed to reconstruct

the absorption and sound speed profiles of the interior tissue [1, 2, 3, 4], since cancerous

breast tissue is known to have different absorption and sound speed properties compared

to healthy breast tissue [5, 1]. An important aspect of assessing the performance of

UST systems is the detector type, its size and its directional response. In particular,

we consider here the possibility of using pyroelectic detectors which are phase-insensitve

[6], versus the better known piezoelectric detectors which are phase-sensitve [7]. We will

here consider ultrasound transmission tomography for the purpose of acoustic absorption

reconstructions only, as it best enables the comparison of PS and PI detector types in

the parallel array geometry, which further allows for comparisons with traditional x-ray

tomography approaches.

http://arxiv.org/abs/2202.07157v1
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PI sensors have previously been studied in the context of UST absorption

reconstructions with the use of pyroelectric ultrasound sensors [6, 8], which is the sensor

type that we will use as a reference to model PI sensors in this paper. The key aspect of

PI sensors which may prove beneficial in certain scenarios is their much flatter directional

response curve due to the lack of phase-cancellation [6, 9], which for PS sensors can lead

to false absorption measurements. This is especially true in larger sensors, which have

better signal-to-noise ratios but also suffer from strong directionality in PS sensors.

We evaluate the reconstruction qualities of PS and PI sensors for a parallel array

geometry with a varying range of array rotation angles and number of source frequencies,

for two choices of sensor width. The quality evaluation is done through two different

contrast metrics: the modulation transfer function (MTF) [10, 11], and the root-mean-

square (RMS) contrast [12]. The MTF provides a contrast measure as a function of

spatial frequency in the reconstructions, whereas the RMS contrast provides a global

contrast measure that is independent of spatial frequencies.

In section 2 we outline the inverse problem that we are solving in this paper, along

with the source–sensor geometry being considered. Then, in section 3 we describe the

models used for the forward problem, consisting of the acoustic field simulation and

the detector measurement models. Section 4 covers the theoretical description of the

image reconstruction, with a derivation of the Jacobian operator used in our linearised

reconstrcution approach. Section 5 explains our numerical simulation setup, how the

image quality is analysed, followed by the results for our comparison of PS and PI

sensors with a focus on sensor size and data sparsity and their affect on reconstruction

quality for the two sensor types. Finally, in section 6 we discuss the results and their

implications for UST and future research, in particular the scenarios in which PI sensors

may be able to produce better absorption reconstructions than PS sensors.

2. Inverse problem

Our goal is to reconstruct the acoustic absorption profile of a region located between

an array of ultrasound sources and an array of sensors through transmission UST,

using the parallel array geometry shown in Figure 1. This source–sensor geometry

can be compared to previous work in both UST as well as traditional x-ray computed

tomography. The parallel array consists of a linear array of N point sources Sωθ,n, n ∈
{1, . . . , N} opposing a linear array of M sensors taken to be simply the integral over a

finite support function χθ,m ⊂ χ,m ∈ {1, . . . ,M} of width d. We consider an infinite

Euclidean domain χ = R2, so there are no boundary conditions affecting the sound

waves. The source and sensor arrays are rotated with respect to their centre point over

a range of angles θ ∈ Θ, and the sources are driven at a range of frequencies ω ∈ Ω in

order to capture the full data for the reconstruction problem. The size of the forward

model matrix scales linearly with each of the number of sources, sensors, angles, and

frequencies.
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Figure 1: Parallel array source and sensor geometry where for a rotation of θ the m-th

sensor occupies a region χθ,m ⊂ χ = R2. Each sensor in the array has a diameter of d

and is located at a distance D from the source array.

3. Forward models

3.1. Acoustic model

The forward model used in this paper is an acoustic Helmholtz equation with an

absorption term implemented through a complex wavenumber, given by the family of

equations

Sωθ,n(x) = Lω(x; τ, c)Pωθ,n(x; τ, c), (1)

which are parametrised by the source frequency ω, angle θ, and source index n.

Parameters which are controlled are written as indices, whereas the absorption and

sound speed parameters, τ and c, which are defined by the medium are written in the

function argument. Each constant frequency source Sωθ,n(x) gives rise to a complex

acoustic pressure solution Pωθ,n(x; τ, c) through the differential operator Lω(x; τ, c)

which has the form

Lω(x; τ, c) =

[
ω(1 + iτ(x))

c(x)

]2

+∇2. (2)

The absorption term τ is dimensionless, but can be related to the usual dimensional

absorption coefficient α with units of dB cm−1 by the relation

τ =
100 [cmm−1]

20 log10(e) [dBNp−1]

c

ω
α, (3)

which is derived by defining the absorption coefficient to be the imaginary part of the

complex wave number in (2). This form for the absorption term assumes a linear power

law with respect to frequency, α = α0ω, where α0 = τ/c.
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Symbol Definition

χ spatial domain

χθ,m ⊂ χ spatial support of m-th sensor at angle θ

ω,Ω source frequency, set of source frequencies

θ,Θ array rotation angle, set of array rotation angles

Sωθ,n n-th point source for frequency ω at angle θ

Lω Helmholtz operator for source frequency ω

M pointwise field transformation based on sensor type

Iθ,m measurement sampling operator for m-th sensor at angle θ

y, yωθ,nm modelled data, and its components

g measured data

τ, α dimensionless and dimensional absorption distributions

τ0 modelled dimensionless absorption distribution

c sound speed of medium

P complex-valued pressure field

η regularisation parameter

Lx, Ly pixel dimensions of simulation domain in x and y directions

A, b augmented forward matrix and data vector

F : L2(χ) → Y forward mapping from solution space L2(χ) to data space Y

JF |τ0 , JF |τ0 (i,x),
(JF |τ0)ij

Jacobian operator of F at τ0, its discrete-continuous

components, and discretised components

f{i}({x}; {a})
function f with variables {x}, experimental parameters {i},
and medium parameters {a}

Table 1: Definitions for symbols used throughout this paper.

In this paper we are only interested in comparing absorption reconstructions, so

we assume that the sound speed c is known and has a constant value throughout the

medium χ for simplicity. The model does allow for heterogeneous sound speed and

absorption.

3.2. Measurement model

In this paper we model the output of each PS sensor as proportional to the integral

of the acoustic pressure over the sensor area, for each sensor in the array, and the

output of each PI sensor as proportional to the integral of the squared acoustic pressure

amplitude over the sensor area. These choices are designed to approximate the behaviour

of piezoelectric (PS) sensors, which respond to pressure, and pyroelectric (PI) sensors,

which respond to heating. The use of the squared pressure amplitude to model the

pyroelectric sensor response follows from the observation that the directional response

of a pyroelectric sensor correlates strongly with the directionality of the heat deposition

in the sensor [9]. Ultrasonic heat deposition is commonly taken to be proportional to



5

the acoustic pressure amplitude squared [13].

In general we consider the measurement yωθ,nm at the m-th sensor from the n-th

source at frequency ω and array angle θ to be modelled as the composition of three

operators as follows,

yωθ,nm(τ, c) = [Iθ,m ◦M ◦ L−1
ω (x; τ, c)]Sωθ,n(x), (4)

where Iθ,m is a sampling operator for the m-th sensor with rotation θ about the centre,

M is a pointwise field transformation dependent on the type of sensor, and L−1
ω (x; τ, c)

is the inverse Helmholtz operator for an absorption map τ . These operators act as

follows:

L−1
ω (x; τ, c) : Sωθ,n(x) 7→ Pωθ,n(x; τ, c), by the Helmholtz equation, (5)

M : Pωθ,n(x; τ, c) 7→
{

Pωθ,n(x; τ, c) phase-sensitive

|Pωθ,n(x; τ, c)|2 phase-insensitive
, (6)

Iθ,m : M[Pωθ,n(x; τ, c)] 7→ yωθ,nm(τ, c) =
〈
1χθ,m

,M[Pωθ,n(x; τ, c)]
〉

L2(χ)
, (7)

where 1χθ,m
is the indicator function on the m-th sensor region at rotation θ.

4. Image reconstruction

4.1. Forward problem

We define a forward mapping

F : L2(χ) → Y, (8)

where the absorption maps are described by square-integrable functions over χ, τ ∈
L2(χ), and the space of data is the complex space Y = C|Ω||Θ|NM . The components of

the data vectors y ∈ Y are related to the absorption maps in L2(χ) by (4). Note that

for PI sensors the imaginary part of the measurement is always zero.

4.2. Linear reconstruction scheme

Our reconstructions use a linear inversion scheme using the Fréchet derivative of the

measurement model with respect to the parameter of interest, τ [14, 15, 16]. The

modelled measurement at a desired absorption distribution τ is related to the modelled

measurement at a given absorption distribution τ0 through the Taylor expansion of the

modelled data at τ0:

yωθ,nm(τ, c) = yωθ,nm(τ0, c) +

ˆ

χ

dx
δyωθ,nm
δτ(x)

∣
∣
∣
∣
τ0

h(x) (9)

+
1

2!

ˆ

χ

dx′

ˆ

χ

dx
δ2yωθ,nm

δτ(x)δτ(x′)

∣
∣
∣
∣
τ0

h(x)h(x′) + . . . ,
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where h(x) = τ(x)−τ0(x). The first order linear operator
δyωθ,nm

δτ(x)

∣
∣
∣
τ0

= F ′ : L2(χ) → Y is

the Fréchet derivative for our system evaluated at τ0, i.e. the linearization of the forward

mapping from equation (8). In the continuous-discrete setting this can be called the

Jacobian operator which we can define explicitly as follows:

JF |τ0 (i,x) =
δFi

δτ(x)

∣
∣
∣
∣
τ0

=
δyωθ,nm
δτ(x)

∣
∣
∣
∣
τ0

=
δ[(Iθ,m ◦M)Pωθ,n]

δτ(x)

∣
∣
∣
∣
τ0

, (10)

where i indexes over the full set of data parametrized by ω, θ, n, and m, and the column

index is given by the continuum of positions x ∈ χ. We utilize the adjoint state

method to compute the Jacobian operator in equation (10) one row at a time by taking

the variational derivative of the modelled measurement yωθ,nm(τ, c) with respect to the

absorption parameter τ .

We begin by taking an arbitrary variation in the absorption τ(x) → τ(x) + δτ(x)

which results in a variation in the pressure Pωθ,n(x; τ) → Pωθ,n(x; τ) + δPωθ,n(x; τ),

where δPωθ,n(x; τ) = Pωθ,n(x; τ + δτ) − Pωθ,n(x; τ) =
∂Pωθ,n(x;τ)

∂τ
δτ(x), and apply this

variation to the modelled measurement:

yωθ,nm(τ + δτ, c) = (Iθ,m ◦M)(Pωθ,n + δPωθ,n)

= Iθ,m

[
M(Pωθ,n) +M′(Pωθ,n)δPωθ,n +O(δP 2

ωθ,n)
]

(11)

= (Iθ,m ◦M)Pωθ,n + Iθ,m

[
M′(Pωθ,n)δPωθ,n +O(δP 2

ωθ,n)
]

Ignoring higher order terms, we then have that the difference is given by

δyωθ,nm(τ, c) = yωθ,nm(τ + δτ, c)− yωθ,nm(τ, c)

= Iθ,m[M′(Pωθ,n)δPωθ,n]

=

〈

1χθ,m
,
∂[M(Pωθ,n)]

∂Pωθ,n

∂Pωθ,n

∂τ
δτ(x)

〉

L2(χ)

(12)

=

〈(
∂[M(Pωθ,n)]

∂Pωθ,n

)∗

1Xθ,m
,−L−1

ω

∂Lω

∂τ
Pωθ,nδτ(x)

〉

L2(χ)

= −
〈
(
L−1

ω

)∗
(
∂[M(Pωθ,n)]

∂Pωθ,n

)∗

1Xθ,m

︸ ︷︷ ︸

Zωθ,nm

,
∂Lω

∂τ
Pωθ,nδτ(x)

〉

L2(χ)

= −
ˆ

χ

∂Lω

∂τ
Z∗

ωθ,nmPωθ,nδτ(x) dx,

where we have used the relation
∂Pωθ,n

∂τ
= −L−1

ω
∂Lω

∂τ
Pωθ,n, explained in Appendix B. The

functional derivative is thus given by

δyωθ,nm(τ, c)

δτ(x)
= −∂Lω(x; τ, c)

∂τ(x)
Z∗

ωθ,nm(x; τ, c)Pωθ,n(x; τ, c). (13)

The left argument of the inner product on the penultimate line of (12) can be

understood as the adjoint field Zω,nm through the adjoint equation

L∗
ω(x; τ, c)Zωθ,nm(x; τ, c) =

(
∂{M[Pωθ,n(x; τ, c)]}

∂Pωθ,n(x; τ, c)

)∗

1χθ,m
, (14)
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where the right-hand side of (14) is the adjoint source term. The partial derivative of

the Helmholtz operator Lω with respect to the absorption parameter τ is the imaging

condition term, which can be evaluated to be

∂Lω(x; τ, c)

∂τ(x)
= 2i

ω2

c(x)2
[1 + iτ(x)]. (15)

Once the Jacobian has been computed at some absorption value of τ0(x) we can use

standard matrix inversion schemes to solve for the absorption τ(x) through the linear

approximation equation from Eq. (9)

y(τ)− y(τ0) = JF |τ0 (τ − τ0) +O(h2), (16)

which defines the linearisation of our forward model from (8). For the inverse problem

we have data vector g instead of the modelled data at the true absorption profile, y(τ),

so we define our inverse problem through the minimization of the residual in (16) along

with a first order Tikhonov regulariser term added to better deal with the ill-posedness,

ĥ = argmin
h

∥
∥JF |τ0 h− [g − y(τ0)]

∥
∥
2
+ η

(
‖∇xh‖2 + ‖∇yh‖2

)
, (17)

where g is the measured data, y(τ0) is the modelled data, ĥ is the optimal reconstructed

difference in absorption maps τ − τ0, η ≥ 0 is the regularization parameter, and ∇x, ∇y

are the spatial gradients in the x- and y-directions, respectively, in the domain χ.

If we discretize the domain χ to have Lx pixels in the x-direction and Ly pixels in

the y-direction, so that we have a finite collection of position coordinates {xj}LxLy

j=1 , then

we can express the Jacobian operator from (10) as a (|Ω||Θ|NM)× (LxLy) matrix with

discrete components, (JF |τ0)ij. We have chosen to use MATLAB’s built-in least-squares

solver, LSQR, through the augmented matrix A and data vector b given by:

A =






JF|τ0√
η∇x√
η∇y




 , b =






g − y(τ0)

0LxLy×1

0LxLy×1




 , (18)

to solve the minimization problem in Eq. (17). After reconstruction we further perform

a frequency domain filtering step on the reconstruction ĥ(x) by removing very high

spatial frequencies from the reconstruction which may arise due to small singular values

in the augmented matrix A. We use the L-curve method to help choose the optimal

regularization parameter η for each reconstruction.

5. Numerical experiments

Our modelled absorption profile is homogeneous with a constant dimensionless

absorption of τ0(x) = 0.003, whereas the true absorption profile shown in figure 2 has an

equal background value of τ(x) = 0.003 for x outside of the square, and a higher value

of τ(x) = 0.006 for x within the square region. The sound speed is set to a constant
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c = 1540 m s−1 for both the modelled and measured data, which is a typical sound

speed found in human tissue [17, 18]. Hence, we are assuming that the sound speed and

background absorption are known exactly. From the absorption transformation equation

(3) we can see that these dimensionless absorption values correspond to α(x)/2πω =

1.06 dB cm−1 MHz−1 for the background, and α(x)/2πω = 2.13 dB cm−1 MHz−1 for the

square target, which are comparable to the absorption values measured in human tissue

[17, 19, 20].

The simulation domain is a 40 mm × 40 mm square which is discretised into a

256× 256 pixel grid, so we have that Lx = Ly = 256 and dx = dy = 0.15625 mm. The

square target region in the true absorption profile τ has a side length of 50 pixels or

7.8125 mm, spanning the range [100, 150] × [150, 200] in pixels or [−4.4706, 3.3725] ×
[3.3725, 11.2157] mm in the spatial domain χ. The perfectly matched layer (PML) is

implemented as a quadratic absorbing function [21] spanning 5 pixels (≈ 0.78 mm) on all

sides of the domain. The low-pass filtering of the reconstructions is done using a circular

cutoff in the frequency domain, where our chosen cutoff radius was set to remove spatial

frequencies above 1.75 mm−1, which corresponds to a circle with a 70 pixel radius in

the 256× 256 pixel frequency domain.

Our parallel array consists of 10 point sources spanning a distance of 30 mm and

an array of 10 sensors of width d spanning the same 30 mm distance. The source and

sensor arrays are 30 mm apart. The point sources each have an amplitude of 1 Pa,

although this choice is arbitrary in the numerical setting as it only affects the scale of

the measurements.

Our choices of τ0 and c exhibit rotational symmetry, since they are both spatially

constant, and hence we only need to compute the rows of our Jacobian using (13) for a

single angle θ ∈ Θ. The rest of the rows can be computed by taking the sensitivity map

from the computed row i ≡ ω, θ, n,m, and rotating it by an angle θ′−θ about the center

of the parallel array to get the corresponding sensitivity map for row i′ ≡ ω, θ′, n,m.

This reduces the number of forward (P ) and adjoint (Z) field computations by a factor

of |Θ|. For mediums with translation and reflection symmetry, in the case of identical

sources and sensors, further optimisations may be made by computing a sensitivity map

between source n and sensor m, and then performing the appropriate translation and

reflection to get the corresponding sensitivity map between source n′ and sensor m′ that

have the same, up to a reflection, relative displacement from each other as the original

pair. This latter optimisation was not done for our computations, but it could further

reduce the number of forward and adjoint field computations by a factor of N .

We want to compare the quality of the absorption reconstructions as three

parameters are varied for each of the two sensor types: number of angles, number

of source frequencies, and sensor size. The number of angles and frequencies control for

the amount of data provided by the measurements, and hence give us information about

how the reconstruction qualities scale with varying levels of data sparsity. The sensor

size affects the directional response of the detector as well as the signal strength, and

thus varying this parameter provides us with information about how well each sensor
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Parameter (units) Value(s)

Source frequency ω/2π (MHz) 1.5, 1.75, 2, 2.25, 2.5

Diameter of sensor d (mm) 1, 5

Rotation increment ∆θ (degrees) 7.5, 15, 30, 60

Source amplitude (Pa) 1

Source—sensor array separation D (mm) 30

Source array length (mm) 30

Sensor array length (mm) 30

Domain spatial dimensions x, y (mm) 40, 40

Domain pixel dimensions Lx, Ly (pixels) 256, 256

Domain spatial increment dx = dy (mm) 0.15625

PML pixel width (pixels) 5

Table 2: Model parameters used for simulations.

responds to an increase in sensor size.

The sets of angles are constant increment subsets of θ ∈ [0◦, 180◦), for the

increments ∆θ = 7.5◦, 15◦, 30◦, and 60◦. The source frequencies are an odd number

of constant increment frequencies centered around 2 MHz; we consider the two sets

of frequencies Ω = {2} MHz and Ω = {1.5, 1.75, 2, 2.25, 2.5} MHz. Sensors of width

1 mm and 5 mm are considered, arranged into a linear array of 10 sensors spanning

a distance of 30 mm. The 5 mm sensor array contains overlapping sensors, which

can be realised physically by spatially translating a non-overlapping sensor array. Key

simulation parameters are listed in table 2.

Both noise-free and noisy data are used for reconstructions. For noisy data, additive

Gaussian noise scaled by a factor of 1% of the maximum sensor signal has been applied.

5.1. Contrast analysis

In order to quantitatively judge the quality of the reconstructions, we use two different

contrast metrics: the modulation transfer function (MTF), and the weighted root mean

square (RMS) contrast weighted by the maximum value of the reconstruction. See

Appendix A for more details on these contrast metrics. To make the computation of

these contrast metrics as easy as possible, the reconstruction target under consideration

here is a square of constant absorption, shown in Figure 2.

The MTF FWHM for the true absorption difference profile is infinite, since the

edge is a perfect step function in theory. The maximum weighted RMS contrast is 0.5

for the true absorption difference profile in a region of interest where half the region

consists of the background profile, and the second half consists of the target profile, as

indicated by the dashed-line box in figure 2.
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Figure 2: The true absorption difference profile, ∆τ = τ−τ0, that we wish to reconstruct.

Region of interest for contrast analysis is indicated by the dashed line box where the

edge of square-shaped absorption target acting as the mid-line.

5.2. Results

We find that in the noise-free cases the PS sensors are typically dominant in both MTF

FWHM and RMS contrast measures except for some of the 3-angle reconstructions.

When 1% noise is added, the PI sensors perform closer to the PS sensors in these

contrast metrics, and sometimes outperform them. We can see examples of these sparse

data reconstructions for 5 mm sensors in figure 3. In the full data regime, where we

have 24 angles and 5 frequencies, the PS sensors beat the PI sensors for the MTF

FWHM contrast metric for both noiseless and noisy data cases, but PI sensors can still

achieve superior RMS contrast when using the smaller 1 mm sensors. The full data

reconstructions for the 1 mm sensors can be seen in figure 4.

The contrast metrics for the different cases are summarised in figures 5 and 6. The

greatest advantage for PI sensors is achieved with noisy data when the sensor is large

in the sparse data regime, which we can see visually in figure 6c and 6d.

6. Conclusion

We have shown that phase-insensitive ultrasound sensors can outperform traditional

phase-sensitive sensors in limited data situations, especially with large sensors —

producing superior contrast in absorption reconstructions both globally and across

different spatial frequencies.

Some uncertainty does arise from the choice of regulariser as well as regularisation

parameter for the reconstructions. We chose a standard Tikhonov regulariser

that penalises higher magnitude gradients, which does a good job of making the

reconstructions stable especially with the presence of noise. However, the amount of
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Figure 3: Reconstructions for PS and PI sensor types with 3 angles, 1 frequency, and

d = 5 mm sensors. (a) PS reconstruction with 0% noise. (b) PI reconstruction with 0%

noise. (c) PS reconstruction with 1% noise. (d) PI reconstruction with 1% noise.

regularisation needs to be carefully balanced in order to make fair comparisons across

different reconstructions. Greater regularisation smooths out the reconstruction which

improves global contrast at the cost of losing edge sharpness, and hence reducing the

MTF FWHM. Similarly, lower regularisation leaves more artifacts in the reconstruction

which decrease contrast, but generally leaves the edge profile more sharp, leading to

a better MTF FWHM measure. The L-curve method was quite good at picking a

regularisation parameter that balanced these factors quite well, but fine tuning through

visual inspection was necessary in many cases to find the ideal parameter.

There is also a possibility that our simple linear inversion approach leaves one of the

sensor types at a comparative disadvantage in certain situations. Nonlinear inversion

schemes could be tested in select cases to see if notable relative differences in these

contrast measures arise.
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Figure 4: Reconstructions for PS and PI sensor types with 24 angles, 5 frequencies, and

d = 1 mm sensors. (a) PS reconstruction with 0% noise. (b) PI reconstruction with 0%

noise. (c) PS reconstruction with 1% noise. (d) PI reconstruction with 1% noise.
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Figure 5: Contrast analysis curves for 1 mm sensors. (a)-(b) show the MTF FWHM and

maximum normalised contrasts for the case of 5 frequency reconstructions, while (c)-(d)

show the same quantities for 1 frequency reconstructions. The solid curves correspond

to PS reconstructions whereas the dashed curves correspond to the PI reconstructions.

In each case there are two line pairs distinguished by the markers along the curves,

corresponding to the noise-free (l) and noisy (♦) cases.
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Figure 6: Contrast analysis curves for 5 mm sensors. (a)-(b) show the MTF FWHM and

maximum normalised contrasts for the case of 5 frequency reconstructions, while (c)-(d)

show the same quantities for 1 frequency reconstructions. The solid curves correspond

to PS reconstructions whereas the dashed curves correspond to the PI reconstructions.

In each case there are two line pairs distinguished by the markers along the curves,

corresponding to the noise-free (l) and noisy (♦) cases.
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Appendix A. Contrast analysis

We use the MTF definition from [10], given as the normalised Fourier transform of the

line spread function (LSF),

MTF(k) =

∣
∣
∣

´∞

−∞
LSF(x)e2πikxdx

∣
∣
∣

´∞

−∞
LSF(x)dx

, (A.1)

where the LSF is defined as the spatial derivative of the edge spread function (ESF),

LSF(x) = d
dx
ESF(x) in the axial direction.

We compute the MTF by fitting an error function to the ESF, defined by the

expression

f(x) =
B

2
erf

(
x− µ√

2σ

)

+ r, (A.2)

where B, µ, σ, and r are the fitting parameters. We fit f to the ensemble average of the

ESFs comprising the interface between the background medium and the square target

in the absorption reconstruction, as seen in figure A1. By fitting an error function to

the ESF we are assuming that the LSF is Gaussian, and hence by (A.1) the MTF is a

Gaussian of the form

MTF(k) = exp
(
−2π2σ2k2

)
. (A.3)

The full width at half maximum (FWHM) of the MTF function in (A.3) gives us a

single number that can quantify how well a given reconstruction can recover the target

across multiple levels of detail, and it is given by the equation

FWHM(σ) =
2 ln 2

πσ
, (A.4)

which means that we can compute the FWHM directly from the σ parameter of the

fitted error function in (A.2).

The weighted RMS contrast is defined as the standard deviation in the weighted

pixel intensities of the reconstruction ĥ in a region of interest. Two examples of

constant weights are the mean value, wmean = 〈ĥ(x)〉X, and the maximum value,

wmax = maxX ĥ(x). In this paper we use wmax. With both choices of weighting the

weighted RMS contrast is given by:
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Figure A1: Error function f (red dashed line) fitted to the ensemble average of ESFs

(solid black line) for the cases of (a) d = 5 mm PS sensors with 3 angles, 1 frequency,

and 1 % noise, and (b) d = 1 mm PS sensors with 24 angles, 5 frequencies, and 1 %

noise.

Cw =

√
√
√
√
√

1

LxLy

Lx∑

i=1

Ly∑

j=1

(

ĥij − 〈ĥ〉
)2

w2
. (A.5)

Appendix B. Operator derivative relation

The differential operator Lω is linear, and we assume the boundary conditions allow for

unique solutions such that the operator inverse L−1
ω exists and is well-defined. We can

then write the following for the derivative with respect to τ(x):

0 =
∂IdL2(χ)

∂τ(x)
=

∂ {L−1
ω (x; τ, c)Lω(x; τ, c)}

∂τ(x)
(B.1)

=
∂L−1

ω (x; τ, c)

∂τ(x)
Lω(x; τ, c) + L−1

ω (x; τ, c)
∂Lω(x; τ, c)

∂τ(x)
. (B.2)

By rearranging this expression we get the following:

∂L−1
ω (x; τ, c)

∂τ(x)
= −L−1

ω (x; τ, c)
∂Lω(x; τ, c)

∂τ(x)
L−1

ω (x; τ, c). (B.3)

It thus follows from (1) that since the sources Sωθ,n(x) are independent of the absorption

distribution τ , that

∂Pωθ,n(x; τ, c)

∂τ(x)
= L−1

ω (x; τ, c)
∂Lω(x; τ, c)

∂τ(x)
Pωθ,n(x; τ, c). (B.4)
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[21] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrı´guez. An optimal perfectly matched layer

with unbounded absorbing function for time-harmonic acoustic scattering problems. Journal of

Computational Physics, 223(2):469–488, 2007.


	1 Introduction
	2 Inverse problem
	3 Forward models
	3.1 Acoustic model
	3.2 Measurement model

	4 Image reconstruction
	4.1 Forward problem
	4.2 Linear reconstruction scheme

	5 Numerical experiments
	5.1 Contrast analysis
	5.2 Results

	6 Conclusion
	7 Acknowledgements
	Appendix A Contrast analysis
	Appendix B Operator derivative relation

