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Abstract. This article grew out of the application part of my Master’s thesis at the Faculty

of Mathematics and Information Science at Ruprecht-Karls-Universität Heidelberg under the

supervision of PD Dr. Andreas Ott. In the context of time series analyses of RNA virus datasets

with persistent homology, this article introduces a new method for reducing two-dimensional

persistence to one-dimensional persistence by transforming time information into distances.

Introduction

Let (S, h) be a finite distance space where h takes values in N. Assume that we have a time

dependent filtration

S0 ⊆ · · · ⊆ Sm = S

where m is the number of time steps (e.g. months or days). For i ∈ {0, . . . ,m}, consider the

Vietoris-Rips filtration

Vi := (V0(Si, h) ⊆ V1(Si, h) ⊆ V2(Si, h) ⊆ . . . ).

As in the work of Bleher et al. [2], where S is a finite set of SARS-CoV-2 RNA sequences with

Hamming distance h, we are interested in detecting cycles that correspond to bars in the barcode

B(H1(Vi)) born in the first filtration step. In [2], these cycles are called single nucleotide variation

(SNV) cycles and are used for a topological recurrence (time series) analysis of SARS-CoV-2,

where each time step B(H1(Vi)) is computed with Ripser [1]. Ripser is a highly optimised software

tool for the computation of persistent homology, capable of processing hundreds of thousands of

distinct RNA sequences [2]. However, this classical approach, where each time step is computed

seperately, can become very time-consuming for large m. In this article, we present a new method

that improves this classical approach and enables the extraction of SNV cycles for each time

step with only one barcode computation.

The Vi naturally lead to a finite bifiltered simplicial complex V . The f.g. two-dimensional

persistence module H1(V ) contains all the information that occur within the H1(Vi). Moreover,

H1(V ) contains additional information about the behaviour of homology classes along the time
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filtration parameter. In order to track these time-persistence features, we introduce a distance

deformation technique to compute the barcode of a certain one-dimensional subfiltration R ⊆ V ,

which is relevant for the detection of SNV cycles. For this, we deform h into a new distance h∗

on S to realise R as a Vietoris-Rips filtration R∗, such that we have a correspondence between

the barcodes B(H1(R
∗)) and B(H1(R)) for the bars corresponding to SNV cycles. Since R∗ is a

Vietoris-Rips filtration, the barcode B(H1(R
∗)) can be computed with Ripser [1]. In practical

experiments, one could investigate whether this new method provides a performance advantage

over the classical approach to a time series analysis, where each time step is computed seperately.

Acknowledgements. I would like to take this opportunity to thank Andreas Ott and Michael

Bleher for their support and the inspiring discussions.

1. SNV cycles

For this article, let (S, h) be a finite distance space, i.e. S is a finite set and h is a metric or more

generally a semimetric1 on S. Recall that for every r ∈ R, the Vietoris-Rips complex of (S, h) at

scale r ∈ R≥0 is the abstract simplicial complex

Vr(S, h) := {∅ 6= σ ⊆ S | h(x, y) ≤ r ∀x, y ∈ σ}.

Assume that we have a (time dependent) filtration

S0 ⊆ · · · ⊆ Sm = S.

For i ∈ {0, . . . ,m}, consider the Vietoris-Rips filtration

Vi := (V0(Si, h) ⊆ V1(Si, h) ⊆ V2(Si, h) ⊆ . . . ).

Denote by H1(Vi) = H1(Vi,Fp) the first simplicial homology with coefficients in a finite prime

field Fp applied to the filtration Vi. Then H1(Vi) is a finitely generated (f.g) one-dimensional

persistence module.

As in the work of Bleher et al. [2] where S is a finite set of SARS-CoV-2 RNA sequences with

Hamming distance h, we are interested in detecting cycles that correspond to bars in the barcode

B(H1(Vi)) born in the first filtration step. In [2], these cycles are called single nucleotide variation

(SNV) cycles and are used for a topological recurrence (time series) analysis of SARS-CoV-2.

For simplicity, we also call such cycles SNV cycles in our more general setting.

Definition 1.1 (SNV cycle). The underlying homology class representatives of bars in the

barcode B(H1(Vi)) born in the first filtration step H1(V1(Si, h)) are called SNV cycles in time

step i.

1A semimetric satisfies all the axioms of a metric with exception of the triangle inequality.
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For every i ∈ {0, . . . ,m}, denote by SNVi a full set of SNV cycle representatives extracted

from the barcode B(H1(Vi)). In [2], the barcodes B(H1(Vi)) are computed with Ripser [1] and the

SNVi are extracted from the Ripser output. Ripser is a highly optimised software tool, capable

of processing hundreds of thousands of distinct RNA sequences [2]. However, this classical

approach to a time series analysis has the following issues:

1. Computing each time step seperately can be very time consuming for large m (e.g. a time

series analysis over one year on a daily basis).

2. We are not able to track the time-stability of SNV cycles, i.e. whether the image of the

homology class [ω] of an SNV cycle ω ∈ SNVi under the canonical homomorphism

H1(V1(Si, h)) −→ H1(V1(Si+1, h))

is zero or not.

3. Since each time step is computed seperately, the SNVi are not automatically compatible:

let ω ∈ SNVi and assume that the image of [ω] under the canonical homomorphism

H1(V1(Si, h)) −→ H1(V1(Si+1, h))

is not zero. Then it still may happen that ω 6∈ SNVi+1.

In Sections 2 and 3, we present a method that enables the extraction of SNV cycles for each time

step with only one barcode computation. The resulting SNV cycles are automatically compatible

and we can track their time-stability.

2. Dimension reduction

The Vi naturally lead to a finite bifiltered simplicial complex V . We obtain a f.g. two-dimensional

persistence module H1(V ) which contains all the information that occur within the H1(Vi).

Moreover, H1(V ) contains additional information about the behaviour of homology classes along

the time filtration parameter. Since we are only interested in detecting SNV cycles and not in

determining their lifespan in the barcodes B(H1(Vi)), it suffices to compute the barcode B(H1(R))

where R ⊆ V is the one-dimensional subfiltration

Ri :=


V0(Si, h), i = −1

V1(Si, h), i ∈ {0, . . . ,m}

Vi−m+1(Sm, h), i ∈ N≥m+1

For reasons of notation, we start with i = −1. The f.g. one-dimensional persistence module

H1(R) can be viewed as a dimensional reduction of H1(V ). The barcode B(H1(R)) contains all

the information we need to extract SNV cycles for each time step i ∈ {0, . . . ,m}. Moreover,

B(H1(R)) tracks the stability of SNV cycles along the time filtration parameter.
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The idea to consider barcodes of subfiltrations follows a more general concept introduced by

Carrie et al. [4] and called fibered barcode by Lesnick and Wright [5]. Fibered barcodes are

closely related to the rank invariant introduced by Carlsson and Zomorodian in [3]. In [4], it is

shown that the fibered barcode and the rank invariant determine each other.

3. Distance deformation

In this section, we introduce a distance deformation technique to realise R as a Vietoris-Rips

filtration R∗ such that we have a correspondence between the barcodes B(H1(R∗)) and B(H1(R))

for the bars corresponding to SNV cycles.

For the following, let N = N(m) be the lowest power of 10 such that m < N . For example, if

m = 34, then N = 100. For x ∈ S, let

D(x) := min{i ∈ {0, . . . ,m} | x ∈ Si}.

Definition 3.1 (Distance deformation). We define a new distance h∗ on S as follows: let x, y ∈ S
with D(x) ≥ D(y). Define

h∗(x, y) :=

h(x, y) +D(x)/N, x 6= y

0, x = y

and

h∗(y, x) := h∗(x, y).

Example 3.2. The intuition behind h∗ is that time information is transformed into distances.

Let m = 364. Then we have N = N(364) = 1, 000. Let x, y, z ∈ S with D(x) = 264 and

D(y) = D(z) = 132. Assume that h(x, y) = h(x, z) = h(y, z) = 1. Then we have

h∗(x, y) = h∗(x, z) = 1.264

and

h∗(y, z) = 1.132.

Consider the Vietoris-Rips filtration R∗, where for i ∈ Z≥−1,

R∗
i := Vκi(S, h

∗)

with filtration parameters

κi :=



0, i = −1

1 + i/N, i ∈ {0, . . . ,m}

2 + (i− (m+ 1))/N, i ∈ {m+ 1, . . . , 2m+ 1}

. . .
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Figure 1. Here we illustrate the correspondence between SNV cycles and their deformed
equivalents. The blue-coloured points and edges indicate that the distance was deformed
according to the time step they were added. As we can see, an SNV cycle was destroyed by
adding a point along the time filtration parameter.

Then H1(R∗) is a f.g. one-dimensional persistence module. By construction, we have the following

correspondence (illustrated in Figure 1).

Correspondence 3.3. Consider the barcodes B(H1(R)) and B(H1(R
∗)). Let i ∈ {0, . . . ,m}.

Then bars born in H1(R
∗
i ) are in one to one correspondence with bars born in H1(Ri). Let

j ∈ {0, . . . ,m − i}. If a bar born in H1(Ri) dies in H1(Ri+j), the corresponding bar born in

H1(R
∗
i ) dies in H1(R

∗
i+j).

Using this correspondence, the definition of SNV cycles translates as follows.

Definition 3.4 (Deformed SNV cycle). The underlying homology class representatives of bars

in the barcode B(H1(R
∗)) born in H1(R

∗
0), . . . ,H1(R

∗
m) are called deformed SNV cycles.

Denote by SNV∗ a full set of deformed SNV cycle representatives extracted from B(H1(R
∗)).

For i ∈ {0, . . . ,m}, define

SNV∗
i := {ω ∈ SNV∗ | 0 6= [ω] ∈ H1(R

∗
i )}.

By construction, we have a bijection of sets

SNV∗
i
∼= SNVi.

Moreover, we have compatibility: let ω ∈ SNV∗
i and assume that the image of [ω] under the

canonical homomorphism

H1(R
∗
i ) −→ H1(R

∗
i+1)
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is not zero. Then ω ∈ SNV∗
i+1 by construction. In addition, we can track the time-stability of

SNV cycles and instead of m barcode computations of B(H1(Vi)) for i ∈ {0, . . . ,m}, only the

computation of B(H1(R∗)) has to be performed. Since R∗ is a Vietoris-Rips filtration, the barcode

B(H1(R
∗)) can be computed with Ripser [1]. In practical experiments, one could investigate

whether this new method provides a performance advantage over the classical approach to a time

series analysis, where each time step is computed seperately.
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