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EXISTENCE AND UNIQUENESS OF LIMITS AT INFINITY FOR HOMOGENEOUS

SOBOLEV FUNCTIONS

PEKKA KOSKELA AND KHANH NGUYEN

Abstract. We establish the existence and uniqueness of limits at infinity along infinite curves outside a
zero modulus family for functions in a homogeneous Sobolev space under the assumption that the underlying
space is equipped with a doubling measure which supports a Poincaré inequality. We also characterize the
settings where this conclusion is nontrivial. Secondly, we introduce notions of weak polar coordinate systems
and radial curves on metric measure spaces. Then sufficient and necessary conditions for existence of radial
limits are given. As a consequence, we characterize the existence of radial limits in certain concrete settings.

1. Introduction

Let (X, d, µ) be a metric measure space with metric d and Borel regular measure µ. A locally rectifiable
curve γ : [0,∞) → X is an infinite curve if γ \B 6= ∅ for all balls B. Then

∫

γ ds = ∞ if γ is an infinite curve.

We write Γ∞ for the collection of all infinite curves and denote by Ṅ1,p(X), 1 ≤ p < ∞, the collection of all
locally integrable functions that have a p-integrable upper gradient on (X, d, µ). Here the notion of upper
gradients is given in Section 2.2.

The aim of this paper is to study the existence and uniqueness of the limit

(1.1) lim
t→∞

u(γ(t))

for γ ∈ Γ∞ and for u ∈ Ṅ1,p(X). We say that the existence and uniqueness of (1.1) hold for p-a.e γ ∈ Γ∞

if, for every u ∈ Ṅ1,p(X), there exists c ∈ R such that

lim
t→∞

u(γ(t)) exists and lim
t→∞

u(γ(t)) = c for p-a.e γ ∈ Γ∞.

Here the notion of p-a.e curve is given in Section 2.2.
Towards uniqueness, we employ an annular chain property at a given based point O, see Definition 2.3.

This chain property holds, for example, if there exists a constant C ≥ 1 for which any pair of points in
B(O, r) \B(O, r/2) can be joined by a curve in B(O,Cr) \B(O, r/C), see Section 2.5 for more details. This
holds especially when X is annularly quasiconvex as defined in [HKST15, Section 8.3].

Our first result deals with the limit (1.1) for p-a.e γ ∈ Γ∞.

Theorem 1.1. Let 1 ≤ p < ∞. Suppose that (X, d, µ) is a doubling metric measure space that supports a
p-Poincaré inequality. Assume that X has the annular chain property. Then the existence and uniqueness
of (1.1) hold for p-a.e γ ∈ Γ∞.

In Theorem 1.1, the uniqueness does not hold without some additional assumption besides doubling and
Poincaré whose definitions are given in Section 2.3. For example, on a space with at least two ends one easily
constructs a Lipschitz function in Ṅ1,p(X) so that the tail value of two of the ends is a different constant.
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A tree in [BBGS17,NgWa20] (or a weighted real line in [BBK06,BBS20]) is doubling, supports a Poincaré
inequality and has more than one end.

The conclusion of Theorem 1.1 is nontrivial only when the p-modulus of Γ∞ is strictly positive. Let us
suppose that µ is a Q-Ahlfors regular measure as in Section 2.3 where 1 < Q ≤ p < ∞. Then the p-modulus
of Γ∞ vanishes, and hence there exists u ∈ Ṅ1,p(X) such that limt→∞ u(γ(t)) = ∞ for every γ ∈ Γ∞,
see [HKST15, Page 135]. One can actually characterize the settings where the p-modulus of the family Γ∞

is strictly positive. This is the content of Theorem 1.2 below.
Let O be a fixed point in X and let A2j (O) be the annuli B(O, 2j+1) \B(O, 2j) for j ∈ N. We define

Rp(O) :=
∑

j∈N

(2j)
p

p−1µ
1

1−p (A2j (O)) if p > 1 and R1(O) := sup
j∈N

2jµ−1(A2j (O)).

The finiteness of Rp(O) is then a volume growth condition. A reader familiar with classification theory
should recognize this as a condition towards p-hyperbolicity [HoKo01,Hol99,Gri99].

Theorem 1.2. Let 1 ≤ p < ∞. Suppose that (X, d, µ) is a complete doubling metric measure space that
supports a p-Poincaré inequality. Assume that X has the annular chain property at O. Then the following
statements are equivalent:

I. Rp(O) < ∞.
II. Modp(Γ

∞) > 0.

III. For every u ∈ Ṅ1,p(X), there exists an infinite curve γ ∈ Γ∞ such that limt→∞ u(γ(t)) exists.

The space X = [0,∞) ⊂ R equipped with the Lebesgue measure and the usual distance is doubling and
supports a p-Poincaré inequality for all p ≥ 1. It also has the annular chain property and there is (modulo
reparametrizations and translations) only one injective infinite curve. Moreover, Rp(0) < ∞ precisely when

p = 1, in which case every function in Ṅ1,1(X) has a (unique) limit along this curve. Hence the existence of
a single “good” curve is the best one can obtain in this generality. However, for Rn, n ≥ 2, equipped with
the Lebesgue measure and Euclidean distance, Rp(0) < ∞ precisely when p < n and one then obtains a
unique limit along the radial half-line in the direction ξ ∈ Sn−1, for almost every ξ with respect to the surface
measure on the boundary Sn−1 of the unit ball. This is a consequence of the existence of spherical (or polar)
coordinates. Towards establishing limits along a recognizable family of infinite curves, let us introduce an
abstract version of polar coordinates.

Let S be a nonempty set (a set of indices), O ∈ X and consider collections ΓO(S) consisting of γξ ∈ Γ∞,
ξ ∈ S, with γξ(0) = O. We say that X has a weak polar coordinate system at the coordinate point O if there
exist a set S of indices with a Radon probability measure σ on S, a choice of ΓO(S), a function h : X → [0,∞),
and a constant C > 0 such that

(1.2)

∫

S

∫

γO
ξ

|f |h dsdσ ≤ C

∫

X

|f |dµ for every integrable function f .

We then call h a coordinate weight and each γO
ξ ∈ ΓO(S) a radial curve in the direction ξ ∈ S from O.

Towards the existence of (1.1) along radial curves, consider a polar coordinate (1.2) at O. We set

Rp(h,O) :=

∫

X\B(O,1)

h
p

1−p dµ if p > 1 and R1(h,O) := ‖h−1‖L∞
µ (X\B(O,1)).

Given ξ ∈ F ⊂ S with lim inft→∞ d(O, γO
ξ (t)) > 1, there is tξ > 0 such that d(O, γO

ξ (tξ)) = 1 and

d(O, γO
ξ (t)) > 1 for all t > tξ. Let γ̂O

ξ : [0,∞) → X be the infinite curve starting from γO
ξ (tξ) defined

by γ̂O
ξ (t) := γO

ξ (t + tξ) for t ≥ 0. The collection of all these infinite curves γ̂O
ξ with respect to ξ ∈ F

satisfying lim inft→∞ d(O, γO
ξ (t)) > 1 is denoted by Γ̂O(F ).

In order to state our next result, we introduce the following properties:
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1. For every u ∈ Ṅ1,p(X), there is a radial curve γ such that lim inft→∞ u(γ(t)) is finite.
2. The limit (1.1) exists for σ-a.e ξ ∈ S, i.e. the limit

lim
t→∞

u(γO
ξ (t)) exists for σ-a.e ξ ∈ S, for every u ∈ Ṅ1,p(X).

3. The existence and uniqueness of (1.1) are obtained for σ-a.e ξ ∈ S, i.e. for every u ∈ Ṅ1,p(X), there
exists c ∈ R such that

lim
t→∞

u(γO
ξ (t)) exists and lim

t→∞
u(γO

ξ (t)) = c for σ-a.e ξ ∈ S.

4. Modp(Γ̂
O(S)) > 0.

5. If F ⊆ S satisfies σ(F ) > 0, then Modp(Γ̂
O(F )) > 0.

We show that each of {1., 2., 3., 4., 5.} is “between” Rp(O) < ∞ and Rp(h,O) < ∞.

Theorem 1.3. Let 1 ≤ p < ∞. Suppose that (X, d, µ) is a doubling metric measure space that supports
a p-Poincaré inequality. Assume that X has the annular chain property at O. Suppose that X has a weak
polar coordinate system (S, σ,ΓO , h) at O as in (1.2). Then

I. The condition Rp(h,O) < ∞ is sufficient for all of {1., 2., 3., 4., 5.}.
II. The condition Rp(O) < ∞ is necessary for each of {1., 2., 3., 4., 5.}.

Theorem 1.3 leads us to compare the finiteness of Rp(h,O) and Rp(O). First of all, it immediately follows
from Theorem 1.3 that the finiteness of Rp(h,O) guarantees the finiteness ofRp(O). We do not know a simple
direct proof for this. On the other hand, the finiteness of Rp(O) does not in general yield the finiteness of
Rp(h,O). To see this, simply consider Rn, n ≥ 2, with the Euclidean distance and Lebesgue measure, usual
spherical coordinates (with normalized measure on Sn−1) but with the coordinate weight h = χRn\B(0,1).
On the other hand, for example, if

h(x) &
∑

j∈N

µ(A2j (O))

(2j)p
χA2j (O)(x)

for all x ∈ X, then Rp(h,O) . Rp(O).
Let us next consider the Muckenhoupt Ap-weighted space (Rn, dE , w), where n ≥ 2 and O is the origin.

Here dE is the Euclidean distance, and w is a Muckenhoupt Ap-weight with the associate measure dµ = wdx,
i.e. there is a constant C ≥ 1 such that for every ball B ⊂ Rn,

(1.3)

(

−

∫

B

wdx

)
1
p
(

−

∫

B

w
1

1−p dx

)
p

p−1

≤ C if p > 1,

and

(1.4)

(

−

∫

B

wdx

)

‖w−1‖L∞(B) ≤ C if p = 1.

Then µ is doubling and supports a p-Poincaré inequality, see for instance [HKM06]. The annular chain
property at O is satisfied and the usual (normalized) spherical coordinate system satisfies (1.2) at O. We
show that Rp(h,O) ≈ Rp(O) in Example 4.3. In particular, Rp(h,O) < ∞ if and only if 1 ≤ p < n for the
unweighted space Rn. It follows that Theorem 1.3 recovers some of the conclusions in [EKN22,Usp61].

Next, we consider a Q-Ahlfors regular space X that supports a p-Poincaré inequality, where 1 ≤ p < ∞
and 1 ≤ Q < ∞. Suppose that X has the annular chain property at O and satisfies the strong form

∫

X\B(O,1)

|f |dµ =

∫

S

∫ ∞

1

|f(γξ(t))|t
Q−1 dtdσ(ξ) (for every integrable function f)
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of our weak polar coordinate system. Then each of {1., 2., 3., 4., 5.} is equivalent to 1 ≤ p < Q if 1 < Q < ∞,
and equivalent to p = 1 if Q = 1 since

(1.5) Rp(O) < ∞ =⇒

{

1 ≤ p < Q if 1 < Q < ∞,

p = 1 if Q = 1.
=⇒ Rp(h,O) < ∞

where

Rp(h,O) ≈

{

∫∞

1 r
(Q−1)
1−p dr if p > 1,

‖r1−Q‖L∞([1,∞)) if p = 1,
and Rp(O) ≈

{

∑

j∈N
(2j)

p−Q
p−1 if p > 1,

supj∈N(2
j)1−Q if p = 1.

In particular, by [BaTy02, Ty20] every polarizable Carnot group G (especially every group of Heisenberg
type) admits a polar coordinate system (2.3) that satisfies (1.2). Since the Haar measure on G is Q-Ahlfors
regular for the homogeneous dimension Q > 1 of G and supports a p-Poincaré inequality for each p, each of
{1., 2., 3., 4., 5.} is equivalent to 1 ≤ p < Q < ∞.

We then obtain the following characterization.

Corollary 1.4. Let 1 ≤ p < ∞ and let 1 < Q < ∞. Then

I. Each of {1., 2., 3., 4., 5.} is equivalent to Rp(h,O) < ∞ (or Rp(O) < ∞) on the Muckenhoupt Ap-
weighted Euclidean spaces.

II. Each of {1., 2., 3., 4., 5.} is equivalent to 1 ≤ p < Q < ∞ on polarizable Carnot groups.

The organization of this paper is as follows. In Section 2, we introduce polar coordinates and recall the
basic notions on metric measure spaces. In Sections 3-4, proofs of Theorem 1.1-1.2-1.3 are given.

Throughout this paper, we use the following conventions. We denote by O the base point in the annular
chain property and also refer by O to the coordinate point in the polar coordinate (1.2). The notation A .

B (A & B) means that there is a constant C > 0 only depending on the data such that A ≤ C ·B (A ≥ C ·B),
and A ≈ B means that A . B and A & B. For each locally integrable function f and for every measurable
subset A ⊂ X of positive measure, we let fA := −

∫

A
fdµ = 1

µ(A)

∫

A
fdµ.

2. Polar coordinates and preliminaries

In Section 2.1, we introduce polar coordinates. We recall the basic notions of modulus, doubling, Poincaré
inequalities, and Lebesgue points in Sections 2.2-2.3-2.4.

2.1. Polar coordinates. Let (X, d) be a metric space. A curve is a nonconstant continuous mapping from
an interval I ⊆ R into X . The length of a curve γ is denoted by l(γ). A curve γ is said to be a rectifiable curve
if its length is finite. Similarly, γ is a locally rectifiable curve if its restriction to each compact subinterval of
I is rectifiable. Each rectifiable curve γ will be parameterized by arc length and hence the line integral over
γ of a Borel function f on X is

∫

γ

fds =

∫ l(γ)

0

f(γ(t))dt.

If γ is locally rectifiable, then we set
∫

γ

fds = sup

∫

γ′

fds

where the supremum is taken over all rectifiable subcurves γ′ of γ. Let γ : [0,∞) → X be a locally rectifiable
curve, parameterized by arc length. Then

∫

γ

fds =

∫ ∞

0

f(γ(t))dt.
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A locally rectifiable curve γ is an infinite curve if γ \B 6= ∅ for all balls B. Then
∫

γ
ds = ∞. We denote by

Γ∞ the collection of all infinite curves.
Let S be a nonempty set (a set of indices). Given a point O, we consider collections ΓO(S) of infinite

curves with parameter space S starting from O, namely

ΓO(S) = {γO
ξ ∈ Γ∞ : γO

ξ (0) = O, ξ ∈ S}.

We say that (X, d, µ) has a weak polar coordinate system at the coordinate point O if there is a choice of a
pair (S,ΓO(S)) with a Radon probability measure σ on S, a coordinate weight h : X → [0,∞), and a constant
C > 0 such that

(2.1)

∫

S

∫

γO
ξ

|f | h dsdσ ≤ C

∫

X

|f |dµ for every integrable function f .

Each γO
ξ ∈ ΓO(S) is called a radial curve with respect to ξ ∈ S (starting from O). Notice that we have not

assumed h to be strictly positive. In applications it will be important to require h to be strictly positive at
least almost everywhere in the union of the images of γO

ξ .
Let us give examples of weak polar coordinates. First of all, in the n-dimensional Euclidean space Rn,

where n ≥ 2, one has the usual spherical coordinate system at a given point O: there is a constant C(n) > 0
depending on n such that

(2.2)

∫

Rn

f(x)dx = C(n)

∫

Sn−1

∫ ∞

0

f(O + r · ξ)rn−1drdHn−1 for every integrable function f.

Here Hn−1 is the (normalized) (n − 1)-Hausdorff measure and Sn−1 is the unit sphere centered at O. For
these coordinates, (2.1) holds as an identity.

In [BaTy02, Ty20], Balogh and Tyson produced a polar coordinate system at the origin on polarizable
Carnot groups G: there is a family of horizontal curves γξ : [0,∞) → G where ξ ranges over a certain
compact unit sphere S ⊂ G, and a positive Radon measure σ on S so that

(2.3)

∫

G

f(g)dg =

∫

S

∫ ∞

0

f(γξ(t))t
Q−1dtdσ(ξ)

is valid for every integrable function f . Here the integral on the left is taken with respect to the Haar
measure in the group and Q denotes the homogeneous dimension of G. The unit sphere S is the level set
{g ∈ G : N(g) = 1} for a certain homogeneous norm N in G.

In [KNZ22, Lemma 3.1], a polar coordinate at the root O on a K-regular tree is given. Let X be a K-
regular tree with its boundary ∂X. We equip X with a radially weighted distance λ and a radially weighted
measure µ. Then there is a uniform measure ν on ∂X such that

∫

X

fdµ ≈

∫

∂X

∫

[O,ξ)

f(x)
K |x|µ(x)

λ(x)
ds(x)dν(ξ)

for every integrable function f . Here [O, ξ) := γξ is the unique geodesic ray from the root O to ξ ∈ ∂X .
In the above examples, one actually has two-sided estimates for the terms in (2.1). This is not necessarily

the case for our weak polar coordinate systems. For example, let X := {(x1, x2) ∈ R2 : −1 ≤ x2 ≤
1} ∪ {(x1, x2) ∈ R2 : |x2| ≤ x1} and equip it with the Lebesgue measure and the Euclidean distance. Let

S1 = [−1, 1] and set γ1
ξ (t) =

{

(−t, t · ξ), 0 ≤ t ≤ 1

(−t, ξ), t > 1
, when ξ ∈ [−1, 1]. Define h1(x1, x2) =

{

1, x1 < −1

0, otherwise.

Then
∫

S1

∫ ∞

0

|f(γ1
ξ (t))| h1(γ

1
ξ (t)) dtdξ ≤

∫

X

|f(x1, x2)|dx1dx2 for every integrable function f.
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This is a weak polar coordinate system. A second weak polar coordinate system on X is obtained by taking
S2 = [−π/4, π/4], γ2

ξ (t) = ei·ξ and h2(x1, x2) = ‖(x1, x2)‖χ{(x1,x2)∈X:x2≥0}(x1, x2). Then
∫

S2

∫ ∞

0

|f(γ2
ξ (t))| h2(γ

2
ξ (t)) dtdξ ≤

∫

X

|f(x1, x2)|dx1dx2 for every integrable function f.

For a third one, we take S3 = S1 ∪ S2, h3 = h1 + h2 and γ3
ξ = γ1

ξ ∪ γ2
ξ . Then

∫

S3

∫ ∞

0

|f(γ3
ξ (t))| h3(γ

3
ξ (t)) dtdξ ≤

∫

X

|f(x1, x2)|dx1dx2 for every integrable function f.

In [KM98, Section 3], there is a weak polar coordinate system on the Cantor ∞-diamond. Let us describe
it. Let Ei be the usual Cantor set in the unit interval [i, i + 1] obtained by first taking out the middle
interval of length 1/3 and leaving two intervals of length 1/3 and then continuing inductively. The Cantor
∞-diamond, denoted by X , is obtained by replacing each of the complementary intervals of Ei by a square
having that interval as one of its diagonals. Thus we have a line of diamonds along the unit interval, and
they are joined up by Ei. We consider the map F : [0,∞)× [−1, 1] → X defined by

F (x, y) =
(

x, δ(x) tan
(

π
y

4

))

.

Here δ(x) is the distance from x to E :=
⋃∞

i=0 Ei. Then the map F is simply the vertical projection on
E × [−1, 1] and it is one-to-one, locally bi-Lipschitz on ([0,∞) \ E) × [−1, 1]. The Jacobian of F at (x, y),

denoted by JF (x, y), is
πδ(x)

4 cos2(πy/4) . Let Γ be the family of curves γy, −1 < y < 1, defined by

γy(x) = F (x, y) for all y ∈ [−1, 1].

Then γy is 4-Lipschitz for each y ∈ [−1, 1]. We denote by σ the 1-Lebesgue measure on [-1,1]. By the change
of variables formula, we have

∫

Γ

∫

γ

f · (JF ◦ F−1)dsd
(σ

2

)

(γ) =
1

2

∫

[−1,1]

(

∫

[0,∞)

(f ◦ γy)(x) · (JF ◦ F−1 ◦ γy)(x) · |γ̇y(x)|dx

)

dy

≤2

∫

[−1,1]

∫

[0,∞)

(f ◦ F )(x, y) · JF (x, y)dxdy

=2

∫

X

fdL2

for each positive integrable function f on X with respect to the 2-Lebesgue measure L2. Here the inequality
is obtained since γy is 4-Lipschitz for each y ∈ [−1, 1] and (JF ◦F−1◦γy)(x) = (JF ◦F−1)(F (x, y)) = JF (x, y).

Finally, we give a definition of Semmes-type families which are related to our weak polar coordinate
system.

Definition 2.1 (A Semmes type family of infinite curves). Let (X, d, µ) be a metric measure space with
metric d and measure µ. Given O ∈ X, a family Γ of infinite curves starting from O is called Semmes-type
if there exist a constant C > 0 and a Radon probability measure σ on Γ such that

(2.4)

∫

Γ

∫

γ

f ds dσ(γ) ≤ C

∫

X

f(x)
d(x,O)

µ(B(O, d(x,O)))
dµ(x)

for every positive measurable function f on X for which the right-hand side of (2.4) is finite.

For instance, a family of all radial curves is a Semmes type family on R
n by the usual spherical coordinate

system (2.2) or on a polarizable Carnot group by the coordinate system (2.3). This definition is naturally
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modified from the existence of families of rectifiable curves joining pairs of points on metric measure spaces
by Semmes in [Sem96].

2.2. Modulus. Let Γ be a family of curves in a metric measure space (X, d, µ). Given 1 ≤ p < ∞, the
p-modulus of Γ, denoted Modp(Γ), is defined by

Modp(Γ) := inf

∫

X

ρpdµ

where the infimum is taken over all Borel functions ρ : X → [0,∞] satisfying
∫

γ
ρds ≥ 1 for every locally

rectifiable curve γ ∈ Γ. A family of curves is called p-exceptional if it has p-modulus zero. We say that a
property holds for p-a.e curve if the collection of curves for which the property fails is p-exceptional.

Let u be a locally integrable function. A Borel function ρ : X → [0,∞] is said to be an upper gradient of
u if

(2.5) |u(x)− u(y)| ≤

∫

γ

ρds

for every rectifiable curve γ connecting x and y. Then we have that (2.5) holds for all compact subcurves
of γ ∈ Γ∞. We say that ρ is a p-weak upper gradient of u if (2.5) holds for p-a.e rectifiable curve. In what
follows, we denote by gu the minimal upper gradient of u, which is unique up to measure zero and which is
minimal in the sense that gu ≤ ρ a.e. for every p-integrable p-weak upper gradient ρ of u. In [Haj03], the
existence and uniqueness of such a minimal upper gradient are given.

The notion of upper gradients is due to Heinonen and Koskela [HeKo98], we refer interested readers
to [Björn,Haj03,HeKo98,Sha00] for a more detailed discussion on upper gradients.

2.3. Doubling and Poincaré inequalities. Let (X, d) be a metric space. A Borel regular measure µ is
called doubling if every ball in X has finite positive measure and if there exists a constant C ≥ 1 such that
for all balls B(x, r) with radius r > 0 and center at x ∈ X ,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Let 1 ≤ Q < ∞. A Borel regular measure µ is said to be Q-Ahlfors regular if there exists a constant C ≥ 1
such that for all balls B(x, r) with radius r > 0 and center at x ∈ X ,

rQ

C
≤ µ(B(x, r)) ≤ CrQ.

Hence if µ is Q-Ahlfors regular for some 1 ≤ Q < ∞, then µ is a doubling measure.
Let 1 ≤ p < ∞. We say that a measure µ supports a p-Poincaré inequality if every ball in X has finite

positive measure and if there exist constants C > 0 and λ ≥ 1 such that

−

∫

B(x,r)

|u− uB(x,r)|dµ ≤ Cr

(

−

∫

λ·B(x,r)

ρpdµ

)
1
p

for all balls B(x, r) with radius r > 0 and center at x ∈ X , and for all pairs (u, ρ) satisfying (2.5) such that
u is integrable on balls. Here λ · B(x, r) := B(x, λ · r) and λ is called the scaling constant of p-Poincaré

inequality or the scaling factor of p-Poincaré inequality. Since u ∈ Ṅ1,p(X) is integrable on balls, the
p-Poincaré inequality makes sense for any pair (u, ρu) where ρu is an upper gradient of u.
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2.4. Lebesgue points. A point x ∈ X is called a Lebesgue’s point of u if limr→0 −
∫

B(x,r)
|u(y)−u(x)|dµ(y) =

0 where B(x, r) is the ball with radius r and center at x. Let Nu be a set of all points x ∈ X such that x is
not a Lebesgue point of u.

Theorem 2.2 (Lebesgue differentiation theorem, see for instance [HKST15, Page 77]). We have µ(Nu) = 0
for every locally integrable function u on X.

2.5. Chain conditions. In this paper, we employ the following annular chain property.

Definition 2.3. Let λ ≥ 1. We say that X satisfies an annular λ-chain condition at O if the following
holds. There are constants c1 ≥ 1, c2 ≥ 1, δ > 0 and a finite number M < ∞ so that given r > 0 and points
x, y ∈ B(O, r) \B(O, r/2), one can find balls B1, B2, . . . , Bk with the following properties:

1. k ≤ M .
2. B1 = B(x, r/(λc1)), Bk = B(y, r/(λc1)) and the radius of each Bi is r/(λc1) for 1 ≤ i ≤ k.
3. Bi ⊂ B(O, c2r) \B(O, r/c2) for 1 ≤ i ≤ k.
4. For each 1 ≤ i ≤ k − 1, there is a ball Di ⊂ Bi ∩Bi+1 with radius δr.

If X satisfies an annular λ-chain condition at O for every λ ≥ 1, we say that X has the annular chain
property.

If X satisfies an annular λ-chain condition at O for some λ ≥ 1 then it also satisfies an annular λ′-chain
condition at O for all λ′ with 1 ≤ λ′ ≤ λ by taking c1(λ

′) := c1(λ)
λ
λ′ ≥ 1. Here c1(λ) is the constant c1

with respect to λ as in Definition 2.3. It follows that X has the annular chain property if and only if there
is a sequence λk with limk→+∞ λk = +∞ such that X satisfies an annular λk-chain condition at O for each
k ∈ N.

Lemma 2.4. Let µ be doubling on (X, d). Suppose that there is a constant c0 ≥ 1 so that for every r > 0,
each pair x, y of points in B(O, r) \ B(O, r/2) can be joined by a curve in B(O, c0r) \ B(O, r/c0). Then X
has the annular chain property.

Proof. We follow ideas in the proof of [HaKo00, Theorem 7.2]. Let λ ≥ 1. Let γx,y be a curve in B(O, c0r) \
B(O, r/c0) joining x, y ∈ B(O, r) \ B(O, r/2). We consider the collection of all balls B(w, r/(100λ)) with
w ∈ B(O, c0r) \B(O, r/c0). As µ is doubling, by the 5B-covering lemma, we find a cover of γx,y consisting
of k of these balls, say D1, D2, . . . , Dk, with k depending only on c0, λ and the doubling constant, so that
the following properties hold:

(1) γx,y ⊂
⋃k

i=1 5Di.

(2) {Di}ki=1 are pairwise disjoint.
(3) 5Di

⋂

5Di+1 6= ∅ for 1 ≤ i ≤ k − 1.

Let Bi := 20Di. Then the four properties as in Definition 2.3 can be checked to hold for a subcollection of
the balls Bi when δ = 1/(100λ), c1 = 1/5, c2 = 10c0. �

Corollary 2.5. If X is annularly quasiconvex as defined in [HKST15, Section 8.3], then X has the annular
chain property.

It especially follows from Corollary 2.5 together with [HKST15, Theorem 9.4.1] that every complete metric
measure space that is Q-Ahlfors regular and supports a p-Poincaré inequality for some 1 ≤ p < Q has the
annular chain property.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Throughout this section, we always assume that (X, d, µ) is doubling

and supports a p-Poincaré inequality with scaling factor λ ≥ 1, and that u ∈ Ṅ1,p(X) with ρu a p-integrable
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upper gradient of u. We assume that X satisfies an annular λ-condition at O. Let B(x, r) be the ball with
radius r > 0 and center at x ∈ X . We set τB(x, r) := B(x, τr), Aλ2j+1 := B(O, λ2j+2) \ B(O, λ2j+1),
c2 ·Aλ2j+1 := B(O, c2λ2

j+3) \B(O, 2j/(c2λ)) for τ > 0, j ∈ N where c2 is as in Definition 2.3. Let us begin
with useful lemmas, established using ideas from [HeKo98,HaKo95,HaKo00].

Lemma 3.1. Let 1 ≤ p < ∞ and j ∈ N. Suppose that E,F are two subsets of Aλ2j+1 such that |u(x)−u(y)| ≥
1 for all x ∈ E, y ∈ F , and that |u(x)− uB(x,2j/c1)| ≤ 1/5, |u(y)− uB(y,2j/c1)| ≤ 1/5 for some x ∈ E, y ∈ F ,
where c1 ≥ 1 is as in Definition 2.3. Then

(3.1) µ(c2 ·Aλ2j+1 ) . (2j)p
∫

c2·Aλ2j+1

ρpudµ.

Proof. We have that 1 ≤ |u(x) − u(y)| ≤ 1/5 + |uB(x,2j/c1) − uB(y,2j/c1)| + 1/5. Hence 1 . |uB(x,2j/c1) −

uB(y,2j/c1)|. Let {Bi}ki=1 statisfy the four properties in Definition 2.3. Since µ is doubling and supports a
p-Poincaré inequality, it follows that

1 . |uB(x,2j/c1) − uB(y,2j/c1)| .
k
∑

i=1

−

∫

Bi

|u− uBi
|dµ .

k
∑

i=1

2j
(

−

∫

λBi

ρpudµ

)
1
p

.

Hence there is an index i such that 1 . 2j
(

−
∫

λBi
ρpudµ

)
1
p

. By the doubling property, we obtain that

µ(c2 · Aλ2j+1 ) . µ(λBi) . (2j)p
∫

λBi

ρpudµ ≤ (2j)p
∫

c2·Aλ2j+1

ρpudµ

which is (3.1). �

Lemma 3.2. Let 1 ≤ p < ∞ and j ∈ N. Suppose that E is a subset of Aλ2j+1 such that |u(x)−uB(x,2j/c1)| >
1/5 holds for every x ∈ E, where c1 ≥ 1 is as in Definition 2.3. Then

(3.2) µ(E) . (2j)p
∫

c2·Aλ2j+1

ρpudµ.

Proof. Let x ∈ E. Set Bi = B(x, 2j−i/c1), i ∈ N. By Theorem 2.2, we may assume that every x ∈ E is a
Lebesgue point of u. Since µ is doubling and supports a p-Poincaré inequality, we have that

∞
∑

i=0

2−i ≈
1

5
<|u(x)− uB(x,2j/c1)| ≤

∞
∑

i=0

|uBi
− uBi+1 | .

∞
∑

i=0

2j−i

(

−

∫

λBi

ρpudµ

)
1
p

.(3.3)

Thus there is an index ix such that 2−ix . 2j−ix
(

−
∫

λBix
ρpudµ

)
1
p

and so

(3.4) µ(λBix) . (2j)p
∫

λBix

ρpudµ.

Hence E has a cover {λBix : (3.4) holds}x∈E. Using the 5B-covering lemma, there is a pairwise disjoint
collection {λBixk

}∞k=1 such that E ⊂
⋃∞

k=1 5λBixk
. By (3.4), since µ is doubling, we obtain that

µ(E) ≤
∞
∑

k=1

µ(5λBixk
) .

∞
∑

k=1

µ(λBixk
) .

∞
∑

k=1

(2j)p
∫

λBixk

ρpudµ ≤ (2j)p
∫

c2·Aλ2j+1

ρpudµ

which is (3.2). Here the last inequality of above is given since {λBixk
}∞k=1 are pairwise disjoint in c2 ·Aλ2j+1 .

The claim follows. �
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Proof of Theorem 1.1. Let A :=
{

γ ∈ Γ∞ :
∫

γ ρuds = ∞
}

. We then obtain from [HKST15, Lemma 5.2.8]

that Modp(A) = 0 since u ∈ Ṅ1,p(X), and hence limt→∞ u(γ(t)) exists for all γ ∈ Γ∞ \A. It remains to
show the uniqueness of c in (1.1) for p-a.e γ ∈ Γ∞. We argue by contradiction. By adding a suitable
constant to u and finally by multiplying u by another suitable constant, we may assume that there exist two
subfamilies of Γ∞, denoted ΓE ,ΓF , and δ > 0 such that

(3.5) Modp(ΓE) ≥ δ > 0,Modp(ΓF ) ≥ δ > 0, lim
t→∞

u(γ(t)) ≥ 2, lim
t→∞

u(γ′(t)) ≤ 0 for all γ ∈ ΓE , γ
′ ∈ ΓF .

We assume that each curve γ in these two curve families is parameterized by arc length. Set Γj
E = {γ ∈ ΓE :

u(γ(t)) ≥ 3
2 for all t ≥ λ2j}. Then ΓE =

⋃

j Γ
j
E and hence, by the subadditivity of the modulus,

Modp(ΓE) ≤
∑

j

Modp(Γ
j
E).

Hence (3.5) gives the existence of jE and δE > 0 so that Modp(Γ
jE
E ) ≥ δE . By arguing analogously for F, we

find jF so that Modp(Γ
jF
F ) ≥ δF > 0 and u(γ(t)) ≤ 1

2 when γ ∈ ΓjF
F and t ≥ λ2jF . Let j ≥ max{jE , jF }. We

define sets Ej , Fj by setting

Ej :=











Aλ2j+1

⋂







⋃

γ∈Γ
jE
E

γ

















and

Fj :=











Aλ2j+1

⋂







⋃

γ∈Γ
jF
F

γ

















.

Then u(x) ≥ 3/2 for all x ∈ Ej and u(x) ≤ 1/2 for all x ∈ Fj . Moreover, (λ2j+1)pModp(Γ
jE
E ) ≤ µ(Ej) and

(λ2j+1)pModp(Γ
jF
F ) ≤ µ(Fj) since every curve in these families has a subcurve of length no less than λ2j+1

in Aλ2j+1 and hence χEj
/(λ2j+1) and χFj

/(λ2j+1) are admissible functions for computing Modp(Γ
jE
E ) and

Modp(Γ
jF
F ), respectively.

Notice that 1 ≤ |u(x)−u(y)| ≤ |u(x)− uB(x,2j/c1)|+ |uB(x,2j/c1) −uB(y,2j/c1)|+ |uB(y,2j/c1) −u(y)| for all
x ∈ Ej , y ∈ Fj where c1 is as in Definition 2.3. We will consider three cases corresponding to Lemma 3.1-3.2.
Applying Lemma 3.1 for the pair (Ej , Fj), the estimate (3.1) with 1 ≤ |u(x) − u(y)| for all x ∈ Ej , y ∈ Fj

gives

µ(c2 · Aλ2j+1 ) . (2j)p
∫

c2·Aλ2j+1

ρpudµ

if |u(x) − uB(x,2j/c1)| ≤
1
5 and |u(y) − uB(y,2j/c1)| ≤

1
5 hold for some x ∈ Ej , y ∈ Fj . Applying Lemma 3.2

for each Ej , Fj , the estimate (3.2) gives

min{µ(Ej), µ(Fj)} . (2j)p
∫

c2·Aλ2j+1

ρpudµ

if either |u(x) − uB(x,2j/c1)| >
1
5 holds for every x ∈ Ej or |u(y) − uB(y,2j/c1)| >

1
5 holds for every y ∈ Fj .

Since both Ej and Fj are subsets of c2 · Aλ2j+1 , the above estimates imply that

min{µ(Ej), µ(Fj)} . (2j)p
∫

c2·Aλ2j+1

ρpudµ.
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From our upper estimates on Modp(Γ
jE
E ) and on Modp(Γ

jF
F ) from above we conclude that

min{Modp(Γ
jE
E ),Modp(Γ

jF
F )} .

∫

c2·Aλ2j+1

ρpudµ.

By inserting the strictly positive lower bounds for these two modulus, we conclude that

0 < min{δE, δF } .

∫

c2·Aλ2j+1

ρpudµ.

Since u ∈ Ṅ1,p(X), a contradiction follows by letting j tend to infinity. �

4. Proofs of Theorems 1.2-1.3

We begin with a sequence of auxiliary lemmas whose proofs rely on arguments similar to those in [EKN22,
KNZ22,Ngu22]. Fix 1 ≤ p < ∞.

Lemma 4.1. Let (X, d, µ) be a doubling metric measure space that supports a p-Poincaré inequality. Assume
that X has the annular chain property at O. Suppose that X has a weak polar coordinate system at O as in
(1.2). If Rp(h,O) < ∞, then the existence and uniqueness of (1.1) hold for σ-a.e ξ ∈ S.

Proof. Let u ∈ Ṅ1,p(X). By Theorem 1.1, there exists c ∈ R such that

(4.1) lim
t→∞

u(γ(t)) exists and lim
t→∞

u(γ(t)) = c for p-a.e γ ∈ Γ+∞.

Let F be the collection of all ξ ∈ S such that limt→∞ u(γO
ξ ) does not exist or exists but is not equal to c. It

suffices to prove that

(4.2) σ(F ) = 0.

We first set Fbad := {ξ ∈ F : lim inft→∞ d(O, γO
ξ ) ≤ 1}. Let γO

ξ ∈ Fbad. By the definition of infinite curves,

we have γO
ξ \ B(O, r) 6= ∅ for all r > 0 and hence there is a sequence {tn}n∈N such that d(O, γO

ξ (tn)) ≥ n.

From lim inft→∞ d(O, γO
ξ ) ≤ 1, it follows that there is also (after passing to a subsequence) a sequence

{sn}n∈N with limn→∞ sn = ∞ such that d(O, γO
ξ (sn)) ≤ 1 and sn ∈ (tn, tn+1) for all n ∈ N. Roughly

speaking, γO
ξ oscillates infinitely often between the unit ball and far away parts of our space. Therefore, it

is clear that
∫

γO
ξ

χB(O,2)\B(O,1)ds = ∞

for each γO
ξ ∈ Fbad. Also, h(x) > 0 almost everywhere in the complement of B(O, 1) because Rp(h,O) < ∞.

We then obtain that for all m ∈ N,

m σ(Fbad) ≤

∫

Fbad

∫

γO
ξ

χB(O,2)\B(O,1)dsdσ(ξ)

≤

∫

S

∫

γO
ξ

χB(O,2)\B(O,1)dsdσ(ξ)

≤C

∫

X

χB(O,2)\B(O,1)

h
dµ

≤C[µ(B(O, 2) \B(O, 1))]1/p

(

∫

B(O,2)\B(O,1)

h
p

1−p dµ

)
p−1
p

≤C[µ(B(O, 2) \B(O, 1))]1/pR
p−1
p

p (h,O)(4.3)
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if p > 1, and similarly

(4.4) m σ(Fbad) ≤ Cµ(B(O, 2) \B(O, 1)) R1(h,O)

by (1.2) and the Hölder inequality, and where C > 0 is the constant of our weak polar coordinate system
(1.2). Here the weak polar coordinate system (1.2) can be applied since

χB(O,2)\B(O,1)

h is integrable. Letting
m → ∞, the above estimates give

(4.5) σ(Fbad) = 0

for 1 ≤ p < ∞ since the right-hand side of (4.3)-(4.4) is bounded.
Let γO

ξ ∈ F \ Fbad. Then lim inft→∞ d(O, γO
ξ (t)) > 1, and so there is tξ > 0 such that d(O, γO

ξ (tξ)) = 1

and γO
ξ (t) ∩ B(O, 1) = ∅ for all t > tξ. Let us define γ̂O

ξ , a subcurve of γO
ξ , by setting γ̂O

ξ (t) = γO
ξ (t + tξ)

for all t ≥ 0. Let Γ̂O(F ) be the collection of all these infinite subcurves γ̂O
ξ of γO

ξ with respect to ξ ∈ F

satisfying lim inft→∞ d(O, γO
ξ (t)) > 1. Then, for all γ̂O

ξ ∈ Γ̂O(F ),

(4.6) γ̂O
ξ ∩B(O, 1) = ∅

and

lim
t→∞

u(γO
ξ (t)) does not exist or is not equal to c

since ξ ∈ F . By (4.1), we also have

(4.7) Modp(Γ̂
O(F )) = 0.

Let g be admissible for computing Modp(Γ̂
O(F )). Then we may assume that g = 0 on B(O, 1) since

γ̂O
ξ ∩ B(O, 1) = ∅ by (4.6). Suppose first that p > 1. By the same arguments as for (4.3)-(4.4), we obtain

that

σ(F \ Fbad) ≤ C

(∫

X

gpdµ

)1/p

R
p−1
p

p (h,O).

Since g is arbitrary, it follows that

σ(F \ Fbad) ≤ C
(

Modp(Γ̂
O(F ))

)1/p

R
p−1
p

p (h,O).

Combining with (4.5), we conclude that

(4.8) σ(F ) ≤ C
(

Modp(Γ̂
O(F ))

)1/p

R
p−1
p

p (h,O).

As Rp(h,O) < ∞ and Modp(Γ̂
O(F )) = 0 by (4.7), we conclude that (4.2) holds. The case p = 1 follows via

an analogous argument. �

Lemma 4.2. If Rp(O) = ∞, then there is u ∈ Ṅ1,p(X) such that lim inft→∞ u(γ(t)) = ∞ for every γ ∈ Γ∞.

Proof. By Rp(O) = ∞, there exists a sequence {nk}∞k=1 (or {ik}∞k=1) with

(4.9) n1 < n2 < . . . (or i1 < i2 < . . .) such that lim
k→∞

nk = ∞ (or lim
k→∞

ik = ∞),

(4.10)

nk+1
∑

i=nk

(2i)
p

p−1µ
1

1−p (A2i) > 2k if p > 1
(

or 2ikµ−1(A2ik ) > 2k if p = 1
)

.
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Here A2i := B(O, 2i+1) \B(O, 2i). Let

gp(x) =

∞
∑

k=1

(

nk+1
∑

i=nk

(2i)
1

p−1µ
1

1−p (A2i)
∑nk+1

i=nk
(2i)

p
p−1µ

1
1−p (A2i)

χA2i
(x)

)

if p > 1
(

or g1(x) =

∞
∑

k=1

2−ikχA
2ik

(x)
)

.

We define u(x) := inf
∫

γO,x
gpds for x ∈ X where the infimum is taken over all rectifiable curves γO,x

connecting O and x. Then gp is an upper gradient of u, see for instance [HKST15, Page 188-189]. We have
the fact (see for instance [HKST15, Proposition 5.1.11]) that

∫

γO,x∩A2i
ds ≥ diam(γO,x ∩A2i) & 2i for every

γO,x with d(O, x) ≥ 2i+1. Here diam(γO,x∩A2i) is the diameter of γO,x∩A2i . We let γ ∈ Γ∞ and let N > 1.
For all x ∈ γ with d(O, x) = N , we have that

u(x) = inf
γO,x

∫

γO,x

gpds = inf
γO,x

∑

2nk+1≤N

nk+1
∑

i=nk

(2i)
1

p−1µ
1

1−p (A2i)
∑nk+1

i=nk
(2i)

p
p−1µ

1
1−p (A2i )

∫

γO,x∩A2i

ds

&
∑

2nk+1≤N

nk+1
∑

i=nk

(2i)
1

p−1µ
1

1−p (A2i)
∑nk+1

i=nk
(2i)

p
p−1µ

1
1−p (A2i)

2i =
∑

2nk+1≤N

1 → ∞ as N → ∞ if p > 1,

(or that u(x) = infγO,x

∫

γO,x
g1ds = infγO,x

∑

2ik≤N 2−ik
∫

γO,x∩A
2ik

ds &
∑

2ik≤N 2−ik2ik =
∑

2ik≤N 1 → ∞

as N → ∞). Hence lim inft→∞ u(γ(t)) = ∞ for every γ ∈ Γ∞. It remains to show that gp is p-integrable.
Using (4.9)-(4.10), we have that

∫

X

gppdµ =
∞
∑

k=1

nk+1
∑

i=nk

∫

A2i

(

(2i)
1

p−1µ
1

1−p (A2i)
∑nk+1

i=nk
(2i)

p
p−1µ

1
1−p (A2i)

)p

dµ =
∞
∑

k=1

1
(

∑nk+1

i=nk
(2i)

p
p−1µ

1
1−p (A2i)

)p−1 ≤
∞
∑

k=1

1

2k(p−1)

if p > 1 (or that
∫

X g1dµ =
∑∞

k=1

∫

A
2ik

2−ikdµ =
∑

k=1 2
−ikµ(A2ik ) ≤

∑∞
k=1

1
2k
). The claim follows. �

Example 4.3. If h(x) = |x − O|n−1w(x)χRn\B(O,1)(x), where w is a classical Muckenhoupt Ap-weight on
Rn and where n ≥ 2, then Rp(h,O) ≈ Rp(O).

Proof. Let A2i = B(O, 2i+1) \B(O, 2i). Notice that

Rp(h,O) =

∞
∑

i=0

∫

A2i

|x−O|
p(n−1)
1−p w

1
1−p (x)dx if p > 1

(

or R1(h,O) = sup
i∈N

∥

∥|x−O|1−nw−1(x)
∥

∥

L∞(A2i )

)

.

Since |x−O| ≈ 2i for any x ∈ A2i and |A2i | ≈ (2i)n, it follows that

Rp(h,O) ≈
∞
∑

i=0

(2i)
p(n−1)
1−p

+n−

∫

A2i

w
1

1−p (x)dx if p > 1
(

or R1(h,O) ≈ sup
i∈N

(

2i)1−n‖w−1(x)
∥

∥

L∞(A2i )
if p = 1

)

.

Because w is a Muckenhoupt Ap-weight, we have from (1.3)-(1.4) that

(

−

∫

A2i

w
1

1−p (x)dx

)

≈

(

−

∫

A2i

w(x)dx

)
1

1−p

≈ (2i)
−n
1−pµ

1
1−p (A2i) if p > 1,

(

or that
∥

∥w−1(x)
∥

∥

L∞(A2i )
≈
(

−
∫

A2i
w(x)dx

)−1

≈ (2i)nµ−1(A2i)
)

. Inserting these into the above formula of

Rp(h,O), we obtain the claim. �

Lemma 4.4. Let (X, d, µ) be a doubling metric measure space that supports a p-Poincaré inequality. Assume
that X is complete. If Rp(O) < ∞ then Modp(Γ

∞) > 0.
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Proof. Since X is complete and doubling, and supports a p-Poincaré inequality, there exists a geodesic metric

d̂ that is biLipschitz equivalent to d, see for instance in [HKST15, Corollary 8.3.16]. Let Rp(d̂, O) be the

version of Rp(O) in (X, d̂, µ) and Bd̂(x, r) be the ball with radius r and center at x on (X, d̂). It follows that

Rp(d̂, O) < ∞ since Rp(O) < ∞. Since d̂ is geodesic we are allowed to employ Theorem 2.10 in [HoKo01].
This result gives us a constant C > 0 such that for all i ∈ N

C ≤ Capp(Bd̂(O, 1), Bd̂(O, 2i))
(

Rp(d̂, O)
)p−1

when p > 1
(

or otherwise

C ≤ Cap1(Bd̂(O, 1), Bd̂(O, 2i))R1(d̂, O)
)

.

Here Capp(Bd̂(O, 1), Bd̂(O, 2i)) is the quantity

Capp(Bd̂(O, 1), Bd̂(O, 2i)) := inf

∫

X

gpudµ

where the infimum is taken over all functions u : X → R with the minimal upper gradient gu such that

u|B
d̂
(O,1) ≡ 1 and u|X\B

d̂
(O,2i) ≡ 0. It follows from Rp(d̂, O) < ∞ that Capp(Bd̂(O, 1), Bd̂(O, 2i)) ≥ δ > 0

for all i ∈ N, and for some δ only depending on C and Rp(d̂, O). By [HeKo98, Page 12], we obtain that

Capp(Bd̂(O, 1), Bd̂(O, 2i)) ≤ Modp(Bd̂(O, 1), Bd̂(O, 2i)) for all i ∈ N.

Here Modp(Bd̂(O, 1), Bd̂(O, 2i)) is the p-modulus of the family of all retifiable curves connecting Bd̂(O, 1)

and X \Bd̂(O, 2i). Then Modp(Bd̂(O, 1), Bd̂(O, 2i)) ≥ δ > 0 for all i ∈ N. It follows that X is p-hyperbolic
in the sense of [Sha21, Definition 2.4]. Hence [Sha21, Theorem 4.2] yields that Modp(Γ

∞) > 0. The claim
follows. �

Proof of Theorem 1.2. I. ⇒ II. is given by Lemma 4.4.
II. ⇒ III. is given by Theorem 1.1.
III. ⇒ I. is given by Lemma 4.2. �

Proof of Theorem 1.3. Rp(h,O) < ∞ ⇒ 3. is given by Lemma 4.1.
3. ⇒ 2. ⇒ 1. is trivial.
1. ⇒ Rp(O) < ∞ is given by Lemma 4.2.
Rp(h,O) < ∞ ⇒ 4. is given by the estimate (4.8).
Rp(h,O) < ∞ ⇒ 5. is given by the estimate (4.8).
4. ⇒ Rp(O) < ∞ is given by Lemma 4.2 together with Theorem 1.1.
5. ⇒ Rp(O) < ∞ is given by Lemma 4.2 together with Theorem 1.1. Indeed, if Rp(O) = ∞ then

Modp(Γ̂
O(F )) = 0 for all subsets F ⊆ S with σ(F ) > 0. �
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