
ar
X

iv
:2

20
3.

01
07

3v
2 

 [
ee

ss
.S

Y
] 

 2
0 

Ju
n 

20
22

1

Recursively feasible stochastic predictive control

using an interpolating initial state constraint

- extended version
Johannes Köhler, Melanie N. Zeilinger

Abstract—We present a stochastic model predictive control
(SMPC) framework for linear systems subject to possibly un-
bounded disturbances. State of the art SMPC approaches with
closed-loop chance constraint satisfaction recursively initialize
the nominal state based on the previously predicted nominal
state or possibly the measured state under some case distinction.
We improve these initialization strategies by allowing for a
continuous optimization over the nominal initial state in an
interpolation of these two extremes. The resulting SMPC scheme
can be implemented as one standard quadratic program and is
more flexible compared to state-of-the-art initialization strategies.
As the main technical contribution, we show that the proposed
SMPC framework also ensures closed-loop satisfaction of chance
constraints and suitable performance bounds.

I. INTRODUCTION

Many challenging control problems are characterized by the

need for performance and safety guarantees in the presence

of model uncertainty. Model predictive control (MPC) is an

optimization-based control method that accounts for general

constraints and performance criteria [1]. While there exist

well-established methods to robustly account for model uncer-

tainties in MPC, stochastic MPC (SMPC) approaches can take

probabilistic information into account to reduce conservatism

by allowing for a small user-defined probability of constraint

violation [1]–[3]. In this paper, we focus on the treatment

of the initial state constraint in a receding horizon SMPC

implementation and the resulting closed-loop properties in the

form of performance and chance constraint satisfaction.

Related work: The reformulation of stochastic optimal

control problems in terms of deterministic surrogates has been

extensively studied in the literature considering: randomized

methods using scenarios [4]–[6], analytical reformulations [2],

[7]–[11], disturbance feedback optimization [9]–[13], or poly-

nomial chaos expansion [3], [14]. The issue of recursive

feasibility in SMPC formulations was early recognized [15].

Simple modifications include the relaxation of the correspond-

ing chance constraints using penalties [9], [10], minimizing the

probability of constraint violation [16], (iteratively) adjusting

the probability level in the chance constraints [11], [17], or

considering weaker discounted/weighted average probabilistic

constraints [12], [13].

By explicitly enforcing robust recursive feasibility, closed-

loop properties (performance, chance constraint satisfaction)
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can be ensured for SMPC schemes with chance constraints [5],

[18], [19]. However, these approaches are not applicable to

unbounded disturbances (e.g. Gaussian).

In [20], it was suggested to use a case distinction to

set the initial condition to the new measured state or the

previous uncertain prediction. The same initialization strategy

is also considered in various SMPC extensions [21]–[23]

and comparable re-set strategies are also used for stochastic

reference governors [24]. In [7], it was shown that under

additional symmetry and unimodality conditions, a modified

version of this SMPC formulation also satisfies the desired

chance constraints in closed loop. This paradigm was also

adopted in recent SMPC extensions, e.g., [25], [26].

To ensure closed-loop chance constraint satisfaction under

more general conditions, the indirect feedback SMPC was

suggested in [8], where the feasible set is independent of

the realized disturbances. Further extensions of this SMPC

paradigm can be found in [6], [27] and a comparison to the

case distinction SMPC is given in [28]. Recently, a related

initial state optimization has also been independently proposed

in [29].

Contribution: In this paper, we improve the treatment of the

initial state constraint in state-of-the-art SMPC formulations,

primarily [7] and also [8]. We study linear systems with

possibly unbounded disturbances subject to chance constraints

on states and inputs. We relax the binary initial state constraint

considered in [7] by allowing for a continuous interpolation

of the nominal initial state between the new measured state

and previous nominal prediction. The resulting SMPC scheme

only requires the solution to one quadratic program (QP). As

the main technical contribution, we prove that the proposed

SMPC scheme ensures closed-loop satisfaction of the chance

constraints, thus extending the results in [7]1. Additionally,

we significantly improve the performance guarantees in [7,

Thm. 2] by adopting the more direct cost function proposed

in [8]. Furthermore, we provide a comparison between the

proposed SMPC formulation, the case distinction approach [7]

and the indirect feedback formulation [8] using an illustrative

example. In particular, these two SMPC formulations can be

viewed as special cases of the considered interpolating initial

state constraint, which explains why the proposed SMPC

1The result applies if the tightened constraints are constructed using convex
symmetric probabilistic reachable sets and the distributions are (centrally
convex) unimodal (e.g. Gaussian), which corresponds to the conditions in [7].
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formulation is more flexible.

Outline: First, the problem setup and the proposed SMPC

formulation are presented (Sec. II) and the closed-loop prop-

erties, i.e., recursive feasibility, chance constraint satisfaction,

and performance, are shown (Sec. III). Then, we compare the

proposed approach with the SMPC approaches in [7] and [8]

(Sec. IV) and conclude the paper (Sec. V). This paper is an

extended version of the paper [30], containing a detailed proof

and an additional example in Appendix A and B, respectively.

Notation: The set of integers in the interval [a, b] ⊆ R is de-

noted by I[a,b]. The probability and the conditional probability

are denoted by Prob [A], Prob [A|B]. The expected value of

a random variable x is denoted by E [x]. We denote a variable

w with Gaussian distribution with mean µ and variance Σ by

w ∼ N (µ,Σ). The trace of a square matrix A is denoted by

tr (A). The Minkowski sum and the Pontryagin difference of

two sets S, T are given by S ⊕ T = {s + t|s ∈ S, t ∈ T }
and S ⊖ T = {x|x+ t ∈ S, ∀t ∈ T }, respectively.

II. PROBLEM SETUP AND PROPOSED SMPC FORMULATION

We first present the problem setup, the proposed SMPC for-

mulation, and recall some properties of unimodal distributions.

A. Setup

We consider a linear time-invariant (LTI) system

x(k + 1) = Ax(k) +Bu(k) + w(k), x(0) = x0, (1)

with state x(k) ∈ R
n, input u(k) ∈ R

m, time k ∈ I≥0, and

disturbances w(k) ∈ R
n. The disturbances are assumed to be

independent and identically distributed (i.i.d.) with distribution

w ∼ Qw, zero mean, and variance Σw ≻ 0. We assume that

(A,B) is stabilizable. Hence, we can choose a feedback K ∈
R

m×n, such that AK := A+BK is Schur. We consider chance

constraints on the state and input of the form

Prob [(x(k), u(k)) ∈ Z] ≥ p, k ∈ I≥0, (2)

with a polytope Z ⊆ R
n+m and some probability level p ∈

(0, 1). Furthermore, we consider a linear quadratic stage cost

ℓ(x, u) = x⊤Qx+ x⊤q + u⊤Ru+ u⊤r, (3)

with matrices Q,R � 0. The control goal is the minimization

of the closed-loop cost, while satisfying the chance con-

straints (2). Chance constraints (2) relax the deterministic con-

straint satisfaction requirement from (robust) MPC [1] and thus

allow for more flexible operation. This relaxation also becomes

necessary in case of possibly unbounded disturbances, e.g.,

Gaussian, compare [2], [3] for a general introduction to SMPC.

Additional hard input constraints uk ∈ U , k ∈ I≥0 can be

enforced by considering open-loop stable systems with K = 0
or by assuming bounded disturbances wk ∈ W , k ∈ I≥0.

B. Proposed SMPC formulation

At time k ∈ I≥0, we consider the following SMPC problem:

min
v·|k,z·|k,λk

JN (x(k), z·|k, v·|k, λk) (4a)

subject to z0|k = (1− λk)z
⋆
1|k−1 + λkx(k), λk ∈ [0, 1],

(4b)

zi+1|k = Azi|k +Bvi|k, i ∈ I[0,N−1], (4c)

(zi|k, vi|k) ∈ Zk+i, i ∈ I[0,N−1], (4d)

zN |k ∈ Xf , (4e)

with some later specified open-loop cost JN (Sec. III-D),

a (polytopic) terminal set constraint Xf (Sec. III-A), and

tightened constraints Zk ⊆ Z , k ∈ I≥0 (Sec. III-C). The

optimization variables correspond to a nominal predicted state

and input sequence z·|k, v·|k, and an interpolating variable

λk ∈ [0, 1] for the initial nominal state. The minimum is

denoted by J ⋆
N (x(k), z⋆1|k−1) and a minimizer is denoted by

v⋆·|k, z⋆·|k, λ⋆
k. Note that Problem (4) at time k ∈ I≥0 also

depends on the nominal state z⋆1|k−1 predicted at time k − 1,

which is initialized with z⋆1|−1 = x0, similar to the SMPC

approaches in [2], [7], [8], [20], [21]. In closed loop, we apply

the nominal input with the tube controller K , i.e.,

u(k) = v⋆0|k +K(x(k)− z⋆0|k), k ∈ I≥0. (5)

Feedback with respect to the measured state x(k) is introduced

in (5) and in the initial state constraint (4b), which is compara-

ble to standard tube-based MPC approaches (both robust and

stochastic [1], [2], [7], [8]). Since the cost JN is based on the

convex quadratic stage cost ℓ (3) (Sec. III-D) and the tightened

constraints Zk are polytopes (Sec. III-C), Problem (4) is a QP

that can be efficiently solved. The SMPC formulation uses a

nominal prediction (4c) for the constraints (4d) and the true

measured state x(k) affects the initial condition (4b) and the

cost function (4a). The variable λk ∈ [0, 1] in (4b) allows

for a continuous interpolation between the two initialization

strategies considered in [7]. In Section IV, we discuss in

more detail how the proposed approach is related to the

SMPC approaches based on case distinction [7], [20], [21]

and indirect feedback [8] and provide an illustrative example.

C. Unimodality

In the following, we recap some properties of unimodal

distributions, which are used for the theoretical analysis.

Definition 1. [31, Def. 3.2] A distribution Qw in R
n is called

monotone unimodal if for every symmetric convex set R ⊆ R
n

and every x ∈ R
n, the quantity Prob [w + cx ∈ R] is non-

increasing in c ∈ [0,∞].

Lemma 1. (adapted from [7, Lemma 1]) Suppose x,w ∈ R
n

are independent random variables, R ⊆ R
n is a convex

symmetric set, and the distribution of w is monotone unimodal.

Then, Prob [cx+ w ∈ R] ≥ Prob [c̃x+ w ∈ R], ∀c̃ ≥ c ≥ 0.

Definition 2. [31, Def. 3.1] A distribution Qw in R
n is called

central convex unimodal if it is in the closed convex hull of the



set of all uniform distributions on symmetric compact bodies

in R
n.

Proposition 1. [31] Any central convex unimodal distribution

is also monotone unimodal. Central convex unimodal distribu-

tions are closed under linear transformation and convolution.

Assumption 1. The distribution Qw is centrally convex uni-

modal.

This condition includes many standard distributions, such

as multivariate Gaussians, uniform distributions (over convex

symmetric sets), or the Laplace distribution. Based on this

restriction (Ass. 1), Proposition 1 ensures that the predicted

error (i.e., a linear combination of the disturbances) is centrally

convex unimodal and also monotone unimodal, which implies

that Lemma 1 can be used. Similar arguments were used

in [7, Thm. 3] to show closed-loop properties under a case

distinction and in the next section we extend these arguments

to the proposed interpolating initial state constraint.

III. CLOSED-LOOP ANALYSIS

In the following, we show that the proposed SMPC formu-

lation provides all the desired closed-loop properties under

the same conditions used in [7]. First, we show recursive

feasibility (Sec. III-A). Then, as the main technical contribu-

tion, we investigate the error dynamics under the interpolating

initial state constraint (4b) and show a suitable nestedness

property (Sec. III-B). This property then allows us to prove

closed-loop satisfaction of the chance constraints by using

suitably tightened constraints Zk (Sec. III-C). Finally, we

derive closed-loop performance bounds (Sec. III-D).

A. Recursive feasibility

Analogously to existing results in SMPC (cf. [7], [8], [20]),

recursive feasibility can be established by choosing a suitable

(nominal) terminal set constraint Xf .

Assumption 2. There exists a matrix Kf ∈ R
m×n, such that

for all z ∈ Xf , (z,Kfz) ∈ Zk, k ∈ I≥0 and (A+BKf)z ∈ Xf .

Proposition 2. Let Assumption 2 hold and suppose Prob-

lem (4) is feasible at k = 0. Then, Problem (4) is feasible

for all k ∈ I≥0 for the resulting closed-loop system (1), (5).

Proof. Given a feasible solution to Problem (4) at time

k ∈ I≥0, a feasible candidate solution at time k + 1 is given

by λk+1 = 0, vi|k+1 = v⋆
i+1|k, i ∈ I[0,N−2], vN−1|k+1 =

KfzN−1|k+1 using Assumption 2. This candidate solution is

independent of the disturbance realization w and recursive

feasibility follows with standard arguments [8, Thm. 1].

B. Predicted and closed-loop error

In order to prove closed-loop satisfaction of the chance

constraints (2), we require suitable properties for the closed-

loop error. To this end, we show that for any convex symmetric

set, the containment probability of the closed-loop error is

not lower than the corresponding probability of the initially

predicted error (Prop. 3). The error between the measured state

and the nominal (online optimized) state is given by

e(k) :=x(k)− z⋆0|k
(4b)
= (1− λ⋆

k)(x(k) − z⋆1|k−1). (6)

We define the (uncertain) prediction for the state x resulting

from application of the stabilizing feedback (5) as

xi+1|k =Axi|k +B(v⋆i|k +K(xi|k − z⋆i|k)) + w(k + i), (7)

with x0|k = x(k) and i ∈ I[0,N−1], k ∈ I≥0. Correspondingly,

we also define the (uncertain) predicted error ei|k := xi|k −
z⋆
i|k, which satisfies the following recursion

ei+1|k =AKei|k + w(i + k), e0|k = e(k). (8)

Proposition 3. Let Assumption 1 hold and consider any

convex symmetric set R ⊆ R
n. For system (1) under the

control law (5) resulting from (4), the error (6)–(8) satisfies

Prob [e(k) ∈ R] ≥ Prob
[
ek|0 ∈ R

]
, k ∈ I≥0. (9)

Proof. The proof is an extension of [7, Thm. 3]. At time k−i,

the error is given by

e(k − i)
(6)
= (1 − λ⋆

k−i)(x(k − i)− z⋆1|k−i−1). (10)

The predicted error is given by

ei|k−i
(8)
= Ai

Ke(k − i) +

i−1∑

j=0

A
i−j−1
K w(k − i+ j)

︸ ︷︷ ︸

=:ẽi|k−i

(11)

(10)
= (1− λ⋆

k−i)A
i
K(x(k − i)− z⋆1|k−i−1)

︸ ︷︷ ︸

=:êi|k−i

+ẽi|k−i. (12)

Note that the term ẽi|k−i only depends on future disturbances

(given time k − i), while the term êi|k−i depends on terms

known at time k − i. Given that w is i.i.d., this implies

that ẽi|k−i and êi|k−i are independent. Furthermore, using

Assumption 1 and Proposition 1, ẽi|k−i is central convex uni-

modal and monotone unimodal (Def. 1–2). Correspondingly,

we can invoke Lemma 1 with c = 1−λ⋆
k−i ∈ [0, 1] and c̃ = 1:

Prob
[
ei|k−i ∈ R

]

(12)
=Prob

[
(1− λ⋆

k−i)êi|k−i + ẽi|k−i ∈ R
]

Lemma 1
≥ Prob

[
êi|k−i + ẽi|k−i ∈ R

]

=Prob
[
ei+1|k−i−1 ∈ R

]
, (13)

where the last equality holds with êi|k−i+ẽi|k−i = ei+1|k−i−1.

Utilizing (13) recursively yields (9).

This result ensures that probabilistic guarantees derived

from the initially predicted error remain valid for the true

closed-loop error if: the corresponding set R is convex sym-

metric and the distribution is centrally convex unimodal. This

result is a stochastic counterpart to the nestedness properties

usually invoked in robust MPC (cf., e.g. [1, Fig. 7.3]).



C. Tightened constraints and chance constraint satisfaction

A set R satisfying Prob
[
ek|0 ∈ R

]
≥ p is called a k-step

probabilistic reachable set (PRS) [7, Def. 4], [8, Def. 2], where

the predicted error ek|0 satisfies the linear system (8) with

e0|0 = 0. A simple PRS is given by Rk = {x|x⊤Σ−1
x,kx ≤ p̃},

Σx,k+1 = AKΣx,kA
⊤
K +Σw, k ∈ I≥0, Σx,0 = 0, (14)

with p̃ computed using the Chebyshev bounds or directly

a Gaussian distribution, compare [7, Lemma 3, Rk. 3], [8,

Sec. 3.2]. In case only a subspace ye = (C +DK)e ∈ R
ny ,

ny < n of the error e is relevant for the constraints Z (2), the

PRS should be be constructed by directly using the distribution

of the lower dimensional output variable ye [24, Equ. (18)], [8,

Sec. 3.3]. In case of non-Gaussian disturbances, the Chebyshev

bounds can be very conservative, which can be mitigated by

using scenario-based approaches [5], [6] or polynomial chaos

expansion [14, Sec. 3.A] to compute the PRS. The presented

theoretical results are applicable to any RPS, assuming the sets

are chosen to be symmetric and convex.

Assumption 3. The sets Rk are chosen to be symmetric,

convex, and satisfy Prob
[
ek|0 ∈ Rk

]
≥ p, k ∈ I≥0 ∪ {∞}.

The restriction to symmetric PRS (Ass. 3) can introduce

conservatism but is essential for the presented theoretical

results, compare the discussion in Section IV and the example

in Appendix B for details. Given the PRS, we compute the

tightened constraints using

Zk := Z ⊖ (Rk ×KRk), k ∈ I≥0. (15)

Closed-loop chance constraint satisfaction holds by applying

the main technical result (Prop. 3) and using the constraint

tightening (15) with Assumption 3, analogously to [7, Cor. 1].

Proposition 4. Let Assumptions 1–3 hold. Suppose that Prob-

lem (4) is feasible at k = 0. Then, the resulting closed-loop

system (1), (5) satisfies the chance constraints (2).

Proof. In case e(k) ∈ Rk , the constraint tightening implies

(x(k), u(k))
(5),(6)
= (z⋆0|k, v

⋆
0|k) + (e(k),Ke(k))

(4d)
∈ Zk ⊕ (Rk ×KRk)

(15)

⊆ Z, k ∈ I≥0.

Thus, chance constraint satisfaction (2) follows from

Prob [e(k) ∈ Rk]
(9)

≥ Prob
[
ek|0 ∈ Rk

] Ass. 3
≥ p, k ∈ I≥0.

The (joint) chance constraint (2) is often replaced by a set

of individual chance constraints using, e.g. Boole’s inequality

and risk allocation [9]. In this case, one should construct PRS

(Ass. 3) for each individual chance constraint and tighten the

constraints respectively (cf. [8, Equ. 5]).

D. Performance analysis

We show that the closed-loop performance is on average no

worse than applying the state feedback u = Kx, where K is

the feedback in (5), which significantly improves the bound for

the case-distinction SMPC [7] (cf. discussion in Section IV).

Assumption 4. Assumption 2 holds with Kf = K . The

terminal cost Vf(x) = x⊤Pfx + p⊤f x is chosen such that

Vf((A+BK)x) = Vf(x) − ℓ(x,Kx) for all x ∈ R
n.

The restriction Kf = K is also needed in comparable

performance results in SMPC schemes [5], [8]. As in [8], the

cost function in the SMPC (4) is chosen as the finite-horizon

expected cost conditioned on the measured state x(k):

JN (x(k), z·|k, v·|k, λk) := E

[
N−1∑

i=0

ℓ(xi|k, ui|k) + Vf(xN |k)

]

,

where the predicted state and input are given by x0|k = x(k),
(7) and ui|k = vi|k+K(xi|k−zi|k). The corresponding mean is

given by xi+1|k = Axi|k+Bui|k, ui|k = vi|k+K(xi|k−zi|k),
x0|k = x(k), which is not equivalent to the nominal trajectory

z·|k, v·|k due to the interpolating initial state constraint (4b)

in case λk 6= 1. The expected cost is equivalent to

JN (x(k), z·|k, v·|k, λk) =
N−1∑

i=0

ℓ(xi|k, ui|k) + Vf(xN |k) (16)

+
N−1∑

i=0

tr
(
(Q+K⊤RK)Σx,i

)
+ tr (PfΣx,N) ,

with the state variance Σx,i according to (14).

Proposition 5. Let Assumptions 2 and 4 hold. Suppose that

Problem (4) is feasible at k = 0. Then, for all k ∈ I≥0:

E

[

J ⋆
N (x(k + 1), z⋆1|k)− J ⋆

N (x(k), z⋆1|k−1)
]

(17)

≤− ℓ(x(k), u(k)) + tr (PfΣw) .

Furthermore, if the stage cost ℓ(x, u) is lower bounded, then

lim sup
K→∞

1

K

K−1∑

k=0

E [ℓ(x(k), u(k))] ≤ tr (PfΣw) . (18)

Proof. The proof follows from [8, Thm. 3], where the same

cost JN and candidate solution is considered, compare Ap-

pendix A for a detailed exposition.

Inequality (18) ensures that the asymptotic average perfor-

mance is no worse than the performance of the linear controller

u = Kx. For computational reasons, one can add a penalty

on λ2
k to the cost function, which penalizes ‖z0|k − z⋆1|k−1‖

and hence does not affect the performance guarantees.

IV. DISCUSSION AND COMPARISON

First, we clarify the relation of the proposed SMPC ap-

proach to the case distinction SMPC [7] and the indirect feed-

back SMPC [8]. Then, we consider an illustrative example to

demonstrate the performance benefits of the proposed SMPC

formulation. Finally, we contrast the presented proof and

resulting guarantees to related results in the SMPC literature.

1) Comparison to case distinction SMPC: By considering

the special case λk ∈ {0, 1}, the proposed SMPC formulation

is comparable to the case distinction SMPC proposed in [7].

First, considering the implementation, the proposed SMPC

approach is clearly preferable since one QP needs to be solved

while the case distinction SMPC might need to solve two QPs.



Second, the tightened constraints and the theoretical results

regarding closed-loop chance constraint satisfaction (Prop. 4)

are equivalent to [7]. Hence, regarding the set of feasible

decisions, the proposed SMPC approach is more flexible as the

full interval λk ∈ [0, 1] is feasible, and not only the extreme

values λk ∈ {0, 1}, compare also the numerical example later

(Sec. IV-3). The tightened constraints in other case distinction

SMPC schemes [20]–[23] can be less conservative as no

symmetry condition is used (Ass. 3) and additionally the time

index k in tightened constraints Zk+i (4d) is re-initialized to 0
whenever λ⋆

k = 1. However, as also discussed in [7] and shown

in an additional example in Appendix B, such approaches do

not result in closed-loop chance constraint satisfaction.

It is important to note that there exists a subtle difference

regarding the cost function JN considered in present paper

and the one typically used in case distinction SMPC formula-

tions [7], [20]. In particular, in [20], the expected cost is not

conditioned on the known measured state x(k), but for λk 6= 1
it is conditioned on the previously predicted state distribution.

As a result, the derived performance bound deteriorates with

an increasing prediction horizon N (cf. [20, Thm. 1], [21,

Thm. 1]). In [7] (cf. also [20, Sec. III.D], [25], [26]) it is

suggested to use only the nominal state and input in the cost

and use λk = 1 whenever feasible. The resulting performance

bound utilizes Lipschitz continuity of the value function and

also fails to recover the performance of the linear feedback

u = Kx. These established performance bounds for the

case distinction SMPC scheme (λk ∈ {0, 1}) can be directly

improved by adopting the proposed cost (Sec. III-D) and the

corresponding theoretical analysis (Prop. 5), which ensures a

performance no worse than the tube feedback u = Kx.

2) Comparison to indirect feedback SMPC: The indirect

feedback SMPC [8] can be directly recovered as a special

case of the proposed SMPC by setting λk = 0. Hence,

given the same constraint tightening, the proposed SMPC

is more flexible. However, the theoretical guarantees in the

indirect feedback SMPC are more general, and are applicable

to correlated disturbances [8], nonlinear dynamics (cf. [6]), and

non-symmetric PRS [8]. An additional example investigating

the trade-off between symmetric PRS and the relaxed initial

state constraint can be found in Appendix B.

3) Numerical example: The following example can be

motivated by an inventory control problem, which does not

require hard input constraints. We consider an integrator

x(k + 1) = x(k) + u(k) + w(k), w ∈ N (0, 1), x0 = 0, with

ℓ(x, u) = x2, i.e., in the absence of constraints the optimal

feedback is the deadbeat controller u = KLQRx = −x.

The tube controller is given by K = −0.5 and the PRS Rk

are constructed using the stationary variance Σ∞ [7, Rk. 3].

We have a probabilistic input constraint Prob [u ∈ [−1, 1]] ≥
p = 80.61%, which is chosen such that Zk = {(x, u)| u ∈
[−0.25, 0.25]}, k ∈ I≥0. This ensures that a more aggressive

feedback than u = Kx is feasible. The resulting average

performance and probabilistic constraint satisfaction can be

seen in Table I. We compare the proposed SMPC in (4)

with the new interpolating initial state constraint to the state

feedback u = Kx, u = KLQRx, the indirect feedback [8],

the case distinction SMPC (λk ∈ {0, 1}), the case distinction

SMPC implementation suggested in [7, Alg. 1], and a nominal

MPC2. The implementations use a simple terminal equality

constraint Xf = {0}, a prediction horizon of N = 10, and

are simulated over 40 steps with 104 random disturbance

realizations w. As expected, all the SMPC formulations satisfy

the chance constraints (2) in closed loop (Prop. 4) and achieve

a performance no worse than the tube feedback u = Kx

(Prop. 5). One exception is the implementation suggested in [7,

Agl. 1], which provides an unnecessarily large probability

of constraint satisfaction and thus results in a significant

performance deterioration, compare also [28] for a detailed

discussion of this effect. Furthermore, the proposed approach

(λk ∈ [0, 1]) outperforms the case distinction (λk ∈ {0, 1}),

which outperforms the indirect feedback (λk = 0). This can

be best explained by the implicit input constraint: u(k) ∈
(1−λk)K(x(k)− z⋆1|k−1)⊕ [−0.25, 0.25]. There, λk = 0 [8]

is restrictive if the tube feedback K(x(k) − z⋆1|k) pushes the

state x in the wrong direction and λk ∈ {0, 1} [7] may result

in a disjoint set for x(k)− z⋆1|k−1 large.

4) A comment on simpler arguments in the SMPC liter-

ature: At first glance, the derivation in Proposition 4 and

similarly in [7] based on monotone unimodality and sym-

metry might seem unnecessarily complicated in contrast to

many SMPC approaches based on case distinction [20]–[24].

However, as discussed in [22, Remark 1], [23, Remark 7]

and shown in the example in [7, Sec. V]) (cf. also the

example in Appendix B), other approaches that drop these

requirements typically do not satisfy the chance constraints

in closed-loop. To understand this difference, we exemplary

revisit the proof in [24, Prop. 2] for a stochastic reference

governor, where the implicit arguments in many SMPC papers

are made more rigorously.3 Suppose we wish to show (2)

for some fixed but arbitrary k with a case distinction SMPC

(λk ∈ {0, 1}). For any realization of w, we can define a time

τ = max{k′ ∈ I[0,k]| λ
⋆
k′ = 1}, i.e., the most recent time

where the SMPC was re-initialized with the new measured

state. Then, we write the chance constraints using conditional

probabilities (cf. [24, Equ. (43)]):

Prob [(x(k), u(k)) ∈ Z] (19)

=

k∑

i=0

Prob [(x(k), u(k)) ∈ Z|τ = i] · Prob [τ = i] .

The initialization λ⋆
0 = 1 ensures

∑k

i=0 Prob [τ = i] = 1
and hence the desired bound (2) follows directly from (19)

if Prob [(x(k), u(k)) ∈ Z|τ = i] ≥ p. By construction, feasi-

bility of any properly designed SMPC at some time i should

imply chance constraint satisfaction for all future time (until

the next re-conditioning). However, this is not the same as

conditioning on τ = i. In particular, τ = i also implies that

for all future times k′ > i, the SMPC with x(k′) = z⋆0|k′

is infeasible. Thus, we cannot use these simple arguments

2The implementation in [7, Alg. 1] chooses λ⋆
k

= 1 whenever feasible,
compare also [20, Sec. III.D]. For the nominal MPC, we implemented the
proposed SMPC formulation with K = 0, which results in nominal input
constraints with a somewhat relaxed terminal set constraint.

3The authors in [24] are currently preparing a corrigendum, that avoids
these arguments in the proof by also utilizing tools similar to [7].



TABLE I
EXAMPLE: AVERAGE PERFORMANCE AND CHANCE CONSTRAINT SATISFACTION.

Method LQR Proposed Case (λk ∈ {0, 1}) Indirect [8] Nominal u = Kx Case [7, Alg. 1]

E [ℓ] 75.0% 82.0% 82.3% 83.0% 91.1% 100.0% 153.0%
Prob [(x, u) ∈ Z] 68.3% 82.6% 82.7% 82.7% 100.0% 91.7% 93.5%

to show (2) based on (19). With this discussion, we wish

to highlight the need for the more involved arguments from

Proposition 3 and the symmetry/unimodality condition to

ensure closed-loop chance constraint satisfaction.

5) Summary: The proposed SMPC is clearly superior to the

case distinction SMPC [7] due to the simpler implementation,

less restrictive constraints, and better performance guarantees,

while considering the exact same assumptions and design.

Compared to the indirect feedback SMPC [8], we achieved

better performance due to the less restrictive constraints. How-

ever, the guarantees in [8] are applicable under less restrictive

conditions. In Appendix B, we provide an additional example

that investigates the conservatism of using symmetric PRS

(Ass. 3). Therein, we empirically find that the additional de-

grees of freedom in the initial state constraints can compensate

the conservatism of using symmetric PRS (Ass. 3). Thus, in

the considered setting (w i.i.d. & Ass. 1 holds), the proposed

SMPC approach consistently outperformed the state-of-the-art

SMPC formulations [7], [8], with no clear drawback. Lastly,

we clarified that the restriction to symmetric PRS (Ass. 3) is

indeed needed for closed-loop chance constraint satisfaction,

while some of the simpler existing proofs for case distinction

SMPC (cf. [20]–[24]) might not yield similar guarantees.

V. CONCLUSION

We have presented an SMPC scheme for linear sys-

tems with possibly unbounded disturbances, providing closed-

loop chance constraint satisfaction and suitable performance

bounds. The proposed SMPC formulation specifically im-

proves the case distinction in prior SMPC approaches [7]

(and similarly in [20], [21]) addressing recursive feasibility

by interpolating between two initial states. The resulting

SMPC approach only requires the solution of one QP and is

applicable to a rather general class of linear stochastic optimal

control problems. We used a simple example to argue why the

proposed SMPC formulation allows for more flexibility and

hence improved performance compared to the case distinction

SMPC [7] and the indirect feedback SMPC [8]. We expect that

many of the recent SMPC results that build on one of these

two SMPC approaches for the initial state constraint (cf., e.g.,

[21]–[27]) can be improved/extended by adopting the proposed

interpolation for the initial state.
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APPENDIX

A. Proof - Proposition 5

The result in Proposition 5 follows using the arguments

in [8, Thm. 3] using the same cost JN and candidate solution.

The following proof is added to ensure a self-contained

exposition.

Proof. We first established the (expected) decrease condition

on the value function (17) and then show that this implies the

performance bound (18).

Part I: We abbreviate the quadratic norm w.r.t. a positive

semi-definite matrix Q by ‖x‖2Q = x⊤Qx. Define u⋆
N |k :=

Kx⋆
N |k, x⋆

N |k+1 := (A+BK)x⋆
N |k. Using the feasible candi-

date solution from Proposition 2, the predicted mean is given

by xi|k+1 = x⋆
i+1|k+Ai

Kw(k), ui|k+1 = u⋆
i+1|k+KAi

Kw(k),
i ∈ I[0,N−1]. Furthermore, since K = Kf , we have xN |k+1 =
x⋆
N+1|k +AN

Kw(k). Considering the cost (16), this implies

E

[

J ⋆
N (x(k + 1), z⋆1|k)− J ⋆

N (x(k), z⋆1|k−1)
]

+ ℓ(x(k), u(k))

≤E

[
N−1∑

i=0

ℓ(xi|k+1, ui|k+1)− ℓ(x⋆
i+1|k, u

⋆
i+1|k)

]

+ E









Vf(xN |k+1)−ℓ(x⋆
N |k, u

⋆
N |k)− Vf(x

⋆
N |k)

︸ ︷︷ ︸

Ass. 4
= −Vf (x⋆

N+1|k
)









=

N−1∑

i=0

E

[

‖Ai
Kw(k)‖2Q+K⊤RK

]

+ E
[
‖AN

Kw(k)‖2Pf

]

Ass. 4
= E

[
‖w(k)‖2Pf

]
= tr (PfΣw) ,

where the second to last equality used A⊤
KPfAK + Q +

K⊤RK = Pf from Assumption 4 in a telescopic sum.

Part II: Given that ℓ is lower bounded and N,Σw are

finite, J ⋆
N admits a lower bound. Hence we can use (17)

in a telescopic sum to arrive at the average performance

bound (18), compare, e.g., [7, Cor. 2].

B. Example - conservatism of symmetric sets

It is well known that in case of individual half-space

constraints, less conservative bounds can be obtained by using

(non-symmetric) half-space based PRS [5], [8, Sec. 3.2]. In

the following, we empirically investigate the conservatism of

symmetric PRS (Ass. 3).

We consider a scalar example x(k + 1) = 0.75x(k) +
u(k) + w(k), w ∈ N (0, 1), with a probabilistic constraint

Prob [x ≥ −2] ≥ p = 81.4%, no stabilizing feedback (K =
0), and stage cost ℓ(x, u) = u. The example is chosen such

that the tightened constraint Z∞ = {(x, u)|x ≥ 0} is always

active. In this example, the case-distinction SMPC and the

proposed SMPC are equivalent and hence we only compare

to the indirect feedback SMPC. In particular, we consider both

approaches using either symmetric or non-symmetric PRS.

The results can be seen in Figure 1. Regarding the indirect
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Fig. 1. Closed loop input u and empirical probability of constraint violation
Prob [(x(k), u(k)) ∈ Z] over time k ∈ I[0,40] for proposed (red) and
indirect feedback (blue) SMPC. Mean trajectories are shown as solid lines and
40 exemplary random realizations as dashed lines. The mean for the SMPC
implementations with non-symmetric half-space PRS are shown in circles.

feedback SMPC [8]: we simply have u ≡ 0, and we cannot

take advantage of beneficial disturbances. If we consider the

non-symmetric PRS in the indirect feedback SMPC, then

we instead have u ≡ −0.1624 (except for k = 0), which

demonstrates the reduction in conservatism of using non-

symmetric PRS. For the proposed SMPC with symmetric PRS,

the closed-loop input u depends on the realized disturbances

w. In fact, whenever a ”positive” disturbance appears (both

in the mathematical sense and in the practical sense that

they are beneficial), then we re-set the initial state. Hence,



we can implicitly use the fact that at least 50% of the

disturbances are beneficial, which is also used in the non-

symmetric PRS. Empirically, we achieve (on average) a similar

performance (cf. Fig. 1), i.e., the additional degree of freedom

in the initial state results in a similar improvement as a non-

symmetric PRS. Although the mean trajectories and hence

expected performance is almost equivalent, the closed-loop

realizations and statistics differ significantly. For example,

the indirect-feedback SMPC exactly matches the prescribed

chance constraint specification, while the proposed approach

achieves a higher level of constraint satisfaction. Given the

benefits of non-symmetric PRS, one might be tempted to also

implement the proposed SMPC using non-symmetric PRS.

However, in this case the proposed approach and the case

distinction approach in [7] empirically fail to meet the chance

constraint specification (2) (cf. Fig. 1) since the symmetry

condition (Ass. 3) is violated.
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