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A note on recovering the Brownian motion

component from a Lévy process

Konstantin Borovkov1

Abstract

González Cázares and Ivanovs (2021) suggested a new method for “recover-
ing” the Brownian motion component from the trajectory of a Lévy process that
required sampling from an independent Brownian motion process. We show that
such a procedure works equally well without any additional source of randomness
if one uses normal quantiles instead of the ordered increments of the auxiliary
Brownian motion process.
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high frequency sampling.
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1 Introduction and main results

The present note is complementing recent interesting paper [2] (see also related pa-
per [4]) presenting an original idea on how to “recover” the Brownian motion compo-
nent from the observed Lévy process

Xt = Yt + σWt, t ∈ [0, 1],

where the standard Brownian motion W is independent of the pure jump process Y
and σ > 0. More precisely, the authors of [2] recovered the path of the Brownian
bridge {Wt − tW1}t∈[0,1] (noting that it is not possible to consistently “extract” the
linear drift from the Brownian motion process trajectory, due to the equivalence of the
distributions of Brownian motion processes with different linear drifts).

Apart from being an interesting mathematical result by itself, such a separation
can be useful in some applications as well. For instance, if the Brownian component is
interpreted as noise, it enables one to recover (up to a linear drift) the signal Y from
the observed process X . Further comments (and some relevant references) on how one
can benefit from such a separation in statistical problems can be found in [2].
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The first method used in [2] for recovering the Brownian motion component was
based on a construction that curiously required randomization. To describe that
method, we need to introduce some notations. For an n-tuple X = (x1, . . . , xn) of
real numbers that are all different from each other (this will a.s. be the case for all the
random samples considered in this note, so without loss of generality we will assume
in what follows that they all do have this property, omitting “a.s.” in the respective
relations), denote by Rk(X ) :=

∑n
j=1 1(xj ≤ xk) the rank of xk in X , k = 1, . . . , n, and

by (X )j and [X ]j the jth component of X and jth order statistic for X , respectively,
so that (X )k = xk and [X ]Rk(X ) = xk. For a random process {Vt}t∈[0,1] and n ≥ 1, we
set ∆nV := (V1/n − V0, V2/n − V1/n, . . . , V1 − V(n−1)/n) ∈ R

n.
Now assume that {W ′

t}t∈[0.1] is a standard Brownian motion process that is inde-
pendent of X and put

W
(n)
t :=

⌊nt⌋∑

i=1

[∆nW
′]Ri(∆nX), t ∈ [0, 1].

In words, we first re-order one-step increments of W ′ on the grid k/n, k = 0, 1, . . . , n,
such that the sequence of their ranks is the same as the sequence of the ranks of the
increments of X on the same grid, and then form W (n) as the process of the partial
sums of that re-ordered sequence of the increments of W ′.

The following theorem re-states the first part of the main result in [2]. Set β∗ :=
inf

{
p > 0 :

∫
(−1,1)

|x|pΠ(dx) < ∞
}
, where Π is the jump measure of Y .

Theorem 1. For any p ∈ (β∗, 2] ∪ {2}, as n → ∞,

sup
t∈[0,1]

∣∣Wt −W
(n)
t − (W1 −W

(n)
1 )t

∣∣ = oP (n
−1/2+p/4). (1)

The natural question that arises here is about the role of the independently sampled
process W ′: why do we need this auxiliary random object? Does it necessarily need
to be a standard Brownian motion? It it possible to modify the suggested method to
avoid using any auxiliary independent random processes?

Simulations showed that the described scheme still works when W ′ is an indepen-
dent fractional Brownian motion process with an arbitrary Hurst parameter H ∈ (0, 1)
(one just needs to scale the process so that the marginal distributions of the compo-
nents of ∆nW

′ would be the same as for ∆nW ). This observation suggested that the
true role of the auxiliary process W ′ is just to provide approximations to the normal
quantiles and that one can “recover” W using this kind of approach without sampling
any independent random process. We show in the present note that this is the case
indeed.

Denote by Φ the standard normal distribution function, by Φ := 1 − Φ the distri-
bution tail of Φ, by ϕ the density of Φ, and by Q := Φ−1 the standard normal quantile
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function. For un,k :=
k

n+1
, n ≥ 1, 1 ≤ k ≤ n, set

W̃
(n)
t := n−1/2

⌊nt⌋∑

i=1

Q(un,Ri(∆nX)), t ∈ [0, 1]. (2)

Our main result is the following theorem.

Theorem 2. The assertion of Theorem 1 remains true if the process W (n) is replaced

in it with W̃ (n).

2 Proofs

Proof of Theorem 2. As in the proof of Theorem 1 in [2], we will start with the obser-
vation that

sup
t∈[0,1]

|Wt −W⌊nt⌋/n| = OP

(
n−1/2(lnn)1/2

)
, (3)

which is an immediate consequence of the Lévy’s modulus of continuity theorem.
Therefore, in the problem of bounding the error in the version of (1) with W̃ (n), we only
need to consider the maximum of the absolute deviations on the grid t = i

n
, 1 ≤ i ≤ n.

To this end, we observe that W̃
(n)
1 = 0 since Q(1

2
+ h) + Q(1

2
− h) = 0, h ∈ [0, 1

2
),

and hence, letting

ηn,k := (∆nW )k − n−1/2Q(un,Rk(∆nX))− n−1W1,

one has

Wi/n − W̃
(n)
i/n − (W1 − W̃

(n)
1 )i/n =

i∑

k=1

ηn,k. (4)

Next, similarly to the decomposition of ξni on p. 2422 in [2], we write ηn,k = η̃n,k+ η̂n,k,
where

η̃n,k : = [∆nW ]Rk(∆nX) − n−1/2Q(un,Rk(∆nX))− n−1W1,

η̂n,k : = (∆nW )k − [∆nW ]Rk(∆nX)

That

max
1≤i≤n

∣∣∣∣
i∑

k=1

η̂n,k

∣∣∣∣ = oP (n
−1/2+p/4) as n → ∞ (5)

was proved on p. 2425 in [2]. To complete the proof of our theorem, we will now show
that

max
1≤i≤n

∣∣∣∣
i∑

k=1

η̃n,k

∣∣∣∣ = OP

(
n−1/2(ln lnn)1/2

)
as n → ∞. (6)
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First note that it is not hard to verify that (6) is equivalent to the assertion that, for
any positive sequence εn → 0,

max
1≤i≤n

∣∣∣∣
i∑

k=1

η̃n,k

∣∣∣∣ = oP
(
ε−1
n n−1/2(ln lnn)1/2

)
as n → ∞. (7)

Further, it is easy to see that the random variables η̃n,1, . . . , η̃n,n are exchangeable and∑n
k=1 η̃n,k = 0. Therefore, setting γn,k := εnn

1/2(ln lnn)−1/2η̃n,k, k = 1, . . . , n, the
desired relation (7) (and hence (6)) immediately follows from Lemmata 1 and 2 below,
the latter implying that

∑n
k=1 γ

2
n,k = OP (ε

2
n) = oP (1). Now the assertion of Theorem 2

follows from representation (4) and relations (3), (5) and (6).

Lemma 1. Let γn,1, γn,2, . . . , γn,n, n ≥ 1, be a triangular array of random variables

that are exchangeable in each row and such that
∑n

k=1 γn,k = 0 a.s. and, as n → ∞,

n∑

k=1

γ2
n,k = oP (1). (8)

Then max1≤i≤n

∣∣∑i
k=1 γn,k

∣∣ = oP (1).

The assertion of Lemma 1 is an immediate consequence of Theorem 3.13 in [5] on
convergence of partial sums processes. In our case, the limiting process in that theorem
is identically equal to zero, the convergence of characteristic triples following from the
assumptions and the obvious observation that max1≤k≤n |γn,k| = oP (1) from (8).

Lemma 2. As n → ∞,
n∑

k=1

η̃2n,k = OP

(
n−1 ln lnn

)
.

Proof of Lemma 2. Note that the components of the vector

Zn = (Z1, . . . , Zn) := n1/2
(
(∆nW )1, . . . , (∆nW )n

)

are independent standard normal random variables, and let Zn := n−1
∑n

k=1 Zk.
Setting ζn,k := [Zn]k−Q(un,k), k = 1, . . . , n, we observe that ζn := n−1

∑n
k=1 ζn,k =

Zn and hence

η̃n,k ≡ n−1/2([Zn]Rk(∆nX) −Q(un,Rk(∆nX))− Zn) = n−1/2(ζn,Rk(∆nX) − ζn).

Therefore,
n∑

k=1

η̃2n,k = n−1
n∑

k=1

(ζn.k − ζn)
2 = n−1

n∑

k=1

ζ2n.k − ζ
2

n.

Here ζ
2

n = Z
2

n
d
= n−1Z2

1 = OP (n
−1). Further, denoting by

Q∗
n(u) :=

n∑

k=1

[Zn]k1(u ∈ [k−1
n
, k
n
)), u ∈ (0, 1),
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the empirical quantile function for Zn and letting

Qn(u) :=

n∑

k=1

Q(un,k)1(u ∈ [k−1
n
, k
n
)), u ∈ (0, 1),

one has

n−1

n∑

k=1

ζ2n.k = n−1

n∑

k=1

([Zn]k −Q(un,k))
2 =

∫ 1

0

(Q∗
n(u)−Qn(u))

2du

≤ 2

∫ 1

0

(Q∗
n(u)−Q(u))2du+ 2

∫ 1

0

(Q(u)−Qn(u))
2du.

It follows from Theorem 1 in [1] that the first term in the second line is OP (n
−1 ln lnn),

whereas the second term in that line is O(n−1) by Lemma 3 below. This completes the
proof of Lemma 2.

Lemma 3. For any n ≥ 1, one has

∫ 1

0

(Q(u)−Qn(u))
2du ≤ 3.73n−1.

The proof of this bound uses the following three elementary auxiliary results.

Lemma 4. Let f ∈ C1(a0, b0) be convex and non-decreasing on [a, b] ⊂ (a0, b0). Then,
for any v0 ∈ [a, b],

∫ b

a

(f(v)− f(v0))
2dv ≤ 1

3
(f ′(b))2(b− a)3.

Proof of Lemma 4. For v, v0 ∈ [a, b], one has

|f(v)− f(v0)| =
∣∣∣∣
∫ v

v0

f ′(s) ds

∣∣∣∣ ≤ f ′(b)|v − v0|

as f ′(s) ≥ 0 is non-decreasing by assumption. Hence

∫ b

a

(f(v)− f(v0))
2dv ≤ (f ′(b))2

∫ b

a

(v − v0)
2dv ≤ 1

3
(f ′(b))2

(
(b− v0)

3 − (a− v0)
3),

completing the proof since clearly y3 − x3 ≤ (y − x)3 for x ≤ 0 ≤ y.

Lemma 5. For any u ∈ (0.5, 1), one has 1− u ≤
√

π/2ϕ(Q(u)).

Proof of Lemma 5. The desired inequality follows from the observation that it turns
into equality at the endpoints u = 0.5 and u = 1 and that its RHS is a concave function
as [ϕ(Q(u))]′′ = −

√
2πeQ

2(u)/2 < 0.
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Lemma 6. Assume that f(v), v ∈ [a, b], is a non-decreasing function, v0 ∈ [a, 1
2
(a+b)].

Then

I1 :=

∫ b

a

(f(v)− f(v0))
2dv ≤

∫ b

a

(f(v)− f(a))2dv =: I2.

Proof of Lemma 6. Expanding the squares, one has

I2 − I1 = 2(f(v0)− f(a))

∫ b

a

f(v) dv + (f 2(a)− f 2(v0))(b− a)

= (f(v0)− f(a))

[
2

∫ b

a

f(v) dv − (f(v0) + f(a))(b− a)

]
≥ 0

since, due to the monotonicity of f ,

∫ b

a

f(v) dv =

∫ v0

a

· · ·+
∫ b

v0

· · · ≥ f(a)(v0 − a) + f(v0)(b− v0)

= 1
2
f(a)(b− a) + 1

2
f(v0)(b− a) + (f(v0)− f(a))(1

2
(a + b)− v0),

where the last term is non-negative by the assumptions.

Proof of Lemma 3. Putting qn,k := Q(un,k), k = 1, . . . , n, one has

∫ 1

0

(Q(u)−Qn(u))
2du =

n∑

k=1

∫ k/n

(k−1)/n

(Q(u)− qn,k)
2du. (9)

By symmetry, it is enough to bound the terms with k ≥ n/2 only, assuming for
simplicity that n is even.

As Q is clearly convex and increasing on (1
2
, 1), for n/2 < k < n we get by Lem-

mata 4 and 5 that
∫ k/n

(k−1)/n

(Q(u)− qn,k)
2du ≤ 1

3
(Q′(k/n))2n−3 =

n−3

3ϕ2(Q(k/n))
≤ πn−1

6(n− k)2
.

Therefore

n−1∑

k=n/2+1

∫ k/n

(k−1)/n

(Q(u)− qn,k)
2du ≤ π

6n

n−1∑

k=n/2+1

1

(n− k)2
≤ π

6n

∞∑

m=1

1

m2
=

π3

36n
. (10)

For the last term in the sum on the RHS of (9), setting q := Q(1 − 1/n), from
Lemma 6 we obtain that

Jn : =

∫ 1

(n−1)/n

(Q(u)−Q(un,n))
2du ≤

∫ 1

(n−1)/n

(Q(u)− q)2du

=

∫ 1

(n−1)/n

Q(u)2du− 2q

∫ 1

(n−1)/n

Q(u)du+ q2n−1.
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Integrating by parts, we get

∫ 1

(n−1)/n

Q(u)2du = E(Z2
1 ;Z1 > q) =

∫ ∞

q

z2ϕ(z)dz

= [−zϕ(z)]∞q +

∫ ∞

q

ϕ(z)dz = qϕ(q) + Φ(q),

whereas
∫ 1

(n−1)/n

Q(u)du = E(Z1;Z1 > q) =

∫ ∞

q

zϕ(z)dz = −
∫ ∞

q

dϕ(z) = ϕ(q).

Since Φ(q) = n−1 and q2n−1 − qϕ(q) = q2(Φ(q) − ϕ(q)/q) < 0 by the well-known
inequality for the normal Mills’ ratio (see e.g. Ch. VII.1 in [3]), we conclude that

Jn ≤ qϕ(q) + n−1 − 2qϕ(q) + q2n−1 ≤ n−1.

Together with (10) and an elementary bound for the constant π3

18
+ 2 < 3.73 this

completes the proof of Lemma 3.
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