arXiv:2203.04615v1 [math.FA] 9 Mar 2022

ALGEBRAS OF GENERALIZED SINGULAR INTEGRAL
OPERATORS WITH CAUCHY KERNEL

YUANQI SANG

ABSTRACT. For bounded Lebesgue measurable functions f, g, ¢ and ¢ on the
unit circle, Py fPy + P_gP. + Py¢P_+ P_1P_ is called a generalized singular
integral operator (GSIO) on L?(T), where P, is the Riesz projection, P_ =
I — Py. In this paper, we relate GSIOs to a number of operators, including
Cauchy singular integral operator, (dual) truncated Toeplitz operator, Foguel-
Hankel operator, multiplication operator, Toeplitz plus Hankel operator etc.
We establish the short exact sequences associated of the C'* —algebras generated
by GSIOs with bounded or quasi-continuous symbols. As a consequence we
obtain the spectra of various classes of GSIOs, the spectral inclusion theorem
and comput the Fredholm index of GSIOs. Moreover, we gave the necessary
and sufficient conditions for invertibility (Fredholmness) of GSIOs via Winer-
Hopf factorization.

1. INTRODUCTION

Let D = {¢ € C : [{] < 1} be the unit disk in the complex plane C and
T ={¢ € C: |{| = 1} be its boundary. Riemann-Hilbert boundary problem [25]
on the unit circle can be reformulated as follows.

Given functions «, 5,h on T, find two analytic functions f, € Hol(ID) and
f— € Hol(C \ D)(f_(c0) = 0) such that

ofi+Bf =h (1.1)
on T.

H? denotes the classical Hardy space of the open unit disk I, we let L? =
L*(T), L> = L>(T) denote the usual Lebesgue spaces on the unit circle [12]. P,
is the orthogonal projection from L*(T) onto H?, P = I — P,. Suppose that
he L*(T), f, € H* and f_ € L*(T)© H? = zH?. Put f = f, + f_, the equation
(1.1) becomes

Sapf =h, where S,p3=aP,+ [P_.

S, is called the singular integral operator with Cauchy kernel on L*(T), and

a(z) + B(z alz) —B(2) 1
(Susf) (2) = LHBE) ¢y M_./&dg‘
2 2 i Jp & — 2
Riemann-Hilbert boundary problem is considered solved if one has found con-
ditions for the operator S, g to be Fredholm or invertible. Most results about
these operators can be found in [14, 15]. We are interested in the algebra of
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singular integral operator, but the adjoint of R, s is no longer a singular integral
operator. Naturally, one can define the generalized singular integral operator.

Given a linear space X, we denote by Xy the linear space of all N—dimensional
vectors with components from X and let Xy denote the linear space of N x N
matrices with entries from X.

Definition 1.1. If H = ( ) € L2 ,(T), the generalized singular integral oper-
ator (GSIO) with symbol H is the operator Ry is defined by

Ryx=P,fP,x+ P_gP,x+ P .¢P_x+ P_¢y)P_x.
for each z € L*(T).

The significance of GSIOs comes from the following special cases.
(1) Multiplication operator on L*(T) : if f = g = ¢ = 1, then Ry is the
multiplication operator on L*(T).
(2) Hilbert transform: if f = g = —¢ = —¢) = 1, then R(l 1)~ 1®1l=
1-1

P, — P_ —1®1 is the Hilbert transform H [12, Ch III].
(3) Singular integral operator: if f =g = «a,¢ =1 = f3, then R<a 5) Sap

is the singular integral operator. T. Nakazi and T. Yamamoto [21, 19,
20, 22, 23, 24] have study the boundedness and normality of S, 3, and
calculate its norm, C. Gu [16] have study the algebraic properties of S, g.

(4) Toeplitz plus Hankel operators: if H = ( 0). then (I & J)Ry|p2 =
Ty + Ty, where Jz(z) = zz(z) for z € L*(T).

(5) Foguel-Hankel operators: if ¢ € L> and H = (7 ¢ ), then Ry and Foguel-
Hankel operator (% Cl)“i ) are unitarily equivalent(see Section 2). Foguel-
Hankel operators closely related to Halmos’ problem[17](whether or not
any polynomially bounded operator on a Hilbert space H is similar to a
contraction). J. Bourgain [4] has shown that Ry is similar to a contraction
if € BMOA, A. Aleksandrov and V. Peller [1] have shown that if Ry is
polynomially bounded then ¢ € BMOA. G. Pisier [27] and K. Davidson
and V. Paulsen[7] give a negative answer to Halmos’ problem via vector-
Foguel-Hankel operators.

(6) (Dual) Truncated Toeplitz operators: letu is an inner function, suppose

feL>(T) and H = (u iy ) then Ry is unitary equivalent to the dual

truncated Toeplitz operator D8, 28, 29|, furthermore, Ry is equivalent
after extension to truncated Toeplitz operator for invertible symbol [6,
Theorem 6.1].

Given a closed unital subalgebra A C L*(T), the C*—algebra R4 is defined

by
Hz’j € Agxg} .

In fact, R4 equals the C* —algebra generated by { R, 3 ‘a,
A}. In this paper, we explore the structure of the C*—algebra R (r).

R = clos {i ﬁ Ry,

i=1 j=1
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The earliest result on the C*—algebra R pe(r) due to Gokhberg and Krupnik[13],
where PC(T) denote the algebra of all piecewise continuous and left continuous
functions on T. They proved that the sequence

0 — ¢(L*(T)) — Recr) — & — 0.
is exact. The algebra . consist of matrix-valued functions of second order
M(t, i) = (ajc(t, p))3) with the following properties:
o an(t, p), ax(t, 1 — p), ana(t, p), an(t, p) € C(T x [0,1]),
° Oélg(t, 0) = Oégl(t, 0) = Oélg(t, 1) = Oégl(t, 1) =0 VteT.

This paper is organized as follows. In section 2, we presents some preliminaries
and basic properties of GISO. In section 3 and section 4, we establish the short
exact sequences associated of the C*—algebras generated by GISO with bounded
symbols or quasicontinuous symbols, and obtain the essential spectrum of GISO
and index forumla. In section 5, we establish vector we obtain the necessary and
sufficient conditions for invertibility and Fredholmness of GSIO via equivalence
after extension and Winer-Hopf factorization. In the last section, correspond-
ing results apply for the spectrum of singular integral operators, Foguel-Hankel
operators and dual truncated Toeplitz operators.

2. PRELIMINARIES

The generalized singular integral operator R ( ¥ ) can be expressed as an op-
g

¢
b4 _
erator matrix with respect to the decomposition L?(T) = H? @ zH?, the result is

of the form
Ty 43 (2.1)
Hg Tw ’

where T denote the Toeplitz operator on H? such that
Tix = Py (fz), x€ H?
H, denote the Hankel operator on H? such that
H,o = P_(gz), x€ H?
H;—‘) denote the adjoint of Hankel operator such that
Hiy = Py(¢y), y € zH%
T~¢ denote the dual Toeplitz operator on ZH?2 such that
Tyy = P-(Yy), y€zH?

Converse, if an operator 7' on L*(T) has form (2.1), then 7" is a GSIO. Moreover,

the generalized singular integral operator R ( ¥ ¢> is unitarily equivalent to an op-
g
erator matrix on Hj. To illustrate this, we need to introduce two useful operators

and their properties. For x € L?, define
Va(z) = zz(2);
Jx(z) = zz(2).
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Note that V is an anti-unitary operator and U is an unitary operator, and they
have the following properties:

(1) (Va,Vy) =(y,x), Uz, Uy) = (z,y);

(2) VM;V = My, UM;U = M;, where f(z)= f(2);

(3) VP =PV, UP.=P.U;

(4) VH? = zH?, UH? = zZH?;

(5) Uz" = V" = 27Tt

Using the operator U, for g € L?, we can define the Hankel operator on H? by

r,=UH,.

I 0
The operator (0 U

computation gives

) c [P = H?> @ zH? — H? ® H? is unitary. A simple

I 0 T H; I 0
0 U Hg Sw 0 U
_ T H;—)U
UH, US¢U
_ (T 3
N Iy UP_M¢P_U
_ (T I3
N ry, P.UMUP,
(T
Fg P+M’LLP+
_(Ty TG
N Iy ng

This shows that the operator R ( f i) : L? — L2 is unitary equivalent to
g

Tf F(E) 'H2@H2—)H2@H2
Fg TJ) . .

Therefore, R(Z,0, ¢, Z) is unitary equivalent to the Foguel-Hankel operator[]
D Tj\
0 T,
Example 2.1. For o, f € L*°, the truncated singular integral operator

Sa T = abyr+ pQuz, € L%
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It can be write as an operator matrix with respect to the decomposition L*(T) =
H?* @ zH?,

T, + T(B_a)uTﬂ HE
H, + H(B_a)uTﬂ Sﬁ

_ Ta HE + T(B—O!)UT’U, O
H, Ss Hg_aypTy 0

(T H5\ (T O (Ta 0
~\H, S Hep o 0)\0 1

Example 2.2. Asymmetric dual truncated Toeplitz operator Dg’a (K —

(K2)* is unitarily equivalent to some general singular integral operator. Let
h,qg € H?, we have

Dy (0h + zg) = (P- + aP.a)¢(0h + g)

e My, 0 h _ (Mo 0\ (Taos H, h

pha _ My 0) (Tasy Hi,\ (Mg O
o\ 0 I)\Hy S, 0o I)°
where (]\gé ?) (K3t — L? and (]\gé 9) : L2 — (K2)* are unitary.

or

. Hence

We begin our study of GSIO by considering some elementary properties.
Proposition 2.3. Let H = (g Z) € L3,,(T).

(1) Ry is bounded on L*(T) if and only if f,4 € L™ and g_, (¢)_ € BMO(T).
Where BMO(T) = L*°(T) + HL>(T).

(2) If Ry is bounded, then Ry is zero if and only if f =1 =0 and g, ¢ € H>.

(8) If Ry is bounded, then Ry is compact if and only if f = ¢ = 0 and
g, 0 € H* + C(T).

(4) If Ry is bounded, then R(f, g, ®,1) is self-adjoint if and only if f and ¢
are real valued, and g — ¢ € H?.

(5) If Ry is bounded and positive, then f and 1) are positive and g — ¢ € H?.

(6) If Ry is bounded, then Ry is complex symmetric operator for V if and
only if f =1, where V f(2) = 2f(2).

Proof. (1)-(3) Clearly Ry is bounded (resp. zero, compact) if and only if
Ty, H;, H, and Sy are bounded (resp. zero, compact). Toeplitz operator
T, is bounded [9, 7.8] (resp., zero, compact[5, p.94|) if and only if its
symbol a is bounded(resp., zero, zero), Hankel operator H, is bounded[26,
Theorem 1.3](resp., zero, compact [26, Theorem 5.5)) if and only if a_ €
BMO (resp.,a € H?,a € H* + C(T)), the conclusion follows.
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(4) By the matrix represention (2.1), we have Ry is self-adjoint if and

only if
T, HY\ (T H;
H, Sy,) \H; S

if and only if Ty =T}, Hy = Hg and Sy = Sj. Ty = T is equivalent to f
is real, H, = Hj is equivalent to g — ¢ € H?* Sy = Sy 1s equivalent to 1
is real.
(4) If Ry is positive, then
0 S <Rsza kz)

(PfPy + P_gP; + P¢P- + PP k., k.)
(PyfPy+ P_gPy + PooP_ + PP )Pik., Pyk.)
— (P (Pyf Py + P_gPy + P.oP_ + PyP_)Pik.,k.)
= (P Pk, k)
= <sza k2>

2 ] ) do
= [ HE k()P
0 ™

(2.2)

where k,(w) = ¥ 2P i the normalized reproducing kernel of H?. The

1—zZw
last equality is the Poisson integral of f, so f is positive almost everywhere
on T. Similarly,

0 < (R(f. g, 6, )7k, k.)
= ((P.fPy + P_gP, + P ¢P_ + P_y)P_)P_zk,, P_zk.)
= (P_yP_zk,, P_zk.)
= (Yks, k)

2w ) ) do
= [ ety
0 ™

so 1 is positive almost everywhere on T. Since positive opertor is self-
adjoint and (4),g — ¢ € H.

(5) By the definition of complex symmetric operator [11], we have Ry
is complex symmetric with the conjugation V' if and only if VRyV = Rj;.
Using the properties of V' yields

VRyV
=V(P.fPy + P_gP, + P,¢oP_+ P_yP )V
VP, fP,V +VP_gP,V +VP,¢P.V + VPPV
=P VfVP_ +P.VgVP_ + P V¢VP, + P.VyVP, (2.3)
=P_fP_+ P,gP_ + P_¢P, + P,y P,

:(% 5%,
Hz Tj
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. Ty H, .
On the other hand, R}, = I Si] . It follows that VRyV = R} holds
® ()
if and only if T = T}; and Sy = Sy hold if and only if f = 4. U
3. C*—ALGEBRAS Ry~
Recall the C*—algebra SR~ is defined by
Ry = clos {Z 11 2u, |5 € L;‘;Q(T)} .
i=1 j=1
Let GR 1~ be the closed ideal of R~ generated by operators of the form
R(fl ¢1>R<f2 ¢2> _R<f1f2 ¢ ) (3'1>
g1 Y1 g2 P2 g Y12

wheref;, g;, ¢i, Vi, g, ¢ are in L®(T)(i = 1,2). Furthermore, the C*—algebra R
equals the algebra generated by Riesz projection and all multiplication operators

with L*°(T) symbols, i.e.
Ry = clos span { P, My|p € L>=(T)}.

Next,we will establish the symbol map of SR~ with the normalized reproducing

kernel of H2.

Lemma 3.1. Let H; = (1 91) € () o, L8, (T),i € Z..
(1) The radial limit

Lim (Rp, - Ru, ke, kre) = f1(€) -+ fin(§)  ace. on T.

r—1-

(2) The radial limit
lim <RH1 ce RHMZIE?T@ 2%r§> = ¢1(€) ce ¢m(§) a.e. on T.

r—1-
(3) If g, € ﬁPZle(T), then H?:l RHi — R(H?_lfi é ) € GR~.
g I 4
(4) If T € R, then
},1_Ig<Tk;7’£’ kr£> =0,
},I_IE<T2]{JT§, 2]{57,§> =0.

(5) The uniform limit of GSIO is also a GSIO.

Proof. (1) We will prove this lemma by induction on m. For m = 1, applying

(2.2), we obtain

S i0y 240
(Rinkrg, bre) = [ fu(e®)lkne(e") 5
0 T
where |k,¢|* is the Poisson kernel for r¢ € D. By Fatou’s theorem,
151%<RH1k¢§, kr&) = fl(g)
for almost all £ € T.
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Let m > 2, assume the result true up to n — 1. A simple computation gives
(Ru, Rp, -+ Ru, kre, kve) = (Ru, - - Ry, ke, Ry Kie)
=(Rp, - Rukye, (Py 1Py + PLgi P+ P_gy Py + P_i)1 P_)k¢)
=(Ru, - - Ry, ke, (Pif1 Py + P_¢1 Py k)
=(Ru, -+ Ry, kve, P f1Pikye) + (Ru, -+ - Rig kre, P-1 Pikive)
=(Ruy, - Ru, kye, Py fikve) + (Rigy - -+ Rug, kvg, P-prkive)
(Ro-++ Ry ke, Py (fis + [io)kve) + (R - Rz kve, P-1kye)
=(Ru, -+ - Rug kre, froe (r)kive + Prfi_kve) + (Rpy -+ R, king, P- 1 kie)
=i (r&)( Rz, -+ - Riz, kg, kire) + (Rity - Rz, e, Py fikire)
+ (Ru, - - Ru, ke, P—lekr§>7
where fiy = Py f1, fi- = P_f;. Note that
<RH2 e 'Ranr{) P+f1—k‘r£> = <f1—P+RH2 o 'Ranrg, krf)
(fi-Py Ry, -~ Ry, kve, Pykye) = (PyfroPy Ry, - -+ Ry, ke, Kre)
(PrfioPi(PyfoPy + P_goPr + PioP_ + P_tpoP_ )Ry - - - Rykire, kire)
(Pyfi-PyfoPy + Py fioPydoPo) Ry - - Ry, ke, Fore)
(
(

(Pyfio foPy + Py fi—aP_ )Ry, - - - R, kre, kre)
R<f2€17 b21- >RH3 - R, ke, bre),

(Ru, -+ Rt hre, P-drkive)| < | Rty - - - Rz, || Kove |1 P— by Fove |
and
1Pkl
=[P (14 + o1 ke
Pk
=[[(I = Py)(dr4kre) |

2 ] B ) do\ 2 B
([ 10101 ~ 0PI ) S Ot 1),
0
By induction hypothesis, the result holds.
(2)Using the properties of V, we have

(Rp, -+~ Rpg, Zhve, Zhre) =Ry, -+ Rpz,, Ve, Vie)
(VVkwe,VRy, -~ Ry, Vkye)
=(kye, VR, -+ R, Vkye).
(VRm,V) -+ (VR V)kne, kre).

By (2.3), we have
VRV =R, ;.\ 1<i<m,
(di- fi)
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Hence Lemma 3.1 (1) implies the result.
(3) For k = 2, by the definition 4.1,we have

R R — R € GR;~.
(o (o) (M L0,) -

Assume the result true up to n — 1. Observe that

I'E:

fz d)z) ?Zlfi ¢
gz b g H?:ﬁm

f[ fzd)z (flfi)l)R(H?_in é )

gz % g1 Y1 g I,
+ R(h 1 )R s oo \ B e
g1 Y1 g I ¢ g I

]

:Rll Rii_R’Li
G;$>([1 (;ZJ (Hzﬁlmiwz)

€M 00
‘|'R<f1 ¢1>R(H?_2fi 6 ) - R(Hzl_lfi 6 ) :

91 91 U SN g T s
J/

P
€GN0

(.

By induction hypothesis,the result holds.
(4)Suppose g, ¢ € L. Linear combinations of operators of the form

Ry, Ry, -+ Ry, (RHnRHnH - R(fnfnﬂ ¢ ))RHn+zRHn+s Ry,
g YnPnt1

=Ry, Ry, -+ Ry, Ry, Ry, Ru,, , Ru, s+ Bu

n+k

- RHlRH2 o 'RHan(fnan @ )RHn+2RHn+3 e RHan?
g Untnir

form a dense subset of G ~. Lemma 3.1 (1)(2) gives the result.
(5) If R is a bounded operator on L? and lim,_,., ||Rg, — R|| = 0, then

lim ||Py(Ry, — R)Py|| < lim ||Ry, — R|| =0,
n— 00 n—oo

lim ||P_( — R)Py|| < lim ||Rp, — R|| =0,
n— 00 n—oo
lim ||P.(Ry, — R)P_|| < lim ||Ry, — R|| =0,
n— 00 n—oo
lim ||P_(Ry, — R)P-|| < lim ||Rp, — R|| = 0.
n—o00 n—oo

Since

PRy, Pyl =Ty,
P_Ry, Pi|u2 = H,,
PRy, P-| s = H

©n?
P_RH7LP_| = vam

zZH?
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and
|\T:P.RP,T, — P,RP.||
=|T:P.RP,T, — T:T}, T, + Ty, — PLRP. ||
<|[T:PLRP,T. = T:Ty, T.|| + [|T}, — PrRP.||
<|T2(PRP, — Ty, )T,)| + [Ty, — PrRP; |
SITENP-RPy =Ty, T2 + Ty, — PLRPy[ =0 (n — o0).
it follows that T; P, RP, T, = P, RP,. We have P, RP, |y is a Toeplitz operator,

because an operator 7' is a Toeplitz operator if and only if 7577, = T [5, Theorem
6]. Moreover,

|P_RP,T. - S.P,RP.|
=|P_-RP,T, — P_Ry, P, T.+ S,P_Ry, P, — S,P.RP,||
<|P-RP.T. - P_Ry,P\T.|| + ||S:P-Rp, Py — S.P.RP.||
<[[P-RP, — P_Rp, P.|||T.|| + || S:|[[[ P~ By Py — PLRP. |

shows that P_.RP,T, = S,P,RP,. Since an operator H is a Hankel operator

if and only if HT, = T,H [26, Theorem 1.8], we have P_RP,|y> is a Hankel
operator. Similary, P, RP_| 7= is the adjoint of a Hankel operator. By VT,V =

T~J,, then P_Rpy, P_| 5z is a dual Toeplitz operator. Hence R is a GSIO. 0
Theorem 3.2. The sequence
0 — R — R — LF(T) — 0

is a short exact sequence; that is, the quotient algebra Ry~ /SRy~ is *~isometrically
1somorphic to L & L.

Proof. Linear combinations of operators of the form H;nzl R( fi ¢i) span a dense
9i Vi
subset of R, compute

m m

Rif iy = R/mum i + Ry — Bomn i '
[LRGcoy = Fmgn o Y+ 1Ry =Romn o

(. J/

Jj=1

EGR 0o (By;mmag. 1@y
This shows that operators of the form

T=R fo + FEy, f,p € L>® Ey € GRpe.

(0)

form a dense subset of Rp~. Therefore, for every operator T in Ry «, there exists
a sequence of operators

T,=R;t, o\ +E, E,c6R~
(5 )

such that lim, o ||7,, — T'|| = 0. By Lemma 3.1(1)and(4), we have
r—1
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and

|fn(€) = fm(E)] < ([T = Tinl. (3.2)
So {fn(§)} is a Cauchy sequence. Define

£(€) 2 Tim f,().
we then have
|l (Thee, oe) = £(6) |

:‘ Tl_i}?, <Tk7“§7 kr&) - rl—i}?* <Tnkr§7 kr&) + rl—i}?* <Tnk7‘§7 k?‘ﬁ) - fn(é-) + fn(g) - f(g)‘
<] Tl_i)I{l7<TkT’£> kr’£> - Tl_i)I{l7<Tnkrfa krf) |+ | fal§) = f(§) |

<IT = Tall+ | fu(§) = £(E) |
and it follows that

Hm (Thye, kye) = F(E).

r—1-

Similarly, define
$(€) £ lim 4, (€),

n— oo

we have

lim (Tzk,e, Zhpe) = (€).

r—1-

Using(3.2), limy, 00 || fr = flloo = 0. Similarly, lim, e [0 — ¥||c = 0. Thus
||R<fn0—f 0 >|| <o = fll+1[n =l =0 (n— o0).

Pn

Let £ =T — R<f 0): we have lim,, . |[|F, — E|| = 0, since GR ~ is closed,
0

E € 6R . It follows that T" have the following form
T:R<f0>+E7 f7¢€Lm(T)7EEGERLM-

0
Define the map p : Ry — L3°(T) by
p(T)(€) = ( Hm (Tkye, kpe), lim (Tzkye, zk@) . (3.3)
r—1— r—1—

Recall the norm of L*(T), ||(a,b)|| = maz{]|a||c, ||bl|oc}. Clearly, ||p(T)|] < ||T]].
The map p is linear,contractive, and preserves conjugation. Moreover,

p(T) = (f,¥).
If Al,AQ < %Loo’ and
Al = R(fl 0 ) —I—El, A2 :R(f2 0 ) —I—EQ, El,EQ - G%Loo,
0 Y 0 12
then

AAs =R, o R/py o\ + R/ 5 o Bo+EiR, 4, oy + E1Es.
' ? (f(l)'l/?l> (%722) (%721) ? ! (‘6"52) .

-~

EGR1 o0
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Using Lemma 3.1(1) and (4), we have
lim (A1 Azkre, krg) = lim <R<f1 0 )R<f2 0 )krfakr£>

r—1” 0 1 0 v
= lim <R<f1f2 0 )kT’S’ ka)
r—=1- 0 1t

=/f1(§) - f2(£)
= lim <R<f1 0 )krg,kr§> - lim <R<f2 0 )krﬁvk%)

r—1- r—1—

0 1 0 o2
= lim (Ajkye, kre) - lim (Aokye, kre)  a.e. on T.
r—1- r—1-
Similarly,
lim <A1AQZ];7T§, Z]%Q) = lim <A12];7T§, 2]27&) - lim <A22];7T§, 2];3715> a.e.on T.
r—1- r—1- r—1-

Since the algebraic operations of L3°(T) are all performed coordinated-wise, we
have p is multiplicative.
By Lemma 3.1(4), we have GR~ C ker p. For every T = R(f,0,0,¢) + E €
ker p, thus, f =1 = 0. Hence GR~ = ker p.
We define the map
ﬁ: %Loo /G%Loo — L;O(T),
R(f 0) + &Rpw — (f, ).
0y
Hence, p is a C*-isomorphism. O
Corollary 3.3. If T € R, then p(T*T —TT™*) = (0,0).
Example 3.4. In fact, R~ is a proper subalgebra of B(L?*(T)). We make some
modification to [10, Example 4]. Let T" be the operator defined by
T2" ="' neZ
Note that
n—1
«n ) z 2z, ifnisodd;
1= _{ 0, if n is even. (3-4)

and
0, ifnis odd;

z". if n is even.

(T*T — TT*)z" = {

Hence T*T — TT* is the orthogonal projeciton onto span{z?"},cz.

(T~ TT ke ko) =(1 = )(T°T ~ TT) 3 (82 3 (€2
i=0 =0
:(1 N 7’2)<Z(’F_)2n22n, Z(r€)2mz2m>
n=0 m=0
=(kwgy, krey2)
1—1? 1 1 _
:1—:4 =152 )
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By Corollary 3.3, we have T' ¢ Rp.

4. C*"—ALGEBRAS Ry AND Rge

Let C(T) denote the set of continuous complex-valued functions on T, and
C(T) is a closed subalgebra of L>. The set of all compact operators on L*(T) is
denoted by K(L?(T)).

Lemma 4.1. The C*—algebra Rery is irreducible. Furthermore, LC(L*(T)) C
ERC(’]T)-

Proof. If Ry is reducible, then there exists a nontrivial orthogonal projection @
which commutes with each element of R (ry. In particular, QR . .\ = R/. .\Q
and R/, .\ is the bilateral shift. Since the commutant of the bilateral shift is

the set of all multiplications[18, 146], it follows that @) = M,
characteristic function. Note that

A, Where xa is a

)Y TGy
(0 0) G 7)o o) G 72)
0 0 HXA TXA 0 0 HXA TXA ’

T.Ty, T.H:,\ [ TwT. 0
0 0 ) \T,H, 0)°

T T, =TT

implies

Since the commutant of T, is the set of all analytic Toeplitz operators on H? [18,
147], it follows that xa is 0 or 1, and @ = I or = 0. This contradicts our
assumption. Therefore R (r) is irreducible.
Applying the formula I — T,7; = 1 ® 1 yields
R —R/.o\R/z0y=1®1.
RO (i
where 1®1 is an operator of rank 1, thus LC'(L*(T)) NRe(ry # {0}. By [9, 5.39],
we have LC(L*(T)) C Rem). O

The algebra QC £ (H*® + C(T)) N (H>* + C(T)) is a closed subalgebra, of
L>(T) which properly contains C(T). Let &Rgc(resp. SRery) be the closed
ideal of Roc(resp. Re(m) generated by operators of the form

R11R22_R12 4.1
<§1$1> <§232> <f9f ¢1¢¢2> ( )

Where.fi> Gi, ¢i> wia g, ¢ are in QC’(resp. C(T))(Z = 1a 2)
Lemma 4.2. &Rcp) = K(LA(T)), and SRge = K(LA(T)).
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Proof. 1t f;, gi, &, 0, 9,0 € C(T)(resp. QC')(i=1,2), an easy computation shows
that

Ripio\Brpooy —Ropp ¢
(gi wi) (gz wi) ( 1g2w1w2)
_ Ty Ty, + H;-l Hy, —Typ T H(Z—Q + f];)—LTw —~H;-§
Ho Ty, + Ty, Hy, — Hy Hng:;'Q + T Ty — Ty
_ H;)-ng2 - HJ’;le2 Tle;—2 + H;;—lTw2 — H(;f)
Ho Ty, + Ty, Hy, — Hy Hng:;‘z - HMH;Z'Q
The second equality follows form the formulas 7}, — 7,1, = H:H, and T —

T.T, = H,H}. Since the Hankel operator H, is compact if and only if ¢ €
H> + C(T) by[26, p.27], it follows that

R 1 ¢ R 2 P2 - R 12
(glil) (gziz) (fgf ¢1¢w2)

is compact, and &Rery C K(L*(T))(resp.SRgey € K(L*(T)). On the other
hand, LC(L?(T)) contains no proper closed ideal. Hence, &Ry = LC(L*(T))
(resp.&Rgey = K(L(T))). O

Corollary 4.3. For every T € R, we have
(D) < 177

In particular, if H = (ch ?), then

maz{[| flloo, [[¥llec} < [ Riille-
Proof. It T' € R, by Theorem 3.2, we have
Lt T+ Al = (1)

s

On the other hand, KX C GR;~ by Lemma 4.2. Therefore,

inf |T+Al<  inf |T+K]|=]|T]..
KeX(L?

AEGR 00 (T)) |

Use Theorem 3.2 again,

lp(Re)l| = maz{]| flloos [[¢]loc}-
O

If T is a bounded linear operator on Hilbert space H, o.(T) denotes the essential
spectrum of T. For ¢ € L* Raness denotes the essential range of . If F is
a subset of complex plane C, the convex hull of E will be denoted by coFE.
Combining Theorem 3.2 and Lemma 4.2, we get the following result.

Corollary 4.4. There exists a *-homomorphism ( from the quotient algebra
R /K onto LP(T) such that the diagram
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- R /K(L(T))

commutes. Moreover,

(1) For every T € Ry, if T is Fredholm, then p(T) is invertible in L (T);
(2) Rangss f U Rangsst) C o.(Rpy).

Recall the spectral inclusion theorem of Toeplitz operator[9],
Ranessf C 0.(T) C o(Tf) C coRaness f- (4.2)

Corollary 4.4 give the first inclusion similar to (4.2), the next theorem will show
the third inclusion similar to (4.2).

Proposition 4.5. Let H = (};1 }i) € LZ2(T). If we define

Gi = coRaneg, fi U {A & Raneysf;  di(A) < O[1(fi = A) oo}
where
d;(N) = (1 = dist((f; = N)/|fi = A, H®)*)Y2,  § = min{dist(¢, H*), dist(g, H*)}
forn =1,2, then
o(Rg) C G, U 9.

Proof. Suppose A € p(Ty,) N p(T},), we have

Ty \ H:
RH—AIL2:< 1 w)
H, Ty, »

(Thn 0\, (0 H
0 Thon H, 0
_(Trh-r 0 It 0 Tl H
0 Tpn) " " \T,,H, 0 ‘

If (| Hyll < | T2\ )" and [|H, || < |[T7,1,]I7", then
Tt H: I
[CEra | B CANEANCANV AR
and A € p(Rg). This mean that
{N e p(Ty,) : | Hgll < 1T 7 nfx e p(Ty,) < [1Hyll < T30 € p(Ra)
or
o(Ru) Co(Tr) UL € p(Ty) = I THL\17 < (| Hp 1}
Uo(Tp,) UL € p(Ty,) « ITRL17 < (1H,l}-
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Repeat the above reasoning for R}, we have
o(Ry) Co(Ty) U{N € p(Ty,) | T L1170 < [[H,ll}
Uo(Ts)U{X € p(Th) : 1T 17" < [1Hgll}-
Taking conjugates, we get
o(Ru) Co(Ty) U{N € p(Ty,) + | T7 L5170 < [[H,ll}
Uo(Ty,) U {X € p(Tp) : IT51 507" < ||H¢||}

Since [|T5151 = [(T71)7 Il = I(T7L,) and || L =1L = ITREDN
it follows that

o(Rp) Co(Ty) U{N € p(Ty,) 1T L0017 < 1 H, 1}
Ua(Ty,) U{r € p(Ty,) : || TRAIT < (13-

According the norm of Hankel operator ([26, Theorem 1.4]), we have |Hy| =
dist(¢, H®) and ||H,|| = dist(g, H*). Let § = min{dist(¢, H®), dist(g, H*)}.
We combine (4.3) and (4.4). Thus

o(Rpy) Co(Ty,) U{N € p(Th,) « IT 5507 < 6}
No(Ty) NN € p(Ty) : ITEL7 < 61}

(4.4)

Since T, and T}, are anti-unitary, o(Ty,) = o(Ty,) and HT =T Using
the (4.2) and norm estimation of the inverse of Toeplitz operator[Zu page.125.]

(1 — dist(p/|p], H*)?)Y/?
[gl|

<1707

we have
(A€ n(Ty)  ITRLIIT < 0} N ¢ Ranesfr: di(N) < 01 (fr = N) 7l
(A€ n(Ty)  ITLLIIT < 0} N ¢ Ranessfo 2 da(N) < 01 (f2 = N) 7' loo}
o(Ty,) CeoRaness f,
and o(T},) CcoRaness fa,
where d;(\) = (1 — dist((f; — N)/|fi — A|, H®)?)Y2,i = 1,2. O
Theorem 4.6. The sequence
0 — K(L*(T)) — Reqy — Co(T) — 0

is a short exact sequence; that is, the quotient algebra Rer) /K is *~isometrically
isomorphic to Cy(T).

Proof. Using the proof of Theorem 3.2 and Lemma 4.2 ., for every operator T €
Rery have the following form

T=R;;o\+K, fivelCT),KeX. (4.5)
(0)

The map p defined in (3.4) is *-isometrically isomorphic from Re ) /K(L*(T)) to
Cy(T). O
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Remark 4.7. In fact, the previous theorem can be extend to the algebra QC'. The
sequence

0 — K(L*(T)) — Rge — QCy — 0
is a short exact sequence. The proof is similar in spirit to Theorem 4.6.

Corollary 4.8. For every T' € Rge, we have
(D) = T

In particular, if H = (ng jﬁ) € QCs42, then

maz{[|flloo; [¥llec} = I Rrille-

Corollary 4.9. If H = (‘g jf) € QC5a, then o.(Ry) = Rangsf U Rangg.
Moreover, Ry is Fredholm if and only if f and 1 are invertible in QC.

Remark 4.10. If H = (;’ ?) € O(T)axs, then oo (Ry) = f(T) Ub(T).

Definition 4.11. Let f is an invertible function in C(T), the winding number of
f about the origin is defined by

T

N 271 F(T) z

Definition 4.12. Let T" be a bounded linear operator on Hilbert space H, a
bounded linear operator B on H is called the regularizer of T"if BT —I and T'B—1
are compact. If T is Fredholm, the difference ind 7" = dim ker 7" — dim ker T is
call the index of T.

Corollary 4.13. If T' is Fredholm operator in Re ), then

(2) ind(T) = 1(o) — 1),
where fo(&) = lm,1- (Tkye, kre),
f ¢) .

(1) R(f01 o \ 1$ a regularizer of T}

wo(g) = limr_ﬂf <TZ];7T§, 2]27&).
C

(T)2x2 and Ry is a Fredholm operator, then

In particular, if H = <g o

ind(Ry) = £(v) — 4(f)-
Proof. If T' € Reyry, by the formula (4.5), we have

T:R(fo 0)+K, fosto € C(T), K € K(L*(T)).

0 o
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where fo(&) = lim, - (Thye, kve), 100(€) = lim, - (T'Zk,¢, Zk,¢), and hence f and
¢ are invertible in C(T) by the remark 4.10. A calculation shows that

R(f()l 0 )T:R(fol o )R(fo 0>+R<fo ())K

0 ol 0 ot 0 o 0 o

T, 0 T 0 )

_ f() N ( fo n _I_ R K
0 T%l) 0 Ty, (5 w)

T, T 0
o fo 4 fo
= =~ = |+ Rigp 0K

0 TuzolTwo) (5 )
Ty2 — Ho - Hy, 0 R %
0 Ly — Hy 1 H (5 )
N ! R K
=/ 4+ 0 . -+ fo O
0 H, i H (5 o)

Since the Hankel operator H,, is compact if and only if ¢ € H* + C(T) by [26,
p.27], we have H;flﬂf0 and H%lH;ZO are compact, so R(fol 0 )T—I is compact,
0 0 wo—l
similarly, TR /;-+ , \ — I is compact.
( 0 wal)
Since the Fredholm index is stable under compact operator perturbations|2,

p.98], it follows that

= ind Ty, + ind Ty, .
Note that
ind Ty, = dimker(T},) — dim ker(TJo)

= dimker(VT}, V) — dim ker(V'1Ty,V)

= dim ker(7}),) — dim ker(75,,)

= —ind Ty,.
By the theorem [0, 7,26], we have ind Ty, = —4(fo) and ind Ty, = #(14). Therefore,
ind(T") = #(vo) — #(fo)- [
Corollary 4.14. If H = <£ Z) € C(T)axa, then Ry is invertible if and only if
the following conditions hold:

(1) [ and ¢ are invertible,
(2) 4() = 4(f), and
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(3) either Ker(Ry) = {0} or Ker(R;;) = {0}.

Proof. By Corollary 4.4, we have Ranessf U Ranesst) C o(Rpy). Suppose that Ry
is invertible, then

(a) f and ¢ are invertible;
(b) Ker(Rg) = {0} and Ker(Rj3,) = {0}.
It follows that ind (Rg) = 0. By Corollary 4.13, we have f(¢) = #(f);

On the other hand, if Ry is Fredholm, then Ry is invertible if and only if

(i) ind(Rpy) = 0;

(ii) either Ker(Ry) = {0} or Ker(Rj;;) = {0}.
By Remark 4.10, Ry is Fredholm if and only if f and 1) are invertible, hence the
result follows. O

Remark 4.15. There exist some examples showing that both of Ker(Rgy) and
Ker(Rj;) are nontrivial. For example, if u and € are nonconstant inner functions,
then

Z(H?© 0H?) C KerR<uo>
06

and
H?>©uH? CKer R, o\
(55)

Let A is a proper subset of T and has positive measure, ya is the characteristic

function of A, we have R<XA m) = M,, and dimker M, , = dimker M} = oco.
XA XA

5. INVERTIBLE AND FREDHOLM OF GISO

In this section, we found that GSIOs and singular integral operators with 2 x 2
matrix symbol are equivalent after extension.

Definition 5.1. [3] Let 7" and S are bounded operator on Hilbert space H; and
Ho respectively. The operators T and S are called equivalent after extension,
written 7 ~ S, if there exist Hilbert spaces Z and W such that T & I, and
S @ Iy are equivalent operators. This means that there exist invertible bounded
linear operators £ and F' such that

T 0 S 0
(0 5.)=2(5 5 )

. * . . . o,
The relation ~ is reflexive, symmetric and transitive.

Theorem 5.2. 3] If T X S, then T is invertible(Fredholm) if and only if S is
invertible (Fredholm,).

Let
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where f, g, ¢,1 € L>®(T). Write the Cauchy singular integral operators with 2 x 2
matrix symbol

AP, + BP_ = (g _01) (%* ]3+) + (z _01) (};— }9_) . L3(T) — L2(T).

(5.1)
Theorem 5.3. Let H = (1 1) € L3, (T), Ry ~ AP, + BP_.
Proof. Let H, = (fc g), an easy computation shows that
P, P Ir» 0
(P_ P+) (AP + BP-) (RHl —JLQ)
_(Py P\ (fPi+oP. —P_ Ip» 0
- \P_ P, ) \gP.+yP. —P,) \ Ry, —Ip
(PyfPy+ PP+ P gP. +PyP_. 0 Ip» 0
- \P_fP,+PyYP_ + P,gP, + P.YyP_ —I12) \ Ry, —Ip2
([ Ry 0 Ip» 0
-\ Ry, —Ir2) \Ryg, —Ip2
_(Rg O
o 0 ]LZ ’
P, P Ip» 0 . .
The operators ( P P+) and ( Ry — IL2) are invertible, and
r, P\' (P, P
P P \P. P.)’
I 0N\ ' (L. 0
Ry, —1Ip» -\ Ry, —Ip2)°
Hence the operators Ry and AP, 4+ BP_ are equivalent after extension. (]

If f and v are invertible, then A and B are invertible and
S _(f 0 4 _ (0 gt
A - (f—lg _1) ) B - (_1 QS’l/)_l )
In this case

AP, + BPP_
=B(B'AP, +P_)
=B(P,B'AP, + P,B 'AP,P_B AP, + P_B 'AP, +P_)
=B(P,B AP, (I + P_B'AP,) + P_(P_B 'AP, + 1))
=B(P,B'AP, +P_)(P_B AP, +I)
where I +P_B 1 AP, is invertible on , the inverse is [ —P_ B~1AP_ . This implies
AP, + BP_~P,B'AP, +P_. (5.2)
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Moreover, under the decomposition L3(T) = H3(T) & (H*(T))y, we have

Tp-14 0 )

P,B AP, + P_ = (
i i U e

where T3-14 is a block Toeplitz operator on H2(T) and

—1 =1
BlA= (g@gj_ﬂ _; _(;fb_l) , (5.3)
det B—'A = —f¢)~!. Hence,
P,B'AP, +P_ X Tg-14. (5.4)

Similarly,
AP, + BP_ = AP, + P_A'BP_)(P,A"'BP_ +1I)
This implies
AP, + BP_~P, +P_A"'BP_.
and

Py + P_AT'BP_ X JT 4-1p)d.
where J(f, )T = (Jf, Jf)T = (zf, 2f)T for f € L*(T).

Recall the invertibility and Fredholm of Toeplitz operators with matrix-symbols
via Wiener-Hopf factorization.

Definition 5.4. A representation of the form F' = F_DF is called Winer-Hopf
factorization of the invertible matrix function F € Ly, y(T) if D = diag(z")7,
with x; € Z, and if F_ and F; satisfy the following conditions:

(1) F—i-aF—I?l < H]2V><N(T)’ F—aF—_l € HJ2V><N(T)>

(2) The operator F,'P, F, is defined on the linear space of all CV-valued

trigonometric polynomials, can be extended to a bounded operator on
HZ,(T).

Theorem 5.5. [30] Let F' € LY, N(T). Then Tr is invertible(resp. Fred-
holm) if and only if F admits a Wiener-Hopf factorization.F' = F_F (resp.
F=F_DF,).

If T,, is Fredholm, then

dimKerT, = — Z kj, dim Coker T, = Z Kj.

K4 <0 K5 >0
Theorem 5.6. If H = (g Z) € L3, (T), then Ry is invertible (resp. Fredholm)
1

if and only if f and ¢ are invertible in L>°(T) and <g¢fj]f£;1—f __dfl;l) admit a
Winer-Hopf factorization F_F (resp.F_DF ).
If Ry is Fredholm, then
dimKer Ry = — Y k;, dimKer R}, = ) k.

kj<0 kj>0
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Proof. It Ry is invertible or Fredholm, by Corollary 4.4, we have f and v are
invertible in L>°(T). Since the relation ~ is transitive, combining Theorem 5.3,

(5.2) and (5.4), it follows that Ry ~ Tg-14. Using Theorem 5.2 and Theorem
5.5, we get the result. U

6. APPLICATIONS

6.1. The Spectral Inclusion Theorem. In the theory of Toeplitz operator,
the spectrum of Ty always includes the essential range of ¢. Corollary 4.4 shows
that

Raness f U Ranesst) C o(R(f, g, 0,1)).

Hence, for the bounded singular integral operator R, g, we have
Ranesso U RanessS C 0(Rap),
for the bounded dual truncated Toeplitz operator Dy, we have

Raness¢p C 0(Dy);

for the bounded Foguel-Hankel operator (% ]{( ) , we have

Tr X
TCU(O S)'

Moreover, for every constant A\, we have

N T X\ (I 0 I =X\ (N[ =T 0
~\No T.) \0o X -=T,)\0 I o 1)

Note that
I —-X
0 I

£

If both of NI — T, and A\I —T7 are invertible, then \I — (

is always invertible and

r X\ . . .
0 Tz) is invertible.

Therefore,

7 X —
O’(OZ TZ)CU(TZ):]D.
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6.2. Essential spectrum. The essential spectrum of Toeplitz operator with con-

tinous symbol equals the essential range of the symbol. Corollary 4.9 shows that

oe(R(f,9,0,9)) = f(T) U(T).
Hence, for bounded singular integral operator, if o, § € C(T), then

0e(Rap) = o(T) U B(T).
For bounded dual truncated Toeplitz operator, if ¢ € C(T), then

oe(Dy) = ¢(T).
For bounded Foguel-Hankel operator, if X =I'y and ¢ € H* + C(T), then

7 X\ _
06(0 TZ>_T'

6.3. Special cases. We consider one of operators Ty and Sy is invertible. In
particular, suppose Sy = I, Suppose that A ¢ Ran.sf U {1}. Now

Trx Hi\ _ (I Hp\ (Trx—HiHy 0O I 0
Hy I-x) \0 &I 0 I1)\(1-NH, I)"

. I H? I 0 . , I H:\ '
¢ ¢ =
Since ( ) and <(1 ~ N, ]) are always invertible, or <O B ])

1-X

I —(1—NH: I [N

(0 (1= N1 ) and ((1 ~NH, I) “\—a-nm, 1) it follows that
Ty-n Hj
H, I-X\

(Tf_A — H:H, 0)

is invertible if and only if

0 I

is invertible. Therefore, we have
o(B(f,9,9,1)) = o(Ty = HyH,) U Ranes f U {1},
Since Ty — H;Hg =Ty —Tyy + TyT,, we have
im (Ty — HyHgkve, kre) = f(§) a.e.onT.

r—1—

By Corollary 4.4, we have Ranessf C o(Ty — H;—)Hg). Hence,

o(R(f,9,9,1)) = o(Ty — HiHg) U{1}.
Similarly,
U(R(lagv b, w)) = U(S¢ - HgH;) U {1}
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