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ALGEBRAS OF GENERALIZED SINGULAR INTEGRAL

OPERATORS WITH CAUCHY KERNEL

YUANQI SANG

Abstract. For bounded Lebesgue measurable functions f, g, φ and ψ on the
unit circle, P+fP++P−gP++P+φP− +P−ψP− is called a generalized singular
integral operator (GSIO) on L2(T), where P+ is the Riesz projection, P− =
I − P+. In this paper, we relate GSIOs to a number of operators, including
Cauchy singular integral operator, (dual) truncated Toeplitz operator, Foguel-
Hankel operator, multiplication operator, Toeplitz plus Hankel operator etc.
We establish the short exact sequences associated of the C∗−algebras generated
by GSIOs with bounded or quasi-continuous symbols. As a consequence we
obtain the spectra of various classes of GSIOs, the spectral inclusion theorem
and comput the Fredholm index of GSIOs. Moreover, we gave the necessary
and sufficient conditions for invertibility(Fredholmness) of GSIOs via Winer-
Hopf factorization.

1. Introduction

Let D = {ξ ∈ C : |ξ| < 1} be the unit disk in the complex plane C and
T = {ξ ∈ C : |ξ| = 1} be its boundary. Riemann-Hilbert boundary problem [25]
on the unit circle can be reformulated as follows.

Given functions α, β, h on T, find two analytic functions f+ ∈ Hol(D) and
f− ∈ Hol(C \ D)(f−(∞) = 0) such that

αf+ + βf− = h (1.1)

on T.
H2 denotes the classical Hardy space of the open unit disk D, we let L2 =

L2(T), L∞ = L∞(T) denote the usual Lebesgue spaces on the unit circle [12]. P+

is the orthogonal projection from L2(T) onto H2, P− = I − P+. Suppose that

h ∈ L2(T), f+ ∈ H2 and f− ∈ L2(T)⊖H2 = z̄H2. Put f = f+ + f−, the equation
(1.1) becomes

Sα,βf = h, where Sα,β = αP+ + βP−.

Sα,β is called the singular integral operator with Cauchy kernel on L2(T), and

(Sα,βf) (z) =
α(z) + β(z)

2
f(z) +

α(z)− β(z)

2

1

πi

∫

T

f(ξ)

ξ − z
dξ.

Riemann-Hilbert boundary problem is considered solved if one has found con-
ditions for the operator Sα,β to be Fredholm or invertible. Most results about
these operators can be found in [14, 15]. We are interested in the algebra of
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2 Y.SANG

singular integral operator, but the adjoint of Rα,β is no longer a singular integral
operator. Naturally, one can define the generalized singular integral operator.

Given a linear space X, we denote by XN the linear space of all N−dimensional
vectors with components from X and let XN×N denote the linear space of N ×N
matrices with entries from X.

Definition 1.1. If H =
(
f φ
g ψ

)
∈ L2

2×2(T), the generalized singular integral oper-
ator (GSIO) with symbol H is the operator RH is defined by

RHx = P+fP+x+ P−gP+x+ P+φP−x+ P−ψP−x.

for each x ∈ L2(T).

The significance of GSIOs comes from the following special cases.

(1) Multiplication operator on L2(T) : if f = g = φ = ψ, then RH is the
multiplication operator on L2(T).

(2) Hilbert transform: if f = g = −φ = −ψ = 1, then R(

1 −1
1 −1

) − 1 ⊗ 1 =

P+ − P− − 1⊗ 1 is the Hilbert transform H [12, Ch III].
(3) Singular integral operator: if f = g = α, φ = ψ = β, then R(

α β
α β

) = Sα,β

is the singular integral operator. T. Nakazi and T. Yamamoto [21, 19,
20, 22, 23, 24] have study the boundedness and normality of Sα,β, and
calculate its norm, C. Gu [16] have study the algebraic properties of Sα,β.

(4) Toeplitz plus Hankel operators: if H =
(
f 0
g 0

)
, then (I ⊕ J)RH |H2 =

Tf + Γg, where Jx(z) = z̄x(z̄) for x ∈ L2(T).
(5) Foguel-Hankel operators: if φ ∈ L∞ and H =

(
z̄ φ
0 z̄

)
, then RH and Foguel-

Hankel operator
(
T ∗
z X
0 Tz

)
are unitarily equivalent(see Section 2). Foguel-

Hankel operators closely related to Halmos’ problem[17](whether or not
any polynomially bounded operator on a Hilbert space H is similar to a
contraction). J. Bourgain [4] has shown that RH is similar to a contraction
if φ

′ ∈ BMOA, A. Aleksandrov and V. Peller [1] have shown that if RH is
polynomially bounded then φ

′ ∈ BMOA. G. Pisier [27] and K. Davidson
and V. Paulsen[7] give a negative answer to Halmos’ problem via vector-
Foguel-Hankel operators.

(6) (Dual) Truncated Toeplitz operators: letu is an inner function, suppose

f ∈ L∞(T) and H =
(

f uf̄
uf f

)
, then RH is unitary equivalent to the dual

truncated Toeplitz operator Df [8, 28, 29], furthermore, RH is equivalent
after extension to truncated Toeplitz operator for invertible symbol [6,
Theorem 6.1].

Given a closed unital subalgebra A ⊂ L∞(T), the C∗−algebra RA is defined
by

RA = clos

{
n∑

i=1

m∏

j=1

RHij

∣∣∣∣Hij ∈ A2×2

}
.

In fact,RA equals the C∗−algebra generated by {Rα,β

∣∣α, β ∈ A} and {R∗
φ,ψ

∣∣φ, ψ ∈
A}. In this paper, we explore the structure of the C∗−algebra RL∞(T).
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The earliest result on the C∗−algebraRPC(T) due to Gokhberg and Krupnik[13],
where PC(T) denote the algebra of all piecewise continuous and left continuous
functions on T. They proved that the sequence

0 −→ C(L2(T)) −→ RPC(T) −→ S −→ 0.

is exact. The algebra S consist of matrix-valued functions of second order
M(t, µ) = (αjk(t, µ))

2
j,k with the following properties:

• α11(t, µ), α22(t, 1− µ), α12(t, µ), α21(t, µ) ∈ C(T× [0, 1]),
• α12(t, 0) = α21(t, 0) = α12(t, 1) = α21(t, 1) = 0 ∀t ∈ T.

This paper is organized as follows. In section 2, we presents some preliminaries
and basic properties of GISO. In section 3 and section 4, we establish the short
exact sequences associated of the C∗−algebras generated by GISO with bounded
symbols or quasicontinuous symbols, and obtain the essential spectrum of GISO
and index forumla. In section 5, we establish vector we obtain the necessary and
sufficient conditions for invertibility and Fredholmness of GSIO via equivalence
after extension and Winer-Hopf factorization. In the last section, correspond-
ing results apply for the spectrum of singular integral operators, Foguel-Hankel
operators and dual truncated Toeplitz operators.

2. Preliminaries

The generalized singular integral operator R(

f φ
g ψ

) can be expressed as an op-

erator matrix with respect to the decomposition L2(T) = H2⊕ z̄H2, the result is
of the form (

Tf H∗
φ̄

Hg T̃ψ

)
, (2.1)

where Tf denote the Toeplitz operator on H2 such that

Tfx = P+(fx), x ∈ H2;

Hg denote the Hankel operator on H2 such that

Hgx = P−(gx), x ∈ H2;

H∗
φ̄
denote the adjoint of Hankel operator such that

H∗
β̄y = P+(φy), y ∈ z̄H2;

T̃ψ denote the dual Toeplitz operator on z̄H2 such that

T̃ψy = P−(ψy), y ∈ z̄H2.

Converse, if an operator T on L2(T) has form (2.1), then T is a GSIO. Moreover,
the generalized singular integral operator R(

f φ
g ψ

) is unitarily equivalent to an op-

erator matrix on H2
2 . To illustrate this, we need to introduce two useful operators

and their properties. For x ∈ L2, define

V x(z) = z̄x(z);

Jx(z) = z̄x(z̄).
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Note that V is an anti-unitary operator and U is an unitary operator, and they
have the following properties:

(1) 〈V x, V y〉 = 〈y, x〉, 〈Ux, Uy〉 = 〈x, y〉;
(2) VMfV =Mf̄ , UMfU =Mf̃ , where f̃(z) = f(z̄);
(3) V P− = P+V, UP− = P+U ;
(4) V H2 = z̄H2, UH2 = z̄H2;
(5) Uzn = V zn = z̄n+1.

Using the operator U, for g ∈ L2, we can define the Hankel operator on H2 by

Γg = UHg.

The operator

(
I 0
0 U

)
: L2 = H2 ⊕ z̄H2 → H2 ⊕ H2 is unitary. A simple

computation gives

(
I 0
0 U

)(
Tf H∗

φ̄

Hg Sψ

)(
I 0
0 U

)

=

(
Tf H∗

φ̄
U

UHg USψU

)

=

(
Tf Γ∗

φ̄

Γg UP−MψP−U

)

=

(
Tf Γ∗

φ̄

Γg P+UMψUP+

)

=

(
Tf Γ∗

φ̄

Γg P+Mψ̃P+

)

=

(
Tf Γ∗

φ̄

Γg Tψ̃

)

=

(
Tf Γφ̃
Γg Tψ̃

)
.

This shows that the operator R(

f φ
g ψ

) : L2 → L2 is unitary equivalent to

(
Tf Γφ̃
Γg Tψ̃

)
: H2 ⊕H2 → H2 ⊕H2.

Therefore, R(z̄, 0, φ, z̄) is unitary equivalent to the Foguel-Hankel operator[4]

(
T ∗
z Γφ̃
0 Tz

)
.

Example 2.1. For α, β ∈ L∞, the truncated singular integral operator

Suα,βx = αPux+ βQux, x ∈ L2.
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It can be write as an operator matrix with respect to the decomposition L2(T) =
H2 ⊕ z̄H2,

(
Tα + T(β−α)uTū H∗

β̄

Hα +H(β−α)uTū Sβ

)

=

(
Tα H∗

β̄

Hα Sβ

)
+

(
T(β−α)uTū 0
H(β−α)uTū 0

)

=

(
Tα H∗

β̄

Hα Sβ

)
+

(
T(β−α)u 0
H(β−α)u 0

)(
Tū 0
0 I

)

Example 2.2. Asymmetric dual truncated Toeplitz operator Dθ,α
φ : (K2

θ )
⊥ →

(K2
α)

⊥ is unitarily equivalent to some general singular integral operator. Let
h, g ∈ H2, we have

Dθ,α
φ (θh + z̄ḡ) = (P− + αP+ᾱ)φ(θh+ z̄ḡ)

= αP+ᾱφθP+h+ P−φθP+h + αP+ᾱφz̄ḡ + P−φz̄ḡ

or

Dθ,α
φ

(
Mθ 0
0 I

)(
h

z̄ḡ

)
=

(
Mα 0
0 I

)(
Tᾱθφ H∗

φ̄α

Hφθ Sφ

)(
h

z̄ḡ

)

. Hence

Dθ,α
φ =

(
Mα 0
0 I

)(
Tᾱθφ H∗

φ̄α

Hφθ Sφ

)(
Mθ̄ 0
0 I

)
,

where

(
Mθ̄ 0
0 I

)
: (K2

θ )
⊥ → L2 and

(
Mθ̄ 0
0 I

)
: L2 → (K2

α)
⊥ are unitary.

We begin our study of GSIO by considering some elementary properties.

Proposition 2.3. Let H =
(
f φ
g ψ

)
∈ L2

2×2(T).

(1) RH is bounded on L2(T) if and only if f, ψ ∈ L∞ and g−, (φ̄)− ∈ BMO(T).
Where BMO(T) = L∞(T) +HL∞(T).

(2) If RH is bounded, then RH is zero if and only if f = ψ = 0 and g, φ̄ ∈ H2.
(3) If RH is bounded, then RH is compact if and only if f = ψ = 0 and

g, φ̄ ∈ H∞ + C(T).
(4) If RH is bounded, then R(f, g, φ, ψ) is self-adjoint if and only if f and ψ

are real valued, and g − φ̄ ∈ H2.
(5) If RH is bounded and positive, then f and ψ are positive and g− φ̄ ∈ H2.
(6) If RH is bounded, then RH is complex symmetric operator for V if and

only if f = ψ, where V f(z) = z̄f̄(z).

Proof. (1)-(3) Clearly RH is bounded (resp. zero, compact) if and only if
Tf , H

∗
φ̄
, Hg and Sψ are bounded (resp. zero, compact). Toeplitz operator

Ta is bounded [9, 7.8] (resp., zero, compact[5, p.94]) if and only if its
symbol a is bounded(resp., zero, zero), Hankel operator Ha is bounded[26,
Theorem 1.3](resp., zero, compact [26, Theorem 5.5]) if and only if a− ∈
BMO (resp.,a ∈ H2, a ∈ H∞ + C(T)), the conclusion follows.
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(4) By the matrix represention (2.1), we have RH is self-adjoint if and
only if

(
Tf H∗

φ̄

Hg Sψ

)
=

(
Tf̄ H∗

g

Hφ̄ Sψ̄

)

if and only if Tf = Tf̄ , Hg = Hφ̄ and Sψ = Sψ̄. Tf = Tf̄ is equivalent to f

is real, Hg = Hφ̄ is equivalent to g − φ̄ ∈ H2, Sψ = Sψ̄ is equivalent to ψ
is real.
(4) If RH is positive, then

0 ≤ 〈RHkz, kz〉
= 〈(P+fP+ + P−gP+ + P+φP− + P−ψP−)kz, kz〉
= 〈(P+fP+ + P−gP+ + P+φP− + P−ψP−)P+kz, P+kz〉
= 〈P+(P+fP+ + P−gP+ + P+φP− + P−ψP−)P+kz, kz〉
= 〈P+fP+kz, kz〉
= 〈fkz, kz〉

=

∫ 2π

0

f(eiθ)|kz(eiθ)|2
dθ

2π
,

(2.2)

where kz(ω) =

√
1−|z|2

1−z̄ω
is the normalized reproducing kernel of H2. The

last equality is the Poisson integral of f , so f is positive almost everywhere
on T. Similarly,

0 ≤ 〈R(f, g, φ, ψ)z̄k̄z, z̄k̄z〉
= 〈(P+fP+ + P−gP+ + P+φP− + P−ψP−)P−z̄k̄z, P−z̄k̄z〉
= 〈P−ψP−z̄k̄z, P−z̄k̄z〉
= 〈ψkz, kz〉

=

∫ 2π

0

ψ(eiθ)|kz(eiθ)|2
dθ

2π
,

so ψ is positive almost everywhere on T. Since positive opertor is self-
adjoint and (4),g − φ̄ ∈ H2.
(5) By the definition of complex symmetric operator [11], we have RH

is complex symmetric with the conjugation V if and only if V RHV = R∗
H .

Using the properties of V yields

V RHV

=V (P+fP+ + P−gP+ + P+φP− + P−ψP−)V

=V P+fP+V + V P−gP+V + V P+φP−V + V P−ψP−V

=P−V fV P− + P+V gV P− + P−V φV P+ + P+V ψV P+

=P−f̄P− + P+ḡP− + P−φ̄P+ + P+ψ̄P+

=

(
Tψ̄ H∗

g

Hφ̄ T̃f̄

)
.

(2.3)
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On the other hand, R∗
H =

(
Tf̄ H∗

g

Hφ̄ Sψ̄

)
. It follows that V RHV = R∗

H holds

if and only if Tf̄ = Tψ̄ and Sf̄ = Sψ̄ hold if and only if f = ψ. �

3. C∗−algebras RL∞

Recall the C∗−algebra RL∞ is defined by

RL∞ = clos

{
n∑

i=1

m∏

j=1

RHij

∣∣∣∣Hij ∈ L∞
2×2(T)

}
.

Let SRL∞ be the closed ideal of RL∞ generated by operators of the form

R(

f1 φ1
g1 ψ1

)R(

f2 φ2
g2 ψ2

) − R(

f1f2 φ
g ψ1ψ2

) (3.1)

wherefi, gi, φi, ψi, g, φ are in L∞(T)(i = 1, 2). Furthermore, the C∗−algebra RL∞

equals the algebra generated by Riesz projection and all multiplication operators
with L∞(T) symbols, i.e.

RL∞ = clos span {P,Mφ|φ ∈ L∞(T)} .
Next,we will establish the symbol map of RL∞ with the normalized reproducing
kernel of H2.

Lemma 3.1. Let Hi =
(
fi φi
gi ψi

)
∈
⋂
p≥1 L

p
2×2(T), i ∈ Z+.

(1) The radial limit

lim
r→1−

〈
RH1

· · ·RHmkrξ, krξ
〉
= f1(ξ) · · ·fm(ξ) a.e. on T.

(2) The radial limit

lim
r→1−

〈
RH1

· · ·RHm z̄k̄rξ, z̄k̄rξ
〉
= ψ1(ξ) · · ·ψm(ξ) a.e. on T.

(3) If g, φ ∈ ∩p≥1L
p(T), then

∏n
i=1RHi −R(

Πni=1
fi φ

g Πni=1ψi

) ∈ SRL∞ .

(4) If T ∈ SRL∞ , then

lim
r→1

〈Tkrξ, krξ〉 = 0,

lim
r→1

〈T z̄k̄rξ, z̄k̄rξ〉 = 0.

(5) The uniform limit of GSIO is also a GSIO.

Proof. (1) We will prove this lemma by induction on m. For m = 1, applying
(2.2), we obtain

〈RH1
krξ, krξ〉 =

∫ 2π

0

f1(e
iθ)|krξ(eiθ)|2

dθ

2π

where |krξ|2 is the Poisson kernel for rξ ∈ D. By Fatou’s theorem,

lim
r→1

〈RH1
krξ, krξ〉 = f1(ξ)

for almost all ξ ∈ T.
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Let m ≥ 2, assume the result true up to n− 1. A simple computation gives

〈RH1
RH2

· · ·RHnkrξ, krξ〉 = 〈RH2
· · ·RHnkrξ, R

∗
H1
krξ〉

=〈RH2
· · ·Rnkrξ, (P+f̄1P+ + P+ḡ1P− + P−φ̄1P+ + P−ψ̄1P−)krξ〉

=〈RH2
· · ·RHnkrξ, (P+f̄1P+ + P−φ̄1P+)krξ〉

=〈RH2
· · ·RHnkrξ, P+f̄1P+krξ〉+ 〈RH2

· · ·RHnkrξ, P−φ̄1P+krξ〉
=〈RH2

· · ·RHnkrξ, P+f̄1krξ〉+ 〈RH2
· · ·RHnkrξ, P−φ̄1krξ〉

=〈R2 · · ·RHnkrξ, P+(f̄1+ + f̄1−)krξ〉+ 〈RH2
· · ·RHnkrξ, P−φ̄1krξ〉

=〈RH2
· · ·RHnkrξ, f̄1+(rξ)krξ + P+f̄1−krξ〉+ 〈RH2

· · ·RHnkrξ, P−φ̄1krξ〉
=f1+(rξ)〈RH2

· · ·RHnkrξ, krξ〉+ 〈RH2
· · ·RHnkrξ, P+f̄1−krξ〉

+ 〈RH2
· · ·RHnkrξ, P−φ̄1krξ〉,

where f1+ = P+f1, f1− = P−f1. Note that

〈RH2
· · ·RHnkrξ, P+f̄1−krξ〉 = 〈f1−P+RH2

· · ·RHnkrξ, krξ〉
=〈f1−P+RH2

· · ·RHnkrξ, P+krξ〉 = 〈P+f1−P+RH2
· · ·RHnkrξ, krξ〉

=〈P+f1−P+(P+f2P+ + P−g2P+ + P+φ2P− + P−ψ2P−)R3 · · ·Rnkrξ, krξ〉
=〈(P+f1−P+f2P+ + P+f1−P+φ2P−)RH3

· · ·RHnkrξ, krξ〉
=〈(P+f1−f2P+ + P+f1−φ2P−)RH3

· · ·RHnkrξ, krξ〉
=〈R(

f2f1− φ2f1−
0 0

)RH3
· · ·RHnkrξ, krξ〉,

|〈RH2
· · ·RHnkrξ, P−φ̄1krξ〉| ≤ ‖RH2

· · ·RHn‖‖krξ‖‖P−φ̄1krξ‖
and

‖P−φ̄1krξ‖
=‖P−(φ̄1+ + φ̄1−)krξ‖
=‖P−φ̄1+krξ‖
=‖(I − P+)(φ̄1+krξ)‖

=

(∫ 2π

0

|φ̄1+(e
iθ)− φ̄1+(rξ)|2|krξ(eiθ)|2

dθ

2π

) 1
2

→ 0, a.e.(r → 1−).

By induction hypothesis, the result holds.
(2)Using the properties of V, we have

〈RH1
· · ·RHm z̄k̄rξ, z̄k̄rξ〉 =〈RH1

· · ·RHmV krξ, V krξ〉
=〈V V krξ, V RH1

· · ·RHmV krξ〉
=〈krξ, V RH1

· · ·RHmV krξ〉.
=〈(V RH1

V ) · · · (V RHmV )krξ, krξ〉.
By (2.3), we have

V RHiV = R(

ψ̄i ḡi
φ̄i f̄i

) 1 ≤ i ≤ m.
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Hence Lemma 3.1 (1) implies the result.
(3) For k = 2, by the definition 4.1,we have

R(

f1 φ1
g1 ψ1

)R(

f2 φ2
g2 ψ2

) −R(

f1f2 φ
g ψ1ψ2

) ∈ SRL∞ .

Assume the result true up to n− 1. Observe that

n∏

i=1

R(

fi φi
gi ψi

) − R(

Πni=1
fi φ

g Πni=1ψi

)

=

n∏

i=1

R(

fi φi
gi ψi

) − R(

f1 φ1
g1 ψ1

)R(

Πni=2fi φ
g Πni=2

ψi

)

+R(

f1 φ1
g1 ψ1

)R(

Πni=1
fi φ

g Πni=1ψi

) − R(

Πni=1
fi φ

g Πni=1ψi

)

=R(

f1 φ1
g1 ψ1

)

( n∏

i=2

R(

fi φi
gi ψi

) − R(

Πni=2fi φ
g Πni=2

ψi

)

︸ ︷︷ ︸
∈SRL∞

)

+R(

f1 φ1
g1 ψ1

)R(

Πni=2fi φ
g Πni=2

ψi

) − R(

Πni=1fi φ
g Πni=1

ψi

)

︸ ︷︷ ︸
∈SRL∞

.

By induction hypothesis,the result holds.
(4)Suppose g, φ ∈ L∞. Linear combinations of operators of the form

RH1
RH2

· · ·RHn−1

(
RHnRHn+1 − R(

fnfn+1 φ
g ψnψn+1

)

)
RHn+2

RHn+3
· · ·RHn+k

=RH1
RH2

· · ·RHn−1
RHnRHn+1

RHn+2
RHn+3

· · ·RHn+k

−RH1
RH2

· · ·RHn−1
R(

fnfn+1 φ
g ψnψn+1

)RHn+2
RHn+3

· · ·RHn+k ,

form a dense subset of SRL∞ . Lemma 3.1 (1)(2) gives the result.
(5) If R is a bounded operator on L2 and limn→∞ ||RHn −R|| = 0, then

lim
n→∞

||P+(RHn − R)P+|| ≤ lim
n→∞

||RHn −R|| = 0,

lim
n→∞

||P−(RHn − R)P+|| ≤ lim
n→∞

||RHn −R|| = 0,

lim
n→∞

||P+(RHn − R)P−|| ≤ lim
n→∞

||RHn −R|| = 0,

lim
n→∞

||P−(RHn − R)P−|| ≤ lim
n→∞

||RHn −R|| = 0.

Since

P+RHnP+|H2 = Tfn ,

P−RHnP+|H2 = Hgn,

P+RHnP−|z̄H2 = H∗
ϕ̄n,

P−RHnP−|z̄H2 = T̃ψn ,
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and

‖Tz̄P+RP+Tz − P+RP+‖
=‖Tz̄P+RP+Tz − Tz̄TfnTz + Tfn − P+RP+‖
≤‖Tz̄P+RP+Tz − Tz̄TfnTz‖+ ‖Tfn − P+RP+‖
≤‖Tz̄(P+RP+ − Tfn)Tz‖+ ‖Tfn − P+RP+‖
≤‖Tz̄‖‖P+RP+ − Tfn‖‖Tz‖+ ‖Tfn − P+RP+‖ → 0 (n→ ∞).

it follows that Tz̄P+RP+Tz = P+RP+.We have P+RP+|H2 is a Toeplitz operator,
because an operator T is a Toeplitz operator if and only if Tz̄TTz = T [5, Theorem
6]. Moreover,

‖P−RP+Tz − SzP+RP+‖
=‖P−RP+Tz − P−RHnP+Tz + SzP−RHnP+ − SzP+RP+‖
≤‖P−RP+Tz − P−RHnP+Tz‖+ ‖SzP−RHnP+ − SzP+RP+‖
≤‖P−RP+ − P−RHnP+‖‖Tz‖+ ‖Sz‖‖P−RnP+ − P+RP+‖

shows that P−RP+Tz = SzP+RP+. Since an operator H is a Hankel operator
if and only if HTz = T̃zH [26, Theorem 1.8], we have P−RP+|H2 is a Hankel
operator. Similary, P+RP−|z̄H2 is the adjoint of a Hankel operator. By V TψV =

T̃ψ̄, then P−RHnP−|z̄H2 is a dual Toeplitz operator. Hence R is a GSIO. �

Theorem 3.2. The sequence

0 −→ SRL∞ −→ RL∞ −→ L∞
2 (T) −→ 0

is a short exact sequence; that is, the quotient algebraRL∞/SRL∞ is *-isometrically
isomorphic to L∞ ⊕ L∞.

Proof. Linear combinations of operators of the form
∏m

j=1R
(

fi φi
gi ψi

) span a dense

subset of RL∞ , compute
m∏

j=1

R(

fi φi
gi ψi

) = R(

Πmi=1fi 0
0 Πmi=1

ψi

) +

m∏

j=1

R(

fi φi
gi ψi

) −R(

Πmi=1fi 0
0 Πmi=1

ψi

).

︸ ︷︷ ︸
∈SRL∞(ByLemma3.1(3))

This shows that operators of the form

T = R(

f 0
0 ψ

) + E0, f, ψ ∈ L∞, E0 ∈ SRL∞ .

form a dense subset of RL∞ . Therefore, for every operator T in RL∞ , there exists
a sequence of operators

Tn = R(

fn 0
0 ψn

) + En, En ∈ SRL∞

such that limn→∞ ||Tn − T || = 0. By Lemma 3.1(1)and(4), we have

fn(ξ) = lim
r→1−

〈Tnkrξ, krξ〉.
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and

|fn(ξ)− fm(ξ)| ≤ ‖Tn − Tm‖. (3.2)

So {fn(ξ)} is a Cauchy sequence. Define

f(ξ) , lim
n→∞

fn(ξ).

we then have

| lim
r→1−

〈Tkrξ, krξ〉 − f(ξ) |

=| lim
r→1−

〈Tkrξ, krξ〉 − lim
r→1−

〈Tnkrξ, krξ〉+ lim
r→1−

〈Tnkrξ, krξ〉 − fn(ξ) + fn(ξ)− f(ξ)|

≤ | lim
r→1−

〈Tkrξ, krξ〉 − lim
r→1−

〈Tnkrξ, krξ〉 | + | fn(ξ)− f(ξ) |

≤‖T − Tn‖+ | fn(ξ)− f(ξ) |
and it follows that

lim
r→1−

〈Tkrξ, krξ〉 = f(ξ).

Similarly, define

ψ(ξ) , lim
n→∞

ψn(ξ),

we have

lim
r→1−

〈T z̄k̄rξ, z̄k̄rξ〉 = ψ(ξ).

Using(3.2), limn→∞ ‖fn − f‖∞ = 0. Similarly, limn→∞ ‖ψn − ψ‖∞ = 0. Thus

‖R(

fn−f 0
0 ψn−ψ

)‖ ≤ ‖fn − f‖+ ‖ψn − ψ‖ → 0 (n→ ∞).

Let E = T − R(

f 0
0 ψ

), we have limn→∞ ‖En − E‖ = 0, since SRL∞ is closed,

E ∈ SRL∞ . It follows that T have the following form

T = R(

f 0
0 ψ

) + E, f, ψ ∈ L∞(T), E ∈ SRL∞ .

Define the map ρ : RL∞ → L∞
2 (T) by

ρ(T )(ξ) =

(
lim
r→1−

〈Tkrξ, krξ〉, lim
r→1−

〈T z̄k̄rξ, z̄k̄rξ〉
)
. (3.3)

Recall the norm of L∞
2 (T), ‖(a, b)‖ = max{‖a‖∞, ‖b‖∞}. Clearly, ‖ρ(T )‖ ≤ ‖T‖.

The map ρ is linear,contractive, and preserves conjugation. Moreover,

ρ(T ) = (f, ψ).

If A1, A2 ∈ RL∞ , and

A1 = R(

f1 0
0 ψ1

) + E1, A2 =R(

f2 0
0 ψ2

) + E2, E1, E2 ∈ SRL∞ ,

then

A1A2 = R(

f1 0
0 ψ1

)R(

f2 0
0 ψ2

) +R(

f1 0
0 ψ1

)E2 + E1R(

f2 0
0 ψ2

) + E1E2

︸ ︷︷ ︸
∈SRL∞

.
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Using Lemma 3.1(1) and (4), we have

lim
r→1−

〈A1A2krξ, krξ〉 = lim
r→1−

〈R(

f1 0
0 ψ1

)R(

f2 0
0 ψ2

)krξ, krξ〉

= lim
r→1−

〈R(

f1f2 0
0 ψ1ψ2

)krξ, krξ〉

=f1(ξ) · f2(ξ)
= lim
r→1−

〈R(

f1 0
0 ψ1

)krξ, krξ〉 · lim
r→1−

〈R(

f2 0
0 ψ2

)krξ, krξ〉

= lim
r→1−

〈A1krξ, krξ〉 · lim
r→1−

〈A2krξ, krξ〉 a.e. on T.

Similarly,

lim
r→1−

〈A1A2z̄k̄rξ, z̄k̄rξ〉 = lim
r→1−

〈A1z̄k̄rξ, z̄k̄rξ〉 · lim
r→1−

〈A2z̄k̄rξ, z̄k̄rξ〉 a.e. on T.

Since the algebraic operations of L∞
2 (T) are all performed coordinated-wise, we

have ρ is multiplicative.
By Lemma 3.1(4), we have SRL∞ ⊆ ker ρ. For every T = R(f, 0, 0, ψ) + E ∈

ker ρ, thus, f = ψ = 0. Hence SRL∞ = ker ρ.
We define the map

ρ̃ : RL∞/SRL∞ −→ L∞
2 (T),

R(

f 0
0 ψ

) +SRL∞ 7−→ (f, ψ).

Hence, ρ̃ is a C∗-isomorphism. �

Corollary 3.3. If T ∈ RL∞ , then ρ(T ∗T − TT ∗) = (0, 0).

Example 3.4. In fact, RL∞ is a proper subalgebra of B(L2(T)). We make some
modification to [10, Example 4]. Let T be the operator defined by

Tzn =z2n+1, n ∈ Z.

Note that

T ∗zn =

{
z
n−1

2 , if n is odd;
0, if n is even.

(3.4)

and

(T ∗T − TT ∗)zn =

{
0, if n is odd;
zn, if n is even.

Hence T ∗T − TT ∗ is the orthogonal projeciton onto span{z2n}n∈Z.

〈(T ∗T − TT ∗)krξ, krξ〉 =(1− r2)〈(T ∗T − TT ∗)

∞∑

i=0

(rξ̄)izi,

∞∑

j=0

(rξ̄)jzj〉

=(1− r2)〈
∞∑

n=0

(rξ̄)2nz2n,

∞∑

m=0

(rξ̄)2mz2m〉

=〈k(rξ̄)2 , k(rξ̄)2〉

=
1− r2

1− r4
=

1

1 + r2
→ 1

2
(r → 1−).
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By Corollary 3.3, we have T /∈ RL∞ .

4. C∗−algebras RC(T) and RQC

Let C(T) denote the set of continuous complex-valued functions on T, and
C(T) is a closed subalgebra of L∞. The set of all compact operators on L2(T) is
denoted by K(L2(T)).

Lemma 4.1. The C∗−algebra RC(T) is irreducible. Furthermore, LC(L2(T)) ⊂
RC(T).

Proof. If RC(T) is reducible, then there exists a nontrivial orthogonal projection Q
which commutes with each element of RC(T). In particular, QR(

z z
z z

) = R(

z z
z z

)Q

and R(

z z
z z

) is the bilateral shift. Since the commutant of the bilateral shift is

the set of all multiplications[18, 146], it follows that Q = Mχ∆
, where χ∆ is a

characteristic function. Note that

R(

z 0
0 0

)Q =QR(

z 0
0 0

),

(
Tz 0
0 0

)(
Tχ∆

H∗
χ∆

Hχ∆
T̃χ∆

)
=

(
Tz 0
0 0

)(
Tχ∆

H∗
χ∆

Hχ∆
T̃χ∆

)
,

(
TzTχ∆

TzH
∗
χ∆

0 0

)
=

(
Tχ∆

Tz 0
Tχ∆

Hχ∆
0

)
,

implies

TzTχ∆
= Tχ∆

Tz.

Since the commutant of Tz is the set of all analytic Toeplitz operators on H
2 [18,

147], it follows that χ∆ is 0 or 1, and Q = I or Q = 0. This contradicts our
assumption. Therefore RC(T) is irreducible.

Applying the formula I − TzTz̄ = 1⊗ 1 yields

R(

1 0
0 0

) − R(

z 0
0 0

)R(

z̄ 0
0 0

) = 1⊗ 1.

where 1⊗1 is an operator of rank 1, thus LC(L2(T))∩RC(T) 6= {0}. By [9, 5.39],
we have LC(L2(T)) ⊂ RC(T). �

The algebra QC , (H∞ + C(T)) ∩ (H∞ + C(T)) is a closed subalgebra of
L∞(T) which properly contains C(T). Let SRQC(resp. SRC(T)) be the closed
ideal of RQC(resp. RC(T)) generated by operators of the form

R(

f1 φ1
g1 ψ1

)R(

f2 φ2
g2 ψ2

) − R(

f1f2 φ
g ψ1ψ2

) (4.1)

wherefi, gi, φi, ψi, g, φ are in QC(resp. C(T))(i = 1, 2).

Lemma 4.2. SRC(T) = K(L2(T)), and SRQC = K(L2(T)).
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Proof. If fi, gi, φi, ψi, g, φ ∈ C(T)(resp. QC)(i=1,2), an easy computation shows
that

R(

f1 φ1
g1 ψ1

)R(

f2 φ2
g2 ψ2

) −R(

f1f2 φ
g ψ1ψ2

)

=

(
Tf1Tf2 +H∗

φ̄1
Hg2 − Tf1f2 Tf1H

∗
φ̄2

+H∗
φ̄1
T̃ψ2

−H∗
φ̄

Hg1Tf2 + T̃ψ1
Hg2 −Hg Hg1H

∗
φ̄2

+ T̃ψ1
T̃ψ2

− T̃ψ1ψ2

)

=

(
H∗
φ̄1
Hg2 −H∗

f̄1
Hf2 Tf1H

∗
φ̄2

+H∗
φ̄1
T̃ψ2

−H∗
φ̄

Hg1Tf2 + T̃ψ1
Hg2 −Hg Hg1H

∗
φ̄2

−Hψ1
H∗
ψ̄2

)
.

The second equality follows form the formulas Tab − TaTb = H∗
āHb and T̃ab −

T̃aT̃b = HaH
∗
b̄
. Since the Hankel operator Hϕ is compact if and only if ϕ ∈

H∞ + C(T) by[26, p.27], it follows that

R(

f1 φ1
g1 ψ1

)R(

f2 φ2
g2 ψ2

) − R(

f1f2 φ
g ψ1ψ2

)

is compact, and SRC(T) ⊂ K(L2(T))(resp.SRQC) ⊂ K(L2(T)). On the other
hand, LC(L2(T)) contains no proper closed ideal. Hence, SRC(T) = LC(L2(T))
(resp.SRQC) = K(L2(T))). �

Corollary 4.3. For every T ∈ RL∞ , we have

‖ρ(T )‖ ≤ ‖T‖e.

In particular, if H =
(
f φ

g f

)
, then

max{‖f‖∞, ‖ψ‖∞} ≤ ‖RH‖e.

Proof. If T ∈ RL∞ , by Theorem 3.2, we have

inf
A∈SRL∞

‖T + A‖ = ‖ρ(T )‖.

On the other hand, K ⊂ SRL∞ by Lemma 4.2. Therefore,

inf
A∈SRL∞

‖T + A‖ ≤ inf
K∈K(L2(T))

‖T +K‖ = ‖T‖e.

Use Theorem 3.2 again,

‖ρ(RH)‖ = max{‖f‖∞, ‖ψ‖∞}.
�

If T is a bounded linear operator on Hilbert spaceH, σe(T ) denotes the essential
spectrum of T. For ϕ ∈ L∞,Ranessϕ denotes the essential range of ϕ. If E is
a subset of complex plane C, the convex hull of E will be denoted by coE.
Combining Theorem 3.2 and Lemma 4.2, we get the following result.

Corollary 4.4. There exists a *-homomorphism ζ from the quotient algebra
RL∞/K onto L∞

2 (T) such that the diagram
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RL∞

π
//

ρ
##
❍
❍
❍
❍
❍
❍
❍
❍
❍

RL∞/K(L2(T))

ζ
ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

L∞
2 (T)

commutes. Moreover,

(1) For every T ∈ RL∞ , if T is Fredholm, then ρ(T ) is invertible in L∞
2 (T);

(2) Ranessf ∪ Ranessψ ⊂ σe(RH).

Recall the spectral inclusion theorem of Toeplitz operator[9],

Ranessf ⊂ σe(Tf ) ⊂ σ(Tf ) ⊂ coRanessf. (4.2)

Corollary 4.4 give the first inclusion similar to (4.2), the next theorem will show
the third inclusion similar to (4.2).

Proposition 4.5. Let H =
(
f1 φ

g f2

)
∈ L2×2

∞ (T). If we define

Gi = coRanessfi ∪ {λ /∈ Ranessfi : di(λ) ≤ δ‖(fi − λ)−1‖∞}
where

di(λ) = (1− dist((fi − λ)/|fi − λ|, H∞)2)1/2, δ = min{dist(φ̄, H∞), dist(g,H∞)}
for n = 1, 2, then

σ(RH) ⊂ G1 ∪ G2.

Proof. Suppose λ ∈ ρ(Tf1) ∩ ρ(T̃f2), we have

RH − λIL2 =

(
Tf1−λ H∗

φ̄

Hg T̃f2−λ

)

=

(
Tf1−λ 0

0 T̃f2−λ

)
+

(
0 H∗

φ̄

Hg 0

)

=

(
Tf1−λ 0

0 T̃f2−λ

)(
IL2 +

(
0 T−1

f1−λ
H∗
φ̄

T̃−1
f2−λ

Hg 0

))
.

If ‖Hφ̄‖ < ‖T−1
f1−λ

‖−1 and ‖Hg‖ < ‖T̃−1
f2−λ

‖−1, then
∥∥∥∥
(

0 T−1
f1−λ

H∗
φ̄

T̃−1
f2−λ

Hg 0

)∥∥∥∥ = max{‖T−1
f1−λ

H∗
φ̄‖, ‖T̃−1

f2−λ
Hg‖} < 1,

and λ ∈ ρ(RH). This mean that

{λ ∈ ρ(Tf1) : ‖Hφ̄‖ < ‖T−1
f1−λ

‖−1} ∩ {λ ∈ ρ(T̃f2) : ‖Hg‖ < ‖T̃−1
f2−λ

‖−1} ⊂ ρ(RH)

or

σ(RH) ⊂σ(Tf1) ∪ {λ ∈ ρ(Tf1) : ‖T−1
f1−λ

‖−1 ≤ ‖Hφ̄‖}
∪ σ(T̃f2) ∪ {λ ∈ ρ(T̃f2) : ‖T̃−1

f2−λ
‖−1 ≤ ‖Hg‖}.

(4.3)
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Repeat the above reasoning for R∗
H , we have

σ(R∗
H) ⊂σ(Tf̄1) ∪ {λ ∈ ρ(Tf̄1) : ‖T−1

f̄1−λ
‖−1 ≤ ‖Hg‖}

∪ σ(T̃f̄2) ∪ {λ ∈ ρ(T̃f̄2) : ‖T̃−1
f̄2−λ

‖−1 ≤ ‖Hφ̄‖}.
Taking conjugates, we get

σ(RH) ⊂σ(Tf1) ∪ {λ̄ ∈ ρ(Tf̄1) : ‖T−1
f̄1−λ̄

‖−1 ≤ ‖Hg‖}
∪ σ(T̃f̄2) ∪ {λ̄ ∈ ρ(T̃f̄2) : ‖T̃−1

f̄2−λ̄
‖−1 ≤ ‖Hφ̄‖}.

Since ‖T−1
f̄1−λ̄

‖ = ‖(T−1
f1−λ

)∗‖ = ‖(T−1
f1−λ

)‖ and ‖T̃−1
f̄2−λ̄

‖ = ‖(T̃−1
f2−λ

)∗‖ = ‖(T̃−1
f2−λ

)‖,
it follows that

σ(RH) ⊂σ(Tf1) ∪ {λ ∈ ρ(Tf1) : ‖T−1
f1−λ

‖−1 ≤ ‖Hg‖}
∪ σ(T̃f2) ∪ {λ ∈ ρ(T̃f2) : ‖T̃−1

f2−λ
‖−1 ≤ ‖Hφ̄‖}.

(4.4)

According the norm of Hankel operator ([26, Theorem 1.4]), we have ‖Hφ̄‖ =

dist(φ̄, H∞) and ‖Hg‖ = dist(g,H∞). Let δ = min{dist(φ̄, H∞), dist(g,H∞)}.
We combine (4.3) and (4.4). Thus

σ(RH) ⊂σ(Tf1) ∪ {λ ∈ ρ(Tf1) : ‖T−1
f1−λ

‖−1 ≤ δ}
∩ σ(T̃f2) ∩ {λ ∈ ρ(T̃f2) : ‖T̃−1

f2−λ
‖−1 ≤ δ‖}.

Since T̃f2 and T
∗
f2

are anti-unitary, σ(T̃f2) = σ(Tf2) and ‖T̃−1
f2−λ

‖ = ‖T−1
f2−λ

‖. Using
the (4.2) and norm estimation of the inverse of Toeplitz operator[25, page.125.]

(1− dist(ϕ/|ϕ|, H∞)2)1/2

‖ϕ−1‖ ≤ ‖T−1
ϕ ‖−1,

we have

{λ ∈ ρ(Tf1) : ‖T−1
f1−λ

‖−1 ≤ δ} ⊂{λ /∈ Ranessf1 : d1(λ) ≤ δ‖(f1 − λ)−1‖∞},
{λ ∈ ρ(Tf2) : ‖T−1

f2−λ
‖−1 ≤ δ} ⊂{λ /∈ Ranessf2 : d2(λ) ≤ δ‖(f2 − λ)−1‖∞},
σ(Tf1) ⊂coRanessf1,

and σ(Tf2) ⊂coRanessf2,
where di(λ) = (1− dist((fi − λ)/|fi − λ|, H∞)2)1/2, i = 1, 2. �

Theorem 4.6. The sequence

0 −→ K(L2(T)) −→ RC(T) −→ C2(T) −→ 0

is a short exact sequence; that is, the quotient algebra RC(T)/K is *-isometrically
isomorphic to C2(T).

Proof. Using the proof of Theorem 3.2 and Lemma 4.2 , for every operator T ∈
RC(T) have the following form

T = R(

f 0
0 ψ

) +K, f, ψ ∈ C(T), K ∈ K. (4.5)

The map ρ̃ defined in (3.4) is *-isometrically isomorphic from RC(T)/K(L2(T)) to
C2(T). �
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Remark 4.7. In fact, the previous theorem can be extend to the algebra QC. The
sequence

0 −→ K(L2(T)) −→ RQC −→ QC2 −→ 0

is a short exact sequence. The proof is similar in spirit to Theorem 4.6.

Corollary 4.8. For every T ∈ RQC , we have

‖ρ(T )‖ = ‖T‖e.

In particular, if H =
(
f φ

g f

)
∈ QC2×2, then

max{‖f‖∞, ‖ψ‖∞} = ‖RH‖e.

Corollary 4.9. If H =
(
f φ

g f

)
∈ QC2×2, then σe(RH) = Ranessf ∪ Ranessψ.

Moreover, RH is Fredholm if and only if f and ψ are invertible in QC.

Remark 4.10. If H =
(
f φ

g f

)
∈ C(T)2×2, then σe(RH) = f(T) ∪ ψ(T).

Definition 4.11. Let f is an invertible function in C(T), the winding number of
f about the origin is defined by

♯(f) =
1

2πi

∫

f(T)

dz

z
.

Definition 4.12. Let T be a bounded linear operator on Hilbert space H, a
bounded linear operator B onH is called the regularizer of T if BT−I and TB−I
are compact. If T is Fredholm, the difference indT = dim ker T − dimker T ∗ is
call the index of T.

Corollary 4.13. If T is Fredholm operator in RC(T), then

(1) R(

f
−1

0
0

0 ψ
−1

0

) is a regularizer of T ;

(2) ind(T ) = ♯(ψ0)− ♯(f0),

where f0(ξ) = limr→1−〈Tkrξ, krξ〉, ψ0(ξ) = limr→1−〈T z̄k̄rξ, z̄k̄rξ〉.
In particular, if H =

(
f φ

g ψ

)
∈ C(T)2×2 and RH is a Fredholm operator, then

ind(RH) = ♯(ψ)− ♯(f).

Proof. If T ∈ RC(T), by the formula (4.5), we have

T = R(

f0 0
0 ψ0

) +K, f0, ψ0 ∈ C(T), K ∈ K(L2(T)).
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where f0(ξ) = limr→1−〈Tkrξ, krξ〉, ψ0(ξ) = limr→1−〈T z̄k̄rξ, z̄k̄rξ〉, and hence f and
ψ are invertible in C(T) by the remark 4.10. A calculation shows that

R(

f
−1

0
0

0 ψ
−1

0

)T =R(

f
−1

0
0

0 ψ
−1

0

)R(

f0 0
0 ψ0

) +R(

f0 0
0 ψ0

)K

=

(
Tf−1

0
0

0 T̃ψ−1
0

)(
Tf0 0

0 T̃ψ0

)
+R(

f0 0
0 ψ0

)K

=

(
Tf−1

0
Tf0 0

0 T̃ψ−1
0
T̃ψ0

)
+R(

f0 0
0 ψ0

)K

=

(
IH2 −H∗

f−1
0

Hf0 0

0 Iz̄H2 −Hψ−1
0
H∗
ψ̄0

)
+R(

f0 0
0 ψ0

)K

=I +

(
−H∗

f−1
0

Hf0 0

0 −Hψ−1
0
H∗
ψ̄0

)
+R(

f0 0
0 ψ0

)K.

Since the Hankel operator Hϕ is compact if and only if ϕ ∈ H∞ + C(T) by [26,
p.27], we have H∗

f−1
0

Hf0 andHψ−1
0
H∗
ψ̄0

are compact, so R(

f
−1

0
0

0 ψ
−1

0

)T−I is compact,

similarly, TR(

f
−1

0
0

0 ψ
−1

0

) − I is compact.

Since the Fredholm index is stable under compact operator perturbations[2,
p.98], it follows that

ind(T ) = ind(R(

f0 0
0 ψ0

) +K)

= indR(

f0 0
0 ψ0

)

= ind

(
Tf0 0

0 T̃ψ0

)

= ind Tf0 + ind T̃ψ0
.

Note that

ind T̃ψ0
= dimker(T̃ψ0

)− dimker(T̃ ∗
ψ0
)

= dimker(V T ∗
ψ0
V )− dimker(V Tψ0

V )

= dimker(T ∗
ψ0
)− dimker(Tψ0

)

= −ind Tψ0
.

By the theorem [9, 7,26], we have ind Tf0 = −♯(f0) and ind T̃ψ0
= ♯(ψ0). Therefore,

ind(T ) = ♯(ψ0)− ♯(f0). �

Corollary 4.14. If H =
(
f φ

g ψ

)
∈ C(T)2×2, then RH is invertible if and only if

the following conditions hold:

(1) f and φ are invertible,
(2) ♯(ψ) = ♯(f), and
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(3) either Ker(RH) = {0} or Ker(R∗
H) = {0}.

Proof. By Corollary 4.4, we have Ranessf ∪ Ranessψ ⊂ σ(RH). Suppose that RH

is invertible, then

(a) f and φ are invertible;
(b) Ker(RH) = {0} and Ker(R∗

H) = {0}.
It follows that ind (RH) = 0. By Corollary 4.13, we have ♯(ψ) = ♯(f);

On the other hand, if RH is Fredholm, then RH is invertible if and only if

(i) ind(RH) = 0;
(ii) either Ker(RH) = {0} or Ker(R∗

H) = {0}.
By Remark 4.10, RH is Fredholm if and only if f and ψ are invertible, hence the
result follows. �

Remark 4.15. There exist some examples showing that both of Ker(RH) and
Ker(R∗

H) are nontrivial. For example, if u and θ are nonconstant inner functions,
then

z̄(H2 ⊖ θH2) ⊆ KerR(

u 0
0 θ

)

and

H2 ⊖ uH2 ⊆ KerR∗
(

u 0
0 θ

).

Let ∆ is a proper subset of T and has positive measure, χ∆ is the characteristic
function of ∆, we have R(

χ∆ χ∆
χ∆ χ∆

) =Mχ∆
and dimkerMχ∆

= dimkerM∗
χ∆

= ∞.

5. invertible and Fredholm of GISO

In this section, we found that GSIOs and singular integral operators with 2×2
matrix symbol are equivalent after extension.

Definition 5.1. [3] Let T and S are bounded operator on Hilbert space H1 and
H2 respectively. The operators T and S are called equivalent after extension,

written T
∗∼ S, if there exist Hilbert spaces Z and W such that T ⊕ IZ and

S ⊕ IW are equivalent operators. This means that there exist invertible bounded
linear operators E and F such that

(
T 0
0 IZ

)
= E

(
S 0
0 IW

)
F.

The relation
∗∼ is reflexive, symmetric and transitive.

Theorem 5.2. [3] If T
⋆∼ S, then T is invertible(Fredholm) if and only if S is

invertible (Fredholm).

Let

A =

(
f 0
g −1

)
, B =

(
ϕ −1
ψ 0

)
,
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where f, g, φ, ψ ∈ L∞(T).Write the Cauchy singular integral operators with 2×2
matrix symbol

AP+ +BP− =

(
f 0
g −1

)(
P+ 0
0 P+

)
+

(
ϕ −1
ψ 0

)(
P− 0
0 P−

)
: L2

2(T) → L2
2(T).

(5.1)

Theorem 5.3. Let H =
(
f φ
g ψ

)
∈ L∞

2×2(T), RH
∗∼ AP+ +BP−.

Proof. Let H1 =
(
g ψ
f φ

)
, an easy computation shows that

(
P+ P−

P− P+

)
(AP+ +BP−)

(
IL2 0
RH1

−IL2

)

=

(
P+ P−

P− P+

)(
fP+ + ϕP− −P−

gP+ + ψP− −P+

)(
IL2 0
RH1

−IL2

)

=

(
P+fP+ + P+φP− + P−gP+ + P−ψP− 0
P−fP+ + P−ψP− + P+gP+ + P+ψP− −IL2

)(
IL2 0
RH1

−IL2

)

=

(
RH 0
RH1

−IL2

)(
IL2 0
RH1

−IL2

)

=

(
RH 0
0 IL2

)
.

The operators

(
P+ P−

P− P+

)
and

(
IL2 0
RH1

−IL2

)
are invertible, and

(
P+ P−

P− P+

)−1

=

(
P+ P−

P− P+

)
,

(
IL2 0
RH1

−IL2

)−1

=

(
IL2 0
RH1

−IL2

)
.

Hence the operators RH and AP+ +BP− are equivalent after extension. �

If f and ψ are invertible, then A and B are invertible and

A−1 =

(
f−1 0
f−1g −1

)
, B−1 =

(
0 ψ−1

−1 φψ−1

)
,

In this case

AP+ +BP−

=B(B−1AP+ + P−)

=B(P+B
−1AP+ + P+B

−1AP+P−B
−1AP+ + P−B

−1AP+ + P−)

=B(P+B
−1AP+(I + P−B

−1AP+) + P−(P−B
−1AP+ + I))

=B(P+B
−1AP+ + P−)(P−B

−1AP+ + I)

where I+P−B
−1AP+ is invertible on , the inverse is I−P−B

−1AP+. This implies

AP+ +BP−∼P+B
−1AP+ + P−. (5.2)
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Moreover, under the decomposition L2
2(T) = H2

2 (T)⊕ (H2(T))⊥2 , we have

P+B
−1AP+ + P− =

(
TB−1A 0

0 I(H2(T))⊥2

)
,

where TB−1A is a block Toeplitz operator on H2
2 (T) and

B−1A =

(
gψ−1 −ψ−1

gφψ−1 − f −φψ−1

)
, (5.3)

detB−1A = −fψ−1. Hence,

P+B
−1AP+ + P−

∗∼ TB−1A. (5.4)

Similarly,

AP+ +BP− = A(P+ + P−A
−1BP−)(P+A

−1BP− + I)

This implies

AP+ +BP−∼P+ + P−A
−1BP−.

and

P+ + P−A
−1BP−

∗∼ JT(A−1B)∗J.

where J(f, f)T = (Jf, Jf)T = (z̄f̄ , z̄f̄)T for f ∈ L2(T).
Recall the invertibility and Fredholm of Toeplitz operators with matrix-symbols

via Wiener-Hopf factorization.

Definition 5.4. A representation of the form F = F−DF+ is called Winer-Hopf
factorization of the invertible matrix function F ∈ L∞

N×N (T) if D = diag(zκj )Nj=1

with κj ∈ Z, and if F− and F+ satisfy the following conditions:

(1) F+, F
−1
+ ∈ H2

N×N(T), F−, F
−1
− ∈ H2

N×N(T),

(2) The operator F−1
+ P+F+ is defined on the linear space of all CN -valued

trigonometric polynomials, can be extended to a bounded operator on
H2
N(T).

Theorem 5.5. [30] Let F ∈ L∞
N×N(T). Then TF is invertible(resp. Fred-

holm) if and only if F admits a Wiener-Hopf factorization.F = F−F+(resp.
F = F−DF+).

If Ta is Fredholm, then

dimKer Ta = −
∑

κj<0

κj, dimCoker Ta =
∑

κj>0

κj.

Theorem 5.6. If H =
(
f φ
g ψ

)
∈ L∞

2×2(T), then RH is invertible (resp. Fredholm)

if and only if f and ψ are invertible in L∞(T) and
(

gψ−1 −ψ−1

gφψ−1 − f −φψ−1

)
admit a

Winer-Hopf factorization F−F+(resp.F−DF+).
If RH is Fredholm, then

dimKerRH = −
∑

kj<0

kj, dimKerR∗
H =

∑

kj>0

kj .
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Proof. If RH is invertible or Fredholm, by Corollary 4.4, we have f and ψ are

invertible in L∞(T). Since the relation
∗∼ is transitive, combining Theorem 5.3,

(5.2) and (5.4), it follows that RH
∗∼ TB−1A. Using Theorem 5.2 and Theorem

5.5, we get the result. �

6. Applications

6.1. The Spectral Inclusion Theorem. In the theory of Toeplitz operator,
the spectrum of Tφ always includes the essential range of φ. Corollary 4.4 shows
that

Ranessf ∪ Ranessψ ⊂ σ(R(f, g, φ, ψ)).

Hence, for the bounded singular integral operator Rα,β , we have

Ranessα ∪ Ranessβ ⊂ σ(Rα,β),

for the bounded dual truncated Toeplitz operator Dφ, we have

Ranessφ ⊂ σ(Dφ);

for the bounded Foguel-Hankel operator

(
T ∗
z X
0 Tz

)
, we have

T ⊂ σ

(
T ∗
z X
0 S

)
.

Moreover, for every constant λ, we have

λI −
(
T ∗
z X
0 Tz

)
=

(
I 0
0 λI − Tz

)(
I −X
0 I

)(
λI − T ∗

z 0
0 I

)
.

Note that
(
I −X
0 I

)

is always invertible and

(
I −X
0 I

)−1

=

(
I X
0 I

)
.

If both of λI − Tz and λI − T ∗
z are invertible, then λI −

(
T ∗
z X
0 Tz

)
is invertible.

Therefore,

σ

(
T ∗
z X
0 Tz

)
⊂ σ(Tz) = D.
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6.2. Essential spectrum. The essential spectrum of Toeplitz operator with con-
tinous symbol equals the essential range of the symbol. Corollary 4.9 shows that
If f, g, φ, ψ ∈ C(T), then

σe(R(f, g, φ, ψ)) = f(T) ∪ ψ(T).
Hence, for bounded singular integral operator, if α, β ∈ C(T), then

σe(Rα,β) = α(T) ∪ β(T).
For bounded dual truncated Toeplitz operator, if ϕ ∈ C(T), then

σe(Dϕ) = ϕ(T).

For bounded Foguel-Hankel operator, if X = Γφ and φ ∈ H∞ + C(T), then

σe

(
T ∗
z X
0 Tz

)
= T.

6.3. Special cases. We consider one of operators Tf and Sψ is invertible. In
particular, suppose Sψ = I, Suppose that λ /∈ Ranessf ∪ {1}. Now

(
Tf−λ H∗

φ̄

Hg I − λ

)
=

(
I H∗

φ̄

0 1
1−λ

I

)(
Tf−λ −H∗

φ̄
Hg 0

0 I

)(
I 0

(1− λ)Hg I

)
.

Since

(
I H∗

φ̄

0 1
1−λ

I

)
and

(
I 0

(1− λ)Hg I

)
are always invertible, or

(
I H∗

φ̄

0 1
1−λ

I

)−1

=

(
I −(1 − λ)H∗

φ̄

0 (1− λ)I

)
and

(
I 0

(1− λ)Hg I

)−1

=

(
I 0

−(1 − λ)Hg I

)
, it follows that

(
Tf−λ H∗

φ̄

Hg I − λ

)

is invertible if and only if (
Tf−λ −H∗

φ̄
Hg 0

0 I

)

is invertible. Therefore, we have

σ(R(f, g, φ, 1)) = σ(Tf −H∗
φ̄Hg) ∪ Ranessf ∪ {1}.

Since Tf −H∗
φ̄
Hg = Tf − Tφg + TφTg, we have

lim
r→1−

〈Tf −H∗
φ̄Hgkrξ, krξ〉 = f(ξ) a.e. on T.

By Corollary 4.4, we have Ranessf ⊂ σ(Tf −H∗
φ̄
Hg). Hence,

σ(R(f, g, φ, 1)) = σ(Tf −H∗
φ̄Hg) ∪ {1}.

Similarly,

σ(R(1, g, φ, ψ)) = σ(Sψ −HgH
∗
φ̄) ∪ {1}.
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[10] M. Englǐs, Toeplitz operators and the Berezin transform on H2, vol. 223/224, 1995, 171–

204. Special issue honoring Miroslav Fiedler and Vlastimil Pták.
[11] S. R. Garcia, M. Putinar, Complex symmetric operators and applications, Transactions of

the American Mathematical Society 358 (2006) 1285–1315.
[12] J. B. Garnett, Bounded analytic functions, Graduate Texts in Mathematics, vol. 236,

Springer, New York, 1st ed., 2007.
[13] I. Gohberg, N. Krupnik, Algebra generated by one-dimensional singular integral operators

with piecewise continuous coefficients, Functional Analysis and Its Applications 4 (1970)
193–201.

[14] I. Gohberg, N. Krupnik, One-dimensional linear singular integral equations. Vol. II, Op-

erator Theory: Advances and Applications, vol. 54, Birkhäuser Verlag, Basel, 1992.
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