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ANOSOV FLOWS AND DYNAMICAL ZETA FUNCTIONS

(ERRATA)

PAOLO GIULIETTI, CARLANGELO LIVERANI, AND MARK POLLICOTT

Abstract. This errata fixes a mistake in the part of [1] which proves a spectral
gap for contact Anosov flows with respect to the measure of maximal entropy

([1, Section 7]). However, the first part of [1], in which it is proved that the
Ruelle zeta function is meromorphic, is unaffected.

1. the mistake

Equation [1, Equation (7.14)] is wrong, since it does not take into account the
factor ezτW ◦Hβ,i,W from [1, Equation (7.10)] and estimates incorrectly the norm of
ϕk,β,i ◦Hβ,i,W . The correct version of [1, Equation (7.14)] is (see (6) below):
let ds be the dimension of the stable manifolds, then for each η ∈ (0, 1),1

(1) ‖ezτW ◦Hβ,i,W ĝk,β,i,W ‖
Γds,̟′

c (W̃β,i)
≤ C#(r

−1 + |z|) (kr)
n−1e−akr

(n− 1)!
‖g‖Γds,1+η

c (W ).

Unfortunately, this weaker estimate does not suffice to carry out the proof of [1,
Proposition 7.5] as presented in [1] (i.e. using [1, Equation (7.16)]).

2. Correction

Nevertheless, [1, Theorem 2.4] holds under a stronger assumption (namely some
homogeneity), as we shall show here. In particular, it applies to small perturbations
of constant curvature geodesic flows in any dimension. To simplify the argument we
did not try to optimise the estimate of the size of the perturbation. Before stating
the correct results we need to recall and introduce some notation.

Let C0, c0 > 0, and λ+(x, t), λ−(x, t) > 0 be such that, for each x ∈M and t > 0,

supv∈Es(x)
‖Dxφ−tv‖

‖v‖ ≤ C0e
λ+(x,t) and infv∈Es(x)

‖Dxφ−tv‖
‖v‖ ≥ c0e

λ−(x,t). Also, let

λ+(t) = sup
x∈M

λ+(x, t) ; λ−(t) = inf
x∈M

λ−(x, t).

and, for some n0 large enough, λ+ = supt≥n0

λ+(t)
t , λ− = inft≥n0

λ−(t)
t . In [1] we

use the notation ˆ̟ = 2λ−

λ+
, ̟′ = min{1, ˆ̟ }.

Next, we introduce a parameter ϑ > 0 which measures the homogeneity. Let
Jsφt be the stable Jacobian of the flow. Given n0 ∈ N, we assume, for all t ≥ n0,

(1)

[
sup
x∈M

ln Jsφt(x)− inf
x∈M

ln Jsφt(x)

]
≤ ϑλ−(t)ds.

With this notation we can state a correct version of [1, Theorem 2.4].

Date: March 10, 2022.
We thank Sebastién Goüezel for pointing out the mistake and for very helpful discussions.
1See below for the definition of λ+, λ−,̟′.

1

http://arxiv.org/abs/2203.04917v1


2 PAOLO GIULIETTI, CARLANGELO LIVERANI, AND MARK POLLICOTT

Theorem 1. For any Cr, r > 2, contact flow with
√
5− 1

2
< ˆ̟ ; ϑ <

(̟′)2 +̟′ − 1

2ds(1 +̟′)

there exists τ∗ > 0 such that the Ruelle zeta function is analytic in {z ∈ C : ℜ(z) ≥
htop(φ1)− τ∗} apart from a simple pole at z = htop(φ1).

The rest of this note contains the proof of Theorem 1.
First, it suffices to prove [1, Proposition 7.5] under the hypotheses of Theorem 1,

since the derivation of [1, Theorem 2.4] from [1, Proposition 7.5], holds unchanged.
By [1, Remark 7.1] we can restrict the discussion to ds = (d− 1)/2 forms. Since

the first inequality in [1, Proposition 7.5] is correct, we need only prove the second.
Also [1, equation (7.6)] is correct, hence it suffices to estimate the ‖ · ‖1+η norm

of some power of R̂n(z). Indeed, by [1, equation (7.7) and the previous displayed
equation], for each z = a+ ib, a ≥ σds , and η ∈ [0, 1],

∥∥∥R̂n(z)
3h
∥∥∥
s

η
≤ Cη

(a− htop(φ1) + λη)n(a− htop(φ1))2n
‖h‖sη

+
Cη

(a− htop(φ1))n

∥∥∥R̂n(z)
2h
∥∥∥
s

1+η
.

(2)

We will use the above equation instead of [1, equation (7.7)].

Remark 2. The estimate (2) can be restricted to forms proportional to the vol-

ume on the stable manifold. More precisely, given a stable manifold W , if {vsi }ds

i=1,

{vui }ds

i=1 are a base for the tangent space of W and the unstable foliation, respec-

tively, and {dxi}2ds+1
i=1 = {dxsi , dxui }ds

i=1 ∪ {dx0} the dual base (dx0 being the flow
direction), then for all g not proportional to ws := dxs1 ∧ · · · ∧ dxsds

we have
∣∣∣∣
∫

W

〈g, R̂n(z)
3h〉
∣∣∣∣ ≤

Cη

(a− htop(φ1) + λη)3n
‖h‖sη ,

which yields already the required estimate. Hence, from now on, by Γds,α
c (W̃+),

defined in [1, Section 3.2], we mean the subset of forms proportional to ws.

Remark 3. If v ∈ Vu,2 then the Lie derivative Lv acting on the above ds forms is
well defined even for Hölder vector fields. Indeed, the pushforward by the flow gen-
erated by v yields a quantity proportional to the Jacobian of the unstable holonomy
which is well defined, together with its derivative along the unstable direction.

Next, we must estimate the right hand side of (2): let g ∈ Γ̂ds,1+η
c and h ∈ Ωds

0,1,
∫

Wα,G

〈g, R̂n(z)
2h〉 =

∑

k,β,i

∑

W∈Wk,β,i

∫

W̃

〈ĝk,β,i, R̂n(z)h〉

ĝk,β,i = ϕk,β,i
(kr + τW )n−1JWφkr ◦ φτW

ez(kr+τW )(n− 1)!
∗ φ∗kr+τW ∗ g

ϕk,β,i(x) = ψβ(x)Φr,i(Θβ(x))p(r
−1τW (x))‖V (x)‖−1.

(3)

2These are the unstable vector fields, see [1, Definition 7.2] for a precise definition.
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Recall that τW : W̃
.
= ∪t∈[−2r,2r]φtW → R is defined by φ−τW (x)(x) ∈W .3

Next, as in [1, Equation (7.13)], we want to “project” ĝk,β,i from W̃ to some

preferred manifold W̃k,β,i. To this end, we need a refinement of [1, Lemma 7.3].

Lemma 4. For each α ∈ A, W,W ′ ∈ Σα such that HW,W ′(W̃ ) ⊂ W̃ ′
+, ϕ ∈

Γds,q
c (W̃ ), q ∈ [0, 1], supported in a ball of size r, there exists ϕ̂ ∈ Γds,q̟

′

c (W̃ ′
+),

‖ϕ̂‖
Γds,q̟′

c (W̃ ′

+
)
≤ C#‖ϕ‖Γds,q

c (W̃ ), such that for all h ∈ Ωds
r we have

∣∣∣∣∣

∫

W̃

〈ϕ, h〉 −
∫

W̃ ′

+

〈ϕ̂, h〉
∣∣∣∣∣ ≤ C#rd(W,W

′) ‖h‖u ‖ϕ‖
Γds,0
c (W̃ )

.

Proof. Working in appropriate coordinates we can write W̃ ′
+ as {(ξ, 0, τ)}(ξ,τ)∈Rds+1 ,

and W̃ as {(ξ, e, τ)}(ξ,τ)∈Rds+1 for e = d(W,W ′)e1.
We can describe the unstable foliation by U(ξ, η, τ) = (U(ξ, η), η,Υ(ξ, η) + τ),

U(ξ, 0, τ) = (ξ, 0, τ). Then the intersection between W̃υ = {(ξ, υe, τ)}(ξ,τ)∈Rds+1

and the fiber U(ξ, ·, τ) gives the holonomy Hυ(ξ, τ) = (U(ξ, υe), υe,Υ(ξ, υe) + τ).
As mentioned in Remark 2, ϕ = ϕ̄ dξ1 ∧ · · · ∧ dξds , hence we can assume w.l.o.g.
that h = h̄ dξ1 ∧ · · · ∧ dξds , for some function h̄. It is then natural to define, for
each ξ ∈ Rds , τ ∈ R and η ∈ Rds ,

Hs(ξ, η, τ) = U(U−1(ξ, η, τ) + (0, se, 0)).

Since, H0(ξ, η, τ) = (ξ, η, τ) and Hr ◦ Hs = Hr+s, we have just defined a flow,
let w̄ = (w, e, σ) be the associated vector field. Note that, by construction, w̄ is
a vector field in the unstable direction. By the regularity of the holonomy (see
the discussion at the beginning of [1, Appendix E]), we have ‖w̄‖ ≤ C#d(W,W

′).
Hence, ŵ = d(W,W ′)−1w̄ ∈ Vu.

Since H
∗

sh = h̄ ◦Hs JHs dξ1 ∧ · · · ∧ dξds , JHs is the Jacobian of Hs, we have
∫

W̃

〈ϕ, h〉 =
∫

W̃ ′

+

〈ϕ, h〉 ◦H1 · JH1 =

∫

W̃ ′

+

ϕ̄ ◦H1h̄ ◦H1 JH1

=

∫

W̃ ′

+

∫ 1

0

ϕ̄ ◦H1
d

ds

(
h̄ ◦Hs JHs

)
ds+

∫

W̃ ′

+

ϕ̄ ◦H1h̄.

Since

d

ds

(
h̄ ◦Hs JHs

)
=

d

ds
〈dξ1 ∧ · · · ∧ dξds ,H

∗

sh〉 = 〈dξ1 ∧ · · · ∧ dξds ,H
∗
sLw̄h〉

= 〈dξ1 ∧ · · · ∧ dξds , Lw̄h〉 ◦HsJHs,

it is convenient to define,

ϕ̂ = ϕ̄ ◦H1(ξ, τ)dξ1 ∧ · · · ∧ dξds

ψs = ϕ̄ ◦H1 ◦H
−1

s dξ1 ∧ · · · ∧ dξds ,
(4)

3The point of the above equation is that it allows one to go from an integral over a strong stable
manifold to integrals over weak stable manifolds. See [1, Section 3] for the necessary definitions.
To compare the formulae below with [1, equations (7.9, 7.10, 7.11)] recall that the flow is contact,

hence Jφt = 1, and (−1)ds(d−ds) = (−1)ds(ds+1) = 1. Also, recall that
∑

k∈Z
p(k + t) = 1 and

supp(p) ⊂ (−1, 1). Finally, the minus sign in front of z in [1, equation (7.10)] is a misprint and,
just before [1, Equation (7.9)], the definition of τW has a minus sign missing due to a misprint.
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which, setting W̃s = {(ξ, se, τ)}(ξ,τ)∈Rds+1 , allows to write
∫

W̃

〈ϕ, h〉 =
∫

W̃ ′

+

∫ 1

0

〈ψs, Lw̄h〉 ◦Hs JHsds+

∫

W̃ ′

+

〈ϕ̂, h〉

=

∫

W̃ ′

+

∫ 1

0

〈ψs, Lw̄h〉 ◦Hs JHsds+

∫

W̃ ′

+

〈ϕ̂, h〉

= d(W,W ′)

∫ 1

0

ds

∫

W̃s

〈ψs, Lŵh〉+
∫

W̃ ′

+

〈ϕ̂, h〉.

From the above equation the Lemma follows, since ‖ψs‖Γds,0
c (W̃s)

≤ C#‖ϕ‖Γds,0
c (W̃ )

and ‖ϕ̂‖
Γds,q̟′

c (W̃ ′)
≤ C#‖ϕ‖Γds,q

c (W̃ )
. The extra r comes from the size of the

support of ϕ, and hence of ψs, in the flow direction. �

Next, following verbatim [1], and using Lemma 4 (with q = 1), we obtain the
equivalent of [1, Equation (7.13)]: for each g ∈ Γds,1+η

c (Wα,G),∫

Wα,G

〈g, R̂n(z)
2h〉 =

∑

k,β,i

∑

W∈Wk,β,i

∫

W̃β,i

〈ĝk,β,i,W , R̂n(z)h〉

+
∑

k

O



r2(kr)n−1

∥∥∥R̂n(z)h
∥∥∥
u

‖g‖Γds,1+η
c (Wα,G)

(n− 1)!e(a−σds )kr


 ,

(5)

where ĝk,β,i,W is given by (4), with H1 = H
W̃β,i,W̃

being the holonomy between

W̃β,i and W̃ . Note that equation (4) was implicitly used (but missing) in [1].
Next, we slightly depart from [1] insofar as we simplify immediately the expres-

sion of ĝk,β,i,W instead of doing it during the proof of [1, Lemma 7.10].
By (3) we can write

ĝk,β,i = ϕk,β,ie
−zτW ǧk,β,i.

Hence, setting ϕk,β,i,W = ϕk,β,i ◦HW̃β,i,W̃
, by the first line of (4) we have

ĝk,β,i,W = ϕk,β,i,W e
−zτW ◦H

W̃β,i,W̃ ǧk,β,i,W ,

where, recalling [1, Equation (7.12)],

‖ǧk,β,i,W ‖Γ̟′(W̃β,i)
≤ C#

(kr)n−1e−akr

(n− 1)!
‖g‖Γds,1+η

c (W )

‖ϕk,β,i,W ‖
Γ̟′(W̃β,i)

≤ C#r
−1.

(6)

Hence, setting 
k,β,i,W = ǧk,β,i,W (xi),

(7) ‖ǧk,β,i,W − 
k,β,i,W ‖
Γ0
c(W̃β,i)

≤ C#r
̟′ (kr)n−1e−akr

(n− 1)!
‖g‖Γds,1+η

c (W ).

Next, setting ∆∗
W (ξ) = τW ◦H

W̃β,i,W̃
(ξ)− ξ2ds+1 and wW (ξ) = H

W̃β,i,W̃
(ξ)− ξ,4

we have that [1, Equations (7.27) and (7.30) ] implies, for all ζ = (ζ̃, 0) with ‖ζ̃‖ ≤ r,
∥∥∆∗

W (ξ + ζ) −∆∗
W (ξ)− dα0(wW (xi), ζ)

∥∥ ≤ C#r
2−̟′‖wW (xi)‖̟′‖ζ‖̟′

≤ C#r
2+̟′

.
(8)

4Here, again, we are computing using some appropriate coordinates.
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We impose, for ς small enough,

(9) |b| ≤ r−2−̟′+ς ,

and define

gk,β,i =
∑

W∈Wk,β,i

ĝk,β,i,W

gk,β,i,W (ξ) = ϕk,β,i,W (ξ)e−zdα0(wW (xi),ξ−xi)e−z(∆∗

W (xi)+ξ2ds+1)

k,β,i,W

.
= ϕk,β,i,W (ξ)e−zdα0(wW (xi),ξ−xi)


̂k,β,i,W (ξ2ds+1)

g∗k,β,i
.
=

∑

W∈Wk,β,i

gk,β,i,W .

(10)

LettingDk,β,i =
(kr)n−1e−ark

(n−1)! #Wk,β,i and recalling (8), (9) and [1, Equation (7.30)],

we can write, for ς ≤ ̟′,∥∥gk,β,i − g∗k,β,i
∥∥
Γ0
c(W̃β,i)

≤ C#r
ςDk,β,i‖g‖Γds,1+η

‖gk,β,i‖Γ̟′

c (W̃β,i)
+
∥∥g∗k,β,i

∥∥
Γ̟′

c (W̃β,i)
≤ C#

{
1

r
+

|b|
r−2+̟′

}
Dk,β,i‖g‖Γds,1+η .

(11)

Note that, by the definition of R̂(z) in [1, Section 7.1], [1, Equation (4.11)], [1,
Equation (4.17)] and the related notation, for all n ≥ c⋆ ln r

−1, with c⋆ large enough,

∑

k,β,i

∣∣∣∣∣

∫

W̃β,i

〈[gk,β,i − g∗k,β,i], R̂n(z)h〉
∣∣∣∣∣ =

∣∣∣∣∣

∫ ∞

can

dte−zt tn−1

(n− 1)!

×
∑

k,β,i

∑

β′∈A

k′∈K̃β

∫

W̃β′,G′

k

JWβ′,G′

k

φt〈∗φ∗t ∗ [gk,β,i − g∗k,β,i], h〉
∣∣∣∣∣

≤ C#

∑

k,β,i

∫ ∞

can

dte−at tn−1

(n− 1)!

∑

k,β,i

∑

β′∈A

k′∈K̃β

r1+ςDk,β,i‖g‖Γds,1+η
c

‖h‖sη

≤ C#

∫ ∞

can

dt

∫ ∞

can

ds e(htop(φ1)−a)(t+s) tn−1

(n− 1)!

sn−1

(n− 1)!
rς‖g‖Γds,1+η

c
‖h‖sη

≤ C#(a− htop(φ1))
−2nrς‖g‖Γds,1+η

c
‖h‖sη.

(12)

Hence, by (5), (12) and [1, Equation (7.6)], we can write
∫

Wα,G

〈g, R̂n(z)
2h〉 =

∑

k,β,i

∫

W̃β,i

〈g∗k,β,i, R̂n(z)h〉+O
(

rς‖g‖Γds,1+η
c

(a− htop(φ1))2n
‖h‖sη

)

+O
(

‖h‖uη ‖g‖Γds,1+η
c

(a− htop(φ1) + λ̄)n(a− htop(φ1))n

)
.

(13)

To estimate the integral on the right hand side of (13) we define, similarly to [1]:

G∗
k,β,i,A

.
=

∑

W∈Wk,β,i

∑

W ′∈Ak,β,i(W )

〈gk,β,i,W ,gk,β,i,W ′〉

G∗
k,β,i,B

.
=

∑

W∈Wk,β,i

∑

W ′∈Bk,β,i(W )

〈gk,β,i,W ,gk,β,i,W ′〉.
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To conclude, we need Lemmata 5 and 6 which are refinements of [1, Lemma 7.9]
and [1, Lemma 7.10], respectively. The proof of Lemma 6 follows closely [1, Lemma
7.10], but it applies the same logic to different objects. Conversely, Lemma 5 differs
from [1, Lemma 7.9] as we take advantage of our new homogeneity hypothesis (1).

Lemma 5. If ca ≥ n0 and C#|b|−
λ̄C1C6
2ea0 ≤ ̺ ≤ c#r

1+ς/ds
1−ϑ , for some ς > 0, and

ϑ ∈ (0, 1), we have

‖Gk,β,i,A‖∞ ≤C#D
2
k,β,ir

ς‖g‖2
Γds,1+η
c (W )

.(14)

Proof. The lower bound and the fact that the upper bound is bounded by the
ratio between the volume of φt(D

u
r (W )) and φt(D

u
̺ (W )) is proven exactly as in [1,

Lemma 7.9]. The novelty here consists in a different estimate of such a ratio.
Let t0 ∈ N be such that eλ−(t0)̺ = 1. Then, for each x ∈ Du

̺ (W ), let B(x) be
an unstable disc of diameter 1 and centred at φt0(x), clearly B(x) ⊂ φt0(D

u
2̺(W )).

Thus we can cover φt0(D
u
̺ (W )) with N̺ = C#|φt0(Du

̺ (W )| discs. On the other
hand, arguing analogously, we can find Nr = C#|φt0(Du

r (W )| disjoint unstable
discs of diameter 1 contained in φt0(D

u
r (W ).

By (1) and since the flow is contact, setting Ju
− := infx∈M Juφt0 (x), we have

Nr

N̺
≥ c#

|φt0(Du
r (W )|

|φt0(Du
̺ (W )| ≥ c#

Ju
−r

ds

Ju
−e

ϑλ−(t0)ds̺ds
= c#

(
r̺ϑ−1

)ds ≥ C#r
−ς .

On the other hand by [1, Lemmata C.1, C.3] we have that all the discs of radius
one grow under the dynamics at the same rate (given by the topological entropy),
hence for all t ≥ t0, we have the required estimate

|φt(Du
r (W )|

|φt(Du
̺ (W )| ≥ C#r

−ς .

�

Lemma 6. For |b| ≤ r−2−̟′+ς we have

(15)

∣∣∣∣∣

∫

W̃β,i

G∗
k,β,i,B

∣∣∣∣∣ ≤ C#|b|−̟′

̺−̟′

rdsD2
k,β,i‖g‖2Γds,1+η

c (W )
.

Proof. For future convenience let us set (ηsW,W ′,i, η
u
W,W ′,i, η

d
W,W ′,i) = ηW,W ′,i =

wW (xi)−wW ′(xi) and η+W,W ′,i = wW (xi)+wW ′(xi). By assumption ‖ηW,W ′,i‖ ≥ ̺.

Also, it is convenient to work in coordinates (ξ, η, τ), ξ, η ∈ Rds , in which xi = 0

and Wβ,i ⊂ {(ξ, 0) : ξ ∈ Rds} and dα0 =
∑ds

i=1 dξi ∧ dηi. We must estimate
∫

W̃β,i

〈gk,β,i,W ,gk,β,i,W ′〉 =
∫

W̃β,i

ϕk,β,i,W (ξ)ϕk,β,i,W ′(ξ)

× 
̂k,β,i,W (τ)
̂k,β,i,W ′(τ)e−ibdα0(ηW,W ′,i,ξ−xi)e
−adα0(η

+

W,W ′,i
,ξ−xi)

.

(16)

As in [1, Section 7.2] we choose yW,W ′ = (−ηuW,W ′,i‖ηuW,W ′,i‖−1, 0, 0) which implies

that dα0(ηW,W ′,i, yW,W ′) = ‖ηuW,W ′,i‖, and 〈yW,W ′ , e2ds+1〉 = 0. Also, let ΣW =

{(ξ, τ) ∈ Rds+1 | 〈ξ, ηuW,W ′,i〉 = 0} and

A(ξ, s, τ) =ϕk,β,i,W ((ξ, 0, τ) + syW,W ′)ϕk,β,i,W ′((ξ, 0, τ) + syW,W ′)

× e
−adα0(η

+

W,W ′,i
,(ξ,s,0,τ)+syW,W′ ).
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Then, we can write
∫

W̃β,i

〈gk,β,i,W ,gk,β,i,W ′〉 =
∫

ΣW

dτdξ 
̂k,β,i,W (τ)
̂k,β,i,W ′(τ)

∫ c#r

−c#r

dsA(ξ, s, τ)e−ib‖ηu
W,W ′,i

‖s.

Note that, by (6), ‖A(ξ, ·, τ)‖C̟′ ≤ C#r
−1, hence (as in [1, Lemma 7.10])

∣∣∣∣∣

∫ c#r

−c#r

dsA(ξ, s)e−ib‖ηu
W,W ′,i

‖s

∣∣∣∣∣ ≤ C#|b|−̟′

̺−̟′

. �

Here our strategy departs from [1] as we control directly where g∗k,β,i is large.

Let Ω = {x ∈ Wβ,i : ‖g∗k,β,i(x)‖ ≥ 4C♭|r|ς/2Dk,β,i} and Ω1 = {x ∈ Wβ,i :

G∗
k,β,i,B ≥ C♭|r|ςD2

k,β,i}, while Ω̃ and Ω̃1 are r thickenings in the flow direction.

Note that if x ∈ Ω, then φt(x) ∈ Ω̃1 for all t ≤ C#r. By Lemma 5, choosing C♭

large, we have Ω ⊂ Ω1. By Chebychev inequality, Lemma 6 implies

|Ω̃| =
∫

W̃β,i

1Ω1
≤ C#

∫

W̃β,i

G∗
k,β,i,B|r|−ςD−2

k,β,i ≤ C#(|b|̺)−̟′

rds−ς .

Thus

(17) |Ω| ≤ C#|b|−̟′

̺−̟′

rds−1−ς .

If x ∈ Ω then, by (10), (11), we have that ‖g∗k,β,i(y)‖ ≥ C♭|r|ς/2Dk,β,i provided

|y − x|̟′

r−1 + |y − x||b|r ≤ C#r
ς/2.

The above holds for

(18) |y − x| ≤ C# min{r 1+ς/2

̟′ , |b|−1r−1+ ς
2 } =: ρ.

We are finally ready to prove the stated Theorem.

Proof of Theorem 1. Let t0 > 0 be such that eλ−(t0)ρ = 1. Then, recalling (1),

|φ−t0(Ω)| ≤ e(J
s
−
(t0)+λ−(t0)dsϑ)|Ω|

|φ−t0(Wβ,i)| ≥ eJ
s
−
(t0)rds .

It follows that if we cover φ−t0(Wβ,i) by discs of radius 1, then, recalling (17), for
each disc that intersects φ−t0(Ω) there are at least

K =
rds

eλ−(t0)dsϑ|Ω| ≥ c#ρ
ϑdsb̟

′

̺̟
′

r1+ς

discs that are disjoint from φ−t0(Ω). Indeed, if a disc intersects φ−t0(Ω), then a disc
twice its radius must have a fixed proportion of its volume belonging to φ−t0(Ω).

We chose ̺ = c#r
1+ς/ds

1−ϑ (so Lemma 5 applies), |b| = r−2−̟′+ς (so Lemma 6
applies). Accordingly, K can be larger than one only if (̟′)2 + ̟′ − 1 > 0, but

then, choosing ς small enough, (18) implies ρ = C#r
1+̟′− ς

2 , which implies

K ≥ r−ς

provided ϑ < (̟′)2+̟′−1
2ds(1+̟′) and ς is small enough. Again by [1, Lemmata C.1, C.3]

this ratio persists under iteration. Hence, for each t ≥ t0,

|φ−t(Ω)| ≤ C#r
ς |φ−t(Wβ,i)|.
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If n ≥ C1 ln |b|, for C1 and b large enough, by [1, Equation (7.12)], can ≥ t0 and

‖JWφ−t0 ∗ φ∗−t0 ∗ g∗k,β,i‖Γds,̟′

c (W )
≤ C#‖g∗k,β,i1φt0 (W )‖Γds,0

c (Wβ,i)
.

Hence, for each k′ ≥ can, we can decompose φ−k′Wβ,i = ∪W∈Wk′
W , W ∈ Σs (see

[1, Definition 7.2]). We write Wk′ = W+
k′ ∪W−

k′ , where W ∈ W−
k′ if φk′ (W )∩Ω = ∅,

while ifW ∈ W+
k′ , then φk′ (W ) ⊂ Ω1. By the previous discussion, and [1, Lemmata

C.1, C.3], we have ♯W+
k′ ≤ C#r

ς♯Wk′ . Since,
∣∣∣∣∣

∫

W̃β,i

〈g∗k,β,i, R̂n(z)h〉
∣∣∣∣∣ ≤

∑

k′

∑

W∈Wk′

∣∣∣∣
∫

W̃

〈ϕk′,W , h〉
∣∣∣∣

with ‖ϕk′,W ‖
Γds,̟′

c (W )
≤ C#

(k′r)n−1eak′r

(n−1)! ‖g∗k,β,i1φk′ (W )‖Γds,0
c (Wβ,i)

, it follows,

∑

k,β,i

∣∣∣∣∣

∫

W̃β,i

〈g∗k,β,i, R̂n(z)h〉
∣∣∣∣∣ ≤ C#

∑

k,β,i,k′

(k′r)n−1
[
♯W−

k′ |r|ς/2 + ♯W+
k′

]
Dk,β,i

e−ak′r(n− 1)!
‖h‖∗̟′

≤ C#r
ς/2
∑

k,k′

(kr)n−1e−ark

(n− 1)!

(k′r)n−1|φk+k′ (Wα,G)

e−ak′r(n− 1)!
‖h‖∗̟′

≤ C#r
ς/2(a− htop(φ1))

−2n‖h‖∗̟′.

Using the above inequality in (13) provides an estimate of ‖R̂n(z)
2h‖s1+η which,

substituted into (2), yields [1, Proposition 7.5].
Theorem 1 follows then as in [1, Theorem 2.4]. �
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