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ORTHOGONALITY QUESTIONS IN THE HARDY SPACE

RELATED TO ζ-ZEROS

FRANCISCO CALDERARO, JUAN MANZUR, WALEED NOOR AND CHARLES SANTOS

Abstract. A Hardy space approach to the Nyman-Beurling and Báez-Duarte
criterion for the Riemann Hypothesis (RH) was introduced recently in [19] and
further developed in [14]. It states that the RH holds if and only if a particular
sequence of functions (hk)k≥2 is complete in the Hardy space H2. This article
is concerned with orthogonality questions related to the family (hk)k≥2. The

first goal is to analyze the orthogonal complement of N = span(hk)k≥2 in H2.
Unbounded Toeplitz operators on Hp spaces and de Branges-Rovnyak spaces
play a central role and our results show that the size and dimension of N⊥

reveal information on the zeros of the Riemann ζ-function. The second goal is
to show that (hk)k≥2 possesses a complete biorthogonal sequence in H2. We
also discuss a folklore conjecture about the number of ζ-zeros if the RH fails.

Introduction

A classical result of Nyman and Beurling (see [6], [20]) shows that the Riemann
Hypothesis (RH) is equivalent to the completeness of {ρλ : 0 ≤ λ ≤ 1} in L2(0, 1)
where ρλ(x) = {λ/x} − λ{1/x} and {x} denotes the fractional part of x. This is
furthermore equivalent to the characteristic function χ(0,1) belonging to the closed
linear span of {ρλ : 0 ≤ λ ≤ 1}. Half a century later Báez-Duarte [2] strenghthened

this result by showing that RH is true if and only if χ(0,1) ∈ span{ρ1/k : k ≥ 2}.
See the expository article of Bagchi [3] and the survey of Balazard [4]. Recently
the Nyman-Beurling and Báez-Duarte approaches to the RH have been explored
via tools from Hardy space H2 theory [19] and other analytic function spaces [14].

For each k ≥ 2, define

hk(z) =
1

1− z
log

(

1 + z + · · ·+ zk−1

k

)

and denote by N the linear span of {hk : k ≥ 2}. That each hk belongs to H2

was proved in [19, Lemma 7]. One of the main results of [19] was a reformulation
of Báez-Duarte’s result as a completeness problem in H2. Then in [14] the same
completeness problem in the Hp spaces was shown to provide zero-free half planes
for the Riemann ζ-function. We state both results here as one.

Theorem 1. The RH holds if and only if N is dense in H2. If N is dense in Hp

for some 1 < p ≤ 2, then

ζ(s) 6= 0 for ℜ(s) >
1

p
.

The density of N in H1 gives the known zero-free region ℜ(s) ≥ 1.

Key words and phrases. Riemann hypothesis, Hardy space, local Dirichlet space, de Branges-
Rovnyak space, Smirnov class.
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Although N is unconditionally dense inHp for 0 < p < 1 (see [14, Cor. 4.6]), this
provides no new information regarding ζ-zeros. Also note that the RH is equivalent
to N⊥ = {0} in H2 by Theorem 1. This suggests the question of the size and
dimension of N⊥ and their possible relation to the ζ-zeros. The first archetypal
result addressing this is the following (See [19, Thm. 12]).

Theorem 2. N⊥ ∩Dδ1 = {0}, where Dδ1 denotes the local Dirichlet space at 1.

Since Dδ1 ⊂ H2 ⊂ Hp for 0 < p < 2, Theorems 1 and 2 inspire the following
question: which linear spaces of analytic functions on D with X1 ⊂ H2 ⊂ X2 satisfy

(1) N⊥ ∩X1 = {0} and (2) N is dense in X2 ?

Interestingly, both (1) and (2) are equivalent if one takes X2 = X a Frechet space
and X1 = X∗ its Cauchy dual (see Proposition 9). In Section 2 we analyze this
orthogonality question using tools from de Branges-Rovnyak spaces and unbounded
Toeplitz operators on Hp (see Proposition 11), and in particular develop a new
approach for finding zero-free half-planes for the ζ function (see Theorem 14).

In Section 3 we deal with the biorthogonality question: Does the sequence
(hk)k≥2 posses a complete biorthogonal sequence in H2? (see Subsection 1.5).
We affirmatively answer this question (see Theorem 15). To provide some context,
Vasyunin showed in [22] that the Báez-Duarte sequence {ρ1/k : k ≥ 2} is minimal

by constructing a biorthogonal sequence for it in L2(0, 1). Whereas the sequence
{ρ1/k : k ≥ 2} is not complete in L2(0, 1), the completeness of (hk)k≥2 in H2 is
equivalent to the RH by Theorem 1. The property of completeness of a sequence
is not in general inherited by its biorthogonal sequence. But it may do so in very
special cases such as for sequences of complex exponentials in L2(−π, π) (see [25]).
Therefore an affirmative answer to this question (independent of RH) is intriguing.

Finally in Section 4 we discuss a folklore conjecture about the ζ-zeros which we
name the RH failure (RHF) conjecture: If the RH fails, then it fails infinitely often.
More precisely, either ζ has no nontrivial zeros outside the critical line, or it has
infinitely many. The main result of this section (Theorem 21) states that

RHF conjecture =⇒ dim(N⊥) is either 0 or ∞.

We were unable to locate a reference for this conjecture in the literature. But an
informative discussion of this conjecture does appear in mathoverflow.net [11].

1. Preliminaries

We denote by D and T the open unit disk and the unit circle respectively. By
Hol(D) we denote the space of holomorphic functions on D and the shift operator
is defined by (Sf)(z) = zf(z) for f ∈ Hol(D).

1.1. Hardy spaces and the Smirnov class. A holomorphic function f on D

belongs to the Hardy-Hilbert space H2 if

||f ||H2 = sup
0≤r<1

(

1

2π

∫ 2π

0

|f(reiθ)|2dθ

)1/2

<∞.

The space H2 is a Hilbert space with the ℓ2-inner product

〈f, g〉 =
∞
∑

n=0

anbn,
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where (an)n∈N and (bn)n∈N are the Fourier coefficients for f and g respectively. For
any f ∈ H2 and ζ ∈ T, the radial limit f∗(ζ) := limr→1− f(rζ) exists m-a.e. on T,
where m denotes the normalized Lebesgue measure on T. Analogously for p > 0,
the Hardy space Hp consists of those holomorphic f on D such that

‖f‖pHp = sup
0<r<1

∫

T

|f(rz)|p dm(z) < ∞.

The Hp are Banach spaces for p ≥ 1 and complete metric spaces for 0 < p < 1
and H∞ denotes the space of bounded holomorphic functions on D. A function
f is called a cyclic vector for the shift S in Hp if span(Snf)n≥0 = C[z]f is dense
in Hp. When p = 2 these cyclic vectors are commonly known as outer functions.
Since H∞ ⊂ Hp for all p > 0, the H∞ outer functions are cyclic for all Hp spaces.
The Smirnov class N+ consists of all holomorphic functions g/h on D such that
g, h ∈ H∞ and h is an outer function. The space N+ is a topological algebra
with respect to pointwise multiplication and g/h ∈ N+ is a unit if both g and h are
outer functions. The topology onN+ can be metrized with the translation-invariant
complete metric

d(f, g) =

∫

T

log(1 + |f − g|) dm, f, g ∈ N+.

Similar to Hp spaces, convergence in N+ implies locally unifom convergence on D

and functions have radial limits m-a.e. on T. In fact we have Hp ⊂ Hq ⊂ N+ for
all 0 < q < p ≤ ∞. Duren [10] is a classic reference for the Hp and N+ spaces.

1.2. Local Dirichlet spaces. Let µ be a finite positive Borel measure on T, and
let Pµ denote its Poisson integral. The generalized Dirichlet space Dµ consists of
f ∈ H2 satisfying

Dµ(f) :=

∫

D

|f ′(z)|
2
Pµ(z)dA(z) <∞.

Then Dµ is a Hilbert space with norm ‖f‖2Dµ
:= ‖f‖22 + Dµ(f). If µ = m, then

Dm is the classicial Dirichlet space. If µ = δζ is the Dirac measure at ζ ∈ T, then
Dζ := Dδζ is called the local Dirichlet space at ζ and in particular

(1.1) Dδζ (f) =

∫

D

|f ′(z)|
2 1−

∣

∣z2
∣

∣

|z − ζ|2
dA(z).

The recent book [18] contains a comprehensive treatment of local Dirichlet spaces
and the following result establishes a criterion for their membership.

Theorem 3. (See [18, Thm. 7.2.1]) Let ζ ∈ T and f ∈ Hol(D). Then Dδζ (f) <∞
if and only if

f(z) = (z − ζ)g(z) + a

for some g ∈ H2 and a ∈ C. In particular f∗(ζ) exists for all f ∈ Dζ .

So each local Dirichlet space Dζ = (S − ζI)H2 + C is a proper subspace of H2.
We define the Hp-analogues of these spaces for p > 0 by

Dp
ζ := (S − ζI)Hp + C

and note that D2
ζ = Dδζ and Dp

ζ ( Dq
ζ for q < p since Hp ( Hq. Straightforward

but lengthy computations show thatDp
ζ ( H2 for p > 1 andH2 ( Dp

ζ for 0 < p < 2
3 .
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1.3. The de Branges-Rovnyak spaces. Given ψ ∈ L∞(T), the corresponding
Toeplitz operator Tψ : H2 → H2 is defined by

Tψf := P+(ψf)

where P+ : L2(T) → H2 denotes the orthogonal projection of L2(T) onto H2.
Clearly Tψ is a bounded operator on H2 with ||Tψ|| ≤ ||ψ||L∞ . If h ∈ H∞, then Th
is the operator of multiplication by h and its adjoint is Th. Given b in the closed
unit ball of H∞, the de Branges-Rovnyak space H(b) is the image of H2 under the
operator (I −TbTb)

1/2. The general theory of H(b) spaces divides into two distinct
cases, according to whether b is an extreme point or a non-extreme point of the unit
ball of H∞. We shall be concerned only with the non-extreme case. In this case
there exists a unique outer function a ∈ H∞ such that a(0) > 0 and |a∗|2+ |b∗|2 = 1
a.e. on T. The pair (b, a) is called a Pythagorean pair and the function b/a belongs
to the Smirnov class N+. That all N+ functions arise as the quotient of a pair
associated to a non-extreme function was shown by Sarason [21]. The two-volume
work ([12][13]) is an encyclopedic reference for these spaces.

If ϕ is a rational function in N+ the corresponding pair (b, a) is also rational
(see [21, Remark. 3.2]). Constara and Ransford [8] characterized the rational pairs
(b, a) for which H(b) is a generalized Dirichlet space.

Theorem 4. (See [8, Theorem 4.1]) Let (b, a) be a rational pair and µ a finite
positive measure on T. Then H(b) = Dµ if and only if

(1) the zeros of a on T are all simple, and
(2) the support of µ is exactly equal to this set of zeros.

As an example, if (b, a) is the rational pair associated with the N+ function
ϕ(z) = 1

1−ζ for ζ ∈ T, then H(b) = Dζ is a local Dirichlet space.

1.4. Unbounded Toeplitz operators on Hp. Sarason [21] demonstrated how
H(b) spaces appear naturally as the domains of some unbounded Toeplitz operators.
Let ϕ be holomorphic in D and Tϕ the operator of multiplication by ϕ on the domain

(1.2) dom(Tϕ) = {f ∈ H2 : ϕf ∈ H2}.

Then Tϕ is a closed operator, and dom(Tϕ) is dense in H2 if and only if ϕ ∈ N+

(see [21, Lemma 5.2]). In this case its adjoint T ∗
ϕ is also densely defined and closed.

In fact the domain of T ∗
ϕ is a de Branges-Rovnyak space.

Theorem 5. (See [21, Prop. 5.4]) Let ϕ be a nonzero function in N+ with ϕ = b/a,
where (b, a) is the associated pair. Then dom(T ∗

ϕ) = H(b).

Choosing the symbol ϕ(z) = 1
ζ−z in Theorem 5 in conjunction with Theorem 4

gives dom(T ∗
ϕ) = Dζ which played a key role in the proof of Theorem 2 (see [19]).

Our goal here is to extend these ideas to Hp spaces for all p > 1. Let ϕ ∈ N+ and
define the analytic Toeplitz operator on Hp with symbol ϕ by

Tϕf = ϕf, where f ∈ domp (Tϕ) := {f ∈ Hp : φf ∈ Hp}.

These Tϕ are bounded on Hp precisely when ϕ ∈ H∞ (see the survey article [23]).

For ϕ = b
a ∈ N+ with a, b ∈ H∞ and a outer as usual, these Tϕ are densely defined

on Hp for p > 1. Indeed, domp(Tϕ) contains the dense subspace aHp since a is
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outer and Tϕ(aH
p) = bHp ⊂ Hp. It follows then that the adjoint T ∗

ϕ is well-defined

on the dual (Hp)∗ = Hq where 1
p + 1

q = 1. The domain of T ∗
ϕ is then defined by

domq(T
∗
ϕ) := {g ∈ Hq : ∃ h ∈ Hq s.t 〈f, h〉 = 〈ϕf, g〉 ∀ f ∈ domp (Tϕ)}

where 〈f, h〉 :=
∫

T fhdm represents the Hp-Hq duality. The elements in domq(T
∗
ϕ)

can be characterized via the bounded Toeplitz operators Ta and Tb as follows.

Lemma 6. Given ϕ = b
a ∈ N+ as described above, a function g ∈ domq(T

∗
ϕ) if and

only if there exists an h ∈ Hq such that T ∗
b g = T ∗

ah.

Proof. Suppose g ∈ domq(T
∗
ϕ). Then 〈f, h〉 = 〈ϕf, g〉 for some h ∈ Hq and for all

f ∈ aHp ⊂ domp (Tϕ). Writing f = af̃ for f̃ ∈ Hp, we get

〈f, h〉 = 〈ϕf, g〉 ⇔ 〈f, h〉 = 〈bf/a, g〉 ⇔ 〈af̃ , h〉 = 〈bf̃ , g〉 ∀ f̃ ∈ Hp

which is equivalent to T ∗
ah = T ∗

b g. This argument works in both directions because
a is an H∞ outer function and hence aHp is dense in Hp. �

We can now extend the identity dom(T ∗
ϕ) = Dζ from H2 to all Hp with p > 1.

Proposition 7. Let ϕ(z) = 1
ζ−z for ζ ∈ T and Tϕ the densely defined Toeplitz

operator on Hp for any p > 1. We then have

domq(T
∗
ϕ) = Dq

ζ , where
1

p
+

1

q
= 1.

Proof. Choosing ϕ = b
a with b(z) = 1 and a(z) = ζ − z (which is outer) in Lemma

6, we get g ∈ domq(T
∗
ϕ) if and only if g = T ∗

ζ−zh = (ζI − S∗)h for some h ∈ Hq.

Therefore, it suffices to verify that (ζI − S∗)Hq = Dq
ζ . For any h ∈ Hq, we have

(ζI − S∗)h = (ζI − S)(−ζS∗h) + ζh(0) ∈ Dq
ζ := (S − ζI)Hq + C

and therefore (ζI − S∗)Hq ⊂ Dq
ζ . Conversely, if h ∈ Hq and c ∈ C then

(ζI − S)h+ c = (ζI − S∗)ζ(c − Sh) ∈ (ζI − S∗)Hq

and hence Dq
ζ ⊂ (ζI − S∗)Hq which concludes the proof. �

1.5. Cauchy duality. Let X be a complete metrizable linear subspace of Hol(D).
Inspired by terminology used by Malman and Seco [16], we call X∗ the Cauchy dual
of X if any continuous linear functional on X can be represented by the Cauchy
pairing

〈f, g〉 := lim
r→1−

∫

T

f(rζ)g(rζ) dm(ζ) , f ∈ X, g ∈ X∗ .

If H2 ⊂ X then X∗ ⊂ H2 and vice-versa. Hence when both f and g are in H2,
the pairing above reduces to the standard inner product in H2. Some examples of
Cauchy duals for our context are listed below (see [10],[15],[24]).

(1) Hp and Hq for p > 1 and 1/p+ 1/q = 1,
(2) H1 and BMOA (analytic functions with bounded mean oscillation on T),
(3) Hp for 1/2 < p < 1 and Λα (the Lipschitz class of Hol(D)-functions with

α-Hölder continuous extension to T, where α = 1/p− 1).
(4) N+ and the Gevrey class G (Hol(D)-functions whose Taylor coefficients

satisfy an = O(e−c
√
n) for some constant c > 0).
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A deep result of Davis and McCarthy [9] shows that the class G coincides with
the universal multipliers for all non-extremeH(b) spaces. In particular G ⊂ H(b) for
all non-extreme b. The concept of Cauchy duality leads to an equivalence between
orthogonality and density questions involving N which is explored in Section 2.

1.6. Minimality and biorthogonality. LetH be a Hilbert space. Two sequences
(en)n∈N and (fn)n∈N in H are said to be biorthogonal to each other if

〈en, fm〉 = δnm ∀ n,m ∈ N

where δnm is the Kronecker delta. The sequence (en)n∈N is called minimal if
en /∈ span(ek)k 6=n for all n ∈ N. The notions of biorthogonality, minimality and
completeness are all related via the following well-known result.

Proposition 8. (see [7, Lemma 3.3.1]) Let (en)n∈N be a sequence in H. Then,

(i) (en)n∈N has a biorthogonal sequence if and only if (en)n∈N is minimal.
(ii) If (en)n∈N has a biorthogonal sequence, then (en)n∈N is complete in H if

and only if its biorthogonal sequence is unique.

In Section 3 we shall prove that the sequence (uk)k≥2 defined by

uk(z) =
∑

d|k

µ(k/d)

k/d
(zd−1 − zd)

forms a complete biorthogonal sequence for (hk)k≥2 in H2, where µ denotes the
Möbius function defined on N by µ(k) = (−1)s if k is the product of s distinct
primes, and µ(k) = 0 otherwise.

1.7. The zeta kernels. Let X ⊂ Hol(D) be a topological vector space where the
monomials (zk)k∈N form a Schauder basis. It was shown in [14] that for each
s ∈ C \ {0} a linear functional Λ(s) can be defined on X by assigning

Λ(s)(1) = −
1

s
, Λ(s)(zk) = −

1

s

(

(k + 1)1−s − k1−s
)

(k ≥ 1).

In particular Λ(s) is bounded on Hp for 1 < p ≤ 2 if ℜs > 1/p and on H1 if ℜs ≥ 1
(see [14, Prop. 4.7]). So there exist functions κs ∈ Hq with 1/p + 1/q = 1 such
that Λ(s)(f) = 〈f, κs〉. The function κs will be called the zeta kernel at s and

(1.3) κs(z) =

∞
∑

k=0

φk(s̄)z
k where φk(s) := Λ(s)(zk).

The name comes from their relation to hk and ζ via the important identity

(1.4) Λ(s)(hk) = 〈hk, κs〉 = −
ζ(s)

s
(k1−s − 1) ∀ ℜs > 1/2, k ≥ 2.

The identity (1.4) appears in [14] but we provide an alternate proof in the appendix
for the sake of completeness. It is important to mention that the definition of hk in
[14] has an additional factor of 1/k which has been adjusted in (1.4) accordingly.
The zeta kernels are used in Chapters 3 and play a key role in Chapter 4.
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2. The orthogonality question

The objective of this section is to develop a framework for proving when

(2.1) N⊥ ∩ L = {0}

for topological vector spaces L ⊂ H2. Since N⊥ = {0} is equivalent to the RH
by Theorem 1, one may also ask if solutions to (2.1) can lead to new zero-free
half-planes for the ζ-function. We start by showing that Cauchy duality serves as
a bridge between this orthogonality question and completeness questions.

Proposition 9. Let X be a topological linear space with H2 ⊂ X ⊂ Hol(D), where
the inclusions are continuous. If N is dense in X, then

N⊥ ∩X∗ = {0}

where X∗ ⊂ H2 is the Cauchy dual of X. The converse holds when X is Fréchet.

Proof. First note that since bothN⊥ andX∗ are subspaces ofH2, their intersection
above makes sense. Let 〈f, g〉 denote the Cauchy pairing for f ∈ X and g ∈ X∗ and
recall that this pairing becomes the usualH2-inner product 〈f, g〉H2 when f, g ∈ H2

(see Subsection 1.5). Therefore if N is dense in X , then

g ∈ N⊥ ∩X∗ =⇒ 〈f, g〉 = 〈f, g〉H2 = 0 for all f ∈ N

which implies that g must be identically zero in X∗. Conversely if X is additionally
a Fréchet space, then we have access to the Hahn-Banach Theorem. Indeed if N is
not dense in X , then there exists a non-zero g ∈ X∗ such that 〈f, g〉 = 0 ∀ f ∈ N .
This implies that g is H2-orthogonal to N and hence g ∈ N⊥ ∩X∗ 6= {0}. �

Since N is dense in Hp for 0 < p < 1 (see [14, Cor. 4.6]), it is also dense
in N+ since Hp ⊂ N+ for all p > 0. Therefore it follows by Proposition 9 that
N⊥ ∩ L = {0} if L is the Lipschitz class Λα (1/2 < p < 1 and α = 1/p− 1) or the
Gevrey class G (see Subsection 1.5). However to obtain new zero-free half-planes
for ζ, we need L ⊂ H2 to be large enough to contain some Hq space for q ≥ 2.

Corollary 10. If N⊥ ∩ Hq = {0} for some q ≥ 2, then ζ(s) 6= 0 for ℜs > 1/p,
where 1/p+ 1/q = 1. If N⊥ ∩ BMOA = {0}, then ζ(s) 6= 0 for ℜs ≥ 1.

Proof. Notice that Hq is the Cauchy dual of Hp and q ≥ 2 implies that 1 < p ≤ 2.
In this range the Hp are Banach spaces, and in particular Fréchet spaces. Similarly
the BMOA space is the Cauchy dual of H1. Therefore the result follows by the
converse in Proposition 9 and by Theorem 1. �

The next result relates Toeplitz operators on Hp and the orthogonality question.
Recall that if ϕ ∈ N+ is a unit, then 1/ϕ ∈ N+ and hence both Tϕ and its inverse
T1/ϕ are densely defined Toeplitz operators on Hp for p > 1 (see Subsection 1.4).

Proposition 11. Let ϕ be a unit in N+ with Tϕ the Toeplitz operator on Hp for
some p > 1. If TϕN = ϕN is dense in Hp, then

N⊥ ∩ domq(T
∗
1/ϕ) = {0}, where

1

p
+

1

q
= 1.

The Hilbertian case p = 2 gives N⊥ ∩ H(b) = {0} where (b, a) is the Pythagorean
pair associated with 1/ϕ ∈ N+.
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Proof. Let g ∈ N⊥ ∩ domq(T
∗
1/ϕ). Since both g and hk belong to H2 for all k ≥ 2,

the Cauchy duality 〈hk, g〉 coincides with the H2-inner product 〈hk, g〉2. Hence

〈ϕhk, T
∗
1/ϕg〉 = 〈hk, g〉 = 〈hk, g〉2 = 0 ∀ k ∈ N

which implies that T ∗
1/ϕg = 0 in Hq by the density of ϕN in Hp. Since 1/ϕ = b/a

is a unit in N+ (as the inverse of ϕ), both a and b are H∞ outer functions in Hp.
So T1/ϕ(aH

p) = bHp shows that T1/ϕ has dense range in Hp since b is outer. So
T ∗
1/ϕ is injective and therefore g = 0 in Hq. This concludes the general case. The

Hilbertian case p = 2 now follows by Theorem 5. �

We shall derive two non-trivial applications of this result. The first one extends
Theorem 2 to all local Dirichlet spaces Dp

1 with p > 1. We note that the classical
Dδ1 is just D2

1 which is strictly smaller than Dp
1 for p ∈ (1, 2) (see Subsection 1.2).

We will need with the following approximation result from [14].

Lemma 12. Let µ the Möbius function. Then
n
∑

k=2

µ(k)

k
(I − S)hk → 1− z

in the Hp norm for all p > 0.

We observe that I − S = Tϕ where ϕ(z) = 1− z is an H∞ outer function since
C[z]ϕ is dense in H2. In particular ϕ is a unit in N+. Define operators on Hp by

(2.2) (Wn)f(z) = (1 + z + · · ·+ zn−1)f(zn) =
1− zn

1− z
f(zn)

and (Tn)f(z) = f(zn) for n ≥ 1 and f ∈ Hp. The multiplicative semigroup of
operators (Wn)n≥1 was introduced in [19] and is the main object of study in [17].
They are bounded on Hp for p > 1 (see [14, Cor. 4.6]). We shall need the identities

WnN ⊂ N and Tn(I − S) = (I − S)Wn

for k, n ≥ 1 which appear in [19, p. 249]. We are ready for the first application.

Theorem 13. We have N⊥ ∩ Dp
1 = {0} for all p > 1.

Proof. Let ϕ(z) = 1 − z. By Propositions 7 and 11 we only need to prove that
ϕN is dense in Hp for p > 1. First note that Lemma 12 implies that ϕ belongs
to the Hp-closure of ϕN = (I − S)N . This in turn implies that Tnϕ belongs
to the Hp-closure of Tn(ϕN ) = ϕWnN ⊂ ϕN for all n ≥ 1. So in particular
span(Tnϕ)n≥1 ⊂ closHp(ϕN ). Now span(Tnϕ)n≥1 = span(1 − zn)n≥1 = C[z]ϕ
which is dense in Hp for all p > 1 because ϕ is an H∞ outer function. This proves
that closHp(ϕN ) = Hp and concludes the proof. �

Our second application of Proposition 11 utilizes recent discoveries in H(b)-space
theory to obtain zero-free half-planes for ζ. In view of Corollary 10, we would like to
know when theHp and BMOA spaces are contained in someH(b) for ϕ = b/a ∈ N+.
Fortuitously for us, these problems were completely solved recently in a preprint
by Malman and Seco [16]. They show that H p̃ ⊂ H(b) for p̃ ∈ (2,∞) if and only if

ϕ ∈ Hp where p = 2p̃
p̃−2 ∈ (2,∞), and also that H∞ ⊂ BMOA ⊂ H(b) if and only if

ϕ ∈ H2. By definition we always have H(b) ⊂ H2, and H(b) = H2 precisely when
ϕ ∈ H∞. Therefore it makes sense to allow the values p = 2 and p = ∞.
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Theorem 14. Suppose ϕ is a unit in N+ such that 1/ϕ ∈ Hp for some p ∈ (2,∞).
If ϕN is dense in H2, then ζ(s) 6= 0 for ℜs > 1

2 + 1
p . The case p = 2 gives the

Prime Number Theorem (ℜs ≥ 1) and p = ∞ gives the RH (ℜs > 1/2).

Proof. By the results of Malman and Seco [16] mentioned above, 1/ϕ belongs to
H2 or to H∞ precisely when H(b) contains BMOA or H(b) = H2 respectively,
where 1/ϕ = b/a and (b, a) the associated Pythagorean pair. Hence the cases
p = 2,∞ follow by Corollary 10 and Proposition 11. For the case when 1/ϕ ∈ Hp

for p ∈ (2,∞), we have H p̃ ⊂ H(b) where p = 2p̃
p̃−2 (again by Malman and Seco)

or equivalently p̃ = 2p
p−2 . If 1/p̃+ 1/q̃ = 1, then we see that q̃ = 2p

(p+2) and hence

1/q̃ = 1/2 + 1/p. The result again follows by Corollary 10 and Proposition 11. �

An important distinction between Theorem 1 and Theorem 14 is that in the
former one must solve density problems in Hp spaces that are non-Hilbertian, while
in the latter the density problems are always in H2. The following simple examples
of ϕ satisfy the hypothesis of Theorem 14. Let ϕ(z) = (1−z)α for some 0 < α < 1/2.
Then ϕ is an H∞ outer function and hence a unit in N+ with the property that
1/ϕ ∈ Hp for some 2 < p < 1/α. It follows that the density of ϕN in H2 would
give a new zero-free half-plane for ζ.

3. The biorthogonality question

Define the sequence of polynomials {uk : k ≥ 2} by

(3.1) uk(z) =
∑

d|k

µ(k/d)

k/d
(zd−1 − zd),

where µ denotes the Möbius function and d|k denotes d divides k. The main goal
of this section is to prove the following theorem.

Theorem 15. {uk : k ≥ 2} is complete and biorthogonal to {hk : k ≥ 2} in H2.

Balazard [5] noted that with the additional vector u1(z) = 1 − z the sequence
{uk : k ≥ 1} is complete. However it is no longer minimal following Theorem 15.
We first make a key observation. Note that uk = (I − S)vk, where

(3.2) vk(z) =
∑

d|k

µ(k/d)

k/d
zd−1.

It follows that 〈hk, uj〉 = 〈(I − S∗)hk, vj〉 . Hence to show that {uk : k ≥ 2} and
{hk : k ≥ 2} are biorthogonal, it is suffices to show that

〈(I − S∗)hk, vj〉 = δkj .

The proof of Theorem 15 will be divided into four steps.

Step 1. Calculate the Fourier coefficients of (I − S∗)hk.

Step 2. Prove {uk : k ≥ 2} is biorthogonal to {hk : k ≥ 2}.

Step 3. Characterize all sequences biorthogonal to {vk : k ≥ 2} .

Step 4. Show that {hk : k ≥ 2} is the unique biorthogonal sequence for {uk : k ≥ 2}.
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The Step 4 implies the completeness of {uk : k ≥ 2} in H2 by Proposition 8.

Step 1. We first calculate the Fourier coefficients of (I − S∗)hk.

Lemma 16. We have

(I − S∗)hk(z) =
∞
∑

n=0

Bk(n+ 1)zn

for all k ≥ 2 where

Bk(n) =

{

k
n − 1

n , k|n

− 1
n , k6 |n

.

Proof. Note that if f(z) =
∑∞

n=0 anz
n, then

S∗f(z) =
∞
∑

n=0

an+1z
n.

Let cn(k) be the Fourier coefficients of hk, i.e.,

hk(z) =
∞
∑

n=0

cn(k)z
n.

Then, the n-th Fourier coefficient of (I −S∗)hk is cn(k)− cn+1(k). The coefficients
cn(k) are calculated in [19, p. 249]:

(3.3) cn(k) = H(n)−H
(n

k

)

− log k,

where H(x) :=
∑

n≤x
1
n for x > 0 and H(0) = 0. It follows from (3.3) that

cn−1(k)− cn(k) = H(n− 1)−H

(

n− 1

k

)

− log k −
(

H(n)−H
(n

k

)

− log k
)

= −
1

n
+

∑

n−1

k
<m≤n

k

1

m
.

Note that if there is some m ∈ N such that n−1
k < m ≤ n

k , then mk ≤ n < mk+ 1,
so that n = mk. Therefore, the sum above is non-zero if and only if k|n. Then,

(3.4) Bk(n) = cn−1(k)− cn(k) =

{

− 1
n , k6 |n

k
n − 1

n , k|n
.

�

Step 2. We are now able to prove the first part of Theorem 15.

Theorem 17. {uk : k ≥ 2} is biorthogonal to {hk : k ≥ 2}.

Proof. By Step 1 it suffices to prove that

∑

d|j
Bk(d)

µ(j/d)

j/d
= 〈(I − S∗)hk, vj〉 = δkj , ∀k, j ≥ 2.

There are two cases:
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(i) k6 |j. Then, k6 |d for every d|j, therefore

∑

d|j
Bk(d)

µ(j/d)

j/d
=
∑

d|j
−
1

d

µ(j/d)

j/d
= −

1

j

∑

d|j
µ(j/d) = −

1

j

⌊

1

j

⌋

= 0,

since j ≥ 2 and by the basic relation
∑

d|k µ(d) = ⌊1/k⌋.

(ii) k|j. Let q = j
k . Then

∑

d|j
Bk(d)

µ(j/d)

j/d
=
∑

d|j
k∤d

−
1

d

µ(j/d)

j/d
+
∑

d|j
k|d

(

k

d
−

1

d

)

µ(j/d)

j/d
.

The last sum is summing over those d that satisfy k|d|j. However, k|d ⇐⇒ d = mk
for some m ∈ N. Since j = qk, it follows that d|j ⇐⇒ m|q. Hence, the last sum
can be written as

∑

d|j
k|d

(

k

d
−

1

d

)

µ(j/d)

j/d
=
∑

d|j
k|d

−
1

d

µ(j/d)

j/d
+
∑

m|q

1

m

µ(q/m)

q/m
.

Therefore,
∑

d|j
Bk(d)

µ(j/d)

j/d
=
∑

d|j
−
1

d

µ(j/d)

j/d
+
∑

m|q

1

m

µ(q/m)

q/m

= −
1

j

∑

d|j
µ(j/d) +

1

q

∑

m|q
µ(q/m) = −

1

j

⌊

1

j

⌋

+
1

q

⌊

1

q

⌋

.

Since j ≥ 2, the first term is always 0. On the other hand, the second term equals
1 if q = 1 and equals 0 otherwise. Finally note that q = 1 ⇐⇒ k = j, and hence
that 〈hk, uj〉 = δkj for all k, j ≥ 2. �

Step 3. We next characterize all sequences in H2 biorthogonal to {vk : k ≥ 2}.

Lemma 18. A sequence {fk : k ≥ 2} ⊂ H2 is biorthogonal to {vk : k ≥ 2} if and
only if there exists a sequence (ck)k≥2 ∈ CN such that

fk(z) =

∞
∑

n=0

Ak(n+ 1) zn, ∀k ≥ 2,

where the sequence (Ak(n))n≥1 for each k ≥ 2 is defined by

Ak(n) =

{

ck
n + k

n , k|n
ck
n , k6 |n

.

Proof. Let {fk : k ≥ 2} ⊂ H2 be a sequence biorthogonal to {vk : k ≥ 2} and
Ak : N → C be the arithmetical functions that satisfy

fk(z) =

∞
∑

n=0

Ak(n+ 1)zn, ∀k ≥ 2.

Since the coefficients of vj are real, the biorthogonality condition becomes

(3.5)
∑

d|j
Ak(d)

µ(j/d)

j/d
= 〈fk, vj〉 = δkj , ∀k, j ≥ 2.
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Let Ik, ν : N → C be arithmetic functions defined by Ik(n) = δkn and ν(n) = µ(n)
n .

Then (3.5) is equivalent to

(3.6) ∀ k ≥ 2, ∃ ck ∈ C such that Ak ∗ ν = ckI1 + Ik,

where ∗ denotes the Dirichlet product (see [1, Section 2.6]). Indeed, (3.5) doesn’t
impose any restriction on Ak ∗ ν(1), since it only need to hold for j ≥ 2, hence
ck = Ak ∗ ν(1) is free, so (3.5) and (3.6) are indeed equivalent. Notice that

∑

d|k

µ(k/d)

k/d

1

d
=

1

k

⌊

1

k

⌋

= I1(k),

i.e., ν−1(n) = 1
n , since I1 is the unity with respect to ∗. Moreover

Ik ∗ ν
−1(n) =

∑

d|n
δkd

1

n/d
=

{

k
n , k|n

0, k6 |n
.

Therefore (3.6) is equivalent to the statement that

∀ k ≥ 2, ∃ ck ∈ C such that Ak(n) = ckν
−1(n) + Ik ∗ ν

−1(n)

=

{

ck
n + k

n , k|n
ck
n , k6 |n

.

Hence the biorthogonality condition (3.5) is equivalent to the condition above as
desired. Finally fk ∈ H2 since its coefficient sequence Ak clearly belongs to ℓ2. �

Step 4. In this final step we show that {uk : k ≥ 2} is complete in H2 by proving
that {hk : k ≥ 2} is uniquely biorthogonal to {uk : k ≥ 2} in H2 by Proposition 8.
To do so, recall that uk = (I − S)vk (see (3.2)) implies

〈φk, uj〉 = 〈(I − S∗)φk, vj〉

for any sequence {φk : k ≥ 2} in H2. This implies that I − S∗ maps sequences
biorthogonal to {uk : k ≥ 2} onto sequences biorthogonal to {vk : k ≥ 2} in the
image of I − S∗. This correspondece is one-to-one since I − S∗ is injective on H2.
Therefore it is enough to prove that ((I − S∗)hk)k≥2 is the unique sequence in the
image of I − S∗ that is biorthogonal to {vk : k ≥ 2}.

Lemma 19. A sequence {fk : k ≥ 2} ⊂ (I − S∗)H2 is biorthogonal to {vk : k ≥ 2}
if and only if

(3.7) fk(z) =
∞
∑

n=0

Bk(n+ 1)zn = (I − S∗)hk,

where Bk are the sequences defined in Lemma 16.

Proof. Let {fk : k ≥ 2} ⊂ (I − S∗)H2 be a sequence biorthogonal to {vk : k ≥ 2}
and let ϕk ∈ H2 such that fk = (I − S∗)ϕk. If (bk(n))n≥0 are the Maclaurin
coefficients of ϕk, then

fk(z) =
∞
∑

n=0

(bk(n)− bk(n+ 1))zn.

It then follows by Lemma 18 that for each k ≥ 2, there exists a ck ∈ C such that

bk(n− 1)− bk(n) = Ak(n) =

{

k
n + ck

n , k|n
ck
n , k6 |n

, ∀n ≥ 1.
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By induction, we obtain

bk(n) = bk(0)−
n
∑

j=1

Ak(j) = bk(0)−
∑

j≤n

ck
j

−
∑

j≤n
k|j

k

j

= bk(0)− ck
∑

j≤n

1

j
−

∑

m≤n/k

1

m
= bk(0)− ckH(n)−H

(n

k

)

,

where H is the same function used in (3.3). Since ϕk ∈ H2, we get (bk(n))n ∈ ℓ2

and hence limn→∞ bk(n) = 0. So (ckH(n) + H(n/k))n converges. Using Euler
summation, one gets (see [19])

(3.8) H(x) = log x+ γ +O

(

1

x

)

,

where γ is Euler-Mascheroni constant. Therefore,

ckH(n) +H
(n

k

)

= ck logn+ ckγ + logn− log k + γ +O

(

k

n

)

= (ck + 1) logn+ (ck + 1)γ − log k +O

(

k

n

)

,

which converges as n→ ∞ if and only if ck = −1. Hence ck = −1 for all k ≥ 2. In
that case Ak = Bk and we obtain (3.7). The converse is equivalent to Theorem 17
by the remarks at the start of Step 4. �

As a consequence of Theorem 1 and Proposition 8 the RH holds if and only if
(uj)j≥2 is the unique sequence in H2 that is biorthogonal to (hk)k≥2. On the other
hand the next result shows what happens if some ζ-zero violates the RH.

Corollary 20. If ζ(s0) = 0 for some 1/2 < ℜs0 < 1, then

〈hk, uj + κs0〉 = δkj ∀ k, j ≥ 2

where κs0 is the zeta kernel at s0. So (uj +κs0)j≥2 is also biorthogonal to (hk)k≥2.

Proof. This follows by (1.4) and Theorem 17 since 〈hk, κs0〉 = 0 for all k ≥ 2. �

4. The RH-failure conjecture

The RH-failure (RHF) conjecture states that if the RH is false, then ζ(s) = 0
for infinitely many s ∈ C with 1/2 < ℜs < 1. Our goal is to prove the following.

Theorem 21. The RHF conjecture implies that dim(N⊥) is either 0 or ∞.

Let K := {κs : ℜs > 1/2} denote the family of zeta kernels. If ζ(s) = 0 for
some ℜs > 1/2, then 〈hk, κs〉 = 0 for all k ≥ 2 by (1.4) and hence κs ∈ N⊥ . So
the RHF conjecture implies that N⊥ ∩ K is either empty (by Theorem 1) or has
infinitely many elements. Therefore Theorem 21 follows if we show that K is linearly
independent in H2. We first show that elements of K are common eigenvectors for
the adjoints of operators (Wn)n≥1 defined in (2.2). For f ∈ H2 and n ∈ N, we have

W ∗
nf(z) =

∞
∑

k=0

[f̂(nk) + f̂(nk + 1) + . . .+ f̂(nk + n− 1)]zk

where f̂(n) denotes the n-th Fourier coefficient of f . This formula first appeared
in [17]. It is possible to describe the common eigenvectors of (W ∗

n)n≥1 completely.
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Proposition 22. A non-zero f ∈ H2 is a common eigenvector for (W ∗
n)n≥1 if and

only if there exists a multiplicative sequence (λn)n≥1 with (λn+1 −λn)n≥1 ∈ ℓ2 and

(4.1) f̂(n) = (λn+1 − λn)f̂(0) ∀ n ≥ 1.

Moreover W ∗
nf = λnf for all n ≥ 1.

By a multiplicative sequence (λn)n≥1 we mean that λnλm = λnm and λ1 = 1.
Similarly one can see that WnWm =Wnm and W1 = I by (2.2).

Proof. Let W ∗
nf = λnf for n ≥ 1 and some sequence (λn)n≥1. Since W ∗

1 = I and
W ∗
nm =W ∗

nW
∗
m it follows that (λn)n≥1 is multiplicative. Furthermore

λnf̂(k) = 〈W ∗
nf, z

k〉 = 〈f,Wnz
k〉 =

〈

f,

n−1
∑

j=0

znk+j

〉

=

n−1
∑

j=0

f̂(nk + j).

which gives f̂(n) = λn+1f̂(0)−λnf̂(0) for all n ≥ 1 and hence (λn+1−λn)n≥1 ∈ ℓ2.
Conversely suppose f is a non-zero function satisfying (4.1) for some multiplicative

(λn)n≥1 with (λn+1 − λn)n≥1 ∈ ℓ2. Normalizing by supposing f̂(0) = 1, we get

(W ∗
nf)(z) =

∞
∑

k=0





n−1
∑

j=0

f̂(nk + j)



 zk =

n−1
∑

j=0

f̂(j) +

∞
∑

k=1





n−1
∑

j=0

f̂(nk + j)



 zk

= λn +

∞
∑

k=1

(λnk+n − λnk)z
k = λn

(

1 +

∞
∑

k=1

(λk+1 − λk)z
k

)

= λnf(z)

for all n ≥ 2. So f ∈ H2 is a common eigenvector for (W ∗
n )n≥1. �

Choosing λk = k1−s̄ and f̂(0) = −1/s̄ in Proposition 22 for any fixed ℜs > 1/2
shows that each κs ∈ K is a common eigenvector for (W ∗

n)n≥1 (see (1.3)) with

(4.2) W ∗
nκs = n1−s̄f ∀ n ≥ 1.

We want to prove that for any finite subset {κs1 , . . . , κsℓ} ⊂ K there exists some
W ∗
n such that the corresponding eigenvalues are all distinct. This will give us the

linear independence of every finite subset of K and hence of K itself. First suppose
that the real parts of s1, . . . , sℓ are all distinct. Since |n1−s̄| = n1−ℜs it follows that
the eigenvalues of W ∗

n (for all n > 1) corresponding to κs1 , . . . , κsℓ are all distinct.
If the real parts of s1, . . . , sℓ are not all distinct, then we need the following result.

Lemma 23. Given distinct a1, . . . , an ∈ R, at most finitely many primes p have
the property that there exists a pair ai, aj with 1 ≤ i < j ≤ n such that

(4.3) (ai − aj) log p ∈ 2πZ.

Proof. Suppose there are infinitely many primes that satisfy (4.3). For each such
prime p there exists some 1 ≤ i < j ≤ n and k ∈ Z \ {0} such that

(ai − aj) log p = 2πk =⇒
2πk

log p
= ai − aj .

But since there are only finitely many numbers ai − aj with i < j, and none of
which equal 0, there must exist distinct primes p, q and k1, k2 ∈ Z \ {0} such that

2πk1
log p

= ai − aj =
2πk2
log q

=⇒ k2 log p = k1 log q 6= 0.

for some pair i < j. In particular, pk2 = qk1 6= 1, which is a contradiction. �
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The following result then completes the proof of Theorem 21.

Proposition 24. The family of zeta kernels K is linearly independent.

Proof. Let {κs1 , . . . , κsℓ} ⊂ K be a finite subset. The case when the real parts of
s1, . . . , sℓ are all distinct was already dealt with. Suppose some of the s1, . . . , sℓ
have the same real parts. So {s1, . . . , sℓ} is the finite disjoint union of sets of the
form Ar := {si : ℜsi = r, i = 1, . . . , ℓ} for r ∈ R. It is enough to prove that the
family {κs : s ∈ Ar} is linearly independent when Ar has more than one element.
Since s1, . . . , sℓ are distinct complex numbers, the imaginary parts of elements in
Ar, which we denote by a1, . . . , an, must all be distinct. Applying Lemma 23 to
a1, . . . , an shows that there exist infinitely many primes q such that

(4.4) (ai − aj) log q /∈ 2πZ, ∀ 1 ≤ i < j ≤ n.

For such a prime q, we claim that the {κs : s ∈ Ar} are W ∗
q -eigenvectors with

distinct eigenvalues. To see this first note that W ∗
q κs = q1−s̄κs by (4.2) and

q1−s̄ = e(1−s̄) log q = e(1−r) log qeiIm(s) log q ∀ s ∈ Ar.

But Im(s) for s ∈ Ar are precisely the real numbers a1, . . . , an. Therefore the
eigenvalues q1−s̄ for s ∈ Ar are all distinct by (4.4) and hence {κs : s ∈ Ar} and
therefore all of K is linearly independent. �

5. Appendix

Denote by Cρ the half-plane {s ∈ C : ℜs > ρ}. In this appendix we provide an
alternate proof for the fundamental relation

(5.1) 〈hk, κs〉 = −
ζ(s)

s
(k1−s − 1) ∀ s ∈ C1/2, k ≥ 2.

We first prove that (5.1) holds for all s ∈ C1. We then prove that the function
s 7−→ 〈hk, κs〉 has an analytic continuation to C0 for each k ≥ 2. Since the right
side of (5.1) is already analytic for s ∈ C \ {0}, the result then follows by analytic
continuation. Recall from Subsection 1.7 that

κs(z) =

∞
∑

n=0

φn(s̄)z
n where φn(s) = −

1

s

(

(n+ 1)1−s − n1−s) .

Lemma 25. The identity (5.1) holds for s ∈ C1.

Proof. Let (cn(k))n be the Fourier coefficients of hk. Since φn(s) = φn(s), we have

〈hk, κs〉 =
∞
∑

n=0

cn(k)φn(s) =

∞
∑

n=0

cn(k)φn(s)

= lim
N→∞

(

−
c0(k)

s
−

1

s

N
∑

n=1

cn(k)
(

(n+ 1)1−s − n1−s)
)

= lim
N→∞

(

−
1

s

N
∑

n=0

cn(k)(n+ 1)1−s +
1

s

N
∑

n=1

cn(k)n
1−s
)

= lim
N→∞

(

−
1

s

N
∑

n=1

(cn−1(k)− cn(k))n
1−s −

1

s
cN (k)(N + 1)1−s

)

.
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Since cn(k) = O(k/n) (see [19, p. 249]), we have cN (k)(N+1) = O(1). Furthermore
(N + 1)−s → 0 for ℜ(s) > 0 and therefore we get

〈hk, κs〉 = −
1

s
lim
N→∞

(

N
∑

n=1

(cn−1(k)− cn(k))n
1−s
)

(3.4)
= −

1

s
lim
N→∞







N
∑

n=1

−
1

n
n1−s +

N
∑

n=1
k|n

k

n
n1−s







= −
1

s
lim
N→∞





N
∑

n=1

n−s +

⌊N
k
⌋

∑

m=1

1

m
(mk)1−s





= −
1

s
lim
N→∞



−
N
∑

n=1

n−s + k1−s
⌊N

k
⌋

∑

m=1

1

m
m1−s





(∗)
= −

1

s
(−ζ(s)) −

k1−s

s
ζ(s) = −

ζ(s)

s
(k1−s − 1),

where in (∗) we split the limit in two and use the definition of ζ for ℜ(s) > 1. �

The inner product 〈hk, κs〉 defined for s ∈ C1/2 also makes sense for s ∈ C0.

Lemma 26. The function Φk : C1/2 → C defined by

(5.2) Φk(s) := 〈hk, κs〉 =
∞
∑

n=0

cn(k)φn(s).

has an analytic continuation to C0 for each k ≥ 2.

Proof. Since each φn is holomorphic in C0, it is sufficient to prove that the series
in (5.2) converges uniformly in every half-plane Cρ for ρ > 0. Note that

|φn(s)| =
|1− s|

|s|

∣

∣

∣

∣

∫ n+1

n

y−sdy

∣

∣

∣

∣

≤
|1− s|

|s|
n−ℜs = O(n−ρ)

for s ∈ Cρ with ρ > 0. Also cn(k) = O(k/n) for each k ≥ 2, and hence we get
cn(k)φn(s) = O(n−1−ρ) for s ∈ Cρ. So Φk converges uniformly in Cρ for ρ > 0. �
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19. S. W. Noor, A Hardy space analysis of the Báez-Duarte criterion for the RH, Adv. Math. 350
(2019) 242-255.

20. B. Nyman, On Some Groups and Semigroups of Translations, Thesis, Uppsala, 1950.
21. D. Sarason, Unbounded Toeplitz operators. Integr. Equ. Oper. Theory. 61(2), 281-298, 2008.
22. V. I. Vasyunin, On a biorthogonal system related with the Riemann Hypothesis. St. Petersburg

Math J. 7 (1996), pp. 405-419.
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