ORTHOGONALITY QUESTIONS IN THE HARDY SPACE RELATED TO $\zeta\text{-}\mathbf{Z}\mathbf{E}\mathbf{R}\mathbf{O}\mathbf{S}$

FRANCISCO CALDERARO, JUAN MANZUR, WALEED NOOR AND CHARLES SANTOS

ABSTRACT. A Hardy space approach to the Nyman-Beurling and Báez-Duarte criterion for the Riemann Hypothesis (RH) was introduced recently in [19] and further developed in [14]. It states that the RH holds if and only if a particular sequence of functions $(h_k)_{k\geq 2}$ is complete in the Hardy space H^2 . This article is concerned with orthogonality questions related to the family $(h_k)_{k\geq 2}$. The first goal is to analyze the orthogonal complement of $\mathcal{N} = \operatorname{span}(h_k)_{k\geq 2}$ in H^2 . Unbounded Toeplitz operators on H^p spaces and de Branges-Rovnyak spaces play a central role and our results show that the size and dimension of \mathcal{N}^{\perp} reveal information on the zeros of the Riemann ζ -function. The second goal is to show that $(h_k)_{k\geq 2}$ possesses a complete biorthogonal sequence in H^2 . We also discuss a folklore conjecture about the number of ζ -zeros if the RH fails.

INTRODUCTION

A classical result of Nyman and Beurling (see [6], [20]) shows that the Riemann Hypothesis (RH) is equivalent to the completeness of $\{\rho_{\lambda} : 0 \leq \lambda \leq 1\}$ in $L^2(0, 1)$ where $\rho_{\lambda}(x) = \{\lambda/x\} - \lambda\{1/x\}$ and $\{x\}$ denotes the fractional part of x. This is furthermore equivalent to the characteristic function $\chi_{(0,1)}$ belonging to the closed linear span of $\{\rho_{\lambda} : 0 \leq \lambda \leq 1\}$. Half a century later Báez-Duarte [2] strengthened this result by showing that RH is true if and only if $\chi_{(0,1)} \in \overline{\text{span}\{\rho_{1/k} : k \geq 2\}}$. See the expository article of Bagchi [3] and the survey of Balazard [4]. Recently the Nyman-Beurling and Báez-Duarte approaches to the RH have been explored via tools from Hardy space H^2 theory [19] and other analytic function spaces [14].

For each $k \geq 2$, define

$$h_k(z) = \frac{1}{1-z} \log\left(\frac{1+z+\dots+z^{k-1}}{k}\right)$$

and denote by \mathcal{N} the linear span of $\{h_k : k \geq 2\}$. That each h_k belongs to H^2 was proved in [19, Lemma 7]. One of the main results of [19] was a reformulation of Báez-Duarte's result as a completeness problem in H^2 . Then in [14] the same completeness problem in the H^p spaces was shown to provide zero-free half planes for the Riemann ζ -function. We state both results here as one.

Theorem 1. The RH holds if and only if \mathcal{N} is dense in H^2 . If \mathcal{N} is dense in H^p for some 1 , then

$$\zeta(s) \neq 0$$
 for $\Re(s) > \frac{1}{p}$.

The density of \mathcal{N} in H^1 gives the known zero-free region $\Re(s) \geq 1$.

Key words and phrases. Riemann hypothesis, Hardy space, local Dirichlet space, de Branges-Rovnyak space, Smirnov class.

2 FRANCISCO CALDERARO, JUAN MANZUR, WALEED NOOR AND CHARLES SANTOS

Although \mathcal{N} is unconditionally dense in H^p for 0 (see [14, Cor. 4.6]), this $provides no new information regarding <math>\zeta$ -zeros. Also note that the RH is equivalent to $\mathcal{N}^{\perp} = \{0\}$ in H^2 by Theorem 1. This suggests the question of the size and dimension of \mathcal{N}^{\perp} and their possible relation to the ζ -zeros. The first archetypal result addressing this is the following (See [19, Thm. 12]).

Theorem 2. $\mathcal{N}^{\perp} \cap \mathcal{D}_{\delta_1} = \{0\}$, where \mathcal{D}_{δ_1} denotes the local Dirichlet space at 1.

Since $\mathcal{D}_{\delta_1} \subset H^2 \subset H^p$ for $0 , Theorems 1 and 2 inspire the following question: which linear spaces of analytic functions on <math>\mathbb{D}$ with $X_1 \subset H^2 \subset X_2$ satisfy

(1)
$$\mathcal{N}^{\perp} \cap X_1 = \{0\}$$
 and (2) \mathcal{N} is dense in X_2 ?

Interestingly, both (1) and (2) are equivalent if one takes $X_2 = X$ a Frechet space and $X_1 = X^*$ its Cauchy dual (see Proposition 9). In Section 2 we analyze this *orthogonality question* using tools from de Branges-Rovnyak spaces and unbounded Toeplitz operators on H^p (see Proposition 11), and in particular develop a new approach for finding zero-free half-planes for the ζ function (see Theorem 14).

In Section 3 we deal with the biorthogonality question: Does the sequence $(h_k)_{k\geq 2}$ posses a complete biorthogonal sequence in H^2 ? (see Subsection 1.5). We affirmatively answer this question (see Theorem 15). To provide some context, Vasyunin showed in [22] that the Báez-Duarte sequence $\{\rho_{1/k} : k \geq 2\}$ is minimal by constructing a biorthogonal sequence for it in $L^2(0,1)$. Whereas the sequence $\{\rho_{1/k} : k \geq 2\}$ is not complete in $L^2(0,1)$, the completeness of $(h_k)_{k\geq 2}$ in H^2 is equivalent to the RH by Theorem 1. The property of completeness of a sequence is not in general inherited by its biorthogonal sequence. But it may do so in very special cases such as for sequences of complex exponentials in $L^2(-\pi,\pi)$ (see [25]). Therefore an affirmative answer to this question (independent of RH) is intriguing.

Finally in Section 4 we discuss a folklore conjecture about the ζ -zeros which we name the *RH failure* (RHF) conjecture: *If the RH fails, then it fails infinitely often.* More precisely, either ζ has no nontrivial zeros outside the critical line, or it has infinitely many. The main result of this section (Theorem 21) states that

RHF conjecture $\implies \dim(\mathcal{N}^{\perp})$ is either 0 or ∞ .

We were unable to locate a reference for this conjecture in the literature. But an informative discussion of this conjecture does appear in mathoverflow.net [11].

1. Preliminaries

We denote by \mathbb{D} and \mathbb{T} the open unit disk and the unit circle respectively. By $\operatorname{Hol}(\mathbb{D})$ we denote the space of holomorphic functions on \mathbb{D} and the shift operator is defined by (Sf)(z) = zf(z) for $f \in \operatorname{Hol}(\mathbb{D})$.

1.1. Hardy spaces and the Smirnov class. A holomorphic function f on \mathbb{D} belongs to the Hardy-Hilbert space H^2 if

$$||f||_{H^2} = \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{1/2} < \infty.$$

The space H^2 is a Hilbert space with the ℓ^2 -inner product

$$\langle f,g\rangle = \sum_{n=0}^{\infty} a_n \overline{b_n},$$

where $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are the Fourier coefficients for f and g respectively. For any $f \in H^2$ and $\zeta \in \mathbb{T}$, the radial limit $f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta)$ exists *m*-a.e. on \mathbb{T} , where *m* denotes the normalized Lebesgue measure on \mathbb{T} . Analogously for p > 0, the Hardy space H^p consists of those holomorphic f on \mathbb{D} such that

$$||f||_{H^p}^p = \sup_{0 < r < 1} \int_{\mathbb{T}} |f(rz)|^p \, \mathrm{d}m(z) < \infty.$$

The H^p are Banach spaces for $p \ge 1$ and complete metric spaces for 0 $and <math>H^{\infty}$ denotes the space of bounded holomorphic functions on \mathbb{D} . A function f is called a cyclic vector for the shift S in H^p if $\operatorname{span}(S^n f)_{n\ge 0} = \mathbb{C}[z]f$ is dense in H^p . When p = 2 these cyclic vectors are commonly known as outer functions. Since $H^{\infty} \subset H^p$ for all p > 0, the H^{∞} outer functions are cyclic for all H^p spaces. The Smirnov class N^+ consists of all holomorphic functions g/h on \mathbb{D} such that $g,h \in H^{\infty}$ and h is an outer function. The space N^+ is a topological algebra with respect to pointwise multiplication and $g/h \in N^+$ is a unit if both g and h are outer functions. The topology on N^+ can be metrized with the translation-invariant complete metric

$$d(f,g) = \int_{\mathbb{T}} \log(1+|f-g|) \,\mathrm{d}m, \qquad f,g \in N^+.$$

Similar to H^p spaces, convergence in N^+ implies locally unifom convergence on \mathbb{D} and functions have radial limits *m*-a.e. on \mathbb{T} . In fact we have $H^p \subset H^q \subset N^+$ for all $0 < q < p \le \infty$. Duren [10] is a classic reference for the H^p and N^+ spaces.

1.2. Local Dirichlet spaces. Let μ be a finite positive Borel measure on \mathbb{T} , and let $P\mu$ denote its Poisson integral. The generalized Dirichlet space \mathcal{D}_{μ} consists of $f \in H^2$ satisfying

$$\mathcal{D}_{\mu}(f) := \int_{\mathbb{D}} \left| f'(z) \right|^2 P\mu(z) dA(z) < \infty.$$

Then \mathcal{D}_{μ} is a Hilbert space with norm $\|f\|_{\mathcal{D}_{\mu}}^{2} := \|f\|_{2}^{2} + \mathcal{D}_{\mu}(f)$. If $\mu = m$, then \mathcal{D}_{m} is the classicial Dirichlet space. If $\mu = \delta_{\zeta}$ is the Dirac measure at $\zeta \in \mathbb{T}$, then $\mathcal{D}_{\zeta} := \mathcal{D}_{\delta_{\zeta}}$ is called the *local Dirichlet space* at ζ and in particular

(1.1)
$$\mathcal{D}_{\delta_{\zeta}}(f) = \int_{\mathbb{D}} \left| f'(z) \right|^2 \frac{1 - \left| z^2 \right|}{\left| z - \zeta \right|^2} dA(z)$$

The recent book [18] contains a comprehensive treatment of local Dirichlet spaces and the following result establishes a criterion for their membership.

Theorem 3. (See [18, Thm. 7.2.1]) Let $\zeta \in \mathbb{T}$ and $f \in Hol(\mathbb{D})$. Then $\mathcal{D}_{\delta_{\zeta}}(f) < \infty$ if and only if

$$f(z) = (z - \zeta)g(z) + a$$

for some $g \in H^2$ and $a \in \mathbb{C}$. In particular $f^*(\zeta)$ exists for all $f \in \mathcal{D}_{\zeta}$.

So each local Dirichlet space $\mathcal{D}_{\zeta} = (S - \zeta I)H^2 + \mathbb{C}$ is a proper subspace of H^2 . We define the H^p -analogues of these spaces for p > 0 by

$$\mathcal{D}^p_{\zeta} := (S - \zeta I)H^p + \mathbb{C}$$

and note that $\mathcal{D}_{\zeta}^2 = \mathcal{D}_{\delta_{\zeta}}$ and $\mathcal{D}_{\zeta}^p \subsetneq \mathcal{D}_{\zeta}^q$ for q < p since $H^p \subsetneq H^q$. Straightforward but lengthy computations show that $\mathcal{D}_{\zeta}^p \subsetneq H^2$ for p > 1 and $H^2 \subsetneq \mathcal{D}_{\zeta}^p$ for 0 .

1.3. The de Branges-Rovnyak spaces. Given $\psi \in L^{\infty}(\mathbb{T})$, the corresponding Toeplitz operator $T_{\psi}: H^2 \to H^2$ is defined by

$$T_{\psi}f := P_+(\psi f)$$

where $P_+ : L^2(\mathbb{T}) \to H^2$ denotes the orthogonal projection of $L^2(\mathbb{T})$ onto H^2 . Clearly T_{ψ} is a bounded operator on H^2 with $||T_{\psi}|| \leq ||\psi||_{L^{\infty}}$. If $h \in H^{\infty}$, then T_h is the operator of multiplication by h and its adjoint is $T_{\overline{h}}$. Given b in the closed unit ball of H^{∞} , the *de Branges-Rovnyak* space $\mathcal{H}(b)$ is the image of H^2 under the operator $(I - T_b T_{\overline{b}})^{1/2}$. The general theory of $\mathcal{H}(b)$ spaces divides into two distinct cases, according to whether b is an extreme point or a non-extreme point of the unit ball of H^{∞} . We shall be concerned only with the non-extreme case. In this case there exists a unique outer function $a \in H^{\infty}$ such that a(0) > 0 and $|a^*|^2 + |b^*|^2 = 1$ a.e. on \mathbb{T} . The pair (b, a) is called a *Pythagorean pair* and the function b/a belongs to the Smirnov class N^+ . That all N^+ functions arise as the quotient of a pair associated to a non-extreme function was shown by Sarason [21]. The two-volume work ([12][13]) is an encyclopedic reference for these spaces.

If φ is a rational function in N^+ the corresponding pair (b, a) is also rational (see [21, Remark. 3.2]). Constara and Ransford [8] characterized the rational pairs (b, a) for which $\mathcal{H}(b)$ is a generalized Dirichlet space.

Theorem 4. (See [8, Theorem 4.1]) Let (b, a) be a rational pair and μ a finite positive measure on \mathbb{T} . Then $\mathcal{H}(b) = \mathcal{D}_{\mu}$ if and only if

- (1) the zeros of a on \mathbb{T} are all simple, and
- (2) the support of μ is exactly equal to this set of zeros.

As an example, if (b, a) is the rational pair associated with the N^+ function $\varphi(z) = \frac{1}{1-\zeta}$ for $\zeta \in \mathbb{T}$, then $\mathcal{H}(b) = \mathcal{D}_{\zeta}$ is a local Dirichlet space.

1.4. Unbounded Toeplitz operators on H^p . Sarason [21] demonstrated how $\mathcal{H}(b)$ spaces appear naturally as the domains of some unbounded Toeplitz operators. Let φ be holomorphic in \mathbb{D} and T_{φ} the operator of multiplication by φ on the domain

(1.2)
$$\operatorname{dom}(T_{\varphi}) = \{ f \in H^2 : \varphi f \in H^2 \}$$

Then T_{φ} is a closed operator, and dom (T_{φ}) is dense in H^2 if and only if $\varphi \in N^+$ (see [21, Lemma 5.2]). In this case its adjoint T_{φ}^* is also densely defined and closed. In fact the domain of T_{φ}^* is a de Branges-Rovnyak space.

Theorem 5. (See [21, Prop. 5.4]) Let φ be a nonzero function in N^+ with $\varphi = b/a$, where (b, a) is the associated pair. Then dom $(T^*_{\varphi}) = \mathcal{H}(b)$.

Choosing the symbol $\varphi(z) = \frac{1}{\zeta - z}$ in Theorem 5 in conjunction with Theorem 4 gives dom $(T_{\varphi}^*) = \mathcal{D}_{\zeta}$ which played a key role in the proof of Theorem 2 (see [19]). Our goal here is to extend these ideas to H^p spaces for all p > 1. Let $\varphi \in N^+$ and define the analytic Toeplitz operator on H^p with symbol φ by

$$T_{\varphi}f = \varphi f$$
, where $f \in \operatorname{dom}_p(T_{\varphi}) := \{f \in H^p : \phi f \in H^p\}$.

These T_{φ} are bounded on H^p precisely when $\varphi \in H^{\infty}$ (see the survey article [23]). For $\varphi = \frac{b}{a} \in N^+$ with $a, b \in H^{\infty}$ and a outer as usual, these T_{φ} are densely defined on H^p for p > 1. Indeed, dom_p(T_{φ}) contains the dense subspace aH^p since a is outer and $T_{\varphi}(aH^p) = bH^p \subset H^p$. It follows then that the adjoint T_{φ}^* is well-defined on the dual $(H^p)^* = H^q$ where $\frac{1}{p} + \frac{1}{q} = 1$. The domain of T_{φ}^* is then defined by

$$\operatorname{dom}_{q}(T_{\varphi}^{*}) := \{g \in H^{q} : \exists h \in H^{q} \ s.t \ \langle f, h \rangle = \langle \varphi f, g \rangle \ \forall f \in \operatorname{dom}_{p}(T_{\varphi}) \}$$

where $\langle f,h \rangle := \int_{\mathbb{T}} f \overline{h} dm$ represents the H^p - H^q duality. The elements in dom_q(T^*_{φ}) can be characterized via the bounded Toeplitz operators T_a and T_b as follows.

Lemma 6. Given $\varphi = \frac{b}{a} \in N^+$ as described above, a function $g \in \text{dom}_q(T_{\varphi}^*)$ if and only if there exists an $h \in H^q$ such that $T_b^*g = T_a^*h$.

Proof. Suppose $g \in \text{dom}_q(T^*_{\varphi})$. Then $\langle f, h \rangle = \langle \varphi f, g \rangle$ for some $h \in H^q$ and for all $f \in aH^p \subset \text{dom}_p(T_{\varphi})$. Writing $f = a\tilde{f}$ for $\tilde{f} \in H^p$, we get

$$\langle f,h\rangle = \langle \varphi f,g\rangle \iff \langle f,h\rangle = \langle bf/a,g\rangle \iff \langle a\tilde{f},h\rangle = \langle b\tilde{f},g\rangle \; \forall \; \tilde{f} \in H^p$$

which is equivalent to $T_a^*h = T_b^*g$. This argument works in both directions because a is an H^{∞} outer function and hence aH^p is dense in H^p .

We can now extend the identity $\operatorname{dom}(T^*_{\varphi}) = \mathcal{D}_{\zeta}$ from H^2 to all H^p with p > 1.

Proposition 7. Let $\varphi(z) = \frac{1}{\zeta - z}$ for $\zeta \in \mathbb{T}$ and T_{φ} the densely defined Toeplitz operator on H^p for any p > 1. We then have

$$\operatorname{dom}_q(T^*_{\varphi}) = \mathcal{D}^q_{\zeta}, \quad \text{where} \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Proof. Choosing $\varphi = \frac{b}{a}$ with b(z) = 1 and $a(z) = \zeta - z$ (which is outer) in Lemma 6, we get $g \in \text{dom}_q(T_{\varphi}^*)$ if and only if $g = T_{\zeta-z}^*h = (\overline{\zeta}I - S^*)h$ for some $h \in H^q$. Therefore, it suffices to verify that $(\overline{\zeta}I - S^*)H^q = \mathcal{D}_{\zeta}^q$. For any $h \in H^q$, we have

$$(\overline{\zeta}I - S^*)h = (\zeta I - S)(-\overline{\zeta}S^*h) + \overline{\zeta}h(0) \in \mathcal{D}^q_{\zeta} := (S - \zeta I)H^q + \mathbb{C}$$

and therefore $(\overline{\zeta}I - S^*)H^q \subset \mathcal{D}^q_{\zeta}$. Conversely, if $h \in H^q$ and $c \in \mathbb{C}$ then

$$(\zeta I - S)h + c = (\overline{\zeta}I - S^*)\zeta(c - Sh) \in (\overline{\zeta}I - S^*)H^q$$

and hence $\mathcal{D}^q_{\zeta} \subset (\overline{\zeta}I - S^*)H^q$ which concludes the proof.

1.5. Cauchy duality. Let X be a complete metrizable linear subspace of $\operatorname{Hol}(\mathbb{D})$. Inspired by terminology used by Malman and Seco [16], we call X^* the Cauchy dual of X if any continuous linear functional on X can be represented by the Cauchy pairing

$$\langle f,g\rangle := \lim_{r \to 1^-} \int_{\mathbb{T}} f(r\zeta) \overline{g(r\zeta)} \, \mathrm{d}m(\zeta) \,, \quad f \in X, \ g \in X^* \,.$$

If $H^2 \subset X$ then $X^* \subset H^2$ and vice-versa. Hence when both f and g are in H^2 , the pairing above reduces to the standard inner product in H^2 . Some examples of Cauchy duals for our context are listed below (see [10],[15],[24]).

- (1) H^p and H^q for p > 1 and 1/p + 1/q = 1,
- (2) H^1 and BMOA (analytic functions with bounded mean oscillation on \mathbb{T}),
- (3) H^p for $1/2 and <math>\Lambda_{\alpha}$ (the Lipschitz class of Hol(\mathbb{D})-functions with α -Hölder continuous extension to \mathbb{T} , where $\alpha = 1/p 1$).
- (4) N^+ and the *Gevrey class* \mathcal{G} (Hol(\mathbb{D})-functions whose Taylor coefficients satisfy $a_n = O(e^{-c\sqrt{n}})$ for some constant c > 0).

A deep result of Davis and McCarthy [9] shows that the class \mathcal{G} coincides with the universal multipliers for all non-extreme $\mathcal{H}(b)$ spaces. In particular $\mathcal{G} \subset \mathcal{H}(b)$ for all non-extreme b. The concept of Cauchy duality leads to an equivalence between orthogonality and density questions involving \mathcal{N} which is explored in Section 2.

1.6. Minimality and biorthogonality. Let \mathcal{H} be a Hilbert space. Two sequences $(e_n)_{n \in \mathbb{N}}$ and $(f_n)_{n \in \mathbb{N}}$ in \mathcal{H} are said to be *biorthogonal* to each other if

$$\langle e_n, f_m \rangle = \delta_{nm} \quad \forall \ n, m \in \mathbb{N}$$

where δ_{nm} is the Kronecker delta. The sequence $(e_n)_{n \in \mathbb{N}}$ is called *minimal* if $e_n \notin \overline{\text{span}}(e_k)_{k \neq n}$ for all $n \in \mathbb{N}$. The notions of biorthogonality, minimality and completeness are all related via the following well-known result.

Proposition 8. (see [7, Lemma 3.3.1]) Let $(e_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} . Then,

- (i) $(e_n)_{n \in \mathbb{N}}$ has a biorthogonal sequence if and only if $(e_n)_{n \in \mathbb{N}}$ is minimal.
- (ii) If (e_n)_{n∈ℕ} has a biorthogonal sequence, then (e_n)_{n∈ℕ} is complete in H if and only if its biorthogonal sequence is unique.

In Section 3 we shall prove that the sequence $(u_k)_{k\geq 2}$ defined by

$$u_k(z) = \sum_{d|k} \frac{\mu(k/d)}{k/d} (z^{d-1} - z^d)$$

forms a complete biorthogonal sequence for $(h_k)_{k\geq 2}$ in H^2 , where μ denotes the Möbius function defined on \mathbb{N} by $\mu(k) = (-1)^s$ if k is the product of s distinct primes, and $\mu(k) = 0$ otherwise.

1.7. The zeta kernels. Let $X \subset \operatorname{Hol}(\mathbb{D})$ be a topological vector space where the monomials $(z^k)_{k \in \mathbb{N}}$ form a Schauder basis. It was shown in [14] that for each $s \in \mathbb{C} \setminus \{0\}$ a linear functional $\Lambda^{(s)}$ can be defined on X by assigning

$$\Lambda^{(s)}(1) = -\frac{1}{s}, \quad \Lambda^{(s)}(z^k) = -\frac{1}{s} \left((k+1)^{1-s} - k^{1-s} \right) \quad (k \ge 1).$$

In particular $\Lambda^{(s)}$ is bounded on H^p for $1 if <math>\Re s > 1/p$ and on H^1 if $\Re s \geq 1$ (see [14, Prop. 4.7]). So there exist functions $\kappa_s \in H^q$ with 1/p + 1/q = 1 such that $\Lambda^{(s)}(f) = \langle f, \kappa_s \rangle$. The function κ_s will be called the zeta kernel at s and

(1.3)
$$\kappa_s(z) = \sum_{k=0}^{\infty} \phi_k(\bar{s}) z^k \text{ where } \phi_k(s) := \Lambda^{(s)}(z^k).$$

The name comes from their relation to h_k and ζ via the important identity

(1.4)
$$\Lambda^{(s)}(h_k) = \langle h_k, \kappa_s \rangle = -\frac{\zeta(s)}{s} (k^{1-s} - 1) \quad \forall \quad \Re s > 1/2, \ k \ge 2.$$

The identity (1.4) appears in [14] but we provide an alternate proof in the appendix for the sake of completeness. It is important to mention that the definition of h_k in [14] has an additional factor of 1/k which has been adjusted in (1.4) accordingly. The zeta kernels are used in Chapters 3 and play a key role in Chapter 4.

2. The orthogonality question

The objective of this section is to develop a framework for proving when

$$(2.1) \qquad \qquad \mathcal{N}^{\perp} \cap L = \{0\}$$

for topological vector spaces $L \subset H^2$. Since $\mathcal{N}^{\perp} = \{0\}$ is equivalent to the RH by Theorem 1, one may also ask if solutions to (2.1) can lead to new zero-free half-planes for the ζ -function. We start by showing that Cauchy duality serves as a bridge between this orthogonality question and completeness questions.

Proposition 9. Let X be a topological linear space with $H^2 \subset X \subset Hol(\mathbb{D})$, where the inclusions are continuous. If \mathcal{N} is dense in X, then

$$\mathcal{N}^{\perp} \cap X^* = \{0\}$$

where $X^* \subset H^2$ is the Cauchy dual of X. The converse holds when X is Fréchet.

Proof. First note that since both \mathcal{N}^{\perp} and X^* are subspaces of H^2 , their intersection above makes sense. Let $\langle f, g \rangle$ denote the Cauchy pairing for $f \in X$ and $g \in X^*$ and recall that this pairing becomes the usual H^2 -inner product $\langle f, g \rangle_{H^2}$ when $f, g \in H^2$ (see Subsection 1.5). Therefore if \mathcal{N} is dense in X, then

$$g \in \mathcal{N}^{\perp} \cap X^* \implies \langle f, g \rangle = \langle f, g \rangle_{H^2} = 0 \text{ for all } f \in \mathcal{N}$$

which implies that g must be identically zero in X^* . Conversely if X is additionally a Fréchet space, then we have access to the Hahn-Banach Theorem. Indeed if \mathcal{N} is not dense in X, then there exists a non-zero $g \in X^*$ such that $\langle f, g \rangle = 0 \ \forall f \in \mathcal{N}$. This implies that g is H^2 -orthogonal to \mathcal{N} and hence $g \in \mathcal{N}^{\perp} \cap X^* \neq \{0\}$. \Box

Since \mathcal{N} is dense in H^p for 0 (see [14, Cor. 4.6]), it is also dense $in <math>N^+$ since $H^p \subset N^+$ for all p > 0. Therefore it follows by Proposition 9 that $\mathcal{N}^{\perp} \cap L = \{0\}$ if L is the Lipschitz class Λ_{α} (1/2 < p < 1 and $\alpha = 1/p - 1$) or the Gevrey class \mathcal{G} (see Subsection 1.5). However to obtain new zero-free half-planes for ζ , we need $L \subset H^2$ to be large enough to contain some H^q space for $q \geq 2$.

Corollary 10. If $\mathcal{N}^{\perp} \cap H^q = \{0\}$ for some $q \geq 2$, then $\zeta(s) \neq 0$ for $\Re s > 1/p$, where 1/p + 1/q = 1. If $\mathcal{N}^{\perp} \cap BMOA = \{0\}$, then $\zeta(s) \neq 0$ for $\Re s \geq 1$.

Proof. Notice that H^q is the Cauchy dual of H^p and $q \ge 2$ implies that 1 . $In this range the <math>H^p$ are Banach spaces, and in particular Fréchet spaces. Similarly the BMOA space is the Cauchy dual of H^1 . Therefore the result follows by the converse in Proposition 9 and by Theorem 1.

The next result relates Toeplitz operators on H^p and the orthogonality question. Recall that if $\varphi \in N^+$ is a unit, then $1/\varphi \in N^+$ and hence both T_{φ} and its inverse $T_{1/\varphi}$ are densely defined Toeplitz operators on H^p for p > 1 (see Subsection 1.4).

Proposition 11. Let φ be a unit in N^+ with T_{φ} the Toeplitz operator on H^p for some p > 1. If $T_{\varphi}\mathcal{N} = \varphi \mathcal{N}$ is dense in H^p , then

$$\mathcal{N}^{\perp} \cap \text{dom}_q(T^*_{1/\varphi}) = \{0\}, \quad where \ \frac{1}{p} + \frac{1}{q} = 1.$$

The Hilbertian case p = 2 gives $\mathcal{N}^{\perp} \cap \mathcal{H}(b) = \{0\}$ where (b, a) is the Pythagorean pair associated with $1/\varphi \in N^+$.

Proof. Let $g \in \mathcal{N}^{\perp} \cap \text{dom}_q(T^*_{1/\varphi})$. Since both g and h_k belong to H^2 for all $k \geq 2$, the Cauchy duality $\langle h_k, g \rangle$ coincides with the H^2 -inner product $\langle h_k, g \rangle_2$. Hence

$$\langle \varphi h_k, T_{1/\omega}^* g \rangle = \langle h_k, g \rangle = \langle h_k, g \rangle_2 = 0 \quad \forall \ k \in \mathbb{N}$$

which implies that $T_{1/\varphi}^*g = 0$ in H^q by the density of $\varphi \mathcal{N}$ in H^p . Since $1/\varphi = b/a$ is a unit in N^+ (as the inverse of φ), both a and b are H^∞ outer functions in H^p . So $T_{1/\varphi}(aH^p) = bH^p$ shows that $T_{1/\varphi}$ has dense range in H^p since b is outer. So $T_{1/\varphi}^*$ is injective and therefore g = 0 in H^q . This concludes the general case. The Hilbertian case p = 2 now follows by Theorem 5.

We shall derive two non-trivial applications of this result. The first one extends Theorem 2 to all local Dirichlet spaces \mathcal{D}_1^p with p > 1. We note that the classical \mathcal{D}_{δ_1} is just \mathcal{D}_1^2 which is strictly smaller than \mathcal{D}_1^p for $p \in (1, 2)$ (see Subsection 1.2). We will need with the following approximation result from [14].

Lemma 12. Let μ the Möbius function. Then

$$\sum_{k=2}^{n} \frac{\mu(k)}{k} (I-S)h_k \to 1-z$$

in the H^p norm for all p > 0.

We observe that $I - S = T_{\varphi}$ where $\varphi(z) = 1 - z$ is an H^{∞} outer function since $\mathbb{C}[z]\varphi$ is dense in H^2 . In particular φ is a unit in N^+ . Define operators on H^p by

(2.2)
$$(W_n)f(z) = (1+z+\dots+z^{n-1})f(z^n) = \frac{1-z^n}{1-z}f(z^n)$$

and $(T_n)f(z) = f(z^n)$ for $n \ge 1$ and $f \in H^p$. The multiplicative semigroup of operators $(W_n)_{n\ge 1}$ was introduced in [19] and is the main object of study in [17]. They are bounded on H^p for p > 1 (see [14, Cor. 4.6]). We shall need the identities

$$W_n \mathcal{N} \subset \mathcal{N}$$
 and $T_n (I - S) = (I - S) W_n$

for $k, n \ge 1$ which appear in [19, p. 249]. We are ready for the first application.

Theorem 13. We have $\mathcal{N}^{\perp} \cap \mathcal{D}_1^p = \{0\}$ for all p > 1.

Proof. Let $\varphi(z) = 1 - z$. By Propositions 7 and 11 we only need to prove that $\varphi \mathcal{N}$ is dense in H^p for p > 1. First note that Lemma 12 implies that φ belongs to the H^p -closure of $\varphi \mathcal{N} = (I - S)\mathcal{N}$. This in turn implies that $T_n\varphi$ belongs to the H^p -closure of $T_n(\varphi \mathcal{N}) = \varphi W_n \mathcal{N} \subset \varphi \mathcal{N}$ for all $n \ge 1$. So in particular span $(T_n\varphi)_{n\ge 1} \subset \operatorname{clos}_{H^p}(\varphi \mathcal{N})$. Now $\operatorname{span}(T_n\varphi)_{n\ge 1} = \operatorname{span}(1-z^n)_{n\ge 1} = \mathbb{C}[z]\varphi$ which is dense in H^p for all p > 1 because φ is an H^{∞} outer function. This proves that $\operatorname{clos}_{H^p}(\varphi \mathcal{N}) = H^p$ and concludes the proof.

Our second application of Proposition 11 utilizes recent discoveries in $\mathcal{H}(b)$ -space theory to obtain zero-free half-planes for ζ . In view of Corollary 10, we would like to know when the H^p and BMOA spaces are contained in some $\mathcal{H}(b)$ for $\varphi = b/a \in N^+$. Fortuitously for us, these problems were completely solved recently in a preprint by Malman and Seco [16]. They show that $H^{\tilde{p}} \subset \mathcal{H}(b)$ for $\tilde{p} \in (2, \infty)$ if and only if $\varphi \in H^p$ where $p = \frac{2\tilde{p}}{\tilde{p}-2} \in (2,\infty)$, and also that $H^{\infty} \subset \text{BMOA} \subset \mathcal{H}(b)$ if and only if $\varphi \in H^2$. By definition we always have $\mathcal{H}(b) \subset H^2$, and $\mathcal{H}(b) = H^2$ precisely when $\varphi \in H^{\infty}$. Therefore it makes sense to allow the values p = 2 and $p = \infty$. **Theorem 14.** Suppose φ is a unit in N^+ such that $1/\varphi \in H^p$ for some $p \in (2, \infty)$. If $\varphi \mathcal{N}$ is dense in H^2 , then $\zeta(s) \neq 0$ for $\Re s > \frac{1}{2} + \frac{1}{p}$. The case p = 2 gives the Prime Number Theorem ($\Re s \geq 1$) and $p = \infty$ gives the RH ($\Re s > 1/2$).

Proof. By the results of Malman and Seco [16] mentioned above, $1/\varphi$ belongs to H^2 or to H^∞ precisely when $\mathcal{H}(b)$ contains BMOA or $\mathcal{H}(b) = H^2$ respectively, where $1/\varphi = b/a$ and (b, a) the associated Pythagorean pair. Hence the cases $p = 2, \infty$ follow by Corollary 10 and Proposition 11. For the case when $1/\varphi \in H^p$ for $p \in (2, \infty)$, we have $H^{\tilde{p}} \subset \mathcal{H}(b)$ where $p = \frac{2\tilde{p}}{\tilde{p}-2}$ (again by Malman and Seco) or equivalently $\tilde{p} = \frac{2p}{p-2}$. If $1/\tilde{p} + 1/\tilde{q} = 1$, then we see that $\tilde{q} = \frac{2p}{(p+2)}$ and hence $1/\tilde{q} = 1/2 + 1/p$. The result again follows by Corollary 10 and Proposition 11. \Box

An important distinction between Theorem 1 and Theorem 14 is that in the former one must solve density problems in H^p spaces that are non-Hilbertian, while in the latter the density problems are always in H^2 . The following simple examples of φ satisfy the hypothesis of Theorem 14. Let $\varphi(z) = (1-z)^{\alpha}$ for some $0 < \alpha < 1/2$. Then φ is an H^{∞} outer function and hence a unit in N^+ with the property that $1/\varphi \in H^p$ for some $2 . It follows that the density of <math>\varphi \mathcal{N}$ in H^2 would give a new zero-free half-plane for ζ .

3. The biorthogonality question

Define the sequence of polynomials $\{u_k : k \ge 2\}$ by

(3.1)
$$u_k(z) = \sum_{d|k} \frac{\mu(k/d)}{k/d} (z^{d-1} - z^d),$$

where μ denotes the Möbius function and d|k denotes d divides k. The main goal of this section is to prove the following theorem.

Theorem 15. $\{u_k : k \ge 2\}$ is complete and biorthogonal to $\{h_k : k \ge 2\}$ in H^2 .

Balazard [5] noted that with the additional vector $u_1(z) = 1 - z$ the sequence $\{u_k : k \ge 1\}$ is complete. However it is no longer minimal following Theorem 15. We first make a key observation. Note that $u_k = (I - S)v_k$, where

(3.2)
$$v_k(z) = \sum_{d|k} \frac{\mu(k/d)}{k/d} z^{d-1}.$$

It follows that $\langle h_k, u_j \rangle = \langle (I - S^*)h_k, v_j \rangle$. Hence to show that $\{u_k : k \ge 2\}$ and $\{h_k : k \ge 2\}$ are biorthogonal, it is suffices to show that

$$\langle (I - S^*)h_k, v_j \rangle = \delta_{kj}.$$

The proof of Theorem 15 will be divided into four steps.

Step 1. Calculate the Fourier coefficients of $(I - S^*)h_k$.

Step 2. Prove $\{u_k : k \ge 2\}$ is biorthogonal to $\{h_k : k \ge 2\}$.

Step 3. Characterize all sequences biorthogonal to $\{v_k : k \ge 2\}$.

Step 4. Show that $\{h_k : k \ge 2\}$ is the unique biorthogonal sequence for $\{u_k : k \ge 2\}$.

The **Step 4** implies the completeness of $\{u_k : k \ge 2\}$ in H^2 by Proposition 8.

Step 1. We first calculate the Fourier coefficients of $(I - S^*)h_k$.

Lemma 16. We have

$$(I - S^*)h_k(z) = \sum_{n=0}^{\infty} B_k(n+1)z^n$$

for all $k \geq 2$ where

$$B_k(n) = \begin{cases} \frac{k}{n} - \frac{1}{n}, & k|n\\ -\frac{1}{n}, & k \not|n \end{cases}$$

Proof. Note that if $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then

$$S^*f(z) = \sum_{n=0}^{\infty} a_{n+1} z^n.$$

Let $c_n(k)$ be the Fourier coefficients of h_k , i.e.,

$$h_k(z) = \sum_{n=0}^{\infty} c_n(k) z^n$$

Then, the *n*-th Fourier coefficient of $(I - S^*)h_k$ is $c_n(k) - c_{n+1}(k)$. The coefficients $c_n(k)$ are calculated in [19, p. 249]:

(3.3)
$$c_n(k) = H(n) - H\left(\frac{n}{k}\right) - \log k,$$

where $H(x) := \sum_{n \le x} \frac{1}{n}$ for x > 0 and H(0) = 0. It follows from (3.3) that

$$c_{n-1}(k) - c_n(k) = H(n-1) - H\left(\frac{n-1}{k}\right) - \log k - \left(H(n) - H\left(\frac{n}{k}\right) - \log k\right)$$
$$= -\frac{1}{n} + \sum_{\frac{n-1}{k} < m \le \frac{n}{k}} \frac{1}{m}.$$

Note that if there is some $m \in \mathbb{N}$ such that $\frac{n-1}{k} < m \leq \frac{n}{k}$, then $mk \leq n < mk+1$, so that n = mk. Therefore, the sum above is non-zero if and only if k|n. Then,

(3.4)
$$B_k(n) = c_{n-1}(k) - c_n(k) = \begin{cases} -\frac{1}{n}, & k \not| n \\ \frac{k}{n} - \frac{1}{n}, & k | n \end{cases}$$

Step 2. We are now able to prove the first part of Theorem 15.

Theorem 17. $\{u_k : k \ge 2\}$ is biorthogonal to $\{h_k : k \ge 2\}$.

Proof. By **Step 1** it suffices to prove that

$$\sum_{d|j} B_k(d) \frac{\mu(j/d)}{j/d} = \langle (I - S^*)h_k, v_j \rangle = \delta_{kj}, \qquad \forall k, j \ge 2.$$

There are two cases:

(i) $k \not\mid j$. Then, $k \not\mid d$ for every $d \mid j$, therefore

$$\sum_{d|j} B_k(d) \frac{\mu(j/d)}{j/d} = \sum_{d|j} -\frac{1}{d} \frac{\mu(j/d)}{j/d} = -\frac{1}{j} \sum_{d|j} \mu(j/d) = -\frac{1}{j} \left\lfloor \frac{1}{j} \right\rfloor = 0,$$

since $j \ge 2$ and by the basic relation $\sum_{d|k} \mu(d) = \lfloor 1/k \rfloor$. (ii) k|j. Let $q = \frac{j}{k}$. Then

(ii)
$$k|j$$
. Let $q = \frac{j}{k}$. Then

$$\sum_{d|j} B_k(d) \frac{\mu(j/d)}{j/d} = \sum_{\substack{d|j \\ k \nmid d}} -\frac{1}{d} \frac{\mu(j/d)}{j/d} + \sum_{\substack{d|j \\ k \mid d}} \left(\frac{k}{d} - \frac{1}{d}\right) \frac{\mu(j/d)}{j/d}.$$

The last sum is summing over those d that satisfy k|d|j. However, $k|d \iff d = mk$ for some $m \in \mathbb{N}$. Since j = qk, it follows that $d|j \iff m|q$. Hence, the last sum can be written as

$$\sum_{\substack{d|j\\k|d}} \left(\frac{k}{d} - \frac{1}{d}\right) \frac{\mu(j/d)}{j/d} = \sum_{\substack{d|j\\k|d}} -\frac{1}{d} \frac{\mu(j/d)}{j/d} + \sum_{m|q} \frac{1}{m} \frac{\mu(q/m)}{q/m}$$

Therefore,

$$\sum_{d|j} B_k(d) \frac{\mu(j/d)}{j/d} = \sum_{d|j} -\frac{1}{d} \frac{\mu(j/d)}{j/d} + \sum_{m|q} \frac{1}{m} \frac{\mu(q/m)}{q/m}$$
$$= -\frac{1}{j} \sum_{d|j} \mu(j/d) + \frac{1}{q} \sum_{m|q} \mu(q/m) = -\frac{1}{j} \left\lfloor \frac{1}{j} \right\rfloor + \frac{1}{q} \left\lfloor \frac{1}{q} \right\rfloor.$$

Since $j \ge 2$, the first term is always 0. On the other hand, the second term equals 1 if q = 1 and equals 0 otherwise. Finally note that $q = 1 \iff k = j$, and hence that $\langle h_k, u_j \rangle = \delta_{kj}$ for all $k, j \ge 2$.

Step 3. We next characterize all sequences in H^2 biorthogonal to $\{v_k : k \ge 2\}$.

Lemma 18. A sequence $\{f_k : k \ge 2\} \subset H^2$ is biorthogonal to $\{v_k : k \ge 2\}$ if and only if there exists a sequence $(c_k)_{k\ge 2} \in \mathbb{C}^{\mathbb{N}}$ such that

$$f_k(z) = \sum_{n=0}^{\infty} A_k(n+1) \ z^n, \quad \forall k \ge 2,$$

where the sequence $(A_k(n))_{n\geq 1}$ for each $k\geq 2$ is defined by

$$A_k(n) = \begin{cases} \frac{c_k}{n} + \frac{k}{n}, & k|n\\ \frac{c_k}{n}, & k \not|n \end{cases}$$

Proof. Let $\{f_k : k \geq 2\} \subset H^2$ be a sequence biorthogonal to $\{v_k : k \geq 2\}$ and $A_k : \mathbb{N} \to \mathbb{C}$ be the arithmetical functions that satisfy

$$f_k(z) = \sum_{n=0}^{\infty} A_k(n+1)z^n, \quad \forall k \ge 2.$$

Since the coefficients of v_i are real, the biorthogonality condition becomes

(3.5)
$$\sum_{d|j} A_k(d) \frac{\mu(j/d)}{j/d} = \langle f_k, v_j \rangle = \delta_{kj}, \quad \forall k, j \ge 2.$$

Let $I_k, \nu : \mathbb{N} \to \mathbb{C}$ be arithmetic functions defined by $I_k(n) = \delta_{kn}$ and $\nu(n) = \frac{\mu(n)}{n}$. Then (3.5) is equivalent to

(3.6)
$$\forall k \ge 2, \exists c_k \in \mathbb{C} \text{ such that } A_k * \nu = c_k I_1 + I_k,$$

where * denotes the Dirichlet product (see [1, Section 2.6]). Indeed, (3.5) doesn't impose any restriction on $A_k * \nu(1)$, since it only need to hold for $j \ge 2$, hence $c_k = A_k * \nu(1)$ is free, so (3.5) and (3.6) are indeed equivalent. Notice that

$$\sum_{d|k} \frac{\mu(k/d)}{k/d} \frac{1}{d} = \frac{1}{k} \left\lfloor \frac{1}{k} \right\rfloor = I_1(k),$$

i.e., $\nu^{-1}(n) = \frac{1}{n}$, since I_1 is the unity with respect to *. Moreover

$$I_k * \nu^{-1}(n) = \sum_{d|n} \delta_{kd} \frac{1}{n/d} = \begin{cases} \frac{k}{n}, & k|n\\ 0, & k \not n \end{cases}$$

Therefore (3.6) is equivalent to the statement that

$$\forall k \ge 2, \exists c_k \in \mathbb{C} \text{ such that } A_k(n) = c_k \nu^{-1}(n) + I_k * \nu^{-1}(n)$$
$$= \begin{cases} \frac{c_k}{n} + \frac{k}{n}, & k|n\\ \frac{c_k}{n}, & k \not\mid n \end{cases}.$$

Hence the biorthogonality condition (3.5) is equivalent to the condition above as desired. Finally $f_k \in H^2$ since its coefficient sequence A_k clearly belongs to ℓ^2 . \Box

Step 4. In this final step we show that $\{u_k : k \ge 2\}$ is complete in H^2 by proving that $\{h_k : k \ge 2\}$ is uniquely biorthogonal to $\{u_k : k \ge 2\}$ in H^2 by Proposition 8. To do so, recall that $u_k = (I - S)v_k$ (see (3.2)) implies

$$\langle \phi_k, u_j \rangle = \langle (I - S^*) \phi_k, v_j \rangle$$

for any sequence $\{\phi_k : k \geq 2\}$ in H^2 . This implies that $I - S^*$ maps sequences biorthogonal to $\{u_k : k \geq 2\}$ onto sequences biorthogonal to $\{v_k : k \geq 2\}$ in the image of $I - S^*$. This correspondece is one-to-one since $I - S^*$ is injective on H^2 . Therefore it is enough to prove that $((I - S^*)h_k)_{k\geq 2}$ is the unique sequence in the image of $I - S^*$ that is biorthogonal to $\{v_k : k \geq 2\}$.

Lemma 19. A sequence $\{f_k : k \ge 2\} \subset (I - S^*)H^2$ is biorthogonal to $\{v_k : k \ge 2\}$ if and only if

(3.7)
$$f_k(z) = \sum_{n=0}^{\infty} B_k(n+1) z^n = (I - S^*) h_k,$$

where B_k are the sequences defined in Lemma 16.

Proof. Let $\{f_k : k \geq 2\} \subset (I - S^*)H^2$ be a sequence biorthogonal to $\{v_k : k \geq 2\}$ and let $\varphi_k \in H^2$ such that $f_k = (I - S^*)\varphi_k$. If $(b_k(n))_{n\geq 0}$ are the Maclaurin coefficients of φ_k , then

$$f_k(z) = \sum_{n=0}^{\infty} (b_k(n) - b_k(n+1))z^n$$

It then follows by Lemma 18 that for each $k \geq 2$, there exists a $c_k \in \mathbb{C}$ such that

$$b_k(n-1) - b_k(n) = A_k(n) = \begin{cases} \frac{k}{n} + \frac{c_k}{n}, & k|n \\ \frac{c_k}{n}, & k \not|n \end{cases}, \quad \forall n \ge 1.$$

By induction, we obtain

$$b_k(n) = b_k(0) - \sum_{j=1}^n A_k(j) = b_k(0) - \sum_{j \le n} \frac{c_k}{j} - \sum_{\substack{j \le n \\ k \mid j}} \frac{k}{j}$$
$$= b_k(0) - c_k \sum_{j \le n} \frac{1}{j} - \sum_{\substack{m \le n/k}} \frac{1}{m} = b_k(0) - c_k H(n) - H\left(\frac{n}{k}\right)$$

where H is the same function used in (3.3). Since $\varphi_k \in H^2$, we get $(b_k(n))_n \in \ell^2$ and hence $\lim_{n\to\infty} b_k(n) = 0$. So $(c_k H(n) + H(n/k))_n$ converges. Using Euler summation, one gets (see [19])

(3.8)
$$H(x) = \log x + \gamma + O\left(\frac{1}{x}\right).$$

where γ is Euler-Mascheroni constant. Therefore,

$$c_k H(n) + H\left(\frac{n}{k}\right) = c_k \log n + c_k \gamma + \log n - \log k + \gamma + O\left(\frac{k}{n}\right)$$
$$= (c_k + 1) \log n + (c_k + 1)\gamma - \log k + O\left(\frac{k}{n}\right),$$

which converges as $n \to \infty$ if and only if $c_k = -1$. Hence $c_k = -1$ for all $k \ge 2$. In that case $A_k = B_k$ and we obtain (3.7). The converse is equivalent to Theorem 17 by the remarks at the start of Step 4.

As a consequence of Theorem 1 and Proposition 8 the RH holds if and only if $(u_j)_{j\geq 2}$ is the unique sequence in H^2 that is biorthogonal to $(h_k)_{k\geq 2}$. On the other hand the next result shows what happens if some ζ -zero violates the RH.

Corollary 20. If $\zeta(s_0) = 0$ for some $1/2 < \Re s_0 < 1$, then

$$\langle h_k, u_j + \kappa_{s_0} \rangle = \delta_{kj} \quad \forall \quad k, j \ge 2$$

where κ_{s_0} is the zeta kernel at s_0 . So $(u_j + \kappa_{s_0})_{j \ge 2}$ is also biorthogonal to $(h_k)_{k \ge 2}$. Proof. This follows by (1.4) and Theorem 17 since $\langle h_k, \kappa_{s_0} \rangle = 0$ for all $k \ge 2$. \Box

4. The RH-failure conjecture

The RH-failure (RHF) conjecture states that if the RH is false, then $\zeta(s) = 0$ for infinitely many $s \in \mathbb{C}$ with $1/2 < \Re s < 1$. Our goal is to prove the following.

Theorem 21. The RHF conjecture implies that $\dim(\mathcal{N}^{\perp})$ is either 0 or ∞ .

Let $\mathcal{K} := \{\kappa_s : \Re s > 1/2\}$ denote the family of zeta kernels. If $\zeta(s) = 0$ for some $\Re s > 1/2$, then $\langle h_k, \kappa_s \rangle = 0$ for all $k \ge 2$ by (1.4) and hence $\kappa_s \in \mathcal{N}^{\perp}$. So the RHF conjecture implies that $\mathcal{N}^{\perp} \cap \mathcal{K}$ is either empty (by Theorem 1) or has infinitely many elements. Therefore Theorem 21 follows if we show that \mathcal{K} is linearly independent in H^2 . We first show that elements of \mathcal{K} are common eigenvectors for the adjoints of operators $(W_n)_{n>1}$ defined in (2.2). For $f \in H^2$ and $n \in \mathbb{N}$, we have

$$W_n^* f(z) = \sum_{k=0}^{\infty} [\hat{f}(nk) + \hat{f}(nk+1) + \ldots + \hat{f}(nk+n-1)] z^k$$

where $\hat{f}(n)$ denotes the *n*-th Fourier coefficient of f. This formula first appeared in [17]. It is possible to describe the common eigenvectors of $(W_n^*)_{n\geq 1}$ completely.

Proposition 22. A non-zero $f \in H^2$ is a common eigenvector for $(W_n^*)_{n>1}$ if and only if there exists a multiplicative sequence $(\lambda_n)_{n\geq 1}$ with $(\lambda_{n+1} - \lambda_n)_{n\geq 1} \in \ell^2$ and

(4.1)
$$\hat{f}(n) = (\lambda_{n+1} - \lambda_n)\hat{f}(0) \quad \forall \quad n \ge 1.$$

Moreover $W_n^* f = \lambda_n f$ for all $n \ge 1$.

By a multiplicative sequence $(\lambda_n)_{n\geq 1}$ we mean that $\lambda_n\lambda_m = \lambda_{nm}$ and $\lambda_1 = 1$. Similarly one can see that $W_n W_m = W_{nm}$ and $W_1 = I$ by (2.2).

Proof. Let $W_n^* f = \lambda_n f$ for $n \ge 1$ and some sequence $(\lambda_n)_{n\ge 1}$. Since $W_1^* = I$ and $W_{nm}^* = W_n^* W_m^*$ it follows that $(\lambda_n)_{n \ge 1}$ is multiplicative. Furthermore

$$\lambda_n \hat{f}(k) = \langle W_n^* f, z^k \rangle = \langle f, W_n z^k \rangle = \left\langle f, \sum_{j=0}^{n-1} z^{nk+j} \right\rangle = \sum_{j=0}^{n-1} \hat{f}(nk+j).$$

which gives $\hat{f}(n) = \lambda_{n+1} \hat{f}(0) - \lambda_n \hat{f}(0)$ for all $n \ge 1$ and hence $(\lambda_{n+1} - \lambda_n)_{n \ge 1} \in \ell^2$. Conversely suppose f is a non-zero function satisfying (4.1) for some multiplicative $(\lambda_n)_{n\geq 1}$ with $(\lambda_{n+1} - \lambda_n)_{n\geq 1} \in \ell^2$. Normalizing by supposing f(0) = 1, we get

$$(W_n^*f)(z) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{n-1} \hat{f}(nk+j) \right) z^k = \sum_{j=0}^{n-1} \hat{f}(j) + \sum_{k=1}^{\infty} \left(\sum_{j=0}^{n-1} \hat{f}(nk+j) \right) z^k$$
$$= \lambda_n + \sum_{k=1}^{\infty} (\lambda_{nk+n} - \lambda_{nk}) z^k = \lambda_n \left(1 + \sum_{k=1}^{\infty} (\lambda_{k+1} - \lambda_k) z^k \right) = \lambda_n f(z)$$
or all $n \ge 2$. So $f \in H^2$ is a common eigenvector for $(W_n^*)_{n\ge 1}$.

for all $n \ge 2$. So $f \in H^2$ is a common eigenvector for $(W_n^*)_{n \ge 1}$.

Choosing $\lambda_k = k^{1-\bar{s}}$ and $\hat{f}(0) = -1/\bar{s}$ in Proposition 22 for any fixed $\Re s > 1/2$ shows that each $\kappa_s \in \mathcal{K}$ is a common eigenvector for $(W_n^*)_{n>1}$ (see (1.3)) with

(4.2)
$$W_n^* \kappa_s = n^{1-\bar{s}} f \quad \forall \ n \ge 1$$

We want to prove that for any finite subset $\{\kappa_{s_1}, \ldots, \kappa_{s_\ell}\} \subset \mathcal{K}$ there exists some W_n^* such that the corresponding eigenvalues are all distinct. This will give us the linear independence of every finite subset of \mathcal{K} and hence of \mathcal{K} itself. First suppose that the real parts of s_1, \ldots, s_ℓ are all distinct. Since $|n^{1-\bar{s}}| = n^{1-\Re s}$ it follows that the eigenvalues of W_n^* (for all n > 1) corresponding to $\kappa_{s_1}, \ldots, \kappa_{s_\ell}$ are all distinct. If the real parts of s_1, \ldots, s_ℓ are *not* all distinct, then we need the following result.

Lemma 23. Given distinct $a_1, \ldots, a_n \in \mathbb{R}$, at most finitely many primes p have the property that there exists a pair a_i, a_j with $1 \le i < j \le n$ such that

$$(4.3) (a_i - a_j) \log p \in 2\pi\mathbb{Z}.$$

Proof. Suppose there are infinitely many primes that satisfy (4.3). For each such prime p there exists some $1 \leq i < j \leq n$ and $k \in \mathbb{Z} \setminus \{0\}$ such that

$$(a_i - a_j)\log p = 2\pi k \implies \frac{2\pi k}{\log p} = a_i - a_j.$$

But since there are only finitely many numbers $a_i - a_j$ with i < j, and none of which equal 0, there must exist distinct primes p, q and $k_1, k_2 \in \mathbb{Z} \setminus \{0\}$ such that

$$\frac{2\pi k_1}{\log p} = a_i - a_j = \frac{2\pi k_2}{\log q} \implies k_2 \log p = k_1 \log q \neq 0.$$

for some pair i < j. In particular, $p^{k_2} = q^{k_1} \neq 1$, which is a contradiction.

The following result then completes the proof of Theorem 21.

Proposition 24. The family of zeta kernels \mathcal{K} is linearly independent.

Proof. Let $\{\kappa_{s_1}, \ldots, \kappa_{s_\ell}\} \subset \mathcal{K}$ be a finite subset. The case when the real parts of s_1, \ldots, s_ℓ are all distinct was already dealt with. Suppose some of the s_1, \ldots, s_ℓ have the same real parts. So $\{s_1, \ldots, s_\ell\}$ is the finite disjoint union of sets of the form $A_r := \{s_i : \Re s_i = r, i = 1, \ldots, \ell\}$ for $r \in \mathbb{R}$. It is enough to prove that the family $\{\kappa_s : s \in A_r\}$ is linearly independent when A_r has more than one element. Since s_1, \ldots, s_ℓ are distinct complex numbers, the imaginary parts of elements in A_r , which we denote by a_1, \ldots, a_n , must all be distinct. Applying Lemma 23 to a_1, \ldots, a_n shows that there exist infinitely many primes q such that

(4.4)
$$(a_i - a_j) \log q \notin 2\pi \mathbb{Z}, \quad \forall \ 1 \le i < j \le n.$$

For such a prime q, we claim that the $\{\kappa_s : s \in A_r\}$ are W_q^* -eigenvectors with distinct eigenvalues. To see this first note that $W_q^*\kappa_s = q^{1-\bar{s}}\kappa_s$ by (4.2) and

$$q^{1-\bar{s}} = e^{(1-\bar{s})\log q} = e^{(1-r)\log q} e^{i\operatorname{Im}(s)\log q} \quad \forall \ s \in A_r.$$

But Im(s) for $s \in A_r$ are precisely the real numbers a_1, \ldots, a_n . Therefore the eigenvalues $q^{1-\bar{s}}$ for $s \in A_r$ are all distinct by (4.4) and hence $\{\kappa_s : s \in A_r\}$ and therefore all of \mathcal{K} is linearly independent.

5. Appendix

Denote by \mathbb{C}_{ρ} the half-plane $\{s \in \mathbb{C} : \Re s > \rho\}$. In this appendix we provide an alternate proof for the fundamental relation

(5.1)
$$\langle h_k, \kappa_s \rangle = -\frac{\zeta(s)}{s} (k^{1-s} - 1) \quad \forall \ s \in \mathbb{C}_{1/2}, \ k \ge 2$$

We first prove that (5.1) holds for all $s \in \mathbb{C}_1$. We then prove that the function $s \mapsto \langle h_k, \kappa_s \rangle$ has an analytic continuation to \mathbb{C}_0 for each $k \geq 2$. Since the right side of (5.1) is already analytic for $s \in \mathbb{C} \setminus \{0\}$, the result then follows by analytic continuation. Recall from Subsection 1.7 that

$$\kappa_s(z) = \sum_{n=0}^{\infty} \phi_n(\bar{s}) z^n \text{ where } \phi_n(s) = -\frac{1}{s} \left((n+1)^{1-s} - n^{1-s} \right).$$

Lemma 25. The identity (5.1) holds for $s \in \mathbb{C}_1$.

Proof. Let $(c_n(k))_n$ be the Fourier coefficients of h_k . Since $\overline{\phi_n(\overline{s})} = \phi_n(s)$, we have

$$\begin{aligned} \langle h_k, \kappa_s \rangle &= \sum_{n=0}^{\infty} c_n(k) \overline{\phi_n(\overline{s})} = \sum_{n=0}^{\infty} c_n(k) \phi_n(s) \\ &= \lim_{N \to \infty} \left(-\frac{c_0(k)}{s} - \frac{1}{s} \sum_{n=1}^{N} c_n(k) \left((n+1)^{1-s} - n^{1-s} \right) \right) \\ &= \lim_{N \to \infty} \left(-\frac{1}{s} \sum_{n=0}^{N} c_n(k) (n+1)^{1-s} + \frac{1}{s} \sum_{n=1}^{N} c_n(k) n^{1-s} \right) \\ &= \lim_{N \to \infty} \left(-\frac{1}{s} \sum_{n=1}^{N} (c_{n-1}(k) - c_n(k)) n^{1-s} - \frac{1}{s} c_N(k) (N+1)^{1-s} \right). \end{aligned}$$

Since $c_n(k) = O(k/n)$ (see [19, p. 249]), we have $c_N(k)(N+1) = O(1)$. Furthermore $(N+1)^{-s} \to 0$ for $\Re(s) > 0$ and therefore we get

$$\langle h_k, \kappa_s \rangle = -\frac{1}{s} \lim_{N \to \infty} \left(\sum_{n=1}^N (c_{n-1}(k) - c_n(k)) n^{1-s} \right)$$

$$\stackrel{(3.4)}{=} -\frac{1}{s} \lim_{N \to \infty} \left(\sum_{n=1}^N -\frac{1}{n} n^{1-s} + \sum_{\substack{n=1\\k \mid n}}^N \frac{k}{n} n^{1-s} \right)$$

$$= -\frac{1}{s} \lim_{N \to \infty} \left(\sum_{n=1}^N n^{-s} + \sum_{m=1}^{\lfloor \frac{N}{k} \rfloor} \frac{1}{m} (mk)^{1-s} \right)$$

$$= -\frac{1}{s} \lim_{N \to \infty} \left(-\sum_{n=1}^N n^{-s} + k^{1-s} \sum_{m=1}^{\lfloor \frac{N}{k} \rfloor} \frac{1}{m} m^{1-s} \right)$$

$$\stackrel{(*)}{=} -\frac{1}{s} (-\zeta(s)) - \frac{k^{1-s}}{s} \zeta(s) = -\frac{\zeta(s)}{s} (k^{1-s} - 1)$$

where in (*) we split the limit in two and use the definition of ζ for $\Re(s) > 1$. \Box

The inner product $\langle h_k, \kappa_s \rangle$ defined for $s \in \mathbb{C}_{1/2}$ also makes sense for $s \in \mathbb{C}_0$. Lemma 26. The function $\Phi_k : \mathbb{C}_{1/2} \to \mathbb{C}$ defined by

(5.2)
$$\Phi_k(s) := \langle h_k, \kappa_s \rangle = \sum_{n=0}^{\infty} c_n(k) \phi_n(s).$$

has an analytic continuation to \mathbb{C}_0 for each $k \geq 2$.

Proof. Since each ϕ_n is holomorphic in \mathbb{C}_0 , it is sufficient to prove that the series in (5.2) converges uniformly in every half-plane \mathbb{C}_{ρ} for $\rho > 0$. Note that

$$|\phi_n(s)| = \frac{|1-s|}{|s|} \left| \int_n^{n+1} y^{-s} dy \right| \le \frac{|1-s|}{|s|} n^{-\Re s} = O(n^{-\rho})$$

for $s \in \mathbb{C}_{\rho}$ with $\rho > 0$. Also $c_n(k) = O(k/n)$ for each $k \ge 2$, and hence we get $c_n(k)\phi_n(s) = O(n^{-1-\rho})$ for $s \in \mathbb{C}_{\rho}$. So Φ_k converges uniformly in \mathbb{C}_{ρ} for $\rho > 0$. \Box

Acknowledgement

This work was financed in part by the Coordenação de Aperfeiçoamento de Nivel Superior- Brasil (CAPES)- Finance Code 001. The fourth author is supported by grant #2023 Provost of Inclusion and Belonging, University of São Paulo (USP).

References

- 1. T. M. Apostol, Intoduction to analytic number theory. UTM Springer, 1976.
- 2. L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis. Atti Acad. Naz. Lincei 14, 5-11, 2003.
- B. Bagchi, On Nyman, Beurling and Báez-Duarte's Hilbert space reformulation of the Riemann hypothesis. Proc. Ind. Acad. Sci (Math. Sci.), 116(2), 137-146, 2006.
- M. Balazard, Completeness Problems and the Riemann Hypothesis: An Annotated Bibliography, Surveys in Number Theory, A K Peters/CRC press, 2002, pp. 21-48.

- M. Balazard. An arithmetical function related to Báez-Duarte's criterion for the Riemann hypothesis. Harmonic analysis and applications, 43–58, Springer Optim. Appl., 168, Springer, Cham, 2021.
- A. Beurling, A closure problem related to the Riemann zeta-function. Proc. Nat. Acad. Sci., 41(5), 312-314, 1955.
- O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser Cham, 2016.
- C. Costara, T. Ransford, Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?. J. Funct. Anal. 265(12), 3204-3218, 2010.
- B. M. Davis, J. E. McCarthy, Multipliers of de Branges spaces, Michigan Math. J. 38 (1991) 2, 225–240.
- 10. P. Duren, Theory of ${\cal H}^p$ spaces. Academic Press, New York, 1970.
- D. Feldman (https://mathoverflow.net/users/10909/david-feldman), If the Riemann Hypothesis fails, must it fail infinitely often?, URL (version: 2015-08-31): https://mathoverflow.net/q/50186.
- 12. E. Fricain, J. Mashreghi, The theory of $\mathcal{H}(b)$ spaces. Vol. 1, volume 20 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2016.
- 13. E. Fricain, J. Mashreghi, The theory of $\mathcal{H}(b)$ spaces. Vol. 2, volume 21 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2016.
- A. Ghosh, K. Kremnitzer, W. Noor, C. F. Santos, Zero-free half-planes of the ζ-function via spaces of analytic functions, Adv. Math. 455 (2024) 109872.
- D. Girela, Analytic functions of bounded mean oscillation. In: R. Aulaskari (ed.) Complex Functions Spaces. Report Series, pp. 61–171. Department of Mathematics, University of Joensuu, Joensuu, 2001.
- B. Malman, D. Seco, Embeddings into de Branges-Rovnyak spaces. Preprint, arXiv:2404.00736 [math.CV], 2024.
- J. Manzur, W. Noor, C. F. Santos, A weighted composition semigroup related to three open problems, J. Math. Anal. Appl. 525(2023) 127261.
- J. Mashreghi, K. Kellay, O. El-Fallah, and T. Ransford, A primer on the Dirichlet space. Volume 203 of Cambridge Tracts in Mathematics. Cambridge University Press, 2014.
- S. W. Noor, A Hardy space analysis of the Báez-Duarte criterion for the RH, Adv. Math. 350 (2019) 242-255.
- 20. B. Nyman, On Some Groups and Semigroups of Translations, Thesis, Uppsala, 1950.
- 21. D. Sarason, Unbounded Toeplitz operators. Integr. Equ. Oper. Theory. 61(2), 281-298, 2008.
- V. I. Vasyunin, On a biorthogonal system related with the Riemann Hypothesis. St. Petersburg Math J. 7 (1996), pp. 405-419.
- D. Vukotić, Analytic Toeplitz operators on the Hardy space Hp: a survey. Bull. Belg. Math. Soc. Simon Stevin 10, 101–113, 2003.
- 24. N. Yanagihara, Multipliers and Linear Functionals for the Class N^+ . Trans. Amer. Math. Soc. 180, 449-461, 1973.
- R. M. Young, On complete biorthogonal systems. Proc. Amer. Math. Soc. 83(3), 537-540, 1981.

IMECC, UNIVERSIDADE ESTADUAL DE CAMPINAS, CAMPINAS-SP, BRAZIL. *E-mail address*: francisco.calderaro027@gmail.com (Francisco Calderaro) *E-mail address*: waleed@unicamp.br (Waleed Noor) Corresponding Author

ICMC, UNIVERSITY OF SÃO PAULO, SÃO CARLOS-SP, BRAZIL. *E-mail address*: ch.charlesfsantos@gmail.com (Charles F. Santos)

DEPARTAMENTO DE MATEMÁTICAS Y ESTADÍSTICA, UNIVERSIDAD DEL NORTE, BARRANQUILLA, COLOMBIA.

E-mail address: juan_manzur123@hotmail.com (Juan Manzur)