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MAXIMAL OPERATORS OF WALSH-NÖRLUND MEANS

ON THE DYADIC HARDY SPACES

USHANGI GOGINAVA

Abstract. The presented paper will be proved the necessary and suf-
ficient conditions in order maximal operator of Walsh-Nörlund means
with non-increasing weights to be bounded from the dyadic Hardy space
Hp(I) to the space Lp(I).

1. Introduction

In 1992 Móricz and Siddiqi investigated the rate of the approximation
by Nörlund means of Walsh-Fourier series [16]. For Nörlund means with
monotone weights they gave a sufficient condition which provide Nörlund
means for having convergence in Lp norm (1 ≤ p < ∞) and CW norm.

The result of [16] was extended by Fridli, Manchanda and Siddiqi [3] for
dyadic martingale Hardy spaces and dyadic homogeneous Banach spaces .
Recently, the theorem of Móricz and Siddiqi was generalized for Θ-means of
Walsh-Fourier series in Lp spaces (1 ≤ p < ∞) and CW [1].

The theorems mentioned above are related to the approximation of the
Nörlund means which in turn is related to the uniformly boundedness of the
corresponding operators of the Nörlund means. To study of almost every-
where convergence of Nörlund means is connected to the study of the bound-
edness of the maximum operators corresponding to the Nörlund means.

The first result with respect to the a.e. convergence of the Walsh-Fejér
means is due to Fine [2]. Later, Schipp [18] showed that the maximal op-
erator of the Walsh-Fejér means is of weak type (1, 1), from which the a.
e. convergence follows by standard argument [15]. Schipp result implies by
interpolation also the boundedness of sup

n

∣∣σ1
n

∣∣ : Lp → Lp (1 < p ≤ ∞). This

fails to hold for p = 1 but Fujii [4] proved that sup
n

∣∣σ1
n

∣∣ is bounded from the

dyadic Hardy space H1(I) to the space L1(I) (see also Simon [20]). Fujii’s
theorem was extended by Weisz [25]. In particular, Weisz [25] proved that
the maximum operator is bounded from the Hardy space Hp(I) to the space
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Lp(I), when p > 1/2 . The essence of the condition p > 1/2 was proved
by the author [9]. If the {qk} is an non-decreasing sequence then it can be
proved that the following inequality occurs (see Persson, Tephnadze, Wall
[17]),

(1) sup
n

|tn| ≤ c sup
n

|σn| ,

where by tn is denoted Nörlund means of Walsh-Fourier series. From (1)
it follows that the maximum operator sup

n
|tn| is bounded from the Hardy

space Hp(I) to the space Lp(I), when p > 1/2.
The situation is different when the sequence {qk} is decreasing. Let us

cite the following two cases:

• say qk = Aα−1
k , α ∈ (0, 1), where

Aα
0 = 1, Aα

n =
(α+ 1) · · · (α+ n)

n!
.

then it is easy to see that {qk} is decreasing and at the same time
the operator sup

n
|σα

n | (0 < α < 1) is bounded from the Hardy space

Hp(I) to the space Lp(I), when p > 1/ (1 + α) (see Weisz [26]);
• Assume that qk = 1/k. Then the sequence is decreasing, but the

maximum operator is not bounded from the Hardy space Hp(I) to
the space Lp(I) by any p ∈ (0, 1] (see [11]).

Therefore, Nörlund means with non-increasing weights can be divided into
two groups:

• Nörlund means with non-increasing weights, whose corresponding
maximum operator is bounded from the Hardy space Hp(I) to the
space Lp(I) for some p ∈ (0, 1];

• Nörlund means with non-increasing weights that are not bounded
from the Hardy space Hp(I) to the space Lp(I) by any p ∈ (0, 1].

The presented paper will be proved the necessary and sufficient conditions
in order maximal operator of Nörlund means with non-increasing weights to
be bounded from the Hardy space Hp(I) to the space Lp(I). It also follows
from the established theorem that the boundedness of maximal operator of
Nörlund means with non-increasing weights from the Hardy space H1(I) to
the space L1(I) is equivalent to the type (∞,∞) .

2. Walsh Functions

We denote the set of non-negative integers by N. By a dyadic interval
in I := [0, 1) we mean one of the form I (l, k) :=

[
l−1
2k

, l
2k

)
for some k ∈ N,

0 < l ≤ 2k. Given k ∈ N and x ∈ [0, 1), let Ik(x) denote the dyadic
interval of length 2−k which contains the point x. We also use the notation
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In := In (0) (n ∈ N) , Ik (x) := I\Ik (x). Let

x =

∞∑

n=0

xn2
−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1 and if x is a dyadic
rational number we choose the expansion which terminates in 0′s.

For any given n ∈ N it is possible to write n uniquely as

n =

∞∑

k=0

εk (n) 2
k,

where εk (n) = 0 or 1 for k ∈ N. This expression will be called the binary
expansion of n and the numbers εk (n) will be called the binary coefficients of
n. Let us introduce for 1 ≤ n ∈ N the notation |n| := max{j ∈ N:εj (n) 6= 0},

that is 2|n| ≤ n < 2|n|+1.
Let us set the nth (n ∈ N) Walsh-Paley function at point x ∈ I as:

wn (x) = (−1)

∞∑

j=0
εj(n)xj

.

Let us denote the logical addition on I by ∔. That is, for any x, y ∈ I

x∔ y :=

∞∑

n=0

|xn − yn| 2
−(n+1).

The nth Walsh-Dirichlet kernel is defined by

Dn (x) =

n−1∑

k=0

wk (x) .

Recall that [14, 19]

(2) D2n (x) = 2n1In (x) ,

where 1E is the characteristic function of the set E.
As usual, denote by L1 (I) the set of measurable functions defined on I,

for which

‖f‖1 :=

∫

I

|f (t)| dt < ∞.

Let f ∈ L1 (I). The partial sums of the Walsh-Fourier series are defined as
follows:

SM (f ;x) :=

M−1∑

i=0

f̂ (i)wi (x) ,

where the number

f̂ (i) =

∫

I

f (t)wi (t) dt
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is said to be the ith Walsh-Fourier coefficient of the function f. Let us set
En (f ;x) = S2n (f ;x). The maximal function is defined by

E∗ (f ;x) = sup
n∈N

En (f ;x) .

3. Walsh-Nörlund means

Let us set {qk : k ≥ 0} be a sequence of non-negative numbers. We define
the nth Nörlund mean of the Walsh-Fourier series by

(3) tn(f ;x) :=
1

Qn

n∑

k=1

qn−kSk(f ;x),

where Qn :=
∑n−1

k=0 qk (n ≥ 1). It is always assumed that q0 > 0 and
limn→∞Qn = ∞. In this case, the summability method generated by the
sequence {qk : k ≥ 0} is regular (see [16]) if and only if

(4) lim
n→∞

qn−1

Qn
= 0.

The Nörlund kernels are defined by

Fn(t) :=
1

Qn

n∑

k=1

qn−kDk(t).

The Fejér means and kernels are

σn(f, x) :=
1

n

n∑

k=1

Sk(f, x), Kn(t) :=
1

n

n∑

k=1

Dk(t).

It is easily seen that the means tn(f) and σn(f) can be got by convolution
of f with the kernels Fn and Kn. That is,

tn(f, x) =

∫

G
f(x∔ t) Fn(t)dt = (f ∗ Fn) (x) ,

σn(f, x) =

∫

G
f(x∔ t)Kn(t)dt = (f ∗Kn) (x) .

It is well-known that L1 norm of Fejér kernels are uniformly bounded, that
is

(5) ‖Kn‖1 ≤ c for all n ∈ N.

Yano estimated the value of c and he have c = 2 [27]. Recently, in paper
(see [23]) it was shown that the exact value of c is 17

15 .
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4. Auxiliary Propositions

In order to prove main results we need the following theorems.

Theorem SWS. Let n ∈ N and ej := 2−j−1. Then

(6) K2n (x) =
1

2


2−nD2n (x) +

n∑

j=0

2j−nD2n (x∔ ej)


 .

The proof can be found in [19].

Theorem GN1. Let n = 2n1 +2n2 + · · ·+2nr with n1 > n2 > · · · > nr ≥ 0.
Let us set n(0) := n and n(i) := n(i−1) − 2ni (i = 1. . . . , r − 1), n(r) := 0.
Then the following decomposition holds.

Fn =
wn

Qn

r∑

j=1

Qn(j−1)w2njD2nj(7)

−
wn

Qn

r∑

j=1

wn(j−1)w2nj−1

2nj−1∑

k=1

qk+n(j)Dk

= : Fn,1 + Fn,2.

Theorem GN2. Let {qk : k ∈ N} be a sequence of non-negative numbers.
If the sequence {qk : k ∈ N} is monotone non-increasing (in sign qk ↓). Then

(8) ‖Fn‖1 ∼
1

Qn

|n|∑

k=1

|εk(n)− εk+1(n)|Q2k .

The proof of Theorems GN1 and GN2 can be found in [13].
Using Abel’s transformation we have

2nj−1∑

k=1

qk+n(j)Dk =
2nj−2∑

k=1

(
qk+n(j) − qk+n(j)+1

)
kKk

+qn(j−1)−1(2
nj − 1)K2nj−1.

Thus, we get

Fn,2 =
wn

Qn

r∑

j=1

2nj−2∑

k=1

wn(j−1)w2nj−1

(
qk+n(j) − qk+n(j)+1

)
kKk(9)

+
wn

Qn

r∑

j=1

wn(j−1)w2nj−1qn(j−1)−1(2
nj − 1)K2nj−1

= : F
(1)
n,2 + F

(2)
n,2 .

Lemma 1. Let p ∈
(
1
2 , 1
]
. Then

∫

I

sup
1≤n≤2N

(n |Kn|)
p ≤ cp2

N(2p−1).
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Proof of Lemma 1. Let p = 1. Since (see [19])

(10) n |Kn (x)| ≤ c

|n|∑

s=0

2sK2s (x)

from (5) we have

∫

I

sup
1≤n≤2N

(n |Kn (x)|) dx ≤ c
N∑

s=0

2s
∫

I

K2s (x) dx ≤ c2N .

Let 1/2 < p < 1. Applying the inequality
(

∞∑

k=0

ak

)p

≤
∞∑

k=0

apk (ak ≥ 0, 0 < p ≤ 1)

and (see [8])
∫

I

(2sK2s (x))
p dx ≤ cp2

s(2p−1), 1/2 < p < 1

we get
∫

I

sup
1≤n≤2N

(n |Kn (x)|)
p dx ≤ cp

N∑

s=0

∫

I

(2sK2s (x))
p dx ≤ cp2

N(2p−1).

Lemma 1 is proved. �

5. Dyadic Hardy Spaces

The norm (or quasinorm) of the space Lp (I) is defined by

‖f‖p :=



∫

I

|f (x)|p dx




1/p

(0 < p < +∞) .

In case p = ∞, by Lp(I) we mean L∞(I), endoved with the supremum
norm.

The space weak-L1 (I) consists of all measurable functions f for which

‖f‖weak−L1(I)
:= sup

λ>0
λ |(|f | > λ)| < +∞.

Let f ∈ L1 (I). For 0 < p < ∞ the Hardy space Hp(I) consists all
functions for which

‖f‖Hp
:= ‖E∗ (f)‖p < ∞.

A bounded measurable function a is a p-atom, if there exists a dyadic in-
terval I, such that

a)
∫
I

a = 0;

b) ‖a‖∞ ≤ |I|−1/p;
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c) supp a ⊂ I.
An operator T be called p-quasi-local if there exist a constant cp > 0 such

that for every p-atom a

∫

I\I

|Ta|p ≤ cp < ∞,

where I is the support of the atom. We shall need the following

Theorem W1. Suppose that the operator T isσ-sublinear and p-quasi-local
for each 0 < p ≤ 1. If T is bounded from L∞(I) to L∞(I), then

‖Tf‖p ≤ cp ‖f‖p (f ∈ Hp (I))

for every 0 < p < ∞ . In particular for f ∈ L1(I), it holds

‖Tf‖weak_L1(I)
≤ C ‖f‖1 .

Theorem W2. If a sublinear operator is bounded from Hp0(I) to Lp0(I) and
from Lp1(I) to Lp1 (I) (p0 ≤ 1 < p1 ≤ ∞) then it is also bounded from Hp(I)
to Lp(I) if p0 < p < p1.

The proofs of Theorems W1 and W2 can be found in [24].

6. Maximal Operators of Walsh-Nörlund means

The goal of this paragraph is to investigate the boundedness of the max-
imal operators of the Walsh-Nörlund means on the dyadic Hardy spaces.
More precisely, to find the necessary and sufficient conditions for the max-
imal operator of the Walsh-Nörlund means to be bounded from the Hardy
space Hp(I) to the space Lp(I) for fixed p ∈ (0, 1].

Let us first prove that if the condition

(11) sup
n∈N

1

Qn

|n|∑

k=1

|εk(n)− εk+1(n)|Q2k = ∞

is fulfilled, then the boundedness of the maximum operator from the Hardy
space H1(I) to the space L1(I) does not occur. Moreover, we prove that the
following is valid

Theorem 1. Let {mA : A ∈ N} be a subsequence for which the condition

sup
A∈N

1

QmA

|mA|∑

k=1

|εk(mA)− εk+1(mA)|Q2k = ∞

holds. The operator tmA
(f) is not uniformly bounded from the dyadic Hardy

spaces H1 (I) to the space L1 (I).
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Proof of Theorem 1. Set

fA := D
2|mA|+1 −D

2|mA| .

Then it is easy to see that

sup
n∈N

|S2n (fA)| = D
2|mA|

and consequently,

‖fA‖H1
=

∥∥∥∥sup
n∈N

|S2n (fA)|

∥∥∥∥
1

=
∥∥∥D

2|mA|

∥∥∥
1
= 1.

Set

mA = 2|mA| + qA,

where

qA :=

|mA|−1∑

j=0

εj (mA) 2
j .

Then we can write

tmA
(fA) =

1

QmA

2|mA|+qA−1∑

k=2|mA|+1

qmA−kSk (fA) .

It is easy to see that

Sk (fA) = Sk

(
D

2|mA|+1 −D
2|mA|

)

= S
2|mA|+1 (Dk)− Sk

(
D

2|mA|

)

= Dk −D
2|mA| , 2

|mA| < k ≤ mA.

Hence, we have

tmA
(fA) =

1

QmA

2|mA|+qA∑

k=2|mA|+1

qmA−k

(
Dk −D

2|mA|

)

=
1

QmA

qA∑

k=1

qqA−k

(
D

k+2|mA| −D
2|mA|

)

=
w
2|mA|

QmA

qA∑

k=1

qqA−kDk.

From the condition of Theorem 1 and by (8) we conclude that

sup
A∈N

‖tmA
(fA)‖1 = sup

A∈N
‖FqA‖1 = ∞.

Theorem 1 is proved. �
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Now, we prove that the maximal operator of Walsh-Nörlund means with
non-increasing weights can not be bounded from the Hardy space H1/2 (I) to
the space L1/2 (I). Based on the interpolation Theorem W2, the maximum
operator of Walsh-Nörlund means with non-increasing weights can not be
bounded from the Hardy space Hp (I) to the space Lp (I) when p < 1/2 (see
Persson, Tephnadze, Wall [17]).

Theorem 2. The maximal operator of Walsh-Nörlund means with non-

increasing weights can not be bounded from the Hardy space H1/2 (I) to the

space L1/2 (I).

Proof of Theorem 2. Set

fn := D2n+1 −D2n .

Then it is easy to see that

sup
m∈N

|S2m (fn)| = D2n

and consequently,

(12) ‖fn‖Hp
=

∥∥∥∥sup
m∈N

|S2m (fn)|

∥∥∥∥
p

= ‖D2n‖p = 2n(1−1/p).

Let s < n. Then we can write

t2n+2s (fn) =
1

Q2n+2s

2n+2s∑

j=1

q2n+2s−jSj (fn)

=
1

Q2n+2s

2n+2s∑

j=2n+1

q2n+2s−jSj (D2n+1 −D2n)

=
1

Q2n+2s

2n+2s∑

j=2n+1

q2n+2s−j (S2n+1 (Dj)− Sj (D2n))

=
1

Q2n+2s

2n+2s∑

j=2n+1

q2n+2s−j (Dj −D2n)

=
1

Q2n+2s

2s∑

j=1

q2s−j (Dj+2n −D2n)

=
w2n

Q2n+2s

2s∑

j=1

q2s−jDj.



10 USHANGI GOGINAVA

Consequently,

∫

I

(
sup

1≤s<n
|t2n+2s (fn)|

)p

(13)

≥

n−1∑

s=0

∫

Is\Is+1

|t2n+2s (fn)|
p

=

n−1∑

s=0

∫

Is\Is+1

1

Qp
2n+2s

∣∣∣∣∣∣

2s∑

j=1

q2s−jDj

∣∣∣∣∣∣

p

=

n−1∑

s=0

1

2s+1Qp
2n+2s

∣∣∣∣∣∣

2s∑

j=1

q2s−jj

∣∣∣∣∣∣

p

.

Since qk is non-increasing we can write

Q2n =

2n−1−1∑

k=0

qk +

2n−1∑

k=2n−1

qk

≤ 2

2n−1−1∑

k=0

qk = 2Q2n−1

≤ · · · ≤ 2n−sQ2s

and

(14)
Q2s

2s
≥

Q2n

2n
(s ≤ n) .

Combine (13) and (14) we get (p = 1/2)

∫

I

(
sup

1≤s<n
|t2n+2s (fn)|

)1/2

≥

n−1∑

s=0

1

2s+1Q
1/2
2n+2s

∣∣∣∣∣∣

2s∑

j=2s−1+1

q2s−jj

∣∣∣∣∣∣

1/2

≥ c

n−1∑

s=0

2s/2Q
1/2
2s

2sQ
1/2
2n

≥ c

n−1∑

s=0

1

2s/2

(
2s

2n

)1/2

=
cn

2n/2
.
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Hence,

‖t∗ (fn)‖
1/2
1/2

‖fn‖
1/2
H1/2

≥ cn → ∞

as n → ∞ . Theorem 2 is proved. �

Finally, we are ready to formulate a basic problem: to say {qk} is a

non-increasing and positive sequence. It is known that the operator t∗ (f)
is bounded from L∞(I) to L∞(I) and p ∈ (1/2, 1]. Find the necessary and

sufficient conditions for the {qk} sequence in order for the maximum operator

t∗ (f) to be bounded from the Hardy space Hp(I) to the space Lp(I).
The paper will provide a complete answer to the given question. The

following theorem is true.

Theorem 3. Let {qk} be a non-increasing and positive sequence. It is known

that the operator t∗ (f) is bounded from L∞(I) to L∞(I) and p ∈ (1/2, 1]. In

order for the given operator to be bounded from the Hardy space Hp(I) to the

space Lp(I) it is necessary and sufficient that

sup
N

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) < ∞.

Proof of Theorem 3. Necessity. We asuume that

(15) sup
N

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) = ∞.

From (12) and (13) we have

‖t∗ (fn)‖
p
p

‖fn‖
p
Hp

≥ cp2
n(1−p)

∫

I

(
sup

1≤s<n
|t2n+2s (fn)|

)p

≥ cp2
n(1−p)

n−1∑

s=0

1

2s+1Qp
2n+2s

∣∣∣∣∣∣

2s∑

j=1

q2s−jj

∣∣∣∣∣∣

p

≥ cp
2n(1−p)

Qp
2n

n−1∑

s=0

1

2s

∣∣∣∣∣∣

2s∑

j=2s−1+1

q2s−jj

∣∣∣∣∣∣

p

≥ cp
2n(1−p)

Qp
2n

n−1∑

s=0

2s(p−1)Qp
2s .

Then from (15) we get

sup
n∈N

‖t∗ (fn)‖
p
p

‖fn‖
p
Hp

= ∞
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and consequently, the operator t∗ is not bounded from the Hardy space Hp (I)
to the space Lp (I) .

Sufficiency. We suppose that f ∈ Hp (I). Let function a be an Hp

atom. It means that either a is constant or there is an interval IN (u)

such that supp(a) ⊂ IN (u), ‖a‖∞ ≤ 2N/p and
∫
a = 0. Without lost of

generality we can suppose that u = 0. Consequently, for any function g
which is AN -measurable we have that

∫
ag = 0. We prove that the operator

sup
n>N

(f ∗ Fn) (x) is Hp-quasi local. That is,

(16)

∫

IN

(
sup
n>N

|a ∗ Fn|

)p

≤ cp.

Let x ∈ IN . Then from (7) we can write

|a ∗ Fn| =

∣∣∣∣∣∣

∫

I

a (t)Fn (x∔ t) dt

∣∣∣∣∣∣
≤ 2N/p

∫

IN

|Fn (x∔ t)| dt(17)

= 2N/p

∫

IN

|Fn,1 (x∔ t)| dt+ 2N/p

∫

IN

|Fn,2 (x∔ t)| dt.

We have

∫

IN

|Fn,1 (x∔ t)| dt

≤
1

Qn

r∑

j=1,nj>N

Qn(j−1)

∫

IN

D2nj (x∔ t) dt

+
1

Qn

r∑

j=1,nj≤N

Qn(j−1)

∫

IN

D2nj (x∔ t) dt.

Since t ∈ IN and x /∈ IN we have that x ∔ t /∈ IN and consequently by (2)
we get D2nj (x∔ t) = 0 for nj > N. On the other hand,

∫
IN

D2nj (x∔ t) dt =
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1
2N

D2nj (x) for nj ≤ N . Hence, we obtain

∫

IN

|Fn,1 (x∔ t)| dt

≤
1

Qn

r∑

j=1,nj≤N

Qn(j−1)

∫

IN

D2nj (x∔ t) dt

=
1

2NQn

r∑

j=1,nj≤N

Qn(j−1)D2nj (x)

≤
1

2NQ2N

N∑

j=1

Q2jD2j (x) .

Consequently, from the condition of the theorem we get

∫

IN

sup
n>N


2N/p

∫

IN

|Fn,1 (x∔ t)| dt




p

dx(18)

≤
cp2

N

2NpQp
2N

N∑

j=1

Qp
2j

∫

IN

Dp
2j
(x) dx

=
cp2

N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) ≤ cp < ∞.

From (9) we get

∫

IN

|Fn,2 (x∔ t)| dt(19)

≤

∫

IN

∣∣∣F (1)
n,2 (x∔ t)

∣∣∣ dt+
∫

IN

∣∣∣F (2)
n,2 (x∔ t)

∣∣∣ dt.
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We can write

1

Qn

r∑

j=1

2nj−1∑

k=1

(
qk+n(j) − qk+n(j)+1

)
k |Kk|

=
1

Qn

r∑

j=1

nj∑

m=1

2m−1∑

k=2m−1

(
qk+n(j) − qk+n(j)+1

)
k |Kk|

=
1

Qn

r∑

j=1

nj+1∑

m=1

2m−1∑

k=2m−1

(
qk+n(j) − qk+n(j)+1

)
k |Kk|

+
1

Qn

r∑

j=1

nj∑

m=nj+1+1

2m−1∑

k=2m−1

(
qk+n(j) − qk+n(j)+1

)
k |Kk|

≤
1

Qn

r∑

j=1

nj+1∑

m=1

sup
2m−1≤k<2m

(k |Kk|)

2m−1∑

k=2m−1

(
qk+n(j) − qk+n(j)+1

)

+
1

Qn

r∑

j=1

nj∑

m=nj+1+1

sup
2m−1≤k<2m

(k |Kk|)

2m−1∑

k=2m−1

(
qk+n(j) − qk+n(j)+1

)

=
1

Qn

r∑

j=1

nj+1∑

m=1

sup
2m−1≤k<2m

(k |Kk|)
(
q2m−1+n(j) − q2m+n(j)

)

+
1

Qn

r∑

j=1

nj∑

m=nj+1+1

sup
2m−1≤k<2m

(k |Kk|)
(
q2m−1+n(j) − q2m+n(j)

)

≤
1

Qn

r∑

j=1

q2nj+1

nj+1∑

m=1

sup
2m−1≤k<2m

(k |Kk|)

+
1

Qn

r∑

j=1

nj∑

m=nj+1+1

q2m−1 sup
2m−1≤k<2m

(k |Kk|)

≤
1

Qn

n1∑

j=1

q2j

j∑

m=1

sup
2m−1≤k<2m

(k |Kk|)

+
1

Qn

n1∑

m=1

q2m−1 sup
2m−1≤k<2m

(k |Kk|)

≤
2

Qn

n1∑

j=1

q2j−1

j∑

m=1

sup
2m−1≤k<2m

(k |Kk|) .
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Consequently, we have

∫

IN

∣∣∣F (1)
n,2 (x∔ t)

∣∣∣ dt

≤
2

2NQn

N∑

j=1

q2j−1

j∑

m=1

sup
2m−1≤k<2m

(k |Kk (x)|)

+
2

2NQn

n1∑

j=N+1

q2j−1

N∑

m=1

sup
2m−1≤k<2m

(k |Kk (x)|)

+
2

Qn

n1∑

j=N+1

q2j−1

j∑

m=N+1

∫

IN

sup
2m−1≤k<2m

(k |Kk (x∔ t)|) dt

: = J1 + J2 + J3.

Since x∔ t /∈ IN by (10) and (6), we have (m > N)

∫

IN

sup
2m−1≤k<2m

(k |Kk (x∔ t)|) dt

≤
m∑

s=0

2s
∫

IN

K2s (x∔ t) dt

=
1

2N

N∑

s=0

2sK2s (x) +

m∑

s=N+1

2s
∫

IN

K2s (x∔ t) dt

≤
1

2N

N∑

s=0

2sK2s (x)

+

m∑

s=N+1

s∑

l=0

2l
∫

IN

D2s (x∔ t∔ el) dt

≤
1

2N

N∑

s=0

2sK2s (x) +
2m

2N

N−1∑

l=0

2l1IN (el) (x) .
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Consequently,

J3 ≤
2

2NQn

n1∑

j=N+1

q2j−1 (j −N)

N∑

s=0

2sK2s (x)

+
2

2NQn

n1∑

j=N+1

q2j−12j
N−1∑

l=0

2l1IN (el) (x)

=
2

22NQn

n1∑

j=N+1

q2j−12j
(j −N)

2j−N

N∑

s=0

2sK2s (x)

+
2

2NQn

n1∑

j=N+1

q2j−12j
N−1∑

l=0

2l1IN (el) (x) .

Since

Qn ≥
2n1−1∑

j=1

qj =

n1∑

r=1

2r−1∑

j=2r−1

qj ≥

n1∑

r=1

q2r2
r−1.

We can write

(20) J3 ≤
c

22N

N∑

s=0

2sK2s (x) +
c

2N

N−1∑

l=0

2l1IN (el) (x) ,

J2 ≤
c

22NQn

n1∑

j=N+1

2jq2j−1

N∑

m=1

sup
2m−1≤k<2m

(k |Kk (x)|)(21)

≤
c

22N

N∑

m=1

sup
2m−1≤k<2m

(k |Kk (x)|) .

By Lemma 1 and from the condition of theorem we can write

(22)

∫

IN

sup
n>N


2N/p

∫

IN

∣∣∣F (1)
n,2 (x∔ t)

∣∣∣ dt




p

dx

≤
cp2

N(1−p)

Qp
n

N∑

j=1

qp
2j−1

j∑

m=1

∫

IN

sup
2m−1≤k<2m

(k |Kk (x)|)
p dx

+
cp2

N

22pN

N∑

m=1

∫

IN

sup
2m−1≤k<2m

(k |Kk (x)|)
p dx

+cp2
N(1−2p)

N−1∑

s=0

∫

IN

(2sK2s (x))
p dx
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+cp2
N(1−p)

N−1∑

l=0

2lp
∫

IN

1IN (el) (x) dx

≤
cp2

N(1−p)

Qp
n

N∑

j=1

qp
2j−12

j(2p−1)

+cp2
N(1−2p)

N−1∑

s=0

2s(2p−1)

+cp
2N(1−p)

2N

N−1∑

l=0

2lp

≤
cp2

N(1−p)

Qp
n

N∑

j=1

(
q2j−12j

)p
2j(p−1) + cp

≤ cp sup
N∈N

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) + cp

≤ cp < ∞.

Analogously, we can prove that

(23)

∫

IN

sup
n>N


2N/p

∫

IN

∣∣∣F (2)
n,2 (x∔ t)

∣∣∣ dt




p

dx ≤ cp < ∞.

Combine (17), (18), (??), (22) and (23) we complete the proof of Theorem
3. �

For p = 1, Theorem 3 implies that the following two conditions are equiv-
alent:

• The maximal operator t∗ is bounded from the dyadic Hardy space
H1 (I) to the space L1 (I) ;

• sup
N∈N

1
Q

2N

N∑
j=1

Q2j < ∞.

On the other hand, in [13] it is proved that the following two conditions
are equivalent:

• The maximal operator t∗ is bounded from the space L∞ (I) to the
space L∞ (I) ;

• sup
N∈N

1
Q

2N

N∑
j=1

Q2j < ∞.

Hence, we can conclude that the following.
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Theorem 4. The following three conditions are equivalent:

• The maximal operator t∗ (f) is bounded from L∞(I) to L∞(I);
• The maximal operator t∗ (f) is bounded from H1(I) to L1(I);

• sup
n∈N

1
Qn

∑|n|
k=1Q2k < ∞.

7. Applications to various summability methods

Since, the Nörlund mean is a generalization of many other well-know
means with wide range of literature, in the last section we give applications
of our results.

Example 1. Fejér means: Let qj = 1. then it is easy to see that Qj ∼ j and
we have

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) =

2N(1−p)

2Np

N∑

j=1

2jp2j(p−1)

= 2N(1−2p)
N∑

j=1

2j(2p−1).

Hence, 
sup

N∈N

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) < ∞


 ⇐⇒ (p > 1/2)

and we have that the following two conditions are equivalent:

• The maximal operator sup
n∈N

|σn (f)| is bounded from the dyadic Hardy

space Hp (I) to the space Lp (I) ;
• p > 1/2.

Under the condition p > 1/2, the boundedness of maximal operator
sup
n∈N

|σn (f)| was proved by Weisz [25], and the essence of condition

p > 1/2 was proved by the author [9].

Example 2. (C,α)-means: Let qj := Aα−1
j , α ∈ (0, 1). It is easy to see that

Qj ∼ jα. Since

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) =

2N(1−p)

Qp
2N

N∑

j=1

2jpα2j(p−1)

=
2N(1−p)

Qp
2N

N∑

j=1

2j(p(α+1)−1)
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we conclude that

sup
N∈N

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1) < ∞ ⇐⇒

(
p >

1

1 + α

)
.

Consequently, we have the following two conditions are equivalent:

• The maximal operator sup
n∈N

|σα
n (f)| is bounded from the dyadic Hardy

space Hp (I) to the space Lp (I) ;

• p > 1
1+α .

Under the condition p > 1
1+α , the boundedness of maximal oper-

ator sup
n∈N

|σα
n (f)| was proved by Weisz [25], and the importance of

condition p > 1
1+α was proved by the author [10].

Example 3. Let qj := jα−1, α ∈ [0, 1). First, we consider the case when
α = 0. Then the Nörlund means coincide to the Nörlund logarithmic means

tn(f ;x) :=
1

Qn

n−1∑

k=1

Sk(f ;x)

n− k
.

Nörlund’s logarithmic means with respect to the trigonometric system
was studied by Tkebuchava [21, 22]. The convergence and divergence of this
means with respect to the Walsh systems was discussed in [5, 6, 7, 12]. Since

sup
n∈N

1

Qn

|n|∑

k=1

Q2k ∼ sup
n∈N

|n|2

log (n+ 1)
∼ sup

n∈N
log (n+ 1) = ∞

from Theorem we conclude that the maximal operator sup
n∈N

|tn(f)| is not

bounded from H1(I) to L1(I) and consequently, by interpolation theorem
can not be bounded from Hp(I) to Lp(I), when p < 1.

Now, we suppose that α ∈ (0, 1). It is easy to see that

2N(1−p)

Qp
2N

N∑

j=1

Qp
2j
2j(p−1)

=
2N(1−p)

Qp
2N

N∑

j=1

2j(p(α+1)−1)

and

(24) lim
n→∞

1

nα

n∑

k=1

(n− k)α−1 Sk(f ;x) = f (x) for a. e. x ∈ I.

we have the following two conditions are equivalent:
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• The maximal operator sup
n∈N

1
nα

∣∣∣
∑n

k=1 (n− k)α−1 Sk(f ;x)
∣∣∣ is bounded

from the dyadic Hardy space Hp (I) to the space Lp (I) ;
• p > 1

1+α .
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