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Correlation between nuclear temperatures and symmetry energy in sub-saturation
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A study of the correlation between nuclear temperatures and symmetry energy is presented for
heavy-ion collisions at intermediate energies via the isospin-dependent quantum molecular-dynamics
model. It is found that different symmetry energy parameters will change the density and kinetic
energy distribution of the hot nuclei. More importantly, nuclear temperatures that are based on
kinetic energy properties can be used to study symmetry energy information.

PACS numbers: 25.70.Pq, 13.75.Cs

INTRODUCTION

Nuclear symmetry energy, which has been a research
focus of nuclear physics for many years, governs impor-
tant properties of nuclei and neutron stars [1]. Compared
to regions with saturation density, the large uncertain-
ties in symmetry energy exist in low- and high-density
regions. To reduce the uncertainties regarding symmetry
energy in non-saturated density regions, many investiga-
tions have been undertaken; at sub-saturation densities
these include isotopic scaling [2, 3], isospin fractionation
[4, 5], pre-equilibrium single and double neutron-proton
ratios [6–9] and isobaric ratio of various species [10] etc.
However, the high-density behavior of symmetry energy
has been studied using methods including collective and
elliptic flows [11–13], neutron-proton ratios of free nucle-
ons [14, 15], π−/π+ [16, 17], K+/K0 [18] etc. Numerous
efforts have been directed towards constraining symme-
try energy, but further studies are needed to improve the
accuracy of the constraint on the symmetry energy at
sub- and supra-saturation densities.

Recent experimental and theoretical studies show that
nuclear temperatures have isospin dependence [19–24].
There are two main factors contributing to this phe-
nomenon: the Coulomb interaction and symmetry en-
ergy. Based on Landau theory, McIntosh et al revealed
a linear dependence of temperature on Coulomb energy
and symmetry energy [20]. Therefore, if one could se-
lect appropriate hot nuclei and reduce the effects of
the Coulomb interaction, one might use the nuclear
temperature isospin dependence to study symmetry en-
ergy. In this work, we focus on symmetry energy at
sub-saturation densities and examine the correlation be-
tween nuclear temperatures and symmetry energy in low-
density regions.

MODEL AND METHODS

We attempt to study the correlation between nuclear
temperatures and symmetry energy in a low-density re-
gion via the isospin-dependent quantum molecular dy-
namics (IQMD) model [25–28] incorporating the statis-
tical decay model GEMINI [29]. To better connect the
two models, we needed a dynamical model to describe
the intermediate-mass-fragment (IMF) emission. When
the maximum fragment excitation energy is less than a
certain value Estop, the dynamical simulation will stop
and the statistical decay model will complete the decay
of pre-fragments. The value of Estop corresponds to the
threshold energy for IMF emission. In this work, Estop =
2 MeV/nucleon. Using this value, the experimental data
for IMF production can be described very well [27].

In the present model, the Hamiltonian H is expressed
as

H = τ + UCoul +

∫

V (ρ)dr, (1)

where τ is the kinetic energy and UCoul is the Coulomb
potential energy. V (ρ) is the nuclear potential energy
density function, which is written as

V (ρ) =
α

2

ρ2

ρ0
+

β

γ + 1

ργ+1

ργ0
+

gisosur

2

(∇ρn −∇ρp)
2

ρ0
(2)

+
gsur
2

(∇ρ)2

ρ0
+ gτ

ρ8/3

ρ
5/3
0

+
Csym

2

(

ρ

ρ0

)γi

ρδ2.

The parameters used in this study are α = -168.40 MeV,
β = 115.90 MeV, γ = 1.50, gsur = 92.13 MeV fm2, gisosur =
-6.97 MeV fm2, Csym = 38.13 MeV, and gτ = 0.40 MeV.
The corresponding compressibility is 271 MeV [30]. In
this work, we used three symmetry parameters γi =0.5,
1.0 and 2.0 which correspond to the soft, linear and hard
symmetry energy, respectively.
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To study the energy distribution of the hot nuclei, we
must find the hot nuclei in the early stage of the reactions
from the phase space. The hot nuclei can be selected
by the relative distance (Rp) among the nucleons. If the
relative distance between the two nucleons is smaller than
Rp, they can be recognized to belong one cluster. In this
work, Rp = 3 fm, which is the typical value of nuclear
force scope. To further select the equilibrated projectile
spectator, spherical spectators are selected by the ratio
of parallel to transverse quantities:

Qshape =
2
∑

i p
2
zi

∑

i(p
2
xi + p2yi)

, (3)

where pxi, pyi, and pzi are the momentum components
of the ith nucleon along the x, y, and the z axes in the
center-of-mass frame of the projectile spectator. If the
Qshape value of the spectator satisfies -0.36 log10(Qshape)
6 0.3, the spectator is a candidate that may be used to
study thermodynamic properties. To use the spectator
to study nuclear temperatures, the mass and neutron-
proton ratio requirement must also be met, because a
large mass and neutron-proton ratio range will affect the
nuclear temperatures isospin effects measurement [31].
To reduce the effects of mass and neutron-proton ra-
tio on nuclear temperature measurement, the mass and
neutron-protons ratio range of hot nuclei should be 185
≤ A ≤ 195 and 1.3 ≤ N/Z ≤ 1.4, respectively.
When the hot nuclei are confirmed, the excitation en-

ergy and temperature of the hot nuclei can be calculated.
The excitation energy E∗ of the hot nuclei is calculated
by

E∗ = τ + V −B (4)

where τ and V are kinetic energy and potential energy of
the hot nuclei, respectively. B is the binding energy of the
hot nuclei at the ground state. The temperatures of the
spectator are calculated by the momentum quadrupole
temperature [32]:

〈σ2
xy〉 = 4m2T 2, (5)

where m is the probe particle mass and 〈σ2
xy〉 the variance

of the momentum quadrupole.

RESULTS AND DISCUSSION

Figure 1 shows the time evolution of the largest clus-
ter average density. In it, the reaction system is 36Ar
+ 197Au at 80 MeV/nucleon with central collisions. It
is worth mentioning that the largest cluster is not the
same as the hot nuclei that are used to calculate energy
distribution and nuclear temperature. When the Qshape,
mass and N/Z values meet the requirements of the hot
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FIG. 1. The time evolution of the largest cluster average
density.

nuclei, the largest cluster is a hot nuclei, and will be used
in the next step of this study. It can be seen from Fig. 1
that the largest cluster average density reaches the max-
imum value of approximate 20 fm/c. At this moment,
the reaction system reaches maximum compression. Af-
ter 20 fm/c, the largest cluster average density decreases
with reaction time, which is caused by the expansion of
the reaction system. When the momentum distribution
of the largest cluster reaches isotropy (approximate 110
fm/c [22]), the largest cluster is a candidate for a hot
nucleus which can be used to study nuclear temperature.
The average density of the hot nuclei candidates is in the
sub-saturation density region and is approximate 0.7ρ0.
If one studies the temperatures of the hot nuclei, the nu-
clear temperatures should carry the information about
nuclear symmetry energy at sub-saturation densities. It
can be seen from Fig. 1 that the average density of the
largest cluster is below saturation density (0.7ρ0 < ρ <
0.9ρ0) in the formation process (50 fm/c < t ). In this
density region, the pressure caused by symmetry energy
is positive. The role of symmetry energy is to make the
system easier to expand.
The pressure of the symmetry energy can be written

as

Psym = ρ2
(

∂esym
∂ρ

)

T,δ=constant

, (6)

where esym is Esymδ2. In the present work, δ = 0.15
which corresponds to hot nuclei neutron-proton asym-
metry. Since the pressure increases with the slope of
symmetry energy. It is seen from Fig. 2(b) that the hard
(γi = 2.0) symmetry energy leads to a larger pressure
than the soft symmetry energy (γi = 0.5) at densities
above 0.7ρ0. The hot nuclei with hard symmetry energy
will be much easier to expand. Therefore, the density of
the hot nuclei which use hard symmetry energy should
be the lowest. To show the effects of symmetry energy
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FIG. 2. Symmetry energy (a) and pressure of symmetry en-
ergy (b) as a function of density for an isospin asymmetry of
δ = 0.15 and γi parameter of 0.5, 1.0 and 2.0, respectively.
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FIG. 3. The hot nuclei average density as a function of exci-
tation energy for different asymmetry parameter.

on the hot nuclei properties, the density and energy dis-
tribution are compared in Fig. 3 and Fig.4 at 110 fm/c.

The density versus excitation energy of the hot nuclei
is shown in Fig. 3. To obtain hot nuclei with different
excitation energies, the reaction systems 36Ar + 197Au at
70, 75 and 80 MeV/nucleon with different symmetry en-
ergy parameters are used. It can be seen from Fig. 3 that
the average density is the lowest for the hard symmetry
energy, which supports the above reasoning. We can also

see from Fig. 3 that the density decreases with increasing
excitation energy. Using the same symmetry energy the
hot nuclei will expand more easily with higher excitation
energy. Similar result has been found by Wuenschel et al
[32].
To further investigate the correlation between symme-

try energy and nuclear temperature, the energy distri-
bution of the hot nuclei is shown in Fig.4, in which the
average total energy Etot of the hot nuclei is divided into
three parts. They are average potential energy Epot, col-
lective kinetic energy Ecoll and intrinsic kinetic energy
Eint,

Etot = Epot + Ecoll + Eint. (7)

Eint includes Fermi kinetic energy and thermal kinetic
energy. The difference of Fermi motion and thermal mo-
tion come from the change of hot nuclei density, which
carries symmetry energy information.
It can be seen from Fig.4 that the potential energy per

nucleon is the highest for hard symmetry energy. This is
due to the hot nuclei with hard symmetry energy having
the lowest density (see Fig. 3). The difference in the po-
tential energy among the different symmetry energies is
approximately 2 MeV/nucleon. Compared to the poten-
tial energy, the difference of the collective kinetic energy
is weak. The difference in Ecoll is approximately 0.2-
0.6 MeV/nucleon for different excitation energies. For
the hot nuclei that have the same excitation energy, the
intrinsic kinetic energy will be higher for the hot nuclei
with soft symmetry energy. It can be seen from Fig. 4(a)
that the difference in Eint among different symmetry en-
ergies is approximately 2 MeV/nucleon; the Eint value
is higher for soft symmetry energy. It is worth mention-
ing that Eint at 110 fm/c is not particle kinetic energy
which is measured by experiment. Because the emitted
particles need to overcome potential energy attraction.
However, the emitted particles still carry the informa-

tion of Eint and reflect the difference of symmetry en-
ergy. Therefore, the difference in Eint among the different
symmetry energies is expressed by particle momentum.
Based on the classical Maxwell distribution, the nuclear
temperature can be calculated by Eq. (5). In Fig. 5
neutrons and protons were selected as the probe parti-
cles, the yields of which are enough to satisfy statistical
requirements. It can be found from Fig. 5(a) that the
softer symmetry parameter the temperatures of the hot
nuclei are higher. Compared to neutrons, the difference
of nuclear temperature among different symmetry energy
is weak when protons are used [Fig. 5(b)]. This is mainly
caused by Coulomb effect. After the neutrons and pro-
tons are created, the momentum of protons is changed by
Coulomb force. Thermonuclear information carried by
protons is affected. Therefore, the influence of Coulomb
effect should be minimized when the classical momentum
quadrupole thermometer are used to extract symmetry
energy information at the sub-saturation density region.
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FIG. 4. The intrinsic kinetic energy (a), collective kinetic
energy (b) and potential energy (c) as a function of excitation
energy.
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FIG. 5. The nuclear temperatures of the hot nuclei as a func-
tion of excitation energy for different asymmetry parameter.

CONCLUSIONS

In summary, we have presented the details of a study
of the relation between the momentum quadrupole tem-
perature and symmetry energy using the IQMD model.
We found that by using different symmetry energies, the
energy distribution and average density of the hot nuclei
will be changed. More interesting is that a strong correla-
tion exists between the ’classical’ momentum quadrupole
temperature and symmetry energy in the sub-saturation
density region.
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