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Abstract

Periodic solutions of delay equations are usually approximated as continuous
piecewise polynomials on meshes adapted to the solutions’ profile. In practical
computations this affects the regularity of the (coefficients of the) linearized system
and, in turn, the effectiveness of assessing local stability by approximating the
Floquet multipliers. To overcome this problem when computing multipliers by col-
location, the discretization grid should include the piecewise adapted mesh of the
computed periodic solution. By introducing a piecewise version of existing pseu-
dospectral techniques, we explain why and show experimentally that this choice
is essential in presence of either strong mesh adaptation or nontrivial multipliers
whose eigenfunctions’ profile is unrelated to that of the periodic solution.
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1 Introduction

Periodic solutions and their asymptotic stability are among the prime interests in the
study of dynamical systems. In the case of delay differential equations (DDEs) these
solutions are usually approximated with continuous piecewise polynomials determined
by collocating a corresponding boundary value problem (BVP) on the period interval
[6, 20]. Then, as an accomplished standard (e.g., as in DDE-BIFTOOL4 [21, 27]), the
partition of the period interval is adapted to the profile of the solution, moving away
from uniform (for mesh adaptation see [5, 20]). Eventually, the local stability is assessed
by computing the characteristic multipliers,5 relying on Floquet theory and on the
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5Computing stability indicators is essential in a continuation framework for bifurcation analysis.

Recomputing solutions after perturbation may represent an attractive alternative when parameters are
fixed.
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principle of linearized stability, see [17, 22] for DDEs and [11] for renewal equations
(REs).

Recently, Borgioli et al. [7] proposed a generalization of the collocation approach of
DDE-BIFTOOL to compute Floquet multipliers of linear time-periodic DDEs, possibly
with discontinuous coefficients. They comment in section 4 that the points where the
coefficients are not differentiable should be included in the collocation grid. Accordingly,
we highlight that when the linear system comes from linearizing a nonlinear problem
around a numerically computed periodic solution, the resulting coefficients are in
general only continuous, even for smooth problems, being the approximated solution
a continuous piecewise polynomial. This may deteriorate the convergence of the
computated multipliers, as it happens, e.g., for the pseudospectral collocation methods
for DDEs [13], for REs [9] and for coupled REs and DDEs [10]. All these methods
construct a matrix discretizing the monodromy operator by using a single polynomial
on the whole domain interval.

Therefore, in this work we first recast the cited methods in a piecewise fashion,
discretizing the monodromy operator on a grid including the adapted partition of the
period interval from the given numerical periodic solution. Then, with reference to the
convergence analysis in [9, 10, 13, 14], we explain why this choice is not only necessary
to prevent order reduction or even loss of convergence, but also computationally
convenient in the case of strongly adapted partitions. Moreover, we discuss also the
case of poor approximation of nontrivial multipliers whose eigenfunctions have large
oscillations unrelated to the profile of the computed periodic solution [30]. This leads
to an increase of the error constants and a denser collocation grid is thus required. In
this respect, we show experimentally that this new grid should always be a refinement
of the adapted mesh of the periodic solution: uniform grids with the same amount of
nodes may fail to reach the desired accuracy. The method we obtain applies to DDEs,
REs and coupled REs and DDEs, with both discrete and distributed constant delays.

In this paper, after a summary in section 2 of the theoretical and numerical aspects
related to approximating periodic solutions and studying their stability by computing
the Floquet multipliers, we show in section 3 an example of the difficulties encountered
by the non-piecewise method [13]. Then, in section 4, we illustrate the piecewise
reformulation, discuss its convergence, show with a simple DDE that order reduction
may occur if the adapted partition is not taken into account and eventually repair
the failure described in the previous section. In section 5 we provide other numerical
experiments confirming the expected convergence behavior, the better performance in
the case of solutions on strongly adapted partitions of the period interval, the suitability
for multipliers relevant to eigenfunctions with smooth yet large oscillations and, finally,
the versatility with respect to the classes of delay equations.

MATLAB codes implementing the described method are available at http://cdlab.
uniud.it/software.
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2 Background

In the following we summarize Floquet theory and local stability (section 2.1), the
numerical computation of periodic solutions (section 2.2) and the computation of the
Floquet multipliers (section 2.3), also introducing the necessary notations. We restrict
to DDEs and give references for REs and coupled equations.

2.1 Floquet theory and local stability of periodic solutions

Let dY be a positive integer, τ a positive real and |·| any norm in finite dimension. We
consider DDEs

y′(t) = G(yt) (1)

for G : Y → RdY , Y := C([−τ, 0],RdY) with norm ‖ψ‖Y := maxθ∈[−τ,0]|ψ(θ)|, and
yt(θ) := y(t + θ) for θ ∈ [−τ, 0].

Assume that (1) has an ω-periodic solution ȳ. Linearizing (1) around ȳ leads to the
linear ω-periodic DDE

y′(t) = DG(ȳt)yt (2)

for DG the Fréchet derivative of G. Let U(t, s) : Y → Y, t ≥ s, be the associated
evolution operator, i.e.,

U(t, s)ψ = y(·; s, ψ)t,

where y(·; s, ψ) is the solution of the initial value problem (IVP) for (2) with ys = ψ (the
IVP is well-posed in the periodic case, see, e.g., [22, Theorems 2.2.1, 2.2.2 and 2.2.3]
and [28, Theroem 3.7 and Remark 3.8]). The Floquet multipliers (simply multipliers in
the sequel) are the eigenvalues of the monodromy operators U(t + ω, t), and they are
independent of t [17, Theorem XIII.3.3]. Note that 1 is always a multiplier (usually called
trivial), since (2) is the linearization of a DDE around a periodic solution [17, Theorem
XIV.2.6]. As is well known, the multipliers can give information on the local stability of
ȳ through the principle of linearized stability. Namely, if G is a C1 function and the
trivial multiplier is simple, then ȳ is asymptotically stable if all the nontrivial multipliers
are inside the unit circle; on the contrary, if there exists a nontrivial multiplier outside
the unit circle, then ȳ is unstable (for a proof follow [17, Theorems XIV.3.3 and XIV.4.5],
with their hypotheses satisfied thanks to [17, Exercise XIII.2.3 and section XIV.3]).

Similar results hold also for REs

x(t) = F(xt)

with F : X → RdX , X = L1([−τ, 0],RdX ) with norm ‖ϕ‖X :=
∫ 0
−τ|ϕ(θ)|dθ and dX a

positive integer. Thanks to the Riesz representation theorem for L1 (see, e.g., [26, p.
400]), the linearization around a possible periodic solution x̄ has the form

x(t) =
∫ 0

−τ
C(t, θ)xt(θ)dθ,
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with C : R × [−τ, 0] → RdX×dX a measurable function, periodic in t. Monodromy
operators and relevant multipliers are defined as in the case of DDEs and the principle
of linearized stability holds unchanged under mild regularity assumptions on F (viz. F
is C1 and globally Lipschitz continuous; the proof follows [17, Theorems XIV.3.3 and
XIV.4.5], with their hypotheses satisfied thanks to [9, 11]).

Finally, for coupled equations {
x(t) = F(xt, yt),

y′(t) = G(xt, yt),
(3)

where F : X×Y → RdX , G : X×Y → RdY and X and Y are as above with ‖(ϕ, ψ)‖X×Y :=
‖ϕ‖X + ‖ψ‖Y, a Floquet theory is currently missing, but it is reasonable to expect the
validity of similar results.

2.2 Numerical computation of periodic solutions

In applications, exact periodic solutions of DDEs are in general unknown, so numerical
methods are needed. These typically consist in solving BVPs via piecewise orthogonal
collocation [6, 20]. Very recently, this methodology has been extended and applied to
REs for the first time in [8], but a systematic treatment for DDEs, REs and coupled
equations appeared only in [1]. Concerning the convergence, the only available rigorous
error analysis can be found in [3] for DDEs and in [2, 4] for REs. Here we just
summarize from [20] the main aspects of this numerical scheme in the case of DDEs,
which corresponds to the one implemented in DDE-BIFTOOL. For the extension to REs
and coupled equations see [1].

Assume again that (1) has a periodic solution ȳ, unknown together with its period
ω. By rescaling the time through the map sω : R→ R defined as sω(t) := t/ω, we can
look at ȳ as the solution of the BVP

y′(t) = ωG(ỹt ◦ sω), t ∈ [0, 1],

y(0) = y(1),

φ(y) = 0,

(4)

where φ is a scalar (usually linear) function imposing a phase condition to remove
translational invariance [19] and ỹt is defined as

ỹt(θ) := y(t + θ + k), t + θ ∈ [−k,−k + 1], k ∈ N,

exploiting the periodicity to evaluate the solution in [−1, 0] as required by the presence
of the delay.

Let L and m be positive integers. Consider a partition of [0, 1] through 0 = t0 <

t1 < · · · < tL = 1 and define the set of continuous piecewise m-degree polynomials

ΠL,m := {p ∈ C([0, 1],RdY) | p�[ti ,ti+1]
∈ Πm, i ∈ {0, . . . , L− 1}},
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where Πm is the set of RdY -valued polynomials of degree at most m. The piecewise
collocation approach consists in looking for p ∈ ΠL,m and w ∈ R satisfying

p′(ζi,j) = wG( p̃ζi,j ◦ sw), j ∈ {1, . . . , m}, i ∈ {0, . . . , L− 1},
p(0) = p(1),

φ(p) = 0,

(5)

for a choice of m collocation nodes ζi,j per interval, with ti ≤ ζi,1 < · · · < ζi,m ≤ ti+1,
i ∈ {0, . . . , L− 1}, typically the zeros of some family of orthogonal polynomials (e.g.,
Gauss–Legendre or Chebyshev).

As for the convergence of the method, it is shown in [3] that, for G sufficiently
smooth, the collocation error p − ȳ in the space of bounded measurable functions
vanishes with order m for L → ∞ for the finite elements method (FEM, the most
commonly adopted). For the spectral elements method (SEM), i.e., for m → ∞ and
fixed L, experimental evidence of spectral accuracy [29] is reported in [1], but no proof
is available.

With regards to the implementation, (5) is recast as a system of nonlinear equations
by using a suitable representation of the collocation polynomial. The standard choice
is the Lagrange form, defined by the basis of Lagrange polynomials `i,0, . . . , `i,m at
the equidistant nodes zi,j := ti + jhi/m, for i ∈ {0, . . . , L − 1}, j ∈ {0, . . . , m} and
hi := ti+1 − ti. The resulting system is typically solved by resorting to Newton’s
method, with a favorable arrow-shaped structure of the resulting Jacobian matrix (see
[19] for a clear exposition in the case of ODEs).

As a final essential remark, we highlight again that standard implementations (as
in DDE-BIFTOOL) make use of mesh adaptation: starting from a uniform partition of
[0, 1], the distribution of the L intervals is adapted to the solution’s profile in order to
control the overall error [20]. As we will base our collocation approach on the adapted
mesh resulted from approximating ȳ, we introduce the ratio ρ between the lengths of
the largest and smallest intervals in the adapted partition as an indicator of how far
it is from uniform.6 We anticipate that our approach does not perform any further
adaptation on the solution’s adapted mesh that it receives in input.

2.3 Numerical computation of the Floquet multipliers

The approach to computing the multipliers presented in [13, 14] for DDEs, [9] for REs
and [10] for coupled equations is based on the non-piecewise discretization of a generic
evolution operator following the relevant IVP, and it can thus be applied to approximate
the spectrum of any such operator. In this sense, this approach is more general than
those used, e.g., in DDE-BIFTOOL or in [7], which explicitly exploit the structure of the
periodic BVP (for other differences, see Theorem 2.1 below). In this section we describe

6Observe that ρ ≥ 1 and ρ = 1 if and only if the partition is uniform.
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the discretization for DDEs presented in [13]. We refer the reader to the cited works
and to [23] for the extension to REs and coupled equations.

Consider then (2) and the relevant evolution operator T := U(s+ω, s) for s ∈ R and
ω ≥ 0. We apply pseudospectral collocation techniques to obtain a finite-dimensional
approximation of T, by first conveniently reformulating it as follows. Define the
function spaces Y+ := C([0, ω],RdY) and Y± := C([−τ, ω],RdY) with the corresponding
uniform norms. Let V : Y×Y+ → Y± be the operator which, given an initial function
ψ on [−τ, 0] and the function z prescribed by the right-hand side of (2) on [0, ω],
constructs the solution of (2) on [−τ, ω] as

V(ψ, z)(t) :=

ψ(0) +
∫ t

0
z(σ)dσ, t ∈ [0, ω],

ψ(t), t ∈ [−τ, 0].

Let also Fs : Y± → Y+ be the operator defined as

(Fsv)(t) := DG(ȳs+t)vt, t ∈ [0, ω],

which basically applies to its argument the action of the right-hand side of (2) (with the
time shifted by s so that the initial time is 0). Finally, T can be reformulated as

Tψ = V(ψ, z∗)ω, (6)

where z∗ ∈ Y+ is the solution of the fixed point equation

z = FsV(ψ, z), (7)

which exists and is unique in the same conditions as the solutions of (2). Observe that
z∗ is the derivative of the solution of (2) with initial function ys = ψ.

Let now M and N be positive integers. We consider partitions of [−τ, 0] and [0, ω]

respectively defined by −τ = θM < · · · < θ0 = 0 and 0 ≤ t1 < · · · < tN ≤ ω.
The discretization of Y is YM := RdY(M+1), with elements Ψ = (Ψ0, . . . , ΨM) for

Ψm ∈ RdY , m ∈ {0, . . . , M}. We introduce the restriction operator RM : Y → YM given
by RMψ := (ψ(θ0), . . . , ψ(θM)) and the prolongation operator PM : YM → Y as the
discrete Lagrange interpolation operator PMΨ(θ) := ∑M

m=0 `m(θ)Ψm, θ ∈ [−τ, 0], where
`0, . . . , `M are the Lagrange polynomials relevant to the nodes in [−τ, 0]. Observe that

RMPM = IYM , PMRM = LM, (8)

where LM : Y → Y is the Lagrange interpolation operator that associates to a function
ψ ∈ Y the M-degree RdY -valued polynomial LMψ such that LMψ(θm) = ψ(θm) for
m ∈ {0, . . . , M}. The discretization of Y+ goes similarly by introducing Y+

N , R+
N , P+

N
and L+

N according to the partition of [0, ω].
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Following (6) and (7), the discretization of T is the finite-dimensional operator
TM,N : YM → YM defined as

TM,NΨ := RMV(PMΨ, P+
N Z∗)ω, (9)

where Z∗ ∈ Y+
N is the solution of the fixed point equation

Z = R+
NFsV(PMΨ, P+

N Z) (10)

for the given Ψ ∈ YM (for the well-posedness see [13]). The eigenvalues of TM,N are then
computed with standard methods and considered as approximations of the multipliers.

The convergence of the approximated multipliers has been proved in the cited
works, and it holds under mild regularity assumptions on the ranges of V and Fs (see,
e.g., [13, Theorem 3.3 and Proposition 4.5]). We summarize the main aspects in the
following. Let µ ∈ C \ {0} be an eigenvalue of T with generalized eigenspace E , finite
algebraic multiplicity ν and ascent l. Let ∆ be a neighborhood of µ such that µ is the
only eigenvalue of T in ∆. Then there exists a positive integer N such that, for any
N ≥ N and any M ≥ N, TM,N has in ∆ exactly ν eigenvalues µM,N,j for j ∈ {1, . . . , ν}.
Moreover, if for each ψ ∈ E the function z∗ that solves (7) is of class Cp for some p ≥ 1,
then

max
j∈{1,...,ν}

|µM,N,j − µ| = o
(

N
1−p

l
)
.

The result states that the order of convergence of the multipliers depends on the
smoothness of the (derivative z∗ of the) solution of the IVP for (2) exiting from an
eigenfunction of µ. Indeed, the approach collocates exactly this function z∗ on the period
interval, and thus the error basically depends on the relvant interpolation procedure
through the operators R+

N , P+
N and L+

N . This is the crucial point, and to simplify the
following explanation let us assume that G in (1) is smooth, so that also ȳ is smooth
(as periodicity combined with the smoothing effect of DDEs cancels possible breaking
points). Then, if we linearize (1) around the exact ȳ, it turns out that the coefficients
of (2) are smooth and, as a consequence, so are the concerned eigenfunctions and the
relevant functions z∗.7 Then the order of convergence is infinite, which is coherent
with the expectation that pseudospectral methods exhibit spectral accuracy [29]. On
the contrary, if we linearize around a numerically computed ȳ, the coefficients of (2)
are only continuous (yet piecewise analytic), and this lack of global smoothness can
deteriorate the convergence behavior as we show in the next section.

Remark 2.1. We observe that the approach we presented, in the case of DDEs, collocates the
derivative of the solution of the IVP, i.e., the solution z∗ of (7), while DDE-BIFTOOL and
[7] collocate the solution of the periodic BVP (4): this may lead to slight differences in the
experimental results even if using the same collocation grids. As a further difference, we observe
that the approach in [7] does not discretize the monodromy operator (if not explicitly required),

7About the regularity of the eigenfunctions see respectively [13] for DDEs and [11] for REs.
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but recovers the multipliers from a generalized eigenvalue problem. We note that we can follow
the same alternative as well by separating the right-hand sides of (9) and (10) with respect to
the variables Ψ and Z. More comments are given at the end of section 4.

3 An expected failure

To exemplify the approach described in section 2, let us consider the delay logistic
equation

y′(t) = ry(t)(1− y(t− 1)). (11)

To compute its periodic solutions we use DDE-BIFTOOL.8 Let LDB and mDB be, respec-
tively, the number of pieces and the degree of the piecewise polynomials approximating
such solutions. We consider the solutions for r ∈ {1.6, 2.3, 3} (Figure 1) computed with
LDB ∈ {20, 30, 40} and mDB ∈ {2, 4, 6}.

0 1 2 3

0

2

4

6

8
r = 1.6, ω ≈ 4.020

r = 2.3, ω ≈ 4.894

r = 3, ω ≈ 7.067

Figure 1. Periodic solutions (rescaled to period 1) of (11) computed by DDE-BIFTOOL
with LDB = 30 and mDB = 6.

In order to compute the relevant Floquet multipliers, we linearize (11) around a
generic solution ȳ, obtaining

y′(t) = r(1− ȳ(t− 1))y(t)− rȳ(t)y(t− 1),

and apply the method of [13], implemented as eigTMN in the codes9 accompanying
[14], varying M = N. We measure the error on both the trivial multiplier 1 and the
dominant nontrivial multiplier (µ ≈ 0.8972 for r = 1.6, µ ≈ 0.1831 · 10−2 for r = 2.3
and µ ≈ 0.8037 · 10−16 ± 0.1198 · 10−15i for r = 3).

Figure 2 shows eigTMN’s errors as functions of M = N varying LDB, mDB and r
individually while keeping the others constant; for reference, they depict also DDE-
BIFTOOL’s errors on the same multipliers. For the trivial multiplier (panels A–D) we
eventually observe a convergence with infinite order with a barrier comparable to DDE-
BIFTOOL’s errors. However, as r increases (panel D), an initial phase of exponential
rise appears, with errors exceeding 107 in the worst case of r = 3. This makes choosing

8For all computations with DDE-BIFTOOL we use version 3.2a.
9http://cdlab.uniud.it/software

8 / 23 17 February 2022

http://cdlab.uniud.it/software


Piecewise discretization of monodromy operators Breda, Liessi, Vermiglio
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r = 1.6, mDB = 4

LDB = 20

LDB = 30

LDB = 40

20 30 100

10−10

10−8

10−6

M = N

100 101 102
10−15

10−7

101

M = N

r = 1.6, LDB = 30

mDB = 2

mDB = 4

mDB = 6

100 101 102
10−16

10−4

108

M = N

LDB = 30, mDB = 6

r = 1.6

r = 2.3

r = 3

A B

C D

100 101 102
10−11

10−5

101

M = N

r = 1.6, mDB = 4

LDB = 20

LDB = 30

LDB = 40

20 30 100

10−10

10−8

10−6

M = N

100 101 102
10−15

10−7

101

M = N

r = 1.6, LDB = 30

mDB = 2

mDB = 4

mDB = 6

100 101 102
10−16

10−8

100

M = N

LDB = 30, mDB = 6

r = 1.6

r = 2.3

r = 3

E F

G H

Figure 2. Absolute errors of eigTMN, varying M = N, on the trivial (A–D) and
dominant nontrivial (E–H) multipliers of (11) linearized around the solutions computed
by DDE-BIFTOOL. The gray horizontal lines show DDE-BIFTOOL’s errors on the same
multipliers. The reference values for the nontrivial multipliers are computed by DDE-
BIFTOOL with LDB = 60 and mDB = 10. eigTMN’s errors eventually decay with infinite
order with barriers comparable to DDE-BIFTOOL’s errors, except for the nontrivial
multiplier with r = 3 (H), which seems to need even higher M = N. For the trivial
multiplier, as r increases (D), the errors initially rise exponentially (exceeding 107 for
r = 3), complicating the choice of M = N.
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an appropriate value for M = N difficult. As for the nontrivial multiplier (panels E–H),
for r = 1.3 and r = 2.6 the convergence is similar, albeit lacking the initial exponential
phase in the latter case, while for r = 3 eigTMN fails to reach DDE-BIFTOOL’s accuracy
with reasonable values of M = N. In all cases we observe also that the influence of LDB

on the error barrier is very limited, while the influence of mDB and r is more significant.
For comparison, note that in this experiment eigTMN’s grid has up to 201 nodes, while
DDE-BIFTOOL’s has 181.

Evidently, eigTMN has difficulties in dealing with this kind of problems. We observe
that as r increases the solution (Figure 1) transforms into a spike followed by a plateau,
with larger and more sudden variations of the derivatives. In such a case, if the
solution’s mesh is adapted, it progressively moves away from uniform. As an example,
Figure 3 shows the partitions of the period interval for the solutions of Figure 1. The

0 ωr = 1.6, ρ ≈ 1.57

0 ωr = 2.3, ρ ≈ 5.12

0 ωr = 3, ρ ≈ 8.45

Figure 3. Partitions of [0, ω] for the periodic solutions of Figure 1, showing mesh adap-
tation as performed by DDE-BIFTOOL. The vertical lines show the uniform partition.

remedy we propose in section 4 is to discretize the evolution operators on a collocation
grid which includes the endpoints of the partition of the period interval on which the
periodic solution has been computed. In the following we will talk about more or less
adapted solutions and we will refer to the ratio ρ introduced at the end of section 2.2 to
indicate how far from uniform their meshes have been adapted.

4 A reasonable piecewise remedy

Let the partition of [0, ω] (as opposed to [0, 1] in section 2.2) for the given numerical
ω-periodic solution be defined by 0 = t0 < t1 < · · · < tL = ω. As already noted in
section 2.2, as collocation nodes the zeros of some family of orthogonal polynomials are
usually chosen. In our approach we collocate the operator also at the interval endpoints,
which may need to be added to the collocation nodes. Let them be 0 = c0 < · · · <
cM = 1 in the interval [0, 1]; for each i ∈ {0, . . . , L− 1} and j ∈ {0, . . . , M} we define
hi := ti+1 − ti and ti,j := ti + hicj. In our case, the collocation nodes typically are of
Chebyshev type.

The interval [−τ, 0] too is partitioned according to the solution’s mesh. Assume
that ω ≥ τ. The collocation nodes in [−τ, 0] are defined by subtracting ω to the nodes
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in [0, ω]. The leftmost resulting piece of [−τ, 0], however, requires special attention,
since −τ may not coincide with one of the partition points. Among the possible ways
of treating it, the default choice of our implementation is to use c0, . . . , cM to define new
collocation nodes in the leftmost piece of [−τ, 0], independently of the corresponding
nodes in [0, ω]. An example of the described collocation grid is depicted in Figure 4.
If instead ω < τ, the interval [−τ, 0] is partitioned in subintervals of length ω (with
the leftmost possibly being smaller), each in turn partitioned according to the mesh
of the numerical solution as described above. For more details on the discretization,
as mentioned in section 2.3, we refer the reader to [9, 13] and, in particular for the
piecewise approach, to [12].

−ω 0 ω−τ

Figure 4. Example collocation grid with ω > τ, L = 4 and M = 3. Ticks mark ti and
ti −ω, the cross marks −τ, dots mark the grid points.

The discretization of the function spaces and of the operator T is now almost
identical to the one in section 2.3, the only, but fundamental, difference being that
the restriction, prolongation and Lagrange interpolation operators (now RL,M, PL,M

and LL,M, and R+
L,M, P+

L,M and L+
L,M), act in a piecewise way. We can thus obtain the

discretization Tpw
L,M of T as

Tpw
L,MΨ := RL,MV(PL,MΨ, P+

L,MZ∗)ω,

Z = R+
L,MFsV(PL,MΨ, P+

L,MZ).

Recalling Theorem 2.1, we note that the generalized eigenvalue problem possibly
deriving from the piecewise version of the method results in sparse matrices, whose
structure may be exploited for computational efficiency.

We implemented the method in the code eigTMNpw.10 In the following we always use
the default options; see eigTMNpw’s help for more details. To avoid confusion with the
discretization parameters of DDE-BIFTOOL (LDB and mDB) and eigTMN (M = N), the
number of pieces and the degree of the piecewise polynomials used in the collocation of
the monodromy operator, respectively L and M in this section, will be denoted as Lpw

and Mpw. Moreover, where Lpw is chosen to be the same as that of the given numerical
periodic solution, it is intended that the solution’s mesh in [0, ω] is used for eigTMNpw
as well, unless otherwise indicated.

10http://cdlab.uniud.it/software; for historical reasons we just added the suffix pw to the original
name eigTMN.
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4.1 About the convergence

The differences in the formulation of the piecewise approach with respect to the
non-piecewise approach of [9, 11, 13, 14, 23] are essentially limited to the restriction,
prolongation and interpolation operators. Most of the proofs of convergence in the
cited works only depend on the essential properties (8) for the operators on [0, ω] (R+

L,M,
P+

L,M and L+
L,M), which are preserved in this new approach. We thus expect the relevant

convergence analysis to hold unchanged but for the underlying interpolation error that
is at the basis of the convergence of the approximated multipliers as explained at the
end of section 2.3 before Theorem 2.1. Indeed, as the interpolation process relies now
on piecewise polynomials, we expect a convergence of finite order (proportional to the
degree M of the piecewise polynomials) when using the FEM and spectral accuracy
[29] when using the SEM. Of course, this holds true only if the endpoints of the adapted
partition of the period interval of the computed periodic solution are included in the
collocation grid, so that interpolating polynomials are correctly used over pieces where
the function to be interpolated is smooth. Otherwise, as anticipated in section 2.3 and
as shown experimentally in section 3, the overall convergence may be deteriorated.

This is illustrated by the next example, concerning the equation

x′(t) = (1− |mod(t, 2)− 1|)x(t− 1), (12)

whose coefficient is piecewise linear, has period 2 and is not differentiable at integer
values of t. Figure 5 shows the errors on the dominant multiplier (µ ≈ 2.0133) when
the partition of [0, 2] does (Lpw = 2) or does not (Lpw = 1) contain 1: indeed, in the
former case the order of convergence is infinite, while in the latter it is finite.

1 10 60
10−16

10−8

100

Mpw

Lpw = 1

Lpw = 2

Figure 5. Absolute errors of eigTMNpw on the dominant multiplier of (12), whose
coefficient is not differentiable at 1. The reference value is computed by eigTMNpw with
Lpw = 2 and Mpw = 120. When the mesh includes 1 (Lpw = 2) the convergence order
is infinite, otherwise (Lpw = 1) it is finite (precisely 2).

Returning now to the example of section 3, in particular to panels D and H of Fig-
ure 2, we observe that the errors of eigTMNpw using the solution’s mesh are comparable
to those of DDE-BIFTOOL (Table 1). This is particularly notable for the nontrivial
multiplier with r = 3, whose convergence in the non-piecewise case is very slow. In
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trivial multiplier dominant nontrivial multiplier

r DDE-BIFTOOL eigTMNpw DDE-BIFTOOL eigTMNpw

1.6 7.270× 10−12 9.353× 10−13 7.889× 10−13 8.943× 10−12

2.3 4.463× 10−10 2.444× 10−10 1.243× 10−13 6.597× 10−12

3 1.577× 10−4 3.443× 10−4 5.082× 10−16 3.960× 10−15

Table 1. Absolute errors of eigTMNpw and DDE-BIFTOOL on the trivial and domi-
nant nontrivial multipliers of (11) linearized around the solutions computed by DDE-
BIFTOOL with LDB = 30 and mDB = 6. eigTMNpw uses Lpw = LDB and Mpw = mDB.
The reference values for the nontrivial multipliers are computed by DDE-BIFTOOL with
LDB = 60 and mDB = 10. The errors are comparable in magnitude.

all other cases we also note that to reach a comparable accuracy DDE-BIFTOOL and
eigTMNpw use 181 collocation nodes, while eigTMN needs less than 120. In fact, we show
in section 5.2 that the piecewise approach becomes computationally convenient for
solutions with higher values of ρ.

Finally, to close the discussion on convergence, the following observation should
be taken into due consideration, also in view of tackling the issue of possible large
oscillating eigenfunctions reported in [30]. If including the endpoints of the adapted
mesh of the computed periodic solution into the collocation grid is necessary to preserve
the desired convergence order, still the error constants relevant to each piece depend on
the derivatives of the interpolated function on that piece. When this function is smooth
but large derivatives appear, the error constants increase and a denser discretization
should be considered. However, for what explained above, the denser grid should
always be a refinement of the adapted mesh from the periodic solution. Numerical
evidence of this fact will be given in section 5.3.

5 Experimental validation

The experiments in section 5.1 show the convergence properties of eigTMNpw by applying
it to an equation with an explicitly known periodic solution, which is thus only affected
by rounding errors. Section 5.2 presents the application to an extreme case of strongly
adapted solution, highlighting the advantage of the piecewise approach. The case
of eigenfunctions with oscillations unrelated to the profile of the periodic solution,
anticipated in the introduction, is treated in section 5.3. Finally, in section 5.4 a
coupled equation is considered, confirming the versatility of the proposed piecewise
pseudospectral approach also in this piecewise reformulation.
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5.1 Testing the convergence

In order to show the convergence properties of eigTMNpw, we consider the RE with
quadratic nonlinearity

x(t) =
γ

2

∫ −1

−3
x(t + θ)(1− x(t + θ))dθ, (13)

which has a branch of periodic solutions with the explicit expression

x̄(t) =
1
2
+

π

4γ
+

√
1
2
− 1

γ
− π

2γ2

(
1 +

π

4

)
sin
(π

2
t
)

, (14)

as proved in [8]. To study the stability of x̄, we consider the linear RE11

x(t) =
γ

2

∫ −1

−3
(1− 2x̄(t + θ))x(t + θ)dθ. (15)

We use eigTMNpw to compute the multipliers relevant to (14) for γ = 4 varying Lpw

(here defining a uniform partition of [0, ω]) and Mpw.
Figure 6 show the errors on the trivial multiplier (left panels) and on the dominant

nontrivial multiplier (µ ≈ −0.1355, right panels), confirming our expectations (see
section 4.1): the error of the SEM (top panels) vanishes with infinite order, while the
error of the FEM (bottom panels) vanishes with finite order (sometimes higher than the
theoretical bound), increasing with Mpw.

5.2 Strongly adapted solutions

We consider the DDE
v′(t) = v(t)− v(t)3

3
− w(t) + η(v(t− τ)− v0),

w′(t) = r(v(t) + a− bw(t)),

v0 a real root of v− v3

3
− v + a

b
,

(16)

proposed by Plant in [25] to model recurrent neural feedback; its periodic solutions
were studied in [15]. Note that v0 is unique if a 6= 0 and 0 < b ≤ 1. Figure 7 shows a
periodic solution of (16) computed by DDE-BIFTOOL on a rather extremely adapted
mesh (Figure 8, ρ ≈ 55.91): indeed it was used in [20] to demonstrate the collocation
method for computing periodic solutions with adaptive mesh selection which became
part of DDE-BIFTOOL’s foundations.

11Equation (15) is not actually the linearization of (13) in L1, although it can be used to study the
stability of its equilibria. See [16, section 3.5] for details; the extension of the results therein to periodic
solutions is an open problem.
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1 10
10−16

10−8

100

Mpw
1 10

10−16

10−8

100

Mpw

Lpw = 20

Lpw = 30

Lpw = 40

1 10 40
10−16

10−8

100

Lpw
1 10 40

10−16

10−8

100

Lpw

Mpw = 3

Mpw = 4

Mpw = 5

Mpw = 6

Figure 6. Absolute errors of eigTMNpw on the trivial (left) and on the dominant nontrivial
(right) multipliers of (15) with γ = 4 in (14). The reference value for the nontrivial
multiplier is computed with Lpw = 40 and Mpw = 15. The convergence order is infinite
for the SEM (top) and finite for the FEM (bottom, precisely 4, 6, 6 and 8 on the left and
4, 6, 6 and 10 on the right).

0 ω 2ω 3ω
−4

−2

0

2
v
w

Figure 7. Periodic solution of (16) with a = 0.7, b = 0.8, η = −2, r = 0.08 and τ = 25
(ω ≈ 50.7326, v0 ≈ −1.1994), computed by DDE-BIFTOOL with LDB = 30 and mDB = 5.

0 ωρ ≈ 55.91

Figure 8. Partition of [0, ω] for the solution of Figure 7. The vertical lines show the
uniform partition.
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We linearize (16) around a generic solution (v̄, w̄), obtaining{
v′(t) = (1− v̄(t)2)v(t)− w(t) + ηv(t− τ),

w′(t) = rv(t)− rbw(t).

We compute the solution with DDE-BIFTOOL for different values of LDB and mDB. For
each solution we compute the relevant Floquet multipliers with eigTMN for increasing
M = N and with eigTMNpw with Lpw = LDB and Mpw = mDB.

Figure 9 shows the corresponding errors on the trivial multiplier (top panel) and on
the dominant nontrivial multiplier (µ ≈ 0.1444± 0.0382i, bottom panel) compared with
DDE-BIFTOOL’s errors. For the trivial multiplier, even with M = N = 300 the errors
of eigTMN barely reach the same order of magnitude as DDE-BIFTOOL’s worst error;
for the nontrivial multiplier, the errors alternate between largely different magnitudes,
making it difficult to choose an appropriate M = N. On the other hand, the errors of
eigTMNpw are comparable to the ones of DDE-BIFTOOL, or even better in some cases.
The piecewise approach uses 151 nodes and the non-piecewise approach uses up to 301
nodes, which suggests that in this case the piecewise approach is also computationally
more convenient.

100 101 102
10−7

10−2

103

M = N

100 101 102
10−6

10−3

100

M = N

LDB = 20,
mDB = 3

LDB = 30,
mDB = 4

LDB = 30,
mDB = 5

eigTMN

eigTMNpw

DDE-
BIFTOOL

Figure 9. Absolute errors of eigTMN for varying M = N on the trivial (top) and
dominant nontrivial (bottom) multipliers of (16) linearized around the solutions com-
puted by DDE-BIFTOOL (parameters as in Figure 7), compared to the errors on the
same multipliers of eigTMNpw with Lpw = LDB and Mpw = mDB and, for reference, of
DDE-BIFTOOL (horizontal lines). The reference value for the nontrivial multiplier is
computed by DDE-BIFTOOL with LDB = 60 and mDB = 10. While eigTMNpw’s errors
are comparable with those of DDE-BIFTOOL, eigTMN’s ones either require very large
M = N to reach the desired magnitude (trivial multiplier) or exhibit an alternating
behavior which makes choosing an appropriate M = N difficult (nontrivial multiplier).
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In section 4.1 we anticipated that the computational convenience of the piecewise
approach depends on the value of ρ. The next experiment shows that this is indeed the
case: we compute several solutions of (16) for varying τ and compare the errors on the
multipliers as computed by DDE-BIFTOOL and eigTMNpw with Lpw = LDB = 30 and
Mpw = mDB = 5, i.e., using 151 nodes, and by eigTMN with M = N ∈ {140, . . . , 160}
(we consider the mean error in this case). We first observe in Figure 10 that ρ is almost
monotonically increasing as τ varies from 1 to 25; we can thus use τ as a proxy for ρ.
In Figure 11 we observe that as τ increases DDE-BIFTOOL and eigTMNpw are equally
accurate, while eigTMN progressively loses accuracy.

1 10 20 25
0

20

40

60

τ

ρ

Figure 10. Value of the ratio ρ for the solutions of (16) computed by DDE-BIFTOOL
with LDB = 30 and mDB = 5 for varying τ (other parameters as in Figure 7).

1 10 20 25
10−9

10−5

10−1

τ 1 10 20 25
10−9

10−5

10−1

τ

DDE-BIFTOOL eigTMN eigTMNpw

Figure 11. Absolute errors of eigTMN and eigTMNpw, compared to those of DDE-
BIFTOOL, on the trivial (left) and dominant nontrivial (right) multipliers of (16) lin-
earized around the solutions computed by DDE-BIFTOOL with LDB = 30, mDB = 5
and varying τ (other parameters as in Figure 7). In all cases Lpw = LDB and
Mpw = mDB are used for eigTMNpw, while the errors of eigTMN are the mean error
for M = N ∈ {140, . . . , 160}. The reference value for the nontrivial multiplier is com-
puted by DDE-BIFTOOL with LDB = 60 and mDB = 10. eigTMNpw’s errors behave
similarly to those of DDE-BIFTOOL, while eigTMN’s ones gradually increase.
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5.3 Nontrivial multipliers with oscillating eigenfunctions

As anticipated in the introduction, an eigenfunction may present large oscillations
unrelated to the profile of the periodic solution [30]. This necessarily requires the use
of a denser discretization grid as explained in section 4.1. A key aspect is that the
denser grid needs to be a refinement of the piecewise mesh of the numerical periodic
solution, thus including the endpoints of pieces, since at those points the coefficients of
the linearized equation are not smooth.

To exemplify this fact, we turn our attention again to (16) and consider a nontrivial
multiplier (µ ≈ 0.0612± 0.0594i) whose eigenfunction oscillates where the periodic
solution and the eigenfunction of the trivial multiplier are almost constant and the
adapted mesh has few points (see Figure 12 and recall Figure 8). Figure 13 compares
the errors of DDE-BIFTOOL with those of eigTMNpw partitioning the period interval
in three ways: using the solution’s mesh, a refinement of the latter, and a dense but
uniform mesh.12 For the nontrivial multiplier (right panel), both denser partitions help
in achieving the convergence of the multiplier, with the error barrier of the refined one
being slightly better than that of the uniform one. For the trivial multiplier (left panel),
on the other hand, the uniform partition introduces an error barrier larger than the one
for the nontrivial multiplier: this is expected, since the uniform partition is actually
sparser than the adapted one where the periodic solution and the eigenfunction of the
trivial multiplier have large oscillations.

0 ω

−0.1

−0.05

0

0.05

µ = 1

µ ≈ 0.0612 ± 0.0594i

Figure 12. Eigenfunctions relevant to the multiplier µ of (16) linearized around the
solution computed by DDE-BIFTOOL with LDB = 240 and mDB = 10 (parameters as in
Figure 7).

5.4 Coupled equations

The last experiment shows that the pseudospectral approach in general, and the method
we described in particular, are very versatile in terms of equation classes. Indeed, in the
previous sections we considered an RE and a DDE, while in this section we consider a
coupled equation.

12In the latter two cases the partitions are such that no piece is longer than five times the length of the
longest piece of the solution’s mesh.
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4 10 60
10−10

10−5

100

LDB
4 10 60

10−10

10−5

100

LDB

DDE-BIFTOOL eigTMNpw, refined mesh

eigTMNpw, solution’s mesh eigTMNpw, uniform mesh

Figure 13. Absolute errors on the trivial multiplier (left) and on the nontrivial multiplier
µ ≈ 0.0612± 0.0594i (right) of (16) linearized around the solutions computed by DDE-
BIFTOOL with mDB = 5 and varying LDB (parameters as in Figure 7). For eigTMNpw
[0, ω] is partitioned using the solution’s mesh, a refinement of the latter (resulting in
129 ≤ Lpw ≤ 153), and a uniform mesh with Lpw = 153 (Mpw = mDB in all cases). DDE-
BIFTOOL uses the solution’s mesh. The reference value for the nontrivial multiplier is
computed by DDE-BIFTOOL with LDB = 240 and mDB = 10. If the eigenfunction has
oscillations unrelated to the solution’s mesh (right), using the latter seems to prevent
the convergence, while a denser partition allows to reach fairly small error barriers,
smaller if it is actually a refinement. For the trivial multiplier (left), the solution’s mesh
is well adapted also to the eigenfunction: the error vanishes similarly with both the
original and the finer partition, while with the uniform one it reaches a barrier larger
than in the other case.

In order to use an equation with a strongly adapted solution, we derive a coupled
equation from (16) by integrating the equation for w, resulting in


v′(t) = v(t)− v(t)3

3
− w(t) + η(v(t− τ)− v0),

w(t) = w(t− τ) +
∫ t

t−τ
r(v(s) + a− bw(s))ds,

(17)

where v0 is the same as in (16).

Note that, due to the presence in the RE for w of the evaluation of w at a specific
point, (17) does not belong to the family described by (3) since the state space for w
cannot be L1. In fact (17) is an example of neutral RE. The method described in this
work has been implemented in eigTMNpw with an eye to dealing also with neutral REs,
but there is currently no proof of convergence for this case: the numerical treatment of
neutral REs is the subject of ongoing research. For more details on neutral REs and the
relevant perturbation theory see the recent work [18].
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Linearizing (17) around a generic solution (v̄, w̄), we obtain


v′(t) = (1− v̄(t)2)v(t)− w(t) + ηv(t− τ),

w(t) = w(t− τ) + r
∫ t

t−τ
v(s)ds− rb

∫ t

t−τ
w(s)ds.

We consider the same periodic solution computed with DDE-BIFTOOL in section 5.2
with LDB = 30 and mDB = 5. The relevant Floquet multipliers are computed using
eigTMNpw first with Lpw = 1 for increasing Mpw to show the failure of the non-piecewise
approach, and then with Lpw = LDB and Mpw = mDB.

Figure 14 shows the corresponding errors on the trivial and dominant nontrivial
multipliers compared with DDE-BIFTOOL’s errors. We observe that the errors of the
non-piecewise approach suggest that the multipliers may begin to converge for high
values of Mpw, with the error being greater than 10−2 for all values of Mpw ≤ 200
(except one). On the other hand, the error of the piecewise approach is smaller than
DDE-BIFTOOL’s error (in this case 151 nodes are used).

100 101 102
10−7

10−4

10−1

Mpw

eigTMNpw, Lpw = 1

eigTMNpw, Lpw = LDB

DDE-BIFTOOL

trivial multiplier

dominant nontrivial
multiplier

Figure 14. Absolute errors of eigTMNpw on the trivial and dominant nontrivial multi-
pliers of (17) linearized around the solution of (16) computed by DDE-BIFTOOL with
LDB = 30 and mDB = 5 (parameters as in Figure 7). eigTMNpw is used in a nonpiecewise
fashion for varying Mpw and in a piecewise fashion with Lpw = LDB and Mpw = mDB.
The reference value for the nontrivial multiplier is computed by DDE-BIFTOOL for
(16) with LDB = 60 and mDB = 10. eigTMNpw’s errors are compared to those of DDE-
BIFTOOL for (16): in the piecewise case the former are even more accurate than the
latter.

Remark 5.1. In [24] Luzyanina and Engelborghs compute the periodic solutions and the
corresponding multipliers with DDE-BIFTOOL and experimentally study the convergence of
the FEM. In some of their examples the trivial multiplier converges with infinite order, while
the order is finite for the nontrivial ones. We note here that in our experience with eigTMN and
eigTMNpw we never observed the superconvergence of the trivial multiplier.
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