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Koopman and Perron-Frobenius operators for dynamical systems have been getting pop-

ular in a number of fields in science these days. Properties of the Koopman operator

essentially depend on the choice of function spaces where it acts. Particularly the case of

reproducing kernel Hilbert spaces (RKHSs) draws more and more attention in data science.

In this paper, we give a general framework for Koopman and Perron-Frobenius operators

on reproducing kernel Banach spaces (RKBSs). More precisely, we extend basic known

properties of these operators from RKHSs to RKBSs and state new results, including sym-

metry and sparsity concepts, on these operators on RKBS for discrete and continuous time

systems.
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I. INTRODUCTION

Koopman operators, as well as reproducing kernel Hilbert spaces, have been getting popular

in various fields in science these days. Both contribute widely to applications1–5 but provide also

theoretical insights to several fields4,6–8 and many others. Koopman operators and reproducing

kernel Hilbert space techniques aim at translating the corresponding problems into a functional

analytic setting and borrowing methods from there.

The Koopman (or composition) operator for a function f : X → X on a set X is defined by

T g := g ◦ f for functions g : X → C in a suitable function space. This lifting procedure results in

a linear operator and the main idea is to transfer properties of the dynamical system to properties

of the Koopman operator and vice versa.

The adjoint of the Koopman operator is called the Perron-Frobenius operator. The properties

of the dynamical system that can be observed via the Koopman or Perron-Frobenius operator de-

pend strongly on the choice of function space. In the study of topological properties of dynamical

systems, the Koopman operator on the space of continuous functions was extensively studied.1,9

For ergodic theory, the space L2(µ) of square integrable functions with respect to an invariant

measure µ appears naturally and the Koopman operator has proven to be a powerful tool to enable

the use operator theory.10 For instance, spectral theory lies at the core of forecasting via dynamic

mode decomposition. With regard to applications the space L2(µ) requires cautious treatment11

because it typically lacks the property of bounded (or even well defined) point evaluation, which

for applications causes sensitivity with respect to the measurement. An RKHS on the other hand

provides such a Hilbert space of functions with bounded point evaluations and additionally pro-

vides explicit access to the geometry via the kernel function. In machine learning these advantages

are already widely used and have shown strong applications12–14. Recently a different application

of Koopman theory to machine learning was found in speeding up the learning process15.

To connect Koopman theory and RKBS methods, we follow the path in this direction explored

for RKHS by16–27,67, treating several different problems. The advantage of working with an RKBS

or RKHS is that it provides continuous point evaluation, i.e. robustness with respect to measure-

ments. Secondly, it incorporates directly the underlying geometry of the RKBS leading to the

fact kernel DMD16 is the least-distance projection of the Perron-Frobenius operator on the space

operators on the kernel functions16. Thirdly, in some cases the RKBS appears naturally via spec-

tral decomposition of the Koopman operator67. This property flourishes when the RKBS can be
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chosen in such a way that its geometry has a desirable meaning for the dynamical system.

Our goal consists of providing a common framework for Koopman operators on reproducing

kernel Banach spaces (RKBS), including RKHS, with a special focus on boundedness (or at least

closedness) of these operators. As in the RKHS case a dual perspective via the Perron-Frobenius

operator brings advantages, in particular via its natural action on kernel functions in the RKBS.

In Section III we define the central objects: The Koopman and Perron-Frobenius operator and re-

producing kernel Banach spaces. In Section IV we introduce the Koopman and Perron-Frobenius

operators on RKBS and, on one hand, we list and extend known general results for these operators

resp. semigroups on RKHS to RKBS. On the other hand we give new results such as that under

mild assumptions on the RKBS the Perron-Frobenius operator is not closed (Theorem IV.8 5.),

but closeable whenever the Koopman operator is densely defined (under a reflexivity assumption

on the RKBS, Theorem IV.8 6.). This is followed by some examples of Koopman and Perron-

Frobenius operators on specific RKBS, including the fundamental case of linear systems, treat-

ment of the space of continuous functions as RKBS and an application to the transport equation

via Besov-spaces as underlying RKBS. In Section V we focus on continuous time systems. This

leads to one-parameter semigroups of Koopman respectively Perron-Frobenius operators. We in-

troduce their generators, present certain elements that belong to their domain and give a geometric

condition for continuous time dynamical systems under which the Perron-Frobenius semigroup is

uniformly bounded (hence so is the Koopman semigroup) and strongly continuous (Proposition

V.15). With a view to applications and computational aspects, we show in Section VI that symme-

try and sparsity of the dynamics can be preserved for our approach under corresponding properties

of the RKBS.

Our investigations indicate three fundamental obstacles; first, the notion of RKBS is very gen-

eral and, as a result, general results on Koopman and Perron-Frobenius operators are limited, sec-

ond, not always can we let go of the regularity that comes with reproducing kernel Hilbert spaces

such as reflexivity and explicit expression of the geometry in terms of the kernel and third, the ker-

nel should be adapted to the dynamics in order to assure that the Koopman and Perron-Frobenius

operators can flower out their potential.
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II. NOTATIONS

The set of natural numbers is denoted by N. For a complex number a ∈ C we denote by a

its complex conjugate and by R⌉(a) its real part. R+ denotes the non-negative real line [0,∞).

By B1(0) we denote the unit disc in C. The dual of a topological vector space Y is denoted by

Y ∗. The domain of an operator T is denoted by D(T ). By T ⊂ S for operators T,S we mean that

D(T )⊂D(S) and T x= Sx for all x∈D(T ). The adjoint of an operator T is denoted by T ∗ while the

adjoint operator with respect to a given bilinear form is denoted by T ′. For a compact topological

space X , the space of continuous functions on a set X is denoted by C (X) and equipped with the

supremum norm. We identify the dual space of C (X) with the space of bounded Borel measures,

denoted by M(X). The dirac delta at a point x ∈ X is denoted by δx ∈M(X). For a measure µ on

X with corresponding sigma algebra Σ and for 1≤ p ≤ ∞ we denote by Lp(X) = Lp(X ,Σ,µ) the

space of p times Lebesgue integrable functions.

III. KOOPMAN OPERATORS AND REPRODUCING KERNEL BANACH SPACES

In this section, we provide the definition of Koopman and Perron-Frobenius operators as well

as the definition of reproducing kernel Banach spaces and some of their properties that we need in

the following.

A. Review of Koopman and Perron-Frobenius operators

We start with a review of well known results on Koopman operators and point out some prop-

erties of the Koopman operator that motivate the use of RKBS for Koopman operators but also

demonstrate that choosing a function space for the Koopman operator is a delicate task. This

problem is to be expected since using the Koopman operator just means looking at the dynamical

system from another perspective – so the complexity does not change but the idea is to enable

different tools from functional analysis.

Definition III.1. Let X be a set and f : X → X. Let Y be a (normed) function space on X. The

Koopman operator U f : D(U f )→ Y is given by

U f g := g◦ f (1)

4
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where its domain D(U f ) ⊂ Y is given by D(U f ) = {g ∈ Y : g ◦ f ∈ Y}. If U f is densely defined

its adjoint operator K f : D(K f )→ Y ∗ with domain D(K f ) ⊂ Y ∗ is called the Perron-Frobenius

operator.

Remark III.2. In case the underlying function space is Lp(X) for some p ≥ 1 with respect to

a given measure µ on X then, for the Koopman operator to be well defined, f has to satisfy

µ( f−1(N)) = 0 whenever µ(N) = 0.

Remark III.3. The definition of Koopman and Perron-Frobenius operators for continuous time

systems is analogous, which we treat in Section V.

The Koopman operator is always linear and an interplay between the dynamics and the cho-

sen function space can allow detailed descriptions of the Koopman operator as well as the

dynamics.9,10 For applications of the Koopman operator for problems from engineering the paper1

was a seminal work.

Example III.4. We will mention two classical examples of function spaces the Koopman operator

acts on Y = C (X) and Y = L2(µ).

1. Y = C (X) for X compact: If f is continuous then D(U f ) = C (X) and hence D(K f ) =

C (X)∗ = M(X) where M(X) denotes the space of signed Borel measures on X . It’s adjoint

operator Pf : M(X)→M(X), the Perron-Frobenius operator, satisfies
∫

X

g◦ f dµ =

∫

X

g dPf µ (2)

for any g ∈ C (X) and µ ∈M(X). The Perron-Frobenius operator can be given more explic-

itly by the pushforward Pf = f#, i.e.

Pf µ(A) = µ( f−1(A)) (3)

for any µ ∈M(X) and Borel set A ⊂ X . The Koopman operator U f is a contractive linear

algebra homomorphisms, i.e. U f is a linear operator with max
x∈X
|U f g(x)| ≤ max

x∈X
|g(x)| and

U f (g1 · g2) =U f g1 ·U f g2 for all g1,g2 ∈ C (X). Apart from these intriguing properties, the

Koopman operator U f on C (X) has some disadvantages. Among these are that as long as

the image of f contains infinitely many points the operator U f is not compact, secondly,

whenever there is no n ∈ N with f n(X) = f n+1(X) then σ(U f ) = B1(0) (see Theorem 2.7

respectively Theorem 3.0.2 in the literature9,28) and if there is a non-periodic point x ∈ X

then U f is not a spectral operator29.

5
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2. For Y = L2(X ,B,µ) where B denotes the Borel sigma algebra on X , f is assumed to be

Borel measureable and essentially invertible and µ is an invariant measure, i.e. K f µ = µ

for K f as in (3): Then U f is unitary (in particular not compact if X is not finite) but a

spectral operator and K f = Tf−1 in this case, where Tf−1 is the composition operator given

by Tf−1g = g◦ f−1.

B. Reproducing kernel Banach spaces

The concept follows the idea of reproducing kernel Hilbert spaces but aims to extend this

concept to (pairs of) Banach spaces of functions where instead of an inner product we have a

bilinear form on the (pair of) Banach spaces.30 That means keeping the property of continuous

point evaluation but at the same time allowing different geometries than these that arise from

an inner product. Natural examples are any finite dimensional function spaces equipped with a

bilinear form and any norm – if this norm is not induced by a Hilbert space the corresponding

space is not an RKHS but an RKBS.

Definition III.5 (Reproducing kernel Banach space30). Let X be a set and B be a Banach space

of functions on X (where the addition and multiplication with a scalar are defined pointwise). We

call B an RKBS if the point evaluation B ∋ g 7→ g(x) is continuous for all x ∈ X.

Similar to RKHS we want to relate the RKBS to kernels because they allow a more explicit

description of the metric.

Definition III.6 (Kernels for RKBS30). A quadrupel (B,B′,〈·, ·〉,k) is called an RKBS with ker-

nel k if B is an RKBS on a set X, B′ a Banach space of functions on a set Y , 〈·, ·〉 : B×B′→ C

a continuous bilinear form and k : X×Y → C is such that for all x ∈ X we have k(x, ·) ∈B′ and

g(x) = 〈g,k(x, ·)〉 for all g ∈B. (4)

If further B′ is also an RKBS and for all y ∈ Y we have k(·,y) ∈B and

h(y) = 〈k(·,y),h〉 for all h ∈B
′ (5)

then we call B′ an adjoint RKBS. If Y = X we call (B,B′,〈·, ·〉,k) an RKBS on X with kernel k.

Remark III.7. If (B,B′,〈·, ·〉,k) is an RKBS with B = B′, where B′ is a Hilbert space with

scalar product 〈·, ·〉, then B is an RKHS with kernel k. Vice versa an RKHS H with scalar

product 〈·, ·〉 with kernel k induces naturally the RKBS (H ,H ,〈·, ·〉,k).

6



Koopman and Perron-Frobenius Operators on reproducing kernel Banach spaces

Remark III.8. The continuous bilinear form 〈·, ·〉 induces a map

φ : B
′→B

∗,h 7→ 〈·,h〉 (6)

where B∗ denotes the dual space of B. The map φ is continuous due to the continuity of the

bilinear form and represents how far the bilinear form differs from the natural pairing of B and its

dual B∗. In the case of RKHS the map φ is exactly the Fréchet-Riesz isomorphism between and

H and its dual.

Next, we define the pullback kernel which allows to define an RKBS on a set Y based on an

RKBS on a set X and an embedding ψ : Y → X . As the name suggests, we pull back the RKBS

structure via ψ .

Lemma III.9 (Pullback kernel). Let (B,B′,〈·, ·〉,k) be an RKBS on X with kernel k and φ : Y →X

be a bijective map. Then (Bφ ,B
′
φ ,〈·, ·〉φ ,kφ ) is an RKBS on Y with kernel for

Bφ := {g◦φ : g ∈B} with norm ‖h‖Bφ
:= ‖h◦φ−1‖B (7)

and

B
′
φ := {g◦φ : g ∈B

′} with norm ‖h‖B′φ := ‖h◦φ−1‖B′, (8)

with bilinear form

〈h,h′〉φ := 〈h◦φ−1,h′ ◦φ−1〉 (9)

and kernel

kφ : Y ×Y →K, kφ (y1,y2) := k(φ(y1),φ(y2)), (10)

where K denotes R or C. Further the composition operator Tφ with Tφ g := g ◦ φ defines iso-

metric isomorphisms between B and Bφ and B′ and B′φ and preservers the bilinear forms, i.e.

〈Tφ g,Tφ h〉φ = 〈g,h〉.

Proof. By definition of Bφ and B′φ it follows that Tφ induces isometric isomorphisms from B to

Bφ and from B′ to B′φ . Hence Bφ and B′φ are Banach spaces (of functions on Y ). Similarly,

we see that 〈Tφ g,Tφ h〉φ = 〈g,h〉, and in particular 〈·, ·〉φ is continuous on Bφ ×B′φ . It remains to

check the reproducing property, this also follows from the (pull back) definition, namely we have

for all h = g◦φ ∈Bφ and y ∈ Y

h(y) = g(φ(y)) = 〈g,k(φ(y), ·)〉= 〈Tφ g,Tφ k(φ(y), ·)〉φ
= 〈h,kφ (y, ·)〉.

7
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IV. KOOPMAN AND PERRON-FROBENIUS OPERATORS ON RKBS; DISCRETE

TIME SYSTEMS

In this section we define the Koopman and Perron-Frobenius operator on RKBS (B,B′,〈·, ·〉,k)
on X and (discrete time) dynamics f : X → X . We state general properties of these operators

including fundamental properties concerning their functorial nature and address continuity by

investigating closedness and boundedness of these operators.

We begin this section by motivating how the Perron-Frobenius operator acts on an RKBS. This

is in analogy to the case when the Koopman operator is considered on the space of continuous

functions on X , i.e. the Perron-Frobenius operator acts on Borel measures. Similar to RKBS,

the space C (X) enjoys continuous point evaluation – which are given by the action of the dirac

measures δx for x ∈ X . The map x 7→ δx ∈ M(X) provides an injective embedding of X into the

space of regular Borel measures on X , analogous to the map x 7→ k(x, ·), and both elements δx and

k(x, ·) represent the point evaluation g 7→ g(x). The Perron-Frobenius operator on M(X) acts on

measures by (3), in particular it maps δx to δ f (x). Hence it seems natural for the Perron-Frobenius

operator on RKBS to send k(x, ·) to k( f (x), ·). And this is exactly what it does.18,31

Remark IV.1. A fundamental difference between the point evaluations in C (X) and a reproducing

kernel Hilbert space is that the evaluation functionals δx on C (X) are extremal points of the unit

ball in the dual space C (X)∗. This geometric characterization of the point evaluations does not

have to be true in RKBSs.

A. Definitions of the Koopman and Perron-Frobenius operator

Before we state the technical requirements for defining the Koopman and Perron-Frobenius

operator we want to mention the following duality in defining these two operators: The functional

description U f g := g ◦ f can be stated easily but it can be difficult to verify for which g in the

function space B it holds that U f g is still an element of B. On the other hand we will see that the

Perron-Frobenius operator K f can be naturally defined on the dense subset Span{k(x, ·) : x ∈ X}
using K f k(x, ·) := k( f (x), ·); but at the same time a functional expression for K f h for an arbitrary

element h ∈B′ is not obvious. In Theorem IV.8 we will see that this asymmetry in the behaviour

of the Koopman and Perron-Frobenius operators relates to the closablility of the Perron-Frobenius

operator.

8
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As mentioned, we want to define the linear operator K f via K f k(x, ·) := k( f (x), ·). To guarantee

that the map k(x, ·) 7→ k( f (x), ·) is well defined, it is useful to assume that k(x1, ·), . . . ,k(xn, ·) are

linearly independent for any n ∈ N and any choice of pairwise distinct point x1, . . . ,xn ∈ X .

Assumption 1. We assume that the set {k(x, ·) : x ∈ X} ⊂B′ is linearly independent.

Remark IV.2. For RKHS the {k(x, ·) : x ∈ X} is linearly independent if and only if k is a strictly

positive kernel, that is, the kernel k satisfies for all n∈N, (a1, . . . ,an)∈Cn \{0}, (x1, . . . ,xn) ∈ Xn

n

∑
i, j=1

aia jk(xi,x j)> 0.

Remark IV.3. Most of the following concepts concerning the Koopman and Perron-Frobenius op-

erator on RKBS follow well understood machinery for Hilbert spaces, such as RKHS. Sometimes

the necessary technical parts risk hiding the underlying idea even though they are in most of the

cases motivated by their analog parts for Hilbert spaces, such as the adjoint operator (with respect

to a bilinear form), the notion of density from (13) or the embedding φ of B′ into B∗ from (6).

Definition IV.4 (Koopman and Perron-Frobenius operator). Let (B,B′,〈·, ·〉,k) be an RKBS with

kernel such that Assumption 1 is satisfied. Let f : X → X be given dynamics. The Koopman

operator U f : B ⊃ D(U)→B is defined by

U f g := g◦ f for g ∈ D(U) := {h ∈B : h◦ f ∈B}. (11)

The Perron-Frobenius operator K f : Span{k(x, ·) : x ∈ X}→ Span{k(x, ·) : x ∈ X} ⊂B′ is defined

by

K f k(x, ·) := k( f (x), ·) for x ∈ X (12)

and extended linearly to Span{k(x, ·) : x ∈ X}.

Assumption 1 guarantees that extending (12) linearly to Span{k(x, ·) : x ∈ X} is well defined.

We will see that the Koopman operator is the adjoint operator of the Perron-Frobenius operator,

but therefore we need the Perron-Frobenius operator to be densely defined. Therefore we choose

the following notion of density30; a set W ⊂B respectively W ′ ⊂B′ is called dense with respect

to 〈·, ·〉 if

〈w,g〉= 0 for all w ∈W implies g = 0 (13)

and analog for W ′

〈v,w′〉= 0 for all w′ ∈W ′ implies v = 0. (14)

9
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In the case of W = B and W ′ = B′, the conditions (13) and (14) state that the dual form is non-

degenerate. Condition (13) is a reformulation of the map φ from (6) being injective and (14)

states that we can embed B into (B′)∗. Hence the conditions (13) and (14) describe foremost an

algebraic property of the bilinear form 〈·, ·〉 and therefore should not be mistaken with the notion

of density with respect to the topologies on B and B′.

Remark IV.5. The set Span{k(x, ·) : x ∈ X} is dense in B′ with respect to 〈·, ·〉 because for any

g ∈B with 0 = 〈g,h〉 for all h ∈B′, we have in particular g(x) = 〈g,k(x, ·)〉= 0, i.e. g is the zero

function. For reflexive RKBS, in particular RKHS, we get also that B is dense in B.

The following result states that the Perron-Frobenius operator is adjoint (with respect to 〈·, ·〉)
to the Koopman operator. It extends the result from the RKHS setting.24 Note that we use the

notation A′ for the adjoint with respect to a bilinear form 〈·, ·〉 (see Section B in the appendix) and

A∗ for the classical adjoint operator.

Lemma IV.6. Let (B,B′,〈·, ·〉,k) be an RKBS with kernel satisfying Assumption 1. Then K f is

densely defined with respect to 〈·, ·〉 and we have U f = K′f (with respect to 〈·, ·〉).

Proof. Since we assume that the set {k(x, ·) : x ∈ X} is linearly independent the Perron-Frobenius

operator is well defined. By Remark IV.5 Span{k(x, ·) : x ∈ X} is dense in B′ with respect to 〈·, ·〉
and by Lemma B.1 the adjoint of K f exists and is unique. To check that U f is the adjoint of K f let

g ∈ D(K′f ) then for all x ∈ X we have

K′f g(x) = 〈K′f g,k(x, ·)〉= 〈g,K f k(x, ·)〉= 〈g,k( f (x), ·)〉

= g( f (x)) =U f g(x).

This shows that U f is at least an extension of K′f . For g ∈ D(U f ), i.e. g ∈B such that g ◦ f ∈B

we have

〈g,K f k(x, ·)〉 = 〈g,k( f (x), ·)〉= g( f (x)) = (g◦ f )(x)

= 〈g◦ f ,k(x, ·)〉= 〈U f g,k(x, ·)〉.

Hence we have K′f =U f .

Remark IV.7. It is shown that if an operator K leaves the set {k(x, ·) : x ∈ X} invariant then K is

a Perron-Frobenius operator20 (see Theorem 1.4 in the literature).

10
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B. Basic properties

In Theorem IV.8 we present a collection of fundamental properties of the Koopman and Perron-

Frobenius operator on RKBS. Before stating it we want to put it into context with existing results

for Koopman and Perron-Frobenius operators on RKHS. The first three statements in Theorem

IV.8 transfer from classical arguments for composition operators; in particular it shows that the

information about the dynamical system is incorporated in the Koopman operator (statement 3. in

Theorem IV.8). Statement 4. is an extension from existing results for the RKHS setting31,32. State-

ment 6. is a transfer of a classical result for adjoint operators to the RKBS setting and statement

8. relates to kernel-mean embeddings27.

Theorem IV.8. Let f , f̃ : X → X be two maps and (B,B′,〈·, ·〉,k) be an RKBS on X with kernel

k satisfying Assumption 1. Then

1. K f K f̃ = K f ◦ f̃

2. if f is a bijection then K−1
f = K f−1

3. If B is dense in B with respect to 〈·, ·〉 then

f = g if and only if K f = Kg.

4. U f is closed (with respect to the weak as well as norm topology). In particular, U f is

bounded if and only if D(U f ) = B.

5. Assume X is compact and B has the universal property (see Definition A.1), f : X → X is

continuous and one of the following holds

(a) The map φ from (6) is an isomorphism

(b) x 7→ k(x, ·) ∈B′ is continuous

Then, if X contains infinitely many elements, the operator K f is not closed with respect to

〈·, ·〉.

6. If U f is densely defined then K f is closeable. If the map φ from (6) is an isomorphism and

B is reflexive then the converse is true as well, i.e. if K f is closeable then U f is densely

defined.

11
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7. Assume the map φ from (6) is an isomorphism. If D(U f ) = B then K f can be extended to a

bounded operator on B′. If, in addition, B is reflexive then the converse is true as well.

8. Under the assumptions of point 5., the operator K f can be extended to

D :=





∫

X

k(x, ·) dµ(x) : µ ∈M(X)



 (15)

by

K̄ f



∫

X

k(x, ·) dµ(x)


 :=

∫

X

k( f (x), ·) dµ(x) for µ ∈M(X). (16)

where M(X) denotes the set of Borel measures on X.

Proof. We have for all x ∈ X

K f K f̃ k(x, ·) = K f k( f̃ (x), ·) = k( f ( f̃ (x)), ·) = k(( f ◦ f̃ )(x), ·)

= K f ◦ f̃ k(x, ·).

Hence K f K f̃ = K f ◦ f̃ on Span{k(x, ·) : x ∈ X} and if follows the first statement. In particular it

follows K−1
f = K f−1 if f is invertible. For the third statement for f = g it is obvious that also

K f = Kg. Assume now K f = Kg. Then for x ∈ X and all h ∈B

0 = 〈h,(K f −Kg)k(x, ·)〉= 〈h,k( f (x), ·)− k(g(x), ·)〉.

Hence, since we assumed B to be dense in B with respect to 〈·, ·〉, it follows k( f (x), ·)= k(g(x), ·).
From Assumption 1, it follows f (x) = g(x). The fourth statement follows from U f = K′f (by

Lemma IV.6), Lemma B.1 and the closed graph theorem. We will show the fifth statement at last

once we have proven 8. For 6., if U f is densely defined then B :=U ′f is a closed extension of K f .

If (B,B′,〈·, ·〉) is reflexive then the second statement in 6. follows from Proposition B.8. In the

case that D(U f ) = B then by 4. we have that U f is bounded. The idea is to use the adjoint of U f

together with the isomorphism φ to define a natural candidate for an extension of K f . We define the

bounded operator T := φ−1U∗f φ : B′→B′, where U∗f : B∗→B∗ denotes the (classical) adjoint

of U f . We claim that T extends K f . To check this let x ∈ X and g ∈B, then by definition of φ and

Lemma IV.6

〈g,Tk(x, ·)〉= 〈g,φ−1U∗f φk(x, ·)〉= (U∗f φk(x, ·))(g)

= (φk(x, ·))(U f g) = 〈U f g,k(x, ·)〉

= 〈g,K f k(x, ·)〉.

12
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From which it follows T k(x, ·) = K f k(x, ·) because φ is injective (or in other words, B is dense

in B with respect to 〈·, ·〉). For the second statement of 7. we assume that K f has a bounded

extension K : B′→B′ and B reflexive and want to show that U f is bounded. The idea is very

similar but the adjoint of K is an operator on B′∗ ∼= B∗∗ and in order to find an operator on B we

use that B is reflexive. That B is reflexive means that the map

J : B→B
∗∗,J(b)(b∗) := b∗(b) (17)

is an isomorphism. We define the candidate operator

U := J−1(φ∗)−1K∗φ∗J : B→B. (18)

The operator U from (18) is bounded and we claim that U = U f . To check this let g ∈B and

x ∈ X . Then playing with the definition of φ ,φ∗ and J gives

Ug(x) = 〈Ug,k(x, ·)〉= φ(k(x, ·))(Ug)

= φ(k(x, ·))
(
J−1(φ∗)−1K∗φ∗Jg

)

=
(
(φ∗)−1K∗φ∗Jg

)
(φ(k(x, ·))

= (K∗φ∗Jg)(φ−1φ(k(x, ·)) = (K∗φ∗Jg)k(x, ·)

= (φ∗Jg)(Kk(x, ·)) = (φ∗Jg)k( f (x), ·)

= Jg(φk( f (x), ·)) = φ(k( f (x), ·))(g)

= 〈g,k( f (x), ·) = g( f (x)) =U f g(x).

To show statement 8., we separate the two cases of assumptions (a) and (b) from 5. In the case of

(b) note first that the (Bochner) integrals in (15) and (16) exist due to the continuity assumptions

on k and f . By choosing µ to be a dirac delta δy for some y ∈ X we get

K̄ f k(y, ·) = K̄ f



∫

X

k(x, ·) dδy(x)


=

∫

X

k( f (x), ·) dδy(x)

= k( f (y), ·).

That shows that K̄ f extends K f . It remains to show that (16) is well defined. That means whenever

there are two measures µ,ν ∈M(X) with

∫

X

k(x, ·) dµ(x) =

∫

X

k(x, ·) dν(x) (19)

13
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then also
∫
X

k( f (x), ·) dµ(x) =
∫
X

k( f (x), ·) dν(x). This follows trivially once we have shown that

the representation of (19) is unique, i.e. (19) implies µ = ν . From (19) we get for all g ∈B by

continuity of the bilinear form

∫

X

g(x) dµ(x) =

∫

X

〈g,k(x, ·)〉 µ(x) =

〈
g,

∫

X

k(x, ·) dµ(x)

〉

=

〈
g,
∫

X

k(x, ·) dν(x)

〉
=
∫

X

g(x) dν(x).

The universal property together with the Riesz-Markov representation theorem implies now that

µ = ν . To show that we can extend K f by (16), also in case of assumption (a) from 5., we

first show that the argument in (16) as well as the proposed image have representations based

on the embedding i : B→ C (X) (more precisely its adjoint i∗ : M(X)→B∗), the isomorphism

φ : B∗→B′ with b∗(b)= 〈b,φ(b∗)〉 for all b∗ ∈B∗ and b∈B, and the Perron-Frobenius operator

Pf on M(X) from (3). Note that here the term
∫
X

k(x, ·) dµ(x) is understood in the weak sense, that

is, for each g ∈B we have

〈g,
∫

X

k(x, ·) dµ(x)〉 :=
∫

X

〈g,k(x, ·)〉 dµ(x) =
∫

X

g(x) dµ(x). (20)

Next, we claim that
∫
X

k(x, ·) dµ(x), is nothing else than φ(i∗µ) for all µ ∈M(X). This can be seen

as follows: For any g ∈B we have

〈g,φ(i∗µ)〉 = (i∗µ)(g) =
∫

X

i(g)(x) dµ(x) =

∫

X

g(x) dµ(x)

(20)
= 〈g,

∫

X

k(x, ·) dµ(x)〉.

Similarly for the right-hand side of (16). Namely, for any g ∈B

〈
g,

∫

X

k( f (x), ·) dµ(x)

〉
=

∫

X

g( f (x)) dµ(x) =

∫

X

g dPf µ

= (i∗(Pf µ))(g) = 〈g,φ(i∗(Pf µ))〉.

where Pf denotes the Perron-Frobenius operator from (2). That means (16) states that we want to

extend K f to the range of φ ◦ i∗, i.e. D, by setting

K̄ f (φ(i
∗µ)) := φ(i∗Pf µ)). (21)

First let us check that this is well defined. By the universal property, i∗ is injective (Remark A.2)

and hence φ ◦ i∗ is injective, too – hence (21) is well defined. Finally, to see that K̄ f is indeed an

14
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extension of K f we have show that K̄ f k(x, ·) = k( f (x), ·) for all x ∈ X . As in the previous case we

use that φ(i∗δx) = k(x, ·) for any x ∈ X , from which it follows

K̄ f k(x, ·) = K̄ f (φ(i
∗δx)) = φ(i∗(Pf δx)) = φ(i∗δ f (x))

= k( f (x), ·).

This shows 8. under the assumption (b) from 5. Last, it remains to show 5. The property that

is important in this proof is that weak* convergence of measures µn to µ ∈ M(X), denoted by

µn
∗
⇀ µ , implies 〈

g,

∫

X

k(x, ·) dµn(x)

〉
→ 〈g,

∫

X

k(x, ·) dµ(x)〉 (22)

for all g ∈B. This follows directly from the weak* convergence of µn, namely

〈
g,

∫

X

k(x, ·) dµn(x)

〉
=

∫

X

g dµn→
∫

X

g dµ

= 〈g,
∫

X

k(x, ·) dµ(x)〉.

We use the extension K̄ f of K f from 8. and show K̄ f = K f if K f was closed with respect to 〈·, ·〉.
But this will lead to a contradiction because we will see that the domain of K̄ f is strictly greater

than the domain of K f . Let µ ∈M(X). We may assume that µ represents a non-negative measure

– otherwise, apply the Hahn-Jordan decomposition to µ . By scaling we may assume that µ is

a probability measure. Then for n ∈ N there exist x
(n)
1 , . . . ,x

(n)
kn
∈ X and λ

(n)
1 , . . . ,λ

(n)
kn
≥ 0 with

kn

∑
i=1

λ
(n)
i = 1 such that

µn :=
kn

∑
i=1

λ
(n)
i δ

x
(n)
i

∗
⇀ µ as n→ ∞. (23)

By continuity of the Perron-Frobenius operator Pf on M(X) from (3) we then also have

kn

∑
i=1

λ
(n)
i δ

f (x
(n)
i )

= Pf µn
∗
⇀ Pf µ (24)

For for any g ∈B we get from (23)

〈g,
kn

∑
i=1

λ
(n)
i k(x

(n)
i , ·)〉 =

〈
g,
∫

X

k(x, ·) dµn(x)

〉

→
〈

g,

∫

X

k(x, ·) dµ(x)

〉

15
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and from (24)

〈g,K f

kn

∑
i=1

λ
(n)
i k(x

(n)
i , ·)〉 = 〈g,

kn

∑
i=1

λ
(n)
i k( f (x

(n)
i ), ·)〉

=

〈
g,

∫

X

k( f (x), ·) dµn(x)

〉

=

〈
g,
∫

X

k(x, ·) dPf µn(x)

〉

→
〈

g,

∫

X

k(x, ·) dPf µ(x)

〉

Because we assumed that K f was closed with respect to 〈·, ·〉 it follows in particular that
∫
X

k(x, ·) dµ(x)∈
D(K f ) = Span{k(x, ·) : x∈ X}. That means we can find m ∈N, y1, . . . ,ym ∈ X , a1, . . . ,am ∈R with

∫

X

k(x, ·) dµ(x) =
m

∑
i=1

aik(yi, ·) in B
′, (25)

which means for all g ∈B we have

∫

X

g dµ =
m

∑
i=1

aig(yi) =
∫

X

g d

(
m

∑
i=1

aiδyi

)
.

From the universal property it follows µ =
m

∑
i=1

aiδyi
, i.e. µ is atomic. Since µ was arbitrary that

means all Borel measures µ ∈M(X) are atomic – which contradicts Lemma C.1 since X contains

infinitely many points.

Remark IV.9. In many cases in Theorem IV.8 we could not overcome the need for regularity that

we are used to from Hilbert spaces, such as reflexivity and the isomorphism between H and it dual

space (here this role is played by φ ). That means for RKHS the regularity assumptions in Theorem

IV.8) are redundant. We can partially overcome the regularity assumptions on (B,B′,〈·, ·〉,k) by

imposing regularity on the map x 7→ k(x, ·) for instance, as in 5b. Another possibility is in 6 where

instead of reflexivity of B it is possible to derive the same statement under the condition that

K f has a bounded extension K such that φKφ−1 is weak* continuous (from which it follows that

there exists a bounded operator U : B→B with U∗ = φKφ−1 and we can argue similarly as in

the proof to show that U =U f ).

Remark IV.10 (Invariant kernels). An easy (but restrictive) setting that guarantees boundedness

of the operator U f on an RKHS H with kernel k is invariance of k, i.e. for all x,y ∈ X

k( f (x), f (y)) = k(x,y). (26)

16
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In this case U f and K f are isometries, due to
∥∥∥∥∥K f

n

∑
i=1

aik(xi, ·)
∥∥∥∥∥

2

=

∥∥∥∥∥
n

∑
i=1

aik( f (xi), ·)
∥∥∥∥∥

2

=
n

∑
i, j=1

aia jk( f (xi), f (x j))

=
n

∑
i, j=1

aia jk(xi,x j) = ‖k(x, ·)‖2

for all n ∈ N and a1, . . . ,an ∈ C. More generally, by the same arguments, the Perron-Frobenius

operator is bounded with ‖Kt‖ ≤M if and only if we have

n

∑
i, j=1

aia jk( f (xi), f (x j))≤M
n

∑
i, j=1

aia jk(xi,x j). (27)

In contrast to (26) the condition (27) is typically not easily verified.

Concerning continuity and domain, it is clear that the treatment of U f on an RKBS is more sub-

tle than working on C (X) for continuous dynamics or L2(X ,µ) for measure preserving dynamics

(where the Koopman and Perron-Frobenius operators are bounded) – for an RKBS it can happen

that the condition g ◦ f ∈B might not be satisfied for any function g ∈B \ {0}. This indicates

that the RKBS (and the kernel k) need to be chosen corresponding to the function f . This is a very

natural condition because we want the RKBS to capture information about f .

One possibility of defining an RKBS such that the Koopman operators are bounded uses con-

jugacy and follows the classical concept for dynamical systems that sometimes (local) charts give

better insight into the dynamics.

Proposition IV.11. Let f : X→X and (B,B′,〈·, ·〉,k) be an RKBS on X with kernel. Let g :Y →Y

such that there exists a bijective function φ : Y → X with φ ◦g = f ◦φ . Let (Bφ ,B
′
φ ,〈·, ·〉φ ,kφ ) be

the corresponding pullback RKBS with kernel from Lemma III.9. Then

K f Tφ = Tφ Kg. (28)

In particular if K f is bounded on B′ then so is Kg with ‖Kg‖= ‖K f ‖.

Proof. By Lemma III.9 we have that Tφ is an isometric isomorphism. Hence it remains to show

(28). For any y ∈ Y we have

K f Tφ kφ (y, ·) = K f k(φ(y), ·) = k( f (φ(y)), ·)

= k(φ(g(y)), ·) = Tφ kφ (g(y), ·)

= Tφ Kgkφ (y, ·).

17
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Proposition IV.11 can be exploited when we have the knowledge of a suited RKBS for a con-

jugated system.

C. Examples

In this section, we present several examples from the literature. Example IV.12 is of intro-

ductory nature and covers linear (or finite) dynamics and Example IV.13 recovers the case of the

Koopman operator acting C (X) from Example III.4 from an RKBS perspective. Other examples

treat holomorphic dynamics (Example IV.14), point out limitations of the approach (Examples

IV.15 and IV.16), focus on polynomial dynamics and provide situations in which the domain of

the Koopman operator contains the set of all polynomials or where a connection to well-posedness

of a transport equation is drawn via boundedness of Koopman operator.

Those examples, particularly the limiting ones, demonstrate that not any RKBS fits the dynam-

ical system at hand, and properties of the dynamical system, such as linearity or regularity, have

to be considered for the choice of the kernel.

For our first example, we view R
n as an RKBS.

Example IV.12 (Rn as an RKBS and linear systems). There are two very natural ways to interpret

R
n as an RKBS. The first is that Rn is interpreted as the space of functions from X := {1, . . . ,n} to

R, i.e. we identify (x1, . . . ,xn) ∈ Rn with the map x(·) : X → R given by x(i) := xi for i = 1, . . . ,n.

Since that space is finite dimensional it is a Banach space for any norm we choose and any linear

operator is bounded, including the point evaluation x(·) 7→ x(i) for i = 1, . . . ,n. The second way to

view Rn as an RKBS is to interpret Rn as the dual space of Rn, that is we view an element x ∈ Rn

as a linear map from Rn to R. This can be done by fixing a bilinear form 〈·, ·〉 on Rn; then each

x ∈Rn induces the linear map x̂ : Rn→R given by x̂(a) := 〈a,x〉. Again, due to finite dimensions,

the point evaluation for x̂ is continuous. In the following we will make the above constructions

more precise and induce corresponding kernels as well.

The first case, i.e. viewing Rn as the space of real valued functions on X = {1, . . . ,n}, is well

suited for dynamical systems on the discrete set X . We denote the dynamics on X with i 7→ σ(i)

for i ∈ X = {1, . . . ,n}. We set B = B′ = {h : X → R} and we identify each h ∈B with a vector

h̄ := (h(1), . . . ,h(n))∈Rn. For the bilinear form we choose 〈h,g〉 := h̄T Mḡ for h,g ∈B =B′ and

an invertible matrix M ∈ Rn×n respectively M ∈ Cn×n. Invertibility of M on the one hand assures

18
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that B is dense in B with respect to 〈·, ·〉. On the other hand for all i = 1, . . . ,n

k̄(·, i) = M−1ei, k̄(i, ·) = (MT )−1ei (29)

where ei := (δi j)
n
j=1 ∈ Rn, which shows that {k(x, ·) : x ∈ X} is linearly dependent. Equation (29)

follows from 〈h,k(·, i)〉= h(i) = h̄T ei = h̄T MM−1ei. In particular, B′ is an adjoint RKBS. Clearly

the Koopman operator Uσ is well defined and acts by

Uσ h = h◦σ (30)

and

Uσ h = Pσ h̄

where Pσ denotes the permutation matrix with (Pσ)i j = 1 if σ(i) = j and (Pσ )i j = 0 otherwise.

The Perron-Frobenius operator has the form

Kσ k(i, ·) = k(σ(i), ·) (31)

and hence

Kσ k(i, ·) = M−1eσ(i).

Hence the representation matrix of Kσ with respect to the basis e1, . . . ,en of Rn (respectively Cn)

is given by M−1Pσ M. If M is chosen so that it diagonalizes Pσ then the Koopman operator has a

diagonal representation with respect to the standard basis of e1, . . . ,en.

For the second case we choose X = R
n ∼= B = B′ where we identify an element a ∈Rn with a

map ga : X → R by ga(x) := aT x, i.e. B and B′ consist of linear forms on Rn. Again we choose

the bilinear form 〈ga,gb〉 := aT Mb for an invertible matrix M ∈ Rn×n. Similar to the discrete case

we have for x ∈ R
n that k(x, ·) = gM−1x because

〈ga,gM−1x〉= aT MM−1x = aT x = ga(x).

From a dimension argument it is clear that {k(x, ·) : x ∈ X} is not linearly independent so we do

not know a-priori that the Perron-Frobenius operator defined as in Definition IV.4 is well defined.

Let the dynamics be given by xk+1 = Axk for a matrix A ∈ Rn×n. The Koopman operator is given

by

UAga(x) = ga(Ax) = aT Ax = (AT a)T x = gAT a(x) (32)
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for all x, i.e. UA has matrix representation AT with respect to the basis ge1
, . . . ,gen

, and

KAk(x, ·) = k(Ax, ·) = gM−1Ax. (33)

And we see that the basis representation of KA in the standard basis e1, . . . ,en is given by MAM−1.

Next, we turn our attention to the classical example of the Koopman operator on C (X) for

continuous dynamics f from Example III.4. We reformulate it as a Koopman operator on the

RKBS C (X).

Example IV.13 (C (X) as an RKBS.). For compact X , we view C (X) equipped with the supremum

norm ‖ · ‖∞ as an RKBS with kernel.30 Clearly C (X) enjoys bounded point evaluation, hence

B := C (X) is an RKBS. But there is freedom in the choice of B′ and the kernel30. We follow

the construction from30. Let X be compact and k : X×X → R continuous such that Span{k(·,x) :

x ∈ X} is a dense subset of C (X). For X = [0,1] examples of such k are k(x,y) = 1− |x− y|,
k(x,y) = exy and k(x,y) = (1+y)x. We define the RKBS in the following way: Let B = C (X) and

B′ be the space of kernel mean embeddings, i.e.

B
′ =



gµ : µ ∈M(X),gµ(x) :=

∫

X

k(y,x) dµ(y)



 (34)

and the bilinear form 〈·, ·〉 : B×B′→ R is given by

〈h,gµ〉 :=

∫

X

h dµ. (35)

The condition that Span{k(x, ·) : x ∈ X} is dense in C (X) guarantees that the bilinear form (35)

is well defined. Then (B,B′,〈·, ·〉,k) is an RKBS with kernel k.30 To verify that k is a kernel let

x ∈ X . Because for y ∈ X we have k(x, ·)(y) = k(x,y) =
∫
X

k(x,z) dδy(z), i.e. k(x, ·) = gδx
(with the

notion from (34)). It follows for all h ∈ C (X)

〈h,k(x, ·)〉= 〈h,gδx
〉=

∫

X

h dδx = h(x).

Further k is an adjoint kernel as well. To check this let µ ∈M(X). For gµ we have

gµ(x) =
∫

X

k(y,x) dµ(y) =
∫

X

k(·,x) dµ = 〈k(·,x),gµ〉.

For the Koopman operator, we get that U f has domain B = C (X) because g ◦ f is continuous

whenever g is (since we assume f to be continuous). Hence K f can be extended to a bounded oper-

ator on B′ by Theorem IV.8). Note that C (X) is not unique as an RKBS with kernel. Similarly, K f
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depends on the kernel k. For the examples k(x,y) = 1−|x−y|, k(x,y) = exy and k(x,y) = (1+y)x

for X = [0,1] we get

K f :





1−|x−·| 7→ 1−| f (x)−·|

ex· 7→ e f (x)·

(1+ ·)x 7→ (1+ ·) f (x).

(36)

In the next example, we consider Hardy spaces H p(D) where p ≥ 1 and D is the unit disc

D ⊂ C. The Hardy space H p(D) consists of all analytic functions on D for which the following

norm is finite

‖g‖H p := sup
0≤r<1




2π∫

0

| f (reiθ )|p dθ




1
p

. (37)

Example IV.14. The kernel for the Hardy space H p(D) is given by the Szegö kernel k(z,w) :=

1
1−zw̄

and turns B := H p(D) into an RKBS where we take the dual-pairing 〈·, ·〉 of H p(D) and its

dual space and we set B′ := Span{k(z, ·) : z ∈ D}where the closure is taken in the topological dual

space of H p(D). By20 (Theorem 3.6 in the literature) a holomorphic automorphism f : D→ D

has a bounded Koopman operator on H p(D) with ‖U f ‖p =
1+| f (0)|
1−| f (0)| . For dynamics given by a

Möbiustransform f (z) := λ z−a
1−zā

for a,λ ∈ C with |λ |= 1 and |a|< 1 we define the map φ(z) :=

z−γ
1−zγ̄ with the unique fixed point γ ∈ D of f . It can be shown that the pull-back kernel kφ is an

invariant kernel for f and thus U f is an isometry (see Remark IV.10) on the pullback RKBS (see

Lemma III.9) and K f and can be extended to an isometry on the same space as well. In33 the

authors go further and consider weighted composition operators on the Hardy space and show

stronger boundedness results for this setting.

The following example presents a class of RKHS that does not allow for compact Koopman

operators.

Example IV.15. Let G be a locally compact abelian group and let Ĝ be the character group of

G, the set of continuous group homomorphisms from G to the unit circle in C. Let dg and dχ

be Haar measures of G and Ĝ, respectively. A map u : G→ C is a positive definite function if

k(x,y) := u(x− y) is a positive definite kernel. We call H the RKHS associated with u. Thanks

to Bochner’s theorem34, a positive definite function on G can be realized as a Fourier transform of

a finite Borel measure. Namely, in the case where u is continuous, u is a positive definite function
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if and only if there exists a finite Borel measure µ on Ĝ such that

u(x) = µ̂(x) :=

∫

Ĝ
χ(x)dµ(χ).

Let us consider the case µ = w(χ)dχ where dχ is the Haar measure of Ĝ and w ∈ L1∩L∞ \ {0}
and w≥ 0 almost everywhere. Then, if k(x,y) = µ̂(x− y), we have

H =
{

h ∈C0∩L2(G) : ĥ ∈ Lp(Ĝ,w−1)
}
.

Here, we define the Fourier transform ĥ ∈ L2(Ĝ) of h ∈ L2(G) by

ĥ(χ) :=
∫

G
h(g)χ(g)dg.

It is known that under certain conditions on w, no composition operator is compact on H 18 in the

case of G = Rd . We note that when G = Rd , we usually regard Ĝ as Rd via the correspondence

R
d ∋ x 7→ [ξ 7→ e2πix·ξ ].

The general description of the Fourier transform on the locally compact abelian group defined

above is equivalent to the usual Fourier transform via the above correspondence when G = Rd

We continue the previous example by considering shift invariant kernels, which include the

popular setting of Gaussian kernel RKHS.

Example IV.16 (Shift invariant kernels). A kernel k on Rn (or any group) is called shift invariant

if for all x,y,a ∈ Rn we have k(x+a,y+a) = k(x,y). So shift invariant kernel are the kernels that

are invariant kernels for all translation maps fa : Rn→ Rn with fa(x) = x+a.

Kernels of the form

k(x,y) = h(‖x− y‖) (38)

for some positive definite function h are typical examples for shift invariant kernels. A function

h is called positive definite if the corresponding kernel (38) is positive definite. For example the

Gauss kernel with parameter σ > 0 given by

k(x,y) =
1

σ
√

2π
e
− ‖x−y‖2

2σ2 (39)

is positive definite and the corresponding RKHS is dense in the space of continuous functions on

Rn that vanish at infinity35. For the Gaussian kernel RKHS the only dynamics that induce bounded

Koopman and Perron-Frobenius operators are affine ones.36 Nevertheless, Koopman analysis in

this setting has been successfully applied to forecasting16,25 and system identification31
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The next example treats some RKBS and RKHS that (densely) contain polynomials. This is of

particular importance in case of polynomial dynamics f , because then the Koopman operator on

those spaces is well-defined at least on the set of polynomials.

Example IV.17. The easiest example of an RKBS containing polynomials is the space R[x]d of

polynomials up to a fixed degree d ∈N. Because this space is finite dimensional it can be made an

RKBS and a kernel can be chosen as k(x,y) := (1+ xT y)d . This space is Koopman invariant only

if the dynamics f are affine. For polynomial dynamics f of degree deg( f ) = k we have D(U f ) ⊃
R[x]d−k. Among examples of RKBS which contain all polynomials are C (X) from Example IV.13,

the Bragmann-Fock space37 with kernel k(x,y) := ex̄T y consisting of the holomorphic functions g

on Cn with finite integrals
∫

Cn

g(z)e−‖z‖
2

dz, the Bergman space Ap(G) of p-integrable holomorphic

functions on a domain G⊂ Cn (with kernel k(z,w) = 1
(1−z̄w)2 in the case where G⊂ C is the unit

disc) and Sobolev spaces (see Example IV.19). In67, the Koopman operator on the Bragmann-

Fock space was investigated and boundedness of the Koopman operator was shown for a pullback

kernel obtained via principal eigenfunctions. We refer to67 for more examples of RKHS appearing

naturally for spectral expansions of the Koopman operators U f . In the above-mentioned examples

the set of polynomials is even dense with respect to the corresponding topologies; on the contrary,

the RKHSs corresponding to the Gaussian kernel and the Cauchy kernel don’t contain any non-

zero polynomial38.

The following example is important in signal processing, time-warping39 and sampling40 and

is another example of an RKHS that contains the space of polynomials.

Example IV.18. We consider the space of band-limited functions PWA := {ĝ : g ∈ L2((−A,A))}
where ĝ denotes the Fourier-transform of a function g and A ∈ (0,∞) is the band width. The

space PWA is an RKHS4,32 with kernel k(x,y) = sinc(A(x− y)) := 1
π

sin(2πA(x−y))
x−y

for x 6= y and

k(x,x) := 2A. The Koopman operator appears in time warping, that is when for the incoming

signal f (x) only the signal h( f (x)) = U f h(x) is observed39. The bandwidth of the time-warped

signal h( f (x)) determines the Nyquist sampling rate40 and therefore the question of whether h is in

the domain of U f , i.e. whether U f h still belongs to PWA is important. It was shown in42 that only

injective affine maps induce bounded Koopman operators on the space of band-limited functions

on Rn, and the same result holds for the larger function space ∪A>0PWA
41. The celebrated Payley-

Wiener Theorem4 characterizes the functions in PWA by their exponential growth – in particular,

this shows that the space of polynomials is contained in PWA.
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Another class of examples arises from Sobolev spaces with enough regularity and we state

an easy condition for which diffeomorphisms induce bounded Koopman and Perron-Frobenius

operators on these spaces.

Example IV.19 (Sobolev space). For Ω ⊂ Rn open and bounded with C1 boundary. For s ∈ N

and p ∈ [2,∞) we denote by W s,p(Ω) the Sobolev space43 of functions with p-integrable weak

derivatives up to order s. If s > n
p

the Sobolev embedding43 tells that Ws,p(Ω) is a subspace of

C (Ω) and there is a constant C with ‖g‖∞ ≤C‖g‖W s,p . In such cases for q ∈ [1,∞) with 1
p
+ 1

q
= 1

we can turn B := Ws,p(Ω) into an RKBS with the universal property. To reduce notation we

restrict to the one-dimensional case, i.e. Ω ⊂ R. The higher dimensional situation is analogous.

We set B′ := Ws,q(Ω) and the bilinear form

〈g,h〉 :=
s

∑
j=0

∫

Ω

g( j)(x)h( j)(x) dx (40)

where g( j) respectively h( j) denotes the j-th weak derivate of g respectively h. The existence of a

kernel k follows because W s,2(Ω) is an RKHS32 and hence admits a kernel k – the same k provides

a kernel for (B,B′,〈·, ·〉). For n = s = 1 and Ω = (0,1) the kernel is given by32

k(x,y) =




(1− y)x, x≤ y

(1− x)y, x≥ y.
(41)

We can define the Perron-Frobenius operator but in this case, it is easier to check that the Koopman

operator is bounded. By Theorem IV.8 the boundedness of the Koopman operator is equivalent to

D(U f ) = B. We show that for Ω = (0,1) ⊂ R, s = 1 and diffeomorphic f : (0,1)→ (0,1) such

that f ′ and 1
f ′ are bounded we indeed have D(U f ) = B. For g ∈B∩C 1(U) we get

‖U f g‖p
Lp =

1∫

0

g( f (x))p dx

=

f (1)∫

f (0)

g(y)p 1

f ′( f−1(y))
dy≤ ‖ 1

f ′
‖∞‖g‖p

Lp

and from (U f g)
′ = (g◦ f )′ = g′ ◦ f · f ′ we get

‖(U f g)
′‖p

Lp =

1∫

0

g′( f (x))p f ′(x)p dx

=

f (1)∫

f (0)

g′(y)p f ′( f−1(y))p−1 dy≤ ‖ f ′‖p−1
∞ ‖g′‖p

Lp.
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This shows that U f

∣∣
B∩C 1(U)

: H ∩C 1(U)→B is a bounded operator. Since B∩C 1(U) is dense

in B we can uniquely extend U f

∣∣
B∩C 1(U)

to a bounded operator T on B. It remains to check that

T is nothing else then U f . For that we use that U f is closed by Theorem IV.8 and that C 1(U)∩B

is dense in B. Let g ∈ B and gm ∈ C 1(U)∩B with gm → g in B as m→ ∞. Because the

operator T is bounded we get U f gm = T gm → T g. From U f being closed it follows g ∈ D(U f )

and U f g = Tg, i.e. T = U f . Hence U f is bounded and it follows from Theorem IV.8 7. that

K f = U∗f is bounded, too. For s > 1 similar arguments show boundedness of U f on the RKBS

(B := W s,p(0,1),B′ := W s,q(0,1),〈·, ·〉,k) for 〈·, ·〉 from (40) and k from (41). In this case, we

extend the assumption that 1
f ′ and f ′ are bounded to the assumption that 1

f ′ and all derivatives of

f up to order s are bounded. We refer to44 for detailed investigations of composition operators on

Sobolev spaces.

Extending the previous example concerning Sobolev spaces we provide next a theoretically

crucial example, the Besov space Bs
p,q(R

n) for s > n/p and p,q ∈ (0,∞].

Example IV.20. The Besov space Bs
p,q plays a crucial role in partial differential equations and

harmonic analysis and coincides with the Sobolev space W s,p(Rn) when p = q. We emphasize

that the RKBS covers the Besov space as a special example. Here, we provide a definition of the

Besov space Bs
p,q(R

n) in the case where 0 < p,q≤∞ and s > max(0,1/p−1). We always assume

s > n/p and p,q∈ [1,∞], which implies Bs
p,q(R

n)⊂C 0(Rn). There are generalized definitions for

any s, p,q on a domain45,46. The Besov space Bs
p,q(R

n) is the collection of measurable functions

f on R such that

‖ f‖Bs
p,q

:= ‖ f‖Lp +

(∫

|h|≤1
|h|−sq‖∆m

h f‖q
Lp

dh

|h|

) 1
q

< ∞

(with the usual modification for q = ∞), where m ∈ N with m > s. Here, the difference operator

∆m
h of order m ∈ N is defined by

∆m
h f (x) :=

m

∑
j=0

(−1)m− j


m

j


 f (x+ jh), x,h ∈ R

and ∆0
h is the identity operator.

As we mention above, the Besov space Bs
p,q(R

n) for s > n/p is (continuously) included in the

space of continuous functions, and thus the evaluation map is obviously continuous on Bs
p,q. There-

fore, the Besov space is an RKBS (Definition III.5). The Koopman operators on the Besov space
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is promising machinery for the analysis of the transport equation. The solution of the transport

equation 



∂tu(t,x)−b(t,x)∂xu(t,x) = 0,

u(0,x) = u0(x)

can be represented by the Koopman operator47:

u(t,x) = u0(χt(x)) = Kχt
u0(x),

where χt(x) = χ(t,x) is the solution of

∂t χ(t,x) = b(t,χ(t,x)), χ(0,x) = x.

Thus, the boundedness of Koopman operators implies continuous dependence of initial values47.

V. CONTINUOUS TIME SYSTEMS

In this section, we treat continuous time systems. They are important for many applications,

especially in engineering, where the system obeys an autonomous ordinary differential equation

of the form ẋ = f (x) for a vector field f . Often discrete time systems arise as discretizations of

continuous time systems but even in that case, there are fundamental differences between those

two cases. While for discrete time systems the evolution xk 7→ f (xk+1) is explicit, for continuous

time systems typically only the infinitesimal evolution f , i.e. ẋ = f (x), is known.

In this section, we define the Koopman and Perron-Frobenius semigroups – similar to the dis-

crete case. We describe the infinitesimal generator of both semigroups and relate it to the vector

field f . Finally, we give a geometric condition under which the Koopman and Perron-Frobenius

semigroup are strongly continuous and consist of bounded operators.

A. Koopman and Perron-Frobenius semigroup

The definition of the Koopman and Perron-Frobenius semigroup is based on a semiflow ϕt , see

(42), but whenever we investigate their generators we assume that the dynamical system is induced

by an ordinary differential equation ẋ = f (x) for a vector field f on X . In that cases, we implicitly

assume that X is either a (compact) smooth manifold (with boundary) and f a smooth vector field

on X or X is a subset of Rn and f : Rn→ Rn a locally Lipschitz continuous map.
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For a given differential equation ẋ = f (x) and x(0) = x0 we denote its solution map by ϕ ,

i.e. ϕt(x0) denotes a solution at time time t to the initial value x0. If solutions to the differential

equation are unique, the map ϕ satisfies the following semiflow property

ϕ0(x) = x and ϕt+s(x) = ϕt(ϕs(x)) for all t,s ∈ R+ (42)

for x ∈ X such that ϕt(ϕs(x)) and ϕt+s(x) are elements of X .

Assumption 2. We assume that the set X is positively invariant with respect to the differential

equation ẋ = f (x), i.e. ϕt(x) ∈ X for all x ∈ X and t ∈ R+, and that ϕ satisfies (42).

Definition V.1 (Koopman semigroup). Let Y be a (normed) space of functions on X. Under As-

sumption 2 the Koopman semigroup associated to a semiflow ϕ is a family of operators (Ut)t∈R+ ,

for each t ∈ R+, defined by

Ut : D(Ut)→ Y, Utg := g◦ϕt (43)

with D(Ut) := {g ∈ Y : g◦ϕt ∈ Y}.

Remark V.2. The Koopman operators Ut are linear for all t ∈ R+ and satisfy the semigroup

property, that is, for all t,s ∈ R+

UtUsg =Ut+sg (44)

for all g ∈ D(Us) such that Usg ∈ D(Ut) and U0 = Id.

For discrete time systems the operator U f contains already all information about the dynamical

system, i.e. the evolution U f n =Un
f for n ∈ N. For continuous time systems this role is played be

the infinitesimal generator.

Definition V.3 (Generator). The generator G : D(G)→ Y of a semigroup (Tt)t∈R+ on a normed

space Y is defined by

Gg := lim
t→0

Ttg−g

t
(45)

for g ∈ D(G) := {g ∈ ⋂
t∈R+

D(Tt) : lim
tց0

Ttg−g
t

exists}.

The generator describes differentiability of the map t 7→ Ttg for g∈D(G). A more fundamental

property is continuity of this map. A semigroup (Tt)t∈R+ on a space V is called strongly continuous

if Ttv→ T0v = v as t→ 0 for all v ∈V .
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Remark V.4. If ϕ and the map x 7→ k(x, ·) are continuous then the Perron-Frobenius semigroup

(Kt)t∈R+ is strongly continuous on Span{k(x, ·) : x ∈ X}. This follows because for any n ∈ N,

a1, . . . ,an ∈ R respectively C and x1, . . . ,xn we have

‖(Kt− Id)

(
n

∑
i=1

aik(xi, ·)
)
‖ ≤

n

∑
i=1

|ai|‖k(ϕt(xi), ·)− k(xi, ·)‖

which converges to 0 as t→ 0, due to continuity of ϕ and x 7→ k(x, ·).

For strongly continuous semigroups of bounded operators, the generator characterizes the semi-

group uniquely.6 Hence it allows to investigate the semigroup by investigating a single object.

Strongly continuous semigroups (Tt)t∈R+ of bounded operators satisfy d
dt

Tt = GTt (in a certain

sense6). So it is not surprising that there is a close connection between the “generator" of the dy-

namics f and the generator A of the Koopman semigroup. When point evaluations are continuous

then for each g ∈ D(A)∩C 1(X) and x ∈ X we get

Ag(x) = lim
t→0

Utg(x)−g(x)

t
= lim

t→0

g(ϕt(x))−g(x)

t

=
d

dt

∣∣
t=0

g(ϕt(x)) = Dg(x)
d

dt

∣∣
t=0

ϕt(x) (46)

= Dg(x) f (x).

Remark V.5. In the case that Y is an RKHS consisting of continuously differentiable functions

the generator A from (46) is a closed operator31 (see Theorem 4.2 in the literature).

B. Koopman and Perron-Frobenius semigroups on RKBS

In the continuous time case, we have a family of Koopman respectively Perron-Frobenius op-

erators – the so-called Koopman semigroup respectively Perron-Frobenius semigroup. In contrast

to the discrete time case, we want to investigate the infinitesimal generator in addition to the semi-

group. First, we state some elements on which the infinitesimal generator of the Perron-Frobenius

semigroup acts.31 Under additional regularity assumptions on the kernel, namely being C 1, we

show and use that the generator of the Perron-Frobenius semigroup acts on the kernel functions

k(x, ·) as well.

Proposition V.6. Let (B,B′,〈·, ·〉,k) be an RKBS with kernel k and (Ut)t∈R+ be the Koopman

semigroup for a dynamical system with semiflow ϕt . Let {k(x, ·) : x ∈ X} be linearly indepen-

dent. Then we define the Perron-Frobenius semigroup of linear operators (Kt)t∈R+ with Kt :
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Span{k(x, ·) : x ∈ X}→ Span{k(x, ·) : x ∈ X} for t ∈ R+ by linearly extending

Ktk(x, ·) = k(ϕt(x), ·). (47)

Further K′t =Ut for t ∈ R+.

Proof. For each t the operator Ut coincides with the composition operator Uϕt
from Section IV.

So the result follows from Definition IV.4 and Lemma B.2.

Remark V.7. As mentioned in the proof of Proposition V.6 for each t ∈ R+ the operator Ut coin-

cides with Uϕt
from Section IV. Similarly for Kt = Kϕt

. In particular Theorem IV.8 holds for Ut

and Kt for each t ∈ R+.

In the following we investigate the infinitesimal generator C of (Kt)t∈R+ , i.e.

Cg := lim
t→0

1

t
(Ktg−g) (48)

whenever the limit exists. In the RKHS case, it was presented that certain path-integrals are

elements on which the infinitesimal generator C of (Kt)t∈R+ acts naturally31. Those path-integrals

are defined in the following Definition V.8.

Definition V.8. Let T > 0 and t 7→ k(ϕt(x), ·)∈B′ be continuous on [0,T ]. For x∈X and IT,x∈B∗

be defined by

IT,xg :=

T∫

0

g(ϕt(x)) dt. (49)

We can identify IT,x with the element in B′ given by

b′T,x :=

T∫

0

k(ϕt(x), ·) dt. (50)

Remark V.9. The continuity assumption in Definition V.8 is used to guarantee that the (Riemann)

integral (50) exists. In order to weaken the regularity on the feature map x 7→ k(x, ·), Bochner’s

theorem on Bochner integrals can be evoked – in our case of RKBS, this would typically require

more regularity of the space B and B′, such as reflexivity for example.

Remark V.10. If x 7→ k(x, ·) ∈B′ is continuous, X ⊂ Rn and f is locally Lipschitz then the flow

map ϕ is continuous, and hence t 7→ k(ϕt(x), ·) is continuous.

Assumption 3. We assume that ϕ and x 7→ k(x, ·) ∈B′ are continuous.
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We extend Kt to IT,x as in Theorem IV.8 8. by

KtIT,x =

T∫

0

k(ϕt+s(x), ·) ds. (51)

To guarantee that (51) is well defined we will use the universal property.

Assumption 4. We assume that X is compact and B satisfies the universal property from Defini-

tion A.1, i.e. that B is dense in C (X).

Lemma V.11. Under Assumptions 1, 2, 3 and 4 the term KtIT,x from (51) is well defined.

Proof. We want to argue as in Theorem IV.8 8. Therefore, it suffices to note that IT,x =
∫
X

k(y, ·) dµ(y) for the measure µ given the action
∫
X

g dµ =
T∫
0

g(ϕt(x)) dt for g ∈ C (X). The

result follows from Theorem IV.8 8.

Remark V.12. If x ∈ X is a periodic point, i.e. there exists P > 0 with ϕP(x) = x, then KtIP,x = IP,x

for all t ∈ R+. The discrete analog of this result holds for discrete systems.

We can show that IT,x is contained in the domain of the generator of the Perron-Frobenius

semigroup.24

Proposition V.13. Under Assumptions 1–4, for T > 0 and x ∈ X, we have IT,x ∈ D(C), where C

denotes the generator of the Perron-Frobenius semigroup. In particular, C is densely defined.

Proof. By Lemma V.11 the element IT,x is contained in the domain of Kt for all t ∈ R+. For the

generator of the Perron-Frobenius semigroup, we get as t→ 0

1

t
(KtIT,x− IT,x) =

1

t




T∫

0

k(ϕt+s(x), ·)− k(ϕs(x), ·) ds




=
1

t




T+t∫

T

k(ϕt(x), ·) ds−
t∫

0

k(ϕt(x), ·) ds




→ k(ϕT (x), ·)− k(x, ·),

i.e. IT,x ∈ D(C) and CIT,x = k(ϕT (x), ·)− k(x, ·). To check that C is densely defined let x ∈ X .

Since D(C) is a linear subspace we have 1
T

IT,x ∈ D(C) for all T > 0 and by definition of IT,x we

get k(x, ·) = lim
T→0

1
T

IT,x ∈ D(C). Hence C is densely defined.
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Remark V.14. To treat the Perron-Frobenius semigroup from a semigroup perspective we con-

sider the closures of Kt and C (if they exist). Closedness or closeability of the operator C is less

accessible due to the explicit definition of Kt only on the elements k(x, ·). In particular generator

theorems such as the Hille-Yosida theorem6 provide a less accessible approach. On the contrary

closedness of the generator of the Koopman semigroup is known for RKHS by Remark V.5 but

– as typical for the Koopman operator – we lack a-priori information about the domain of the

generator.

For Proposition V.15 we restrict to RKHS H and fix the following preliminaries. Let X ⊂ R
n

be open and let the kernel k be C 1. Let ∂xi
k denote the derivative of k with respect to the first

variable in direction of the i-th standard basis vector ei. Then we have4 ∂xi
k(x, ·) ∈H for all

i = 1, . . . ,n and fixed x, and further

∂xi
k(x, ·) = lim

h→0

1

h
(k(x+hei, ·)− k(x, ·)) (52)

converges in H (see the literature in Theorem 2.5) – in other words the feature map x 7→ k(x, ·) ∈
H is C 1. In particular we get that for fixed x the map t 7→ Ktk(x, ·) = k(ϕt(x), ·) is continuously

differentiable if ϕ is the flow map for ẏ = f (y) for a locally Lipschitz continuous vector field

f = ( f1, . . . , fn). Hence we get that k(x, ·) ∈ D(C) for the generator C of the Perron-Frobenius

semigroup and

Ck(x, ·) = d

dt

∣∣∣∣
t=0

Ktk(x, ·) =
d

dt

∣∣∣∣
t=0

k(ϕt(x), ·)

=
n

∑
l=1

∂xl
k(x, ·) fl(x) ∈ Span{k(x, ·) : x ∈ X} ⊂H . (53)

On the other hand, for the generator A of the Koopman semigroup it is not clear whether k(x, ·)
is in the domain of A. If so, it acts on k(x, ·) by Ak(x, ·) =

n

∑
i=1

∂yi
k(x, ·) fi(·), where ∂yi

denotes

the derivative of k with respect to the second variable in the direction of ei. Hence it is not a-

priori clear whether Ak(x, ·) is an element of H . Therefore, in Proposition V.15 we argue via the

Perron-Frobenius semigroup.

Proposition V.15. Assume Assumption 1 and Assumption 2. Let X ⊂ Rn be open and H be an

RKHS on X with kernel k ∈ C 1(X×X). Then for ω > 0 the following are equivalent

1. The Koopman semigroup is a strongly continuous semigroup with ‖Ut‖ ≤ eωt for all t ∈R+
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2. The Perron-Frobenius semigroup can be extended to a strongly continuous semigroup

(K̄t)t∈R+ of bounded operators on H with ‖K̄t‖ ≤ eωt for all t ∈ R+

3. For all n ∈ N, a1, . . . ,an ∈ R respectively C and x1, . . . ,xn ∈ X we have

Re ∑
i, j,l

aia j fl(xi)∂xl
k(xi,x j)≤ ω

n

∑
i, j=1

aia jk(xi,x j). (54)

Proof. Since Ut = K∗t for all t ∈ R+, i.e. the Koopman semigroup is the adjoint semigroup of the

Perron-Frobenius semigroup, the strong continuity of one semigroup implies the strong continuity

of the other6 (page 9 in the literature) because H is reflexive. In the rest of the proof, we show

that 2. and 3. are equivalent. The essential observation is that for g ∈ Span{k(x, ·) : x ∈ X} we

have by (53) for all t ∈ R+

d

dt
‖Ktg‖2 =

d

dt
〈Ktg,Ktg〉= 〈

d

dt
Ktg,Ktg〉+ 〈Ktg,

d

dt
Ktg〉

= 〈CKtg,Kt〉+ 〈Ktg,CKtg〉 (55)

= 2Re〈CKtg,Kt〉.

Representing g as g :=
n

∑
i=1

aik(xi, ·)) and evaluating in t = 0 gives

d

dt
‖Ktg‖2

∣∣
t=0

= 2Re〈
n

∑
i=1

ai

n

∑
l=1

∂xl
k(xi, ·) fl(xi),

n

∑
j=1

a jk(x j, ·)〉

= 2Re ∑
i, j,l

aia j fl(xi)∂xl
k(xi,x j). (56)

Equation (56) is the central object connecting 2. and 3. We begin by showing that 3 implies 2. To

do so, we first show that ‖Ktg‖ ≤ eωt‖g‖ for all g ∈ Span{k(x, ·) : x ∈ X}. Condition (54) implies

for g =
n

∑
i=1

aik(xi, ·) by (56)

d

dt
‖Ktg‖2

∣∣
t=0
≤ 2ω

n

∑
i, j=1

aia jk(xi,x j) = 2ω‖g‖2. (57)

Because g ∈ Span{k(x, ·) : x ∈ X} was arbitrary in (57), Span{k(x, ·) : x ∈ X} is Kt invariant for all

t ∈ R+ and (Kt)t∈R+ is a semigroup we get for the map u : R+→ R+,u(t) := ‖Ktg‖2 that

u̇(t) =
d

dt
‖Ktg‖2 =

d

ds
‖KsKtg‖2

∣∣
s=0
≤ 2ω‖Ktg‖2 = 2ωu(t).

By Gronwall’s lemma it follows u(t) ≤ e2ωtu(0) = e2ωt‖g‖2, i.e. ‖Ktg‖ =
√

u(t) ≤ eωt‖g‖ for

all g ∈ Span{k(x, ·) : x ∈ X}. That shows ‖Kt‖ ≤ eωt . Further, Kt is strongly continuous on
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Span{k(x, ·) : x ∈ X} by Remark V.4. The continuity conditions in Remark V.4 are satisfied due

to k being continuous and f being locally Lipschitz continuous. Because Span{k(x, ·) : x ∈ X}
is dense in H , it follows then that (Kt)t∈R+ can be extended to a strongly continuous semigroup

on H 6 with the desired growth bound (see Proposition 1.3 in the literature). For the remaining

implication, 2. implies 3., we argue similarly. From ‖Kt‖ ≤ eωt we get

‖Ktg‖2 ≤ e2ωt‖g‖2 (58)

for all g ∈ Span{k(x, ·) : x ∈ X}. Evaluating (58) in t = 0 we see that both sides are equal. For the

derivative with respect to t in t = 0 this implies

d

dt
‖Ktg‖2

∣∣
t=0
≤ d

dt
e2ωt‖g‖2

∣∣
t=0

= 2ω‖g‖2. (59)

Choosing g =
n

∑
i=1

aik(xi, ·) the inequality (59) coincides with (54) by (56).

Remark V.16. In Proposition V.15, we made strong use of the explicit computation of

‖
n

∑
i=1

aik(xi, ·)‖2 =
n

∑
i=1

aia jk(xi,x j). (60)

Such an explicit expression of (60) is not available in RKBS in general. Hence a similar result on

RKBS (B,B′,〈·, ·〉,k) would require further explicit knowledge of expressing the norm in B′ by

k.

The condition (54) is a geometric condition that connects the dynamics f with the kernel k. For

ω = 0 and n = 1 and real RKHS H it resembles a Lyapunov condition and at first only states that

k(ϕt(x),x) is decreasing in time. Due to the symmetry of k, it follows for all x ∈ X ,

d

dt

∣∣∣∣
t=0

k(ϕt(x),ϕt(x)) = ∇xk(x,x) f (x)+∇xk(x,x) f (x)≤ 0

which means that V (x) := k(x,x) = ‖k(x, ·)‖2 is a Lyapunov function. The condition (54) for

ω = 0 extends this concept to the full RKHS because it states that V̂ (g) := 1
2
‖g‖2 is decaying in

time since for all t ∈ R+, we have d
dt

V̂ (Ktg) = Re〈CKtg,Ktg〉 ≤ 0, that is just a reformulation of

the Perron-Frobenius semigroup being contractive on H .

VI. SYMMETRY AND SPARSITY PATTERNS

Symmetry and sparsity of dynamical systems are useful concepts to gain further insight into

the evolution of a dynamical system. They describe certain invariants of the dynamical system.
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Knowledge of such invariants allows to deduce properties of the dynamical systems of related

objects of interest, as for example attractors and invariant sets.48,49 Furthermore, knowledge of

symmetry and sparsity can and should be exploited in computations49–51 for the Koopman and

Perron-Frobenius operator. Particularly when the task at hand shows large computational com-

plexity, reduction techniques are useful to reduce running time or memory limitations.

Compared to working with data directly and searching for symmetries or sparse structures in

the data, we assume here the a-priori knowledge of those patterns for a dynamical system. For

computations that allow to incorporate the knowledge of these patterns directly into the method (if

possible) without any loss of accuracy.

In this section, we describe how the symmetry concept50 for Koopman operators carry over to

RKBS. Similarly for the concept of factor systems10 which is the notion of sparsity that we work

with.

Definition VI.1 (Symmetry). A map ψ : X → X is called a symmetry for the (discrete) dynamics

induced by f : X → X if ψ ◦ f = f ◦ψ .

Remark VI.2. Typically, the map ψ is assumed to be invertible. In that case, we have ψ−1 ◦ f ◦
ψ = f . For continuous time systems, symmetry means that ψ ◦ϕt = ϕt ◦ψ for all t ∈R+. In other

words, ψ maps solutions of the dynamical system to, again, solutions of the dynamical system.

If the continuous time dynamical system is induced by the differential equation ẋ = f (x) then an

invertible smooth map ψ : X → X is a symmetry if f = Dψ−1 ◦ψ · f ◦ψ .

The next proposition states that symmetries induce a commutation relation between the Koop-

man and Perron-Frobenius operators and their corresponding operators induced by the symmetry

map.

Proposition VI.3. Let f : X → X be the (discrete) dynamics, (B,B′,〈·, ·〉,k) be an RKBS on X

with kernel k and ψ a symmetry for f . Let Uψ and Kψ be the Koopman and Perron-Frobenius

operator with respect to ψ on the RKBS. Then, the relation

U fUψ =UψU f (61)

holds on the set

{g ∈B : g ∈ D(U f )∩D(Uψ),U f g ∈ D(Uψ),Uψg ∈ D(U f )}

and

KψK f = K f Kψ on Span{k(x, ·) : x ∈ X}. (62)
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Proof. This follows directly from the definition of symmetry. We only show it for the Perron-

Frobenius operator. For x ∈ X we have

KψK f k(x, ·) = Kψk( f (x), ·) = k(ψ( f (x)), ·) = k( f (ψ(x)), ·)

= K f k(ψ(x), ·) = K f Kψk(x, ·).

Formula (61) in Proposition VI.3 is particularly useful when the domains of Uψ and U f are

known. The easiest case is when both Uψ and U f induce bounded operators, i.e. when D(UΨ) and

D(U f ) are the whole RKBS.

For sparsity, we follow a similar approach based on a specific sparsity pattern, i.e. factor

systems10 (see page 15 in the literature), and its application to Koopman operators.51

Definition VI.4 (Factor system). Let f : X → X be a discrete dynamical system on X and

(B,B′,〈·, ·〉,k) be an RKBS. We call a triple (Y,Π,F) a factor system if Y is a set, Π : X →Y and

F : Y → Y such that

Π◦ f = F ◦Π. (63)

By similar arguments to the symmetry case, we get the following proposition.

Proposition VI.5. Let f : X → X be a discrete dynamical system, (Y,Π,F) be a factor sys-

tem, (B,B′,〈·, ·〉,k) be an RKBS on X and (BY ,B
′
Y ,〈·, ·〉Y ,kY ) be an RKBS for Y . Let KΠ :

Span{k(x, ·) : x∈X}→ Span{kY (y, ·) : y∈Y} defined by linear extension of KΠk(x, ·) := kY (Π(x), ·).
Then

KΠK f = KFKΠ. (64)

For the Koopman operators U f and UF corresponding to f and F and UΠ : D(UΠ)→B defined

by UΠg := g◦Π on D(UΠ) := {g ∈BY : g◦Π ∈B} we have U fUΠ =UΠUF on

{g ∈B : g ∈ D(UΠ)∩D(UF),D(UΠ) ∈ D(U f ),UFg ∈ D(UΠ)}. (65)

Proof. The proof is similar to the proof of Proposition VI.3. For all x ∈ X we have

KΠK f k(x, ·) = KΠk( f (x), ·) = k(Π( f (x)), ·) = k(F(Π(x)), ·)

= KFKΠk(x, ·)

and we get (64). Similarly for the Koopman operator we have for all g in the set given in (65)

U fUΠg =U f (g◦Π) = g◦Π◦ f = g◦F ◦Π =UΠUFg.
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The commutation and intertwining relations in Propositions VI.3 and VI.5, even though being

similar, should be interpreted differently. For symmetries the commutation relation (62) implies

that the operators share eigenspaces - which can be exploited for dynamic mode decomposition

(DMD).49,50 Sparsity on the other hand intends to reduce the dynamical system to another (lower

dimensional) one. If the object of interest can be fully observed by the factor system doing so is

computationally beneficial if Y is of lower dimension than X and/or F and Π are not computation-

ally complex.51

VII. CONCLUSION

We present a framework for Koopman and Perron-Frobenius operators on reproducing kernel

Banach spaces which naturally includes the reproducing kernel Hilbert space situation. Due to the

close relation between these operators, we deduce results for the Koopman operator based on the

Perron-Frobenius operator and vice versa. We extended known results on general properties of

Koopman and Perron-Frobenius operators on RKHS to RKBS and added new results on this topic

concerning boundedness, closeness, and the domain of these operators.

We treat discrete time and continuous time dynamical systems. The Koopman (resp. Perron-

Frobenius) operators for those systems share some common properties, but while for the discrete

time case, the evolution operator U f (resp. K f ) is sufficient to describe the evolution of the system

we turn to the infinitesimal generator of the Koopman respectively Perron-Frobenius semigroup

in the continuous time case. We investigated the domains of the infinitesimal generators and state

a generator result based on a geometric condition on the kernel and the dynamics.

Since the notion of RKBS is very general we did not expect strong results, and it is clear that

detailed investigations for specific RKBS – such as Fock spaces, Hardy spaces, Sobolev spaces

among others – and dynamics remain a challenging task.18,20,52,53 This is related to the problem

of kernels adapted to the dynamics. We think that the power of the Koopman resp. Perron-

Frobenius operator and the RKBS structure are fully released only if the RKBS is chosen according

to the dynamics. At its core, this addresses the domain of the Koopman operator on the RKBS.

A negative example of Koopman operators on RKBS can be obtained easily via Example IV.12

viewing Rn as the RKBS of linear forms and using non-linear dynamics f . This easily leads to

the trivial domain D(U f ) = {0} for the Koopman operator. An elaborate example of analytic

dynamics on C states that under mild assumptions on a function space of entire functions, the
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Koopman operator can be bounded only if the dynamics are affine.36 Hence, we advertise a fruitful

combination of Koopman theory and RKBS via kernels adapted to the dynamics; one such way is

to consider invariant kernels (Remark IV.10). This particular approach of invariant kernels leads

to stronger results but is fairly restrictive.21 Less restrictive examples – but examples of kernels

adapted to the dynamics – are for example composition operators on the Hardy space for analytic

dynamics or composition operators on Sobolev spaces for sufficiently regular dynamics.

We show that symmetry and sparsity transfer conceptually from well known cases to the RKBS

setting. This yields certain commutation and intertwining relations for Koopman resp. Perron-

Frobenius operators also in the RKBS setting. This aims at applications where those structures

can be used to reduce computational complexity.

Future work might investigate applications of Koopman operators on RKBS to data science

as for RKHS with applications to forecasting, (optimal) control, and stability analysis.16,22,24

We think that inspirations from the path of understanding the Koopman (or composition) oper-

ators on specific or general (reproducing) function spaces will give further insight into the RKBS

situation.10,52
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Appendix A: Further notions with respect to the bilinear form

We devote this section to notions for RKBS (B,B′,〈·, ·〉,k) concerned with the bilinear form

〈·, ·〉. That includes the adjoint operator and hence plays an important rule for connecting the

Koopman and the Perron-Frobenius operator.
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Definition A.1 (Universal property). We say (B,B′,〈·, ·〉) has the universal property if B embeds

densely into C (X), by i : B→ C (X), g 7→ g.

Remark A.2. The universal property states that the adjoint i∗ : C (X)→B∗ is injective.

Definition A.3 (Annihilator). Let B and B′ be Banach spaces and 〈·, ·〉 be a continuous bilinear

form on B×B′. Let A⊂B then the annihilator A⊥ of A is defined by

A⊥ := {b′ ∈B
′ : 〈a,b′〉= 0 for all a ∈ A} ⊂B

′ (A1)

and for A⊂B′ then the annihilator A⊥ of A is defined by

A⊥ := {b ∈B : 〈b,a〉= 0 for all a ∈ A} ⊂B. (A2)

Lemma A.4. Let A⊂B and C ⊂B′ then A⊥ ⊂B and C⊥ ⊂B′ are closed. Further (A⊥)⊥ ⊃ A

and (C⊥)⊥ ⊃C.

Proof. By continuity of the bilinear form it follows that the set

A⊥ := {b′ ∈B
′ : 〈a,b′〉= 0 for all a ∈ A}

⋂

a∈A

(〈a, ·〉)−1({0})

is closed. And similarly for C. For any element a∈A we have by definition 〈a,a⊥〉 for all a⊥ ∈A⊥,

i.e. a ∈ (A⊥)⊥. A similar argument shows the corresponding statement for C.

Definition A.5 (Hahn-Banach property). We say a triple (B,B′,〈·, ·〉) of Banach spaces B and

B′ and a continuous bilinear form 〈·, ·〉 has the Hahn-Banach property if for all subspaces A⊂B

we have (A⊥)⊥ = A.

Corollary A.6. If (B,B′,〈·, ·〉) has the Hahn-Banach property then B′ is dense in B′ with respect

to 〈·, ·〉.

Proof. If 〈b,b′〉 = 0 for all b′ ∈B′ that means b ∈B′⊥. Since B′ = {0}⊥ we get by the Hahn-

Banach property b ∈B′⊥ = ({0}⊥)⊥ = {0}= {0}, i.e. b = 0. That means B′ is dense in B′ with

respect to 〈·, ·〉 according to (14).

Appendix B: Adjoint operators

We recall the notion of an adjoint operator. Let B and B′ be Banach spaces with continuous

bilinear form 〈·, ·〉 : B×B′ → C and T be a densely defined (with respect to the bilinear form

38



Koopman and Perron-Frobenius Operators on reproducing kernel Banach spaces

as in (13) operator T : B ⊃ D(T )→ B. We call T ′ the adjoint operator of T (with respect to the

bilinear from) if

〈Tx,y〉 = 〈x,T ′y〉 (B1)

for all x ∈ D(T ) and y ∈ D(T ′) for

D(T ′) := {y ∈ Y : ∃z ∈ Z with 〈T x,y〉= 〈x,z〉 for all x ∈ D(T )}

We recall the notion of a closed operator. Let X and Y be Banach spaces. A operator (A,D(A)) for

a linear subspace D(A)⊂ X with A : D(A)→ Y is called closed (with respect to a topology T , in

this text that is the weak, weak* or norm topology) if

D(A) ∋ xn→ x and Axn→ y implies x ∈ D(A) and Ax = y

where the limits are with respect to T . The operator A : B ⊃ D(A)→B is called closed with

respect to 〈·, ·〉 if D(A)∋ 〈xn,z1〉→ 〈x,z1〉 and 〈Axn,z2〉→ 〈y,z2〉 for all z1,z2 ∈X implies x∈D(A)

and Ax = y. The definition of an operator A : B′ ⊃D(A)→B′ being closed with respect to 〈·, ·〉 is

analogue. We call an operator (A,D(A)) closable if it has an extension (Ā,D(Ā)) which is closed,

i.e. (Ā,D(Ā)) is a closed operator with Ā⊃ A which denotes D(A)⊂D(Ā) and Āx = Ax for all x∈
D(A).

We will state the following lemma which is well known for the case when 〈·, ·〉 induces a Hilbert

space.

Lemma B.1. Let T : B ⊃ D(T )→ B be a densely defined linear operator. Then T ′ is uniquely

defined and a closed (with respect to the norm topology as well with respect to 〈·, ·〉) operator.

Proof. For all y ∈ D(T ′) we have for all x ∈ D(T ) that 〈Tx,y〉 = 〈x,T ′y〉. Since D(T ) is dense in

B with respect to 〈·, ·〉 the element T ′y is uniquely determined. To check closedness it suffices

to show that T ′ is closed with respect to 〈·, ·〉 because the norm topology is stronger than the one

induced by 〈·, ·〉. Let xn ∈ D(T ′) with 〈z1,xn〉 → 〈z1,x〉 and 〈z2,T
′xn〉 → 〈z2,y〉 for all z1,z2 ∈B.

For all v ∈ D(T ) we have

〈v,y〉 ← 〈v,T ′xn〉= 〈Tv,xn〉 → 〈T v,x〉. (B2)

Since T is densely defined (with respect to 〈·, ·〉) it follows x ∈ D(T ′) and T ′x = y.

Lemma B.2. Let T : B⊃ D(T )→ B be a densely defined operator. If T ′ is densely defined then T

is closable.
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Proof. If T ′ is densely defined we can build its adjoint with respect to the bilinear form 〈·, ·〉′ :

B′×B → K defined by 〈b′,b〉 := 〈b,b′〉. Then the adjoint T ′′ of T ′ is closed by Lemma B.1.

We claim that T ′′ is an extension of T . Let x ∈ D(T ), i.e. we have for each y ∈ D(T ′) that

〈T x,y〉= 〈x,T ′y〉= 〈T ′y,x〉′. But this exactly states that x ∈ D(T ′′) with T ′′x = T x.

The converse result is a classical result in Hilbert spaces. We present the adapted proof here in

several steps.

We denote by Γ(T ) := {(x,T x) : x ∈ D(T )} the graph of T . Further we define the following

function V on vector spaces X ,Y .

V : X×Y → Y ×X ,V (x,y) := (−y,x). (B3)

Remark B.3. Let B and B′ be Banach spaces and 〈·, ·〉 : B×B′→ K be a continuous bilinear

form. Then we have a natural bilinear form 〈·, ·〉s : (B×B)× (B′×B′)→K defined by

〈(b1,b2),(b
′
1,b
′
2)〉s := 〈b1,b

′
1〉+ 〈b2,b

′
2〉. (B4)

Lemma B.4. We have Γ(T ′) =V (Γ(T )⊥) with respect to the bilinear form 〈·, ·〉s.

Proof. We have for x,y ∈ B′

(x,y) ∈ Γ(T ′) ⇔ 〈x,Tz〉= 〈y,z〉 for all z ∈ D(T )

⇔ 〈x,Tz〉−〈y,w〉= 0 for all (z,w) ∈ Γ(T )

⇔ 〈(x,y),(−w,z)〉= 0 for all (z,w) ∈ Γ(T )

⇔ (x,y) ∈V (Γ(T )⊥)

For Hilbert spaces the previous lemma is used in the proof of the statement that the adjoint of

a closed densely defined operator is densely defined. The main argument makes use of the Hahn-

Banach theorem which is particularly used to show that Γ(T )⊥⊥ = Γ(T ), which is why we restrict

to RKBS with the Hahn-Banach property. One of such RKBS are reflexive RKBS.

Definition B.5 (Reflexive RKBS). Let B and B′ be Banach spaces and 〈·, ·〉 be a continuous

bilinear form on B×B′. We call (B,B′,〈·, ·〉) a dual pairing if B′ is isomorphic to B∗ via the

map b′ 7→ 〈·,b′〉. We call (B,B′,〈·, ·〉) reflexive if it is a dual pairing and B is reflexive.
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Remark B.6. If the RKBS is given by an RKHS then the RKBS is reflexive according to Definition

B.5.

Lemma B.7. If (B,B′,〈·, ·〉) is a dual pairing then it has the Hahn-Banach property. If

(B,B′,〈·, ·〉) is reflexive then (B′,B,〈·, ·〉′) is reflexive for 〈b′,b〉′ := 〈b,b′〉, and (B×B,B′×
B′,〈·, ·〉s) is relfexive as well, where 〈·, ·〉s denotes the bilinear form (B4).

Proof. To show the Hahn-Banach property it follows from Lemma A.4 that we only need to show

(A⊥)⊥ ⊂ A for any subspace A. Assume there exists a x ∈ (A⊥)⊥ \ A. By the Hahn-Banach

theorem we can find a b∗ ∈B∗ with b∗
∣∣
A
= 0 and b∗(x) = 1. If (B,B′,〈·, ·〉,k) is a dual pairing

there exists a b′ ∈B′ with b∗(b) = 〈b,b′〉 for all b ∈B. In particular we get for all a ∈ A that

〈a,b′〉 = b∗(a) = 0, i.e. b∗ ∈ A⊥. But since x ∈ (A⊥)⊥ it follows 0 = 〈x,b′〉 which contradicts

〈x,b′〉 = b∗(x) = 1. Now assume that (B,B′,〈·, ·〉,k) is reflexive. That means that B is reflexive

and hence B′ is reflexive. So it remains to show that the map

e : B→ (B′)∗, b 7→ 〈·,b〉′ = 〈b, ·〉 ∈ (B′)∗ (B5)

is isomorphic. Due to boundedness of the bilinear form the map e is bounded. Further it is

injective due to the Hahn-Banach theorem and the assumption that b′ 7→ 〈·,b′〉 is an isomorphism

between B′ and B∗. It is also surjective by this reason, because due to the isomorphism between

B′ and B∗ we have that (B′)∗ ∼= B∗∗ ∼= B since B is reflexive. Hence let y ∈ (B′)∗, i.e. we

can find a b ∈ B such that we can represent y by y = 〈b, ·〉 = 〈·,b〉′, which is what remained

to be shown. For the last statement note that we have (V ×W )∗ ∼= V ∗×W ∗ for any topological

vector spaces. So if B is reflexive so is B×B and any element y ∈ (B×B)∗ can be written as

y = b∗1+b∗2 for elements b∗1,b
∗
2 ∈B∗, namely by y(b1,b2) = y(b1,0)+y(0,b2) =: b∗1(b1)+b∗2(b2).

Since B∗ ∼= B′ there exist elements b′1,b
′
2 ∈ B′ with b∗i = 〈·,b′i〉 for i = 1,2. In total we get

y(b1,b2) = b∗1(b1)+b∗2(b2) = 〈b1,b
′
1〉+ 〈b2,b

′
2〉= 〈(b1,b2),(b

′
1,b
′
2)〉2 for all (b1,b2) ∈B. So we

see that (b′1,b
′
2) 7→ 〈·,(b′1,b′2)〉 defines a (continuous) surjective map from B′×B′ to (B×B)∗.

Injectivity again follows from B being reflexive and the Hahn-Banach theorem.

Proposition B.8. If (B,B′,〈·, ·〉) is reflexive and T : D(T )⊂B→B be a densely defined clos-

able operator then T ′ is densely defined.

Proof. By Lemma B.4 we have Γ(T ′) = (VΓ(T ))⊥. Next we will show that V commutes with the

annihilator, i.e. V (A⊥) = (VA)⊥ for any A ⊂B′×B′. We have (b1,b2) ∈ (VA)⊥ if and only if
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0 = 〈(b1,b2),(a1,a2)〉 for all (a1,a2) ∈ A, and we get

(b1,b2) ∈ (VA)⊥ ⇔ 〈(b1,b2),(−a2,a1)〉s = 0 ∀(a1,a2) ∈ A

⇔ 0 =−〈b1,a2〉+〉b2,a1〉 ∀(a1,a2) ∈ A

⇔ 0 = 〈(−b2,b1),(a1,a2)〉 ∀(a1,a2) ∈ A

⇔ (−b2,b1) ∈ A⊥ (B6)

⇔ (b1,b2) ∈V (A⊥). (B7)

Now assume D(T ′) is not dense, by the Hahn-Banach theorem there exists a b∗ ∈ (B′)∗ \{0}with

b∗= 0 on D(T ′). Since (B,B′,〈·, ·〉) is reflexive there exists a b∈B\{0}with b∗(b′) = 〈b,b′〉 for

all b′ ∈B, in particular 〈b,b′〉= 0 for all b′ ∈D(T ′), i.e. b∈D(T ′)⊥. That implies (b,0)∈ Γ(T ′)⊥

and by Lemma B.4

Γ(T ′)⊥
Lemma B.4

= (V (Γ(T )⊥))⊥
(B6)
= V (Γ(T )⊥⊥)

Lemma B.7
= V (Γ(T )).

That shows that (0,b) ∈ Γ(T ). Since T is closable Γ(T ) is contained in the graph Γ(T̄ ) of the

closure T̄ of T , in particular we get −b = T̄ 0 = 0, which contradicts b 6= 0.

Appendix C: Auxiliary lemma for measures

The following Lemma was used in Proposition IV.8 5. to show that the Perron-Frobenius

operator is not closed when the RKBS B on X has the universal property and X contains infinitely

many points.

Lemma C.1. Let X be compact and contain infinitely many elements. Then there exists an element

in C (X)∗ that is not a finite linear combination of dirac measures. In other words the set of dirac

measures is not a basis of C (X)∗.

Proof. Let (xn)n∈N ⊂ X be a sequence of pairwise disjoint elements. Define

µ :=
∞

∑
n=1

1

2n
δxn

. (C1)

Since ‖δxn
‖ ≤ 1 the sum converges absolute and hence µ exists in C (X)′.

Assume µ is a finite linear combination of dirac measures. Then there exists a m ∈ N and
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y1, . . . ,ym ∈ X and coefficients a1, . . . ,am ∈ R with

µ =
m

∑
k=1

akδyk
. (C2)

Let j1 ∈ N be the first index with x j1 /∈ {y1, . . . ,ym}. By Urysohn’s lemma there exists a function

f ∈ C (X) with the following properties 0 ≤ f ≤ 1, f (yk) = 0 for all k = 1, . . . and f (x j1) = 1.

Then we get the following contradiciton

0 <
1

2 j1
+ ∑

n= j1+1

1

2n
f (xn) = µ( f ) =

(
m

∑
k=1

akδyk

)
( f )

=
m

∑
k=1

ak f (yk) = 0.
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61M. Korda and I. Mezić, “Optimal construction of koopman eigenfunctions for prediction and

control,” IEEE Transactions on Automatic Control 65, 5114–5129 (2020).

62V. Kühner, “What can koopmanism do for attractors in dynamical systems?” The Journal of

Analysis 29, 449—-471 (2021).
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67I. Mezić, “Spectrum of the koopman operator, spectral expansions in functional spaces, and

state-space geometry,” Journal of Nonlinear Science 30, 2091–2145 (2020).

47

http://arxiv.org/abs/1702.07597

	Koopman and Perron-Frobenius Operators on reproducing kernel Banach spaces
	Abstract
	Introduction
	Notations
	Koopman operators and reproducing kernel Banach spaces
	Review of Koopman and Perron-Frobenius operators
	Reproducing kernel Banach spaces

	Koopman and Perron-Frobenius operators on RKBS; discrete time systems
	Definitions of the Koopman and Perron-Frobenius operator
	Basic properties
	Examples

	Continuous time systems
	Koopman and Perron-Frobenius semigroup
	Koopman and Perron-Frobenius semigroups on RKBS

	Symmetry and sparsity patterns
	Conclusion
	Acknowledgements
	Further notions with respect to the bilinear form
	Adjoint operators
	Auxiliary lemma for measures
	References


