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LARGE |k| BEHAVIOR FOR THE REFLECTION

COEFFICIENT FOR DAVEY-STEWARTSON II

EQUATIONS

CHRISTIAN KLEIN, JOHANNES SJÖSTRAND, AND NIKOLA STOILOV

Abstract. The study of complex geometric optics solutions to
a system of d-bar equations appearing in the context of electrical
impedance tomography and the scattering theory of the integrable
Davey-Stewartson II equations for large values of the spectral pa-
rameter k in [18] is extended to the reflection coefficient. For the
case of potentials q with compact support on some domain Ω with
smooth strictly convex boundary, improved asymptotic relations
are provided.
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1. Introduction

This paper addresses the scattering problem for the integrable Davey-
Stewartson (DS) II equation given by the Dirac system

(1.1)

{
∂φ1 =

1
2
qekz−kzφ2,

∂φ2 = σ 1
2
qekz−kzφ1, σ = ±1,

subject to the asymptotic conditions

(1.2) lim
|z|→∞

φ1 = 1, lim
|z|→∞

φ2 = 0,

where q = q(x, y) is a complex-valued field, where the spectral param-
eter k ∈ C is independent of z = x+ iy, (x, y) ∈ R2, and where

∂ :=
1

2

(
∂

∂x
− i

∂

∂y

)
and ∂̄ :=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

The functions φi(z; k), i = 1, 2 depend on z and k, and are called
complex geometric optics (CGO) solutions. Note that they need not
be holomorphic in either variable.

In addition to the DS II system, the CGO solutions appear in the
scattering theory of two-dimensional integrable equations as the Kadomtsev-
Petviashvili and the Novikov-Veselov equation, see [17] for references,
in electrical impedance tomography (EIT), see [30, 23], and Normal Ma-
trix Models in Random Matrix Theory, see e.g. [14]. Our main interest
in this paper is in the scattering data, the so-called reflection coefficient
R defined by

(1.3) R =
2σ

π

∫

C

ekz−kzq(z)φ1(z; k)L(dz),

where L(dz) is the Lebesgue measure on the complex plane.
We are in particular interested in the case that the potential q has

compact support on some simply connected domain Ω ⊂ C with a
smooth boundary. This is a typical situation in EIT since the body of
a patient has obviously compact support. As an example for such a
situation, we study in this paper the case that q is the characteristic
function of the domain Ω. In the context of DS II such a setting
would correspond to a situation as in the seminal work by Gurevich and
Pitaevski [12] for the Korteweg-de Vries (KdV) equation. For dispersive
PDEs as DS and KdV, rapid modulated oscillations are expected in the
vicinity of a discontinuity of the initial data q called dispersive shock
waves (DSW). A detailed study of this case for DS would allow more
insight into the formation of DSWs for the DS II system.

Since it is analytically difficult to solve d-bar systems explicitly, a
large number of numerical approaches has been developed. The most
popular ones are based on discrete Fourier transforms applied to the
solution of d-bar equations in terms of the solid Cauchy transform,
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see [22, 23]. The first approach along these lines with an exponen-
tial decrease of the numerical error with the number of Fourier modes
has been given in [14, 15] for Schwartz class potentials. A similar de-
pendence of the error on the numerical resolutions could be achieved
for potentials with compact support on a disk in [21]. However, it
is only possible to reach machine precision (here 10−16) for values of
|k| ≃ 1000. Therefore the numerical approach [21] was complemented
in [18] with explicit asymptotic formulae for large values of |k| for po-
tentials being the characteristic function of a compact domain. These
results will be extended in the present paper to allow for sharper as-
ymptotic results and explicit expressions for the reflection coefficient.

1.1. State of the art. We briefly summarize the state of the art of the
theory of the Dirac system (1.1) and the results of [18, 19] to be gener-
alized in this paper. The question of existence and uniqueness of CGO
solutions to system (1.1) with σ = 1 was studied in [3] for Schwartz
class potentials and in [27, 28, 29] for potentials q ∈ L∞(C) ∩ L1(C)
such that also q̂ ∈ L∞(C) ∩ L1(C) where q̂ is the Fourier transform of
q (the potentials have to satisfy a smallness condition in the focusing
case σ = −1). In [6] this was generalized respectively to real-valued,
compactly supported potentials in Lp(C) and in [26] to potentials in
H1,1(C) , and in [25] to potentials in L2(C).

One application of the system (1.1) as shown in [9, 10] is that it
gives both the scattering and inverse scattering map for the Davey-
Stewartson II equation

iqt + (qxx − qyy) + 2σ(Φ + |q|2)q = 0,

Φxx + Φyy + 2(|q|2)xx = 0,
(1.4)

a two-dimensional nonlinear Schrödinger equation; DS is defocusing for
σ = 1, and focusing for σ = −1. Note that DS systems appear in the
modulational regime of many dispersive equations as for instance the
water wave systems, see e.g., [17] for a review on DS equations and a
comprehensive list of references, and are only integrable for the choice
of parameters in (1.4).

The scattering data are given in terms of the reflection coefficient
R = R(k) in (1.3). The DS II equations (1.4) are completely integrable
in the sense that a Lax pair exists, the first part of the Lax pair being
(1.1). Here φ1, φ2, q can be seen as having a dependence on the physical
time t which is suppressed since it will not be studied in this paper.
However, it will play a role in the second equation of the Lax pair. We
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put Θ =

(
φ1e

kz

φ2e
kz

)
and get for the Lax pair

Θx + iσ3Θy =

(
0 q
q 0

)
Θ,(1.5)

Θt =

(
i∂

−1
∂ (|q|2) /2 −i∂q
i∂q −i∂−1

∂ (|q|2) /2

)
Θ(1.6)

−
(

0 q
q 0

)
Θy + iσ3Θyy ,

where σ3 = diag(1,−1) is a Pauli matrix.
As q in (1.4) evolves in time t, the reflection coefficient evolves be-

cause of (1.6) by a trivial phase factor:

(1.7) R(k; t) = R(k, 0)e4itℜ(k2).

The inverse scattering transform for DS II is then given by (1.1) and
(1.2) after replacing q by R and vice versa, the derivatives with respect
to z by the corresponding derivatives with respect to k, and asymptotic
conditions for k → ∞ instead of z → ∞, see [1].

The main interest in [18, 19] and the present paper is in the case
when |k| is large, i.e., h := 1/|k| small. We introduce the following
notation:

kz − kz = i|k|ℜ(zω) = i|k|〈z, ω〉R2, ω =
2ik

|k| ,

and for u ∈ L2(R2)

τ̂ωu = ekz−kzu, τ̂−ωu = ekz−kzu, E = (h∂)−1, F = (h∂)−1

which leads for (1.1) to
{
h∂φ1 = τ̂−ωh(q/2)φ2,

h∂φ2 = στ̂ωh(q/2)φ1.

See [18], Section 2, for the precise choice of E, F . Looking for
solutions of the form (1.10) - (1.11) below, leads to the inhomogeneous
system {

φ1
1 − Eτ̂−ω

hq
2
φ1
2 = Ef1,

φ1
2 − σF τ̂ω

hq
2
φ1
1 = Ff2,

with f1 = 0 and f2 = στ̂ωhq̄/2, or

(1−K)

(
φ1
1

φ1
2

)
=

(
Ef1
Ff2

)
,

where

(1.8) K =

(
0 A
B 0

)
,

{
A = Eτ̂−ω

hq
2
,

B = σF τ̂ω
hq
2
(= σA)

.
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In ([18]) we showed,

Proposition 1.1. Let q ∈ 〈·〉−2Hs for some s ∈]1, 2] and fix ǫ ∈]0, 1].
Define K as in (1.8). Then K = O(1) : (〈·〉ǫL2)2 → (〈·〉ǫL2)2,

K2 = O(hs−1) : (〈·〉ǫL2)2 → (〈·〉ǫL2)2.

For h0 > 0 small enough and 0 < h ≤ h0, 1−K : (〈·〉ǫL2)2 → (〈·〉ǫL2)2

has a uniformly bounded inverse,
(1.9)

(1−K)−1 = (1−K2)−1(1+K) =

(
(1− AB)−1 0

0 (1− BA)−1

)(
1 A
B 1

)
.

When q is the characteristic function of a bounded strictly convex do-
main with smooth boundary, the conclusions hold with s = 3

2
.

1.2. Main results. The main goal of this paper is to obtain improved
asymptotics for the reflection coefficient, in particular for the case of
potentials with compact support. To this end we solve the system (1.1)
for q ∈ 〈·〉−2Hs for some s ∈]1, 2] for small h in the form

(1.10) φ1 = φ0
1 + φ1

1, φ2 = φ0
2 + φ1

2.

We start with

(1.11) φ0
1 = 1, φ0

2 = 0.

The functions φ1
1 and φ1

2 should satisfy
{
h∂φ1

1 − τ̂−ω
hq
2
φ1
2 = f1,

h∂φ1
2 − στ̂ω

hq
2
φ1
1 = f2,

with f1 = 0 and f2 = στ̂ωhq/2 which is O(h) in 〈·〉−2L2. We look for
φ1
j ∈ 〈·〉ǫL2 for ǫ ∈]0, 1]. This is equivalent to

{
φ1
1 − Eτ̂−ω

hq
2
φ1
2 = Ef1,

φ1
2 − σF τ̂ω

hq
2
φ1
1 = Ff2,

or

(1−K)

(
φ1
1

φ1
2

)
=

(
Ef1
Ff2

)
.

Here Ff2 = σF τ̂ωhq/2 = O(1) in 〈·〉ǫL2 and Proposition 1.1 gives
us a unique solution in (〈·〉ǫL2)2 which is O(1) in that space. More
precisely by (1.9), we get

Theorem 1.2. The system (1.1) has the solution (1.10), (1.11) with

(1.12) φ1
1 = (1−AB)−1AσF τ̂w

hq

2
= (1−AB)−1AB(1)

φ1
2 = (1− BA)−1σF τ̂ω

hq

2
where σF τ̂ωhq/2 = B(1) and AσF τ̂ωhq/2 = AB(1) are O(1) in 〈·〉ǫL2

by (1.8). Note that formally φ1 = (1− AB)−1(1), φ2 = φ1
2.
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On the way we improve the results of Prop. 1.1 for potentials q being
the characteristic function of a compact domain,

Proposition 1.3. If q is the characteristic function of a bounded strictly
convex domain with smooth boundary, the conclusions of Prop. 1.1 hold
with s = 2.

In the following we will put σ = 1 for the ease of presentation. When
Ω ∈ C is a bounded domain, let

(1.13) DΩ(z) =
1

π

∫

Ω

1

z − w
L(dw), z ∈ C

be the solution of the d-bar problem

(1.14)

{
∂z̄DΩ = 1Ω,

DΩ(z) → 0, z → ∞.

The main theorem of this paper reads

Theorem 1.4. Let Ω ⋐ C be open with a strictly convex smooth bound-
ary, and let iu(w, k) be a holomorphic extension of kw−kw from ∂Ω to
neigh(∂Ω,C). DΩ is continuous, DΩ|Ω ∈ C∞(Ω), DΩ|C\Ω ∈ C∞(C\Ω).
Moreover

R =
2

π

∫

Ω

ekz−kzL(dz)

+
1

4iπ|k|2
(
−
∫

Γ̃

DΩ(w)e
iu(w,k)dw +

∫

Γ

DΩ(w)e−iu(w,k)dw

)
+O(|k|−3 ln |k|),

(1.15)

for k ∈ C, |k| ≫ 1. Here Γ is the contour from Fig. 1, and Γ̃ is defined
as Γ after replacing k with −k.

We parametrize the positively oriented boundary ∂Ω by γ(t), t ∈
[0, L] and put ϕ(t) = −(kγ(t) − kγ(t))/|k| as well as a(t) = γ̇(t). We
denote the critical points of ϕ by t±. Applying a stationary phase
approximation to reflection coefficient (1.15), we obtain

Corollary 1.5. The leading order of the reflection coefficient for |k| ≫
1 is given by

R =
i
√
2π

πk̄

∑

t=t−,t+

e−|k|ϕ(t)
[
|k|− 1

2a(t)ϕ′′(t)−
1

2 + |k|− 3

2

(
a′′(t)

2
ϕ′′(t)−

3

2

−
(
a(t)

ϕ(4)(t)

6
+ a′(t)

ϕ(3)(t)

2

)
ϕ′′(t)−

5

2 +
5

24
a(t)ϕ(3)(t)2ϕ′′(t)−

7

2

)]

+

√
2π

4πi|k|2
∑

t=t−,t+

e−|k|ϕ(t)|k|− 1

2ϕ′′(t)−
1

2

(
−DΩ(γ(t))a(t) +DΩ(γ(t))ā(t)

)

+O(|k|−3 ln |k|).

(1.16)
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The branches of the square roots are chosen as in Remark 4.1.

The paper is organized as follows: in section 2, we give estimates
for the operator AB. In section 3 these estimates are applied to the
reflection coefficient. In section 4 we provide explicit formulae via a
stationary phase approximation. We consider the example of the char-
acteristic function of the unit disk and give a partial proof of a con-
jecture in [18] for the reflection coefficient in this case. We add some
concluding remarks in section 5.

2. Estimates for the operator AB

Let Ω ⋐ C be strictly convex with smooth boundary. The central
problem is to study AB where A, B are given in (1.8),

A = Eτ̂−ω
hq

2
, B = σF τ̂ω

hq

2
(= σA), q = 1Ω,

Au(z) =
1

2π

∫

Ω

1

z − w
e−kw+kwu(w)L(dw),

Bu(z) =
σ

2π

∫

Ω

1

z − w
ekw−kwu(w)L(dw),

ABu(z) =
σ

4π2

∫∫

Ω×Ω

1

z − ζ
e−kζ+kζ

1

ζ − w
ekw−kwu(w)L(dζ)L(dw)

=

∫

Ω

K(z, w)u(w)L(dw),

(2.1)

(2.2) K(z, w) =
σ

4π2

∫∫

Ω

ekζ

(z − ζ)

e−kζ

(ζ − w)

dζ ∧ dζ

2i
ekw−kw,

for the case of the characteristic function of Ω.
We look for functions f̃ , g̃ such that with d denoting exterior differ-

entiation with respect to ζ ,

ekζ

(z − ζ)

e−kζ

(ζ − w)
dζ ∧ dζ = d

(
ekζ−kζ(f̃dζ + g̃dζ)

)
+ . . . ,

i.e.

ekζ

(z − ζ)

e−kζ

(ζ − w)
= ∂ζ(e

kζ−kζ f̃)− ∂ζ(e
kζ−kζ g̃) + . . . .

With

f̃ =
f

k(z − ζ)(ζ − w)
, g̃ =

g

k(z − ζ)(ζ − w)
,
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we get

∂ζ(e
kζ−kζ f̃) =

1

k
∂ζ

(
ekζ−kζf

(z − ζ)(ζ − w)

)
=

ekζ−kζ

(z − ζ)(ζ − w)

(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
f − 1

k

ekζ−kζ

(ζ − w)
πf(z)δz(ζ),

− ∂ζ(e
kζ−kζ g̃) = −1

k
∂ζ

(
ekζ−kζg

(z − ζ)(ζ − w)

)
=

ekζ−kζ

(z − ζ)(ζ − w)

(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
g − 1

k

ekζ−kζ

(z − ζ)
πg(w)δw(ζ).

Hence,

(2.3) ∂ζ(e
kζ−kζ f̃)− ∂ζ(e

kζ−kζ g̃) =

ekζ−kζ

(z − ζ)(ζ − w)

[(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
f +

(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
g

]

− πekζ−kζ

k(ζ − w)
fδz(ζ)−

πekζ−kζ

k(z − ζ)
gδw(ζ)

We would like to have(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
f(ζ) +

(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
g(ζ) = 1.

We start by constructing a partition 1 = χw + χz + rw,z, where rw,z is
supported in a region |ζ − z|, |ζ − w| < O( 1

|k|) and then solve, up to

asymptotic errors,

(2.4)

(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
f = χw,

(2.5)

(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
g = χz.

Put

(2.6) d(z, w, k) = |z − w|+ 1

|k| ,

Proposition 2.1. Let

(2.7) d̂(z, w, ζ, k) = d(z, w, k) +

∣∣∣∣ζ −
z + w

2

∣∣∣∣

and notice that d̂(z, w, ζ, k) is uniformly of the same order of magnitude
as d(z, w, k)+ |ζ−z| and d(z, w, k)+ |ζ−w|, since |z−w| ≤ d(z, w, k).
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For all (w, z, k) ∈ C3 with |k| ≥ 1, there exist χw, χz ∈ C∞(C),
rw,z ∈ C∞

0 (C) such that

(2.8) χw, χz, rw,z ≥ 0,

(2.9) χw + χz + rw,z = 1,

|ζ − z| ≥ 1

O(1)
d̂(z, w, ζ, k) on suppχz,

|ζ − w| ≥ 1

O(1)
d̂(z, w, ζ, k) on suppχw,

(2.10)

(2.11) rw,z has its support in

{
ζ ∈ C; |ζ − z|, |ζ − w| ≤ 3

2|k|

}
,

(2.12)

∇α
ζχz = O

(
d̂−|α|

)
, ∇α

ζ χw = O
(
d̂−|α|

)
, ∀α ∈ N

2, |α| = |α|l1 = α1+α2,

(2.13) ∇α
ζ rz,w = ON,α(1)d̂

−|α|(|k|d̂)−N , ∀α ∈ N
2, ∀N ∈ N.

These estimates are uniform with respect to w, z, k.

Proof. Put

χ̃z(ζ) = (1− ψ0)

(
ζ − z

d

)
, χ̃w(ζ) = (1− ψ0)

(
ζ − w

d

)
,

where ψ0 ∈ C∞
0 (D(0, 1/3)) is real valued with 1D(0,1/4) ≤ ψ0 ≤ 1D(0,1/3).

Clearly χ̃z(ζ) + χ̃z(ζ) ≥ 0 and
(2.14)

χ̃z(ζ) + χ̃z(ζ) = 0 ⇒
{
| ζ−z
d
| ≤ 1

3

| ζ−w
d

| ≤ 1
3

⇔
{
|ζ − z| ≤ 1

3
|z − w|+ 1

3
1
|k| ,

|ζ − w| ≤ 1
3
|z − w|+ 1

3
1
|k| .

The last inequalities imply that |z − w| ≤ 2
3
|z − w|+ 2

3|k| , so

|z − w| ≤ 2

|k| , |ζ − z|, |ζ − w| ≤ 1

|k| .

We have ∇α
ζ χ̃z, ∇α

ζ χ̃w = O(d−|α|) and

|ζ − z| ≥ 1

O(1)
d(z, w, k) on supp χ̃z,

|ζ − w| ≥ 1

O(1)
d(z, w, k) on supp χ̃w,

(2.15)

where we can replace d(z, w, k) with d̂(z, w, ζ, k). Moreover, since
χ̃·(ζ) = 1 when | · −ζ | ≥ 1

3
d, we have

∇α
ζ χ̃z = O

(
(d+ |z − ζ |)−|α|) , ∇α

ζ χ̃w = O
(
(d+ |w − ζ |)−|α|) .

Hence as noted in the statement of the proposition,

(2.16) ∇α
ζ χ̃z, ∇α

ζ χ̃w = O(d̂−|α|).
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Let Ψ1 ∈ C∞
0 (D(0, 3

2
)) satisfy 1D(0,1) ≤ Ψ1 ≤ 1 and put r̃z,w =

Ψ1(|k|(ζ − z))Ψ1(|k|(ζ − w)). Then, by (2.14) and the subsequent
observation,

(2.17) f := χ̃z(ζ) + χ̃w(ζ) + r̃z,w ≍ 1,

and by construction the last term has its support in
{
ζ ∈ C; |ζ − z|, |ζ − w| ≤ 3

2|k|

}
,

so that |z − w| ≤ O(1)
|k| , d̂(z, w, ζ, k) ≍ 1

|k| on supp r̃z,w. It follows that

r̃z,w = ON(1)(|k|d̂)−N , ∀N ≥ 0 and more generally

(2.18) ∇α
ζ r̃z,w = ON,α(1)d̂

−|α|(|k|d̂)−N .
From (2.16) we get

(2.19) ∇α
ζ f, ∇α

ζ

1

f
= O(1)d̂−|α|.

Put

(2.20) χz = χ̃z/f, χw = χ̃w/f, rz,w = r̃z,w/f.

Then we have

(2.21) χz + χw + rz,w = 1,

and (2.8)–(2.13) follow. �

We now return to the problem (2.4) – (2.5). As a first approximate
solution, we take f 0 = χw, g

0 = χz and treat the other terms in the
LHSs as perturbations. We then get f, g as formal Neumann series
sums
(2.22)

f =

∞∑

0

(
1

k(ζ − w)
− 1

k
∂ζ

)ν
χw, g =

∞∑

0

(
1

k(z − ζ)
+

1

k
∂ζ

)ν
χz.

Recall (2.10) and (2.11). Then

∇ν0
ζ

1

(ζ − w)ν1
∂ν2
ζ
χw = O(d̂−(ν0+ν1+ν2)),

∇ν0
ζ

1

(z − ζ)ν1
∂ν2ζ χz = O(d̂−(ν0+ν1+ν2)).

Thus

(2.23)
∇ν0
ζ

(
1

k(ζ − w)
− 1

k
∂ζ

)ν
χw

∇ν0
ζ

(
1

k(z − ζ)
+

1

k
∂ζ

)ν
χz





= O(d̂−ν0(kd̂)−ν).
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For N ∈ N define fN , gN as in (2.22) but with finite sums
(2.24)

fN =
N∑

0

(
1

k(ζ − w)
− 1

k
∂ζ

)ν
χw, gN =

N∑

0

(
1

k(z − ζ)
+

1

k
∂ζ

)ν
χz.

Notice that by (2.23)

(2.25) fN , gN = O(1).

Then c.f. (2.4), (2.5)
(2.26)(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
fN = χw−

(
1

k(ζ − w)
− 1

k
∂ζ

)N+1

χw =: χw−SN+1
w

(2.27)(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
gN = χz−

(
1

k(z − ζ)
+

1

k
∂ζ

)N+1

χz =: χz−TN+1
z

where

(2.28) ∇ν0
ζ S

N+1
w , ∇ν0

ζ T
N+1
z = O(d̂−ν0(kd̂)−N−1).

Now, combine (2.26) - (2.28) with (2.21) and (2.18) (valid also for rz,w)
to get

(2.29)

(
1− 1

k(ζ − w)
+

1

k
∂ζ

)
fN +

(
1− 1

k(z − ζ)
− 1

k
∂ζ

)
gN =

1− SN+1
w − TN+1

z − rz,w =: 1− rN+1

where

(2.30) ∇ν0
ζ r

N+1 = O(d̂−ν0(kd̂)−N−1), ν0 ∈ N.

We use this in the discussion after (2.2). With

f̃N =
fN

k(z − ζ)(ζ − w)
, g̃N =

gN

k(z − ζ)(ζ − w)

we get (cf. (2.3))

d
(
ekζ−kζ(f̃Ndζ + g̃Ndζ)

)
=

[
ekζ−kζ

(z − ζ)(ζ − w)
− ekζ−kζrN+1

(z − ζ)(ζ − w)
− πekζ−kζfNδz(ζ)

k(ζ − w)
− πekζ−kζgNδw(ζ)

k(z − ζ)

]
dζ∧dζ.
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We use this in (2.2) and apply Stokes’ formula:

K(z, w) =
σekw−kw

(2π)22i




∫∫

Ω

ekζ−kζ

(z − ζ)(ζ − w)
rN+1dζ ∧ dζ

︸ ︷︷ ︸
=:K1(z,w)

+
2iπekz−kz

k(z − w)
fN(z, w, z)1Ω(z)

︸ ︷︷ ︸
=:K2(z,w)

+
2iπekw−kw

k(z − w)
gN(z, w, w)1Ω(w)

︸ ︷︷ ︸
=:K3(z,w)

+

∫

∂Ω

ekζ−kζfN

k(ζ − w)(z − ζ)
dζ

︸ ︷︷ ︸
=:K4(z,w)

+

∫

∂Ω

ekζ−kζgN

k(ζ − w)(z − ζ)
dζ

︸ ︷︷ ︸
=:K5(z,w)


 .

(2.31)

The factor in front of the big bracket is bounded, so it will suffice to
estimate the norms between various weighted Lp spaces of the operators

(2.32) Aju(z) =

∫

Ω

Kj(z, w)u(w)L(dw)

with integral kernel Kj . Recalling (2.30), we get

K1(z, w) =
O(1)

|k|N+1

∫

Ω

1

|z − ζ ||w − ζ |
1

(
|z − w|+ |ζ − z+w

2
|+ 1

|k|

)N+1
L(dζ).

Consider separately the integrals over Ω1 = {ζ ∈ Ω; |ζ −w| ≥ |ζ − z|}
and Ω2 = {ζ ∈ Ω; |ζ−w| < |ζ− z|}. The two integrals can be handled
similarly, and we only need to consider the first case |ζ −w| ≥ |ζ − z|.
Here |ζ − w| ≥ 1

2
|z − w| and the corresponding integral is

≤ O(1)

|z − w|
1

|k|N+1

∫

Ω1

1

|z − ζ |
1

(
|z − w|+ |ζ − z| + 1

|k|

)N+1
L(dζ)

≤ O(1)

|z − w|
1

|k|N+1

∫

C

1

|ζ |
1

(|ζ |+ λ)N+1
L(dζ),

where λ := |z − w|+ 1/|k|. Putting

ζ = λζ̃, L(dζ) = λ2L(dζ̃),
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gives the upper bound

=
O(1)

|z − w|
1

|k|N+1

λ2

λN+2

∫

C

1

|ζ̃|
1

(
|ζ̃|+ 1

)N+1
L(dζ)

= O(1)
1

|k||z − w| (|k|λ)N
=

O(1)

|k||z − w|
1

(|k||z − w|+ 1)N

= O(1)fk,N(z − w).

Here

fk,N(z) =
1

|k||z|(1 + |k||z|)N ,

and
∫
fk,N(z)L(dz) =

∫
1

|k||z|(1 + |k||z|)N L(dz) =

1

|k|2
∫

1

|z̃|(1 + |z̃|)N L(dz̃) = O(1)
1

|k|2 .

We deduce that K1 is bounded by an L1 convolution kernel, hence

A1 = O(1)
1

|k|2 : Lp → Lp, 1 ≤ p ≤ ∞.

By (2.25) we have K2(z, w), K3(z, w) =
O(1)

|k||z−w| and it follows (here we

integrate over Ω in (2.32)) that for every bounded set V ⊂ C,

(2.33) 1VA2, 1VA3 = O(|k|−1) : Lp → Lp, 1 ≤ p ≤ ∞.

In fact, 1/|z| is integrable on every bounded set.
We next estimate the contribution to A2, A3 from |z| ≫ 1. For

j = 2, 3 let Cj = 1
C\neigh (Ω)Aj. Then

Cju(z) =

∫

Ω

K̃j(z, w)u(w)L(dw), |K̃j(z, w)| ≤
1

〈z〉|k| ,

|Cju(z)| ≤ O(1)〈z〉−1|k|−1||u||L1(Ω) ≤ O(1)〈z〉−1|k|−1||u||Lp(Ω), 1 ≤ p ≤ ∞.

Here ∫
〈z〉−qL(dz) <∞ if q > 2,

so
Cj = O (1/|k|) : Lp → Lq if 1 ≤ p ≤ ∞, q > 2.

If q ≤ 2, ǫ > 0. Then,

‖〈·〉−1−ǫ‖qLq =

∫
〈z〉−(1+ǫ)qL(dz) <∞

iff (1+ ǫ)q > 2, i.e. iff ǫ > 2/q− 1. When q = 2, this amounts to ǫ > 0.
We conclude that

Cj = Oǫ(1/|k|) : Lp → 〈·〉ǫLq when 1 ≤ p ≤ ∞, 1 ≤ q ≤ 2, ǫ >
2

q
− 1.
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Hence for j = 2, 3:

Aj = O(1/|k|) :
{
Lq → Lq, when q > 2,

Lq → 〈·〉ǫLq, when 1 ≤ q ≤ 2, ǫ > 2/q − 1.

We next estimate A4, A5 with kernels K4, K5 in (2.31). It suffices
to treat A4, K4 since the expression for K5 is very similar. Let

Γz = {ζ ∈ ∂Ω; |ζ−z| ≥ 1

2
|w−z|}, Γw = {ζ ∈ ∂Ω; |ζ−w| ≥ 1

2
|z−w|},

so that ∂Ω ⊂ Γz ∪ Γw. Then

|K4(z, w)| ≤
O(1)

|k|

(∫

Γz

|dζ |
|z − ζ ||ζ − w| +

∫

Γw

|dζ |
|z − ζ ||ζ − w|

)

≤ O(1)

|k|

(
1

|w − z|

∫

∂Ω

|dζ |
|ζ − w| +

1

|w − z|

∫

∂Ω

|dζ |
|z − ζ |

)

≤ O(1)

|k|

(
1

|w − z|G(w) +
1

|w − z|G(z)
)
,

(2.34)

where

(2.35) G(z) =

{
1 + | ln d(∂Ω, z)|, z ∈ neigh(Ω,C),

1/〈z〉, z ∈ C \ neigh(Ω,C),
and d(∂Ω, w) denotes the distance between ∂Ω and w.

| · −z|−α and Gβ are integrable on any bounded set when β ≥ 0,

0 < α < 2. Choose α = 3/2 and write |G(w)|
|w−z| as the geometric mean

(
1

|w−z|
3

2

) 2

3

(G(w)3)
1

3 . Using that geometric means are bounded by the

arithmetic ones, we get

1

|w − z|G(w) ≤
2

3

1

|w − z|3/2 +
1

3
G(w)3.

Using this and the corresponding estimate with G(z) in (2.34) we get
(2.36)

1neigh(Ω)(z)|Kj(z, w)|1Ω(w) ≤
O(1)

|k|
1

|z − w| 32
+
O(1)

|k| G(w)
3+

O(1)

|k| G(z)
3,

when j = 4. Clearly the same estimate holds when j = 5. The
first term is an L1-convolution kernel (neglecting a region |z| ≫ 1 and
recalling that w ∈ Ω), gives rise to an operator

O(1/|k|) : Lp(Ω) → Lp(neigh (Ω)), p ∈ [1,∞]

for any bounded neighborhood of Ω. By the Hölder inequality and the
fact that Gα ∈ L1, ∀α > 0, we see that the second term gives rise to an
operator

O(1/|k|) : Lp → L∞, ∀p > 1.
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Similarly the third term gives rise to an operator

O(1/|k|) : L1(Ω) → Lq(neigh (Ω)), q ∈ [1,∞[

for any bounded neighborhood of Ω. Recalling again that we work on
a bounded subset of C where Lp ⊂ Lq for 1 ≤ q ≤ p ≤ ∞ we conclude
that

(2.37) 1neigh(Ω)A4, 1neigh(Ω)A5 = O(1/|k|) : Lp → Lp, 1 < p <∞.

For z ∈ C \ neigh (Ω), w ∈ Ω, (2.34) and (2.35) give

|K4(z, w)| ≤
O(1)

|k|〈z〉(1 + | ln d(w, ∂Ω)|).

This is the same estimate as for K2, K3 except that the 1Ω(w), belong-
ing to all Lp

′

with 1 ≤ p′ ≤ +∞, is replaced by (1+ | ln(w, ∂Ω)|)1Ω(w)
belonging to all Lp

′

with 1 ≤ p′ < +∞. The estimates for 1
C\neigh (Ω)Aj ,

j = 2, 3 extend to 1
C\neigh (Ω)A4, 1C\neigh (Ω)A5 : Lp → Lq, for 1 < p ≤

∞: For j = 4, 5,

1
C\neigh (Ω)Aj = O(1/|k|) :

{
Lp → Lq, 1 < p ≤ ∞, q > 2,

Lp → 〈·〉ǫLq, 1 < p ≤ ∞, 1 ≤ q ≤ 2, ǫ > 2
q
− 1.

Hence with (2.37)

Aj = O(1/|k|) :
{
Lq → Lq, 2 < q < +∞,

Lq → 〈·〉ǫLq, 1 < q ≤ 2, ǫ > 2
q
− 1.

Combining the estimates for Aj , 1 ≤ j ≤ 5, we get

Theorem 2.2.

(2.38) AB = O(1/|k|) :
{
Lq → Lq, 2 < q < +∞,

Lq → 〈·〉ǫLq, 1 < q ≤ 2, ǫ > 2
q
− 1.

3. Back to the reflection coefficient

Recall (1.3)

(3.1) R =
2σ

π

∫

C

ekz−kzq(z)φ1(z; k)L(dz),

where φ1 = 1 + φ1
1 and we assume q = 1Ω where Ω ⋐ C is open with

strictly convex smooth boundary. φ1
1 is given by (1.12),

(3.2) φ1
1 = (1− AB)−1AB(1) = AB(1) + (AB)2(1) + ...

and A, B are given in (1.8), now with q = 1Ω

(3.3)

{
A = Eτ̂−ω

h
2
1Ω,

B = σF τ̂ω
h
2
1Ω (= σA)

.
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By Theorem 2.2 we know that 1ΩAB = O(1/|k|) : L2(Ω) → L2(Ω)
and we shall frequently use that A = A ◦ 1Ω, B = B ◦ 1Ω. Combining
(3.1), (3.2), we get (assuming σ = 1 for simplicity)

(3.4) R =
2

π

N−1∑

ν=0

∫

Ω

ekz−kz(AB)ν(1)L(dz) +O(|k|−N),

for every N = 1, 2, .... Here
∣∣∣∣
∫

Ω

ekz−kz(AB)ν(1)L(dz)

∣∣∣∣ ≤ vol (Ω)1/2‖(AB)ν(1)‖L2(Ω) ≤ C(C/|k|)ν

and we shall see that this estimate can be improved by using more
information about A = Ak from Section 5 in [18] in the case when ∂Ω
is analytic. In remark 3.3 we explain how to extend the discussion to
the case when ∂Ω is merely smooth.

First, recall from (3.3) and the explicit formula for the fundamental
solution of ∂ appearing in E, that

(3.5) Au(z) =
1

2π

∫

Ω

e−kw+kw
1

z − w
u(w)L(dw),

or

(3.6) A = Ak = A0 ◦ e−k·+k·,
where

(3.7) A0u(z) =
1

2π

∫

Ω

1

z − w
u(w)L(dw).

A0 is anti-symmetric for the standard bilinear scalar product on L2;
At

0 = −A0, so the transpose of Ak is given by

(3.8) At
k = −e−k·+k·A0 = −e−k·+k·A−ke

−k·+k·,

and Bk is the complex conjugate of Ak (here σ = 1 for simplicity):

Bk = Ak.

In [18] we studied the function

(3.9) f(z, k) = 2πAk(1Ω)(z) =

∫

Ω

e−kw+kw
1

z − w
L(dw),

when ∂Ω is analytic.
By (5.32), (5.31) in [18], we have

(3.10)

f(z, k) =
1

2ik
F (z)+(π/k)

(
e−iu(z,k)(1Ω−

(z)− 1Ω+
(z)) + e−kz+kz1Ω(z)

)
,

where

(3.11) F (z) = FΓ(z) =

∫

Γ

1

z − w
e−iu(w,k)dw.



17

Here the deformation Γ of ∂Ω and the domains Ω± are defined in [18,
Section 5], see Fig. 1. Further −iu(·, k) is the holomorphic extension
of −k ·+k· from ∂Ω to a neighborhood.

Γ− Γ+

Ω+Ω−

w+

w−

Figure 1. Real analytic strictly convex boundary ∂Ω
(solid) of some domain Ω and the deformed contour Γ
(dashed) for this example.

In (5.69), (5.70) in [18] we have seen that
(3.12)
F (z) = O(1)(|z − w+(k)||k|1/2 + 1)−1 +O(1)(|z − w−(k)||k|1/2 + 1)−1,

where w+(k), w−(k) ∈ ∂Ω are the North and South poles, determined
by the fact that the interior unit normal of ∂Ω at w±(k) is of the form
c±ω for some c± with ±c± > 0. Here ω ∈ R2 ≃ C is determined by
kz − kz = i|k|ℜ(zω) for all z ∈ z.

We deduced that

(3.13) ‖F‖L2(Ω) = O(1)
(ln |k|)1/2
|k|1/2 ,
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(3.14) ‖F/(2ik)‖L2(Ω) = O(1)
(ln |k|)1/2
|k|3/2 ,

and using (3.12) we now add the observation that

(3.15) ‖F/(2ik)‖L1(Ω) = O(1)
1

|k|3/2 .

We next estimate (π/k)e−iu(·,k)1Ω+
, appearing in (3.10). (Notice that

e−iu(·,k)1Ω−
is absent, since we restrict the attention to Ω and Ω−∩Ω =

∅.) In (5.75) in [18] we found that

(3.16)
∥∥(π/k)e−iu(·,k)1Ω+

∥∥
L2(Ω)

=
O(1)(ln |k|)1/2

|k|3/2 ,

and we shall now apply the same procedure to the L1-norm. We restrict
the attention to the contribution to the L1-norm from a neighborhood
of one of the poles, say w+(k). (Away from such neighborhoods, the
estimates are simpler and lead to a stronger conclusion.) In suitable
coordinates µ = t+ is we have

(π/k)e−iu(·,k)1Ω+
= O(k−1)e−|k|ts/C , 0 ≤ t ≤ 1/O(1), 0 ≤ s ≤ t.

(Away from a neighborhood of {w+(k), w−(k)} we have the same esti-
mate, now for 1/O(1) ≤ t ≤ O(1), 0 ≤ s ≤ 1/O(1).) The contribution
to the L1-norm of (π/k)e−iu(·,k)1Ω+

is

O(|k|−1)

∫ 1

0

∫ t

0

e−ts|k|/Cdsdt = O(|k|−1)

∫ 1

0

1

t|k|
(
1− e−t

2|k|/C
)
dt

=
O(1)

|k|

(∫ |k|−1/2

0

tdt +

∫ 1

|k|−1/2

1

t|k|dt
)

=
O(1) ln |k|

|k|2 .

The contribution from Ω\neigh ({w+, w−}) to the L1-norm isO(1)|k|−2.
Hence

(3.17)
∥∥(π/k)e−iu(·,k)1Ω+

∥∥
L1(Ω)

=
O(1) ln |k|

|k|2 .

Combining (3.10), (3.14), (3.16), we get as in [18] that

(3.18) Ak(1Ω) =
1

2k
e−kz+kz1Ω + r(z, k),

i.e.,

(3.19) r =
F

4πik
− 1

2k
e−iu1Ω+

in Ω,

where

(3.20) r(·, k) = O(1)|k|−3/2(ln |k|)1/2 in L2(Ω).

Using (3.15), (3.17) instead of (3.14), (3.16), we get

(3.21) ‖r(·, k)‖L1(Ω) = O(1)|k|−3/2.
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We now return to the expansion (3.4) for R, and start with the term
for ν = 1. Let

〈u|v〉 =
∫

Ω

u(z)v(z)L(dz)

denote the bilinear L2 scalar product. We get with A = Ak, B = Bk if
nothing else is indicated,

2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz) =
2

π
〈AB(1Ω)|ek·−k·1Ω〉

=
2

π
〈B(1Ω)|Atek·−k·(1Ω)〉 = −2

π
〈Bk(1Ω)|e−k·+k·A−k(1Ω)〉,

where we used (3.8) in the last step. Applying (3.18) to A−k(1Ω) and

the fact that Bk(1Ω) = Ak(1Ω), we get

(3.22)
2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz)

= −2

π
〈 1

2k
e−k·+k·1Ω + r(·, k)|e−k·+k·(− 1

2k
ek·−k·1Ω + r(·,−k))〉

=
2

π

1

4|k|2
∫

Ω

ekz−kzL(dz)− 2

π

∫

Ω

1

2k
r(z,−k)L(dz)

+
2

π

∫

Ω

r(z, k)
1

2k
L(dz)− 2

π

∫

Ω

e−kz+kzr(z, k)r(z,−k)L(dz).

As we have already seen, the integral in the first term in the last
member is O(|k|−3/2), so this term is O(|k|−7/2). By (3.20) the last
term in (3.22) is O(|k|−3 ln |k|). Thus (3.22) gives

2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz)

= −2

π

∫

Ω

1

2k
r(z,−k)L(dz) + 2

π

∫

Ω

r(z, k)
1

2k
L(dz) +O(|k|−3 ln |k|).

(3.23)

(3.21) now yields

(3.24)
2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz) = O(|k|−5/2).

Before studying the leading asymptotics of the integrals in the left
hand side of(3.23), we shall gain a power of k in the estimate of the
general term in (3.4) for ν ≥ 2:

(3.25)
2

π

∫

Ω

ekz−kz(AB)ν(1Ω)(z)L(dz) =
2

π

∫

Ω

ekz−kzA(BA)ν−1B(1Ω)(z)L(dz)

= −2

π
〈(BA)ν−1B(1Ω)|e−k·+k·A−k(1Ω)〉 = O(1)|k|1−ν|k|−1|k|−1

= O(|k|−ν−1) = O(|k|−3),
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since (BA)ν−1 = O(|k|1−ν) : L2(Ω) → L2(Ω) and B(1Ω), A−k(1Ω) =
O(1/|k|) in L2(Ω).

Combining (3.4), (3.24), (3.25), we get

(3.26) R =
2

π

∫

Ω

ekz−kzL(dz) +
2

π

∫

Ω

ekz−kzAB(1Ω)L(dz) +O(|k|−3),

and in particular,

(3.27) R =
2

π

∫

Ω

ekz−kzL(dz) +O(|k|−5/2).

We next study the second term in the right hand side of (3.26),
starting from (3.23). By (3.17) and (3.19) we have

(3.28) r =
F

4πik
+

O(1) ln |k|
|k|2 in L1(Ω),

where F = F (z, k). Using this in (3.23), we get

(3.29)
2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz) =

2

π

∫

Ω

1

2k

F (z,−k)
4iπk

L(dz) +
2

π

∫

Ω

F (z, k)

−4iπk

1

2k
L(dz) +O(|k|−3 ln |k|)

=
1

4iπ2|k|2
∫

Ω

(F (z,−k)− F (z, k))L(dz) +O(|k|−3 ln |k|).

Here we recall (3.11) for F (z, k) = FΓ(z), where Γ = Γ(k) is a defor-
mation of ∂Ω passing through the poles w+(k), w−(k), situated outside
Ω near the boundary segment Γ− from w+(k) to w−(k) and inside Ω
near the boundary segment Γ+ from w−(k) to w+(k) (when following
the boundary with the positive orientation). This choice is given by
the method of steepest descent for e−iu(·,k). When replacing k with −k,
we have e−iu(z,−k) = eiu(z,k) and w±(−k) = w∓(k). Correspondingly, Γ

should be replaced by a contour Γ̃ which is a deformation of ∂Ω in-
wards near the segment Γ− from w+(k) to w−(k) and outwards near
the segment Γ+ from w−(k) to w+(k).

We get

(3.30)

∫

Ω

F (z,−k)L(dz) =
∫

Ω

∫

Γ̃

1

z − w
eiu(w,k)dwL(dz)

=

∫

Γ̃

∫

Ω

1

z − w
L(dz)eiu(w,k)dw = −π

∫

Γ̃

DΩ(w)e
iu(w,k)dw,

using that 1
z−we

iu(w,k) is integrable on Ω× Γ̃ for the measure L(dz)|dw|.
Here

(3.31) DΩ(z) =
1

π

∫

Ω

1

z − w
L(dw)
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is the solution to the ∂-problem:

(3.32)

{
∂zDΩ = 1Ω,

DΩ(z) → 0, z → ∞.

Similarly,

(3.33) −
∫

Ω

F (z, k)L(dz) =

∫

Ω

∫

Γ

1

w − z
e−iu(w,k)dwL(dz)

=

∫

Γ

∫

Ω

1

w − z
L(dz)e−iu(w,k)dw = π

∫

Γ

DΩ(w)e−iu(w,k)dw.

Using (3.30), (3.33) in (3.29), we get

(3.34)
2

π

∫

Ω

ekz−kzAB(1Ω)(z)L(dz) =

1

4iπ|k|2
(
−
∫

Γ̃

DΩ(w)e
iu(w,k)dw +

∫

Γ

DΩ(w)e−iu(w,k)dw

)
+O(|k|−3 ln |k|).

Remark 3.1. It is not obvious whether the error term in (3.34) is
optimal or a consequence of the applied technique to prove the result.

Proposition 3.2. DΩ ∈ C(C) and the restrictions of this function to
the open sets Ω and C\Ω extend to functions in C∞(Ω) and C∞(C\Ω)
respectively.

Proof. The continuity of DΩ is clear. We first look at DΩ(z) in C \ Ω.
Here DΩ(z) is holomorphic and

∂zDΩ(z) =
1

π

∫

Ω

∂z

(
1

z − w

)
L(dw)

=− 1

π

∫

Ω

∂w

(
1

z − w

)
dw ∧ dw

2i
=

1

2πi

∫

Ω

dw

(
1

z − w
dw

)
.

(3.35)

By Stokes’ formula,

(3.36) ∂zDΩ(z) =
1

2πi

∫

∂Ω

1

z − w
dw =

1

2πi

∫ L

0

1

z − γ(t)
γ̇(t)dt

where γ : [0, L[∋ t 7→ γ(t) ∈ ∂Ω is a smooth positively oriented
parametrization of ∂Ω.

It follows that

(3.37) ∂zDΩ(z) = O(1)| ln d(z, ∂Ω)|, z ∈ (C \ Ω) ∩ neigh (∂Ω),

where d(z, ∂Ω) denotes the distance from z to ∂Ω.
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For n = 1, 2, ..., we apply ∂nz to (3.36):

(3.38) ∂n+1
z DΩ(z) =

1

2πi

∫

∂Ω

∂nz
1

z − w
dw

=
1

2πi

∫

∂Ω

(−∂w)n
1

z − w
dw =

1

2πi

∫ L

0

(−γ̇−1∂t)
n

(
1

z − γ(t)

)
γ̇dt

=
1

2πi

∫ L

0

1

z − γ(t)
(∂t ◦ γ̇−1)n

(
γ̇
)

︸ ︷︷ ︸
O(1)

dt = O(1)| ln d(z, ∂Ω)|,

still for z ∈ neigh (∂Ω) \ Ω. Integrating these estimates, we see that
∂nzDΩ(z) is bounded on C \Ω for n ∈ Ω (which we already knew to be
valid away from a neighborhood of ∂Ω) and hence thatDΩ ∈ C∞(C\Ω).

If instead of DΩ we look at

(3.39) DΩ,ψ(z) =
1

π

∫

Ω

1

z − w
ψ(w)L(dw)

for some ψ ∈ C∞(Ω) with ψ = 1 near ∂Ω, we still have DΩ,ψ ∈ C∞(C\
Ω). Indeed, we get very much as in (3.35),

∂zDΩ,ψ(z) =
1

π

∫

Ω

∂z

(
1

z − w

)
ψ(w)L(dw)

= −1

π

∫∫

Ω

∂w

(
1

z − w

)
ψ(w)

dw ∧ dw
2i

=
1

2πi

∫

Ω

dw

(
ψ(w)

z − w
dw

)
+

1

π

∫∫

Ω

∂wψ

z − w

dw ∧ dw
2i

,

where the last integral belongs to C∞(C\Ω) and the second last integral
is equal to 1

2πi

∫
∂Ω

1
z−wdw̄ and is also in C∞(C\Ω) as we have just seen.

We finally show that DΩ(z), z ∈ Ω, extends to a function in C∞(Ω).
Let χ ∈ C∞

0 (C) be equal to 1 near Ω. Then f(z) = 1
π

∫
C
(z−w)−1χ(w)L(dw)

solves ∂zf = χ and belongs to C∞(C). For z ∈ Ω we have

DΩ(z) = f(z)− 1

π

∫

C\Ω

1

z − w
χ(w)L(dw).

As in the remark above aboutDΩ,ψ in C\Ω we see that 1
π

∫
C\Ω

1
z−wχ(w)L(dw)

belongs to C∞(Ω). Hence DΩ(z) extends from Ω to a smooth function
on Ω. �

This completes the proof of Theorem 1.4 in the case when ∂Ω is
analytic.

The exponentials in the integrals in (3.34) behave like Gaussians
peaked at w±(k), and hence the integrals are O(|k|−1/2) and the con-
tribution from outside any fixed neighborhood of {w+(k), w−(k)} is
exponentially small. The proposition implies that DΩ(w) is a Lipschitz
function and therefore we modify the integrals by O(|k|−1) only, if we
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replace DΩ(w) in a neighborhood of w±(k) by DΩ(w±(k)). Thus for
instance

(3.40)

∫

Γ̃

DΩ(w)e
iu(w,k)dw = DΩ(w+(k))

∫

Γ̃∩neigh (w+(k))

eiu(w,k)dw

+DΩ(w−(k))

∫

Γ̃∩neigh (w−(k))

eiu(w,k)dw +O(k−1).

Remark 3.3. We now drop the analyticity assumption and assume
that Ω ⋐ C is open with smooth boundary and strictly convex. We
have used the analyticity assumption in (3.10), (3.11), where iu is the
holomorphic extension to a neighbourhood of ∂Ω of the function kw −
kw, w ∈ ∂Ω. In the merely smooth case we let iu(w, k) denote an
almost holomorphic extension of ∂Ω ∋ w 7→ kw − kw and define F as
in (3.11), using the modified function u. Stokes’ formula now produces
a small error term to be added to (3.11) and as in (2.18) in [19] and
the subsequent discussion, we get

f(z, k) =
1

2ik̄
F (z) +

π

k̄

(
e−iu(z,k)(1Ω−

(z)− 1Ω+
(z)) + e−kz+kz1Ω(z)

)

+O(〈z〉−1|k|−∞).

The discussion after (3.11) goes through with only a minor change: In
the formula (3.19) for r we have to add a remainder O(|k|−∞). But
this does not affect the subsequent estimates, and we get Theorem 1.4
also in the more general case of a smooth boundary.

4. Stationary phase approximation

To compute the leading orders in 1/|k| of the reflection coefficient, we
apply a standard stationary phase approximation. Since higher order
terms in this approximation are needed here, we briefly summarize
some facts on the approach.

4.1. Two term stationary phase expansion. We have in mind∫
∂Ω
e−kz+kz after a change of contour from ∂Ω to Γ and choosing a

parametrisation. Let ϕ ∈ C∞(neigh(0,R)) satisfy ϕ(0) = 0, ϕ′(0) = 0,
ℜϕ′′(0) > 0, a ∈ C∞(neigh(0,R)). Consider

I(ϕ, a; h) = h−
1

2

∫

V

e−ϕ(t)/ha(t)dt, V = neigh(0,R).

We already know that I ∼ I0 + I1h+ . . . , where I0 =
√
2π√
ϕ′′(0)

with the

natural choice of the branch of the square root and our problem is to
compute I1h. Write ϕ(t) = ϕ2t

2 + ψ(t), where ψ(t) = O(t3). Put

ϕ(t; s) = ϕ2t
2 + sψ, 0 ≤ s ≤ 1.
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Clearly I(ϕ, a; h) is smooth in s with ∂ks I(ϕs, a; h) = O(hk/2), k =
0, 1, 2, . . . , hence by a limited Taylor expansion

I(ϕ, a; h) = I(ϕ, a; h)|s=0 + (∂s)I(ϕ, a; h)|s=0 +
1

2
(∂2s )I(ϕ, a; h)|s=0 +O(h3/2)

= I(ϕ2t
2, a; h)− I(ϕ2t

2, aψ/h; h) +
1

2
I(ϕ2t

2, a(ψ/h)2; h) +O(h3/2).

(4.1)

Indeed

(4.2) I(ϕ,O(tn); h) = O(h
n
2 ).

Using again (4.2) we can replace a, aΨ
h

and a(Ψ
h
)2 by their limited

Taylor sums modulo O(t3), O( t
5

h
) and O( t

7

h2
) respectively.

Writing ψ ∼ ϕ3t
3 + ϕ4t

4 + . . . , a ∼ a0 + a1t + a2t
2 + . . . and using

also that I(ϕ2t
2, tn; h) = 0 when n is odd (up to an exponentially small

error if V is not symmetric around t = 0), we get

I(ϕ2t
2, a; h) = I(ϕ2t

2, a0, h) + I(ϕ2t
2, a2t

2, h) +O(h2)

= a0I(ϕ2t
2, 1; 1) + ha2I(ϕ2t

2, t2; 1) +O(h2),

and

I(ϕ2t
2,
aψ

h
; h) = I(ϕ2t

2, (a0 + a1t)
ϕ3t

3 + ϕ4t
4

h
; h) +O(h3/2)

= I(ϕ2t
2,
(a0ϕ4 + a1ϕ3)t

4

h
; h) +O(h3/2)

= h(a0ϕ4 + a1ϕ3)I(ϕ2t
2, t4; 1)) +O(h3/2),

as well as

I(ϕ2t
2, a(

ψ

h
)2; h) = I(ϕ2t

2,
a0ϕ

2
3t

6

h2
, h) +O(h3/2)

= ha0ϕ
2
3I(ϕ2t

2, t6; 1) +O(h3/2).

We now have integrals with quadratic exponent and polynomial am-
plitudes and up to exponentially small corrections from now on, we
integrate over R instead of V .

4.2. Reduction to the case of an exact quadratic. Now we con-
sider the reduction to the case of a quadratic exponential,

I(ϕ0, t
2n; 1) =

∫
e−ϕ2t2t2ndt.

Reparametrise t2 = τ2

2ϕ2
, t = 1

(2ϕ2)1/2
τ , and dt = 1√

2ϕ2
dτ = 1√

ϕ′′(0)
dτ

I(ϕ2t
2, t2n; 1) = (2ϕ2)

−n− 1

2 I(
τ 2

2
; τ 2n; 1) = (ϕ′′(0))−n−

1

2 I(
τ 2

2
, τ 2n; 1).
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Integrate by parts when n ≥ 1:

I(τ 2/2, τ 2n; 1) =

∫

R

e−τ
2/2τ 2ndτ = −

∫

R

∂τ (e
−τ2/2)τ 2n−1dτ

=

∫
e−τ

2/2(2n− 1)τ 2(n−1)dτ = (2n− 1)I(τ 2/2, τ 2(n−1); 1).

In particular

I(τ 2/2, τ 2; 1) = I(τ 2/2, 1; 1) =
√
2π,

I(τ 2/2, τ 4; 1) = 3I(τ 2/2, 1; 1) = 3
√
2π,

I(τ 2/2, τ 6; 1) = 15I(τ 2/2, 1; 1) = 15
√
2π.

We combine the different identities:

I(ϕ, a; h) = I(ϕ2t
2, a; h)− I(ϕ2t

2, a
ψ

h
; h) +

1

2
I(ϕ2t

2, a(
ψ

h
)2; h) +O(h

3

2 )

= a0I(ϕ2t
2, 1; 1) + ha2I(ϕ2t

2, t2; 1)− h(a0ϕ4 + a1ϕ3)I(ϕ2t
2, t4; 1)

+
1

2
ha0ϕ

2
3I(ϕ2t

2, t6; 1) +O(h
3

2 )

=
√
2πa(0)ϕ′′(0)−

1

2 +
√
2πh

[
1

2
a′′(0)ϕ′′(0)−

3

2

−
(
1

8
a(0)ϕ(4)(0) +

1

2
a′(0)ϕ(3)(0)

)
ϕ′′(0)−

5

2

+
5

24
a(0)ϕ(3)(0)2ϕ′′(0)−

7

2

]
+O(h

3

2 ).

(4.3)

Here we recall that ϕ3 = ϕ(3)(0)/6 and ϕ4 = ϕ(4)(0)/24, a0 = a(0),
a1 = a′(0), a2 = 1

2
a′′(0). We know that I(ϕ, a; h) has an asymptotic

expansion in integer powers of h, so the remainder can be improved to

O(h2). In view of the application to
∫
∂Ω
e−kz+kzdz, we try to express the

result in terms of ϕ/h =: Φ, and it then seems convenient to replace

I(a, ϕ; h) above by J(a,Φ) := h
1

2 I(a, ϕ; h) =
∫
V
e−Φ(t)a(t)dt. From

(4.3) we get using ϕ = hΦ,

1√
2π
J(ϕ, a) = a(0)Φ′′(0)−

1

2 +
a′′(0)

2
Φ′′(0)−

3

2

−
(
a(0)

Φ(4)(0)

8
+ a′(0)

Φ(3)(0)

2

)
Φ′′(0)−

5

2

+
5

24
a(0)Φ(3)(0)2Φ′′(0)−

7

2 +O(h2).(4.4)

Notice that the first term in the final expression is homogeneous of
degree −1

2
in Φ, while the following one is homogeneous of degree −3

2
.
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4.3. Stationary phase approximation for the reflection coeffi-

cient. We now apply the above results to the reflection coefficient (we
only discuss the analytic case here, see Remark 3.3 for a generalization
to the smooth case). We also assume in the following that Φ does not
vanish at the stationary points.

In application to
∫
∂Ω
ekz−kz, let [0, L[∋ t 7→ γ(t) parametrize the

boundary, so
∫
∂Ω
ekz−kzdz =

∫ L
0
e−Φ(t)a(t)dt, with

(4.5) Φ(t) = −(kγ(t)− kγ(t)), a(t) = γ̇(t).

Apply (4.4) with O(h2) = O(|k|−2).

Remark 4.1. It remains to choose the correct branches of (Φ′′(t))
1

2 at
t = t±. We adapt the notation of [18], iu(z, k) = kz− kz, z ∈ ∂Ω. We
have Φ(t) = −iu(γ(t), k)) =: −iU(t, k) which is purely imaginary with
two non degenerate critical points at t = t+, t− corresponding to the
poles w+, w− respectively. By contour deformation we see that the sta-
tionary phase approximation is still valid with the branch of (Φ′′(t±))

1/2

obtained as the limit of (F±,ǫ)
1/2, where F±,ǫ is a sequence converg-

ing to Φ′′(t±) when ǫ ց 0 with the property ℜF±,ǫ > 0. We get
(Φ′′(t±))

1/2 = e∓iπ/4|U ′′(t±, k)|1/2.

We get for (3.40)
(4.6)∫

Γ̃

DΩ(w)e
iu(w,k)dw =

√
2π

∑

t=t+,t−

e−Φ(t)DΩ(γ(t))a(t)(Φ
′′(t))−

1

2+O(|k|−1),

where Φ and a are defined in (4.5), and where the signs of the roots
are chosen as detailed in Remark 4.1.

The leading term in the reflection coefficient (1.15) is due to the

term
∫
Ω
ekz−kzL(dz). We apply Stokes’ theorem as before to write

this in the form of an integral over ∂Ω and apply a stationary phase
approximation,

i

2k̄

∫

∂Ω

ekz−kzdz =
i
√
2π

2k̄

∑

t=t+,t−

e−Φ(t)

(
a(t)(Φ′′(t))−

1

2 +
a′′(t)

2
(Φ′′(t))−

3

2

−
(
a(t)

8
Φ(4)(t) +

1

2
a′(t)Φ(3)(t)

)
(Φ′′(t))−

5

2

+
5

24
a(t)Φ(3)(t)2(Φ′′(t))−

7

2

)
+O(|k|−3).

(4.7)

Again Φ and a are defined in (4.5), and the sign of the roots are cho-
sen as explained in Remark 4.1. With (4.6) and (4.7) we get for the
reflection coefficient (1.15) relation (1.16).
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4.4. Example: Characteristic function of the unit disk. In gen-
eral, we cannot compute explicitly DΩ(z), but in the special case of the
unit disc, we have

DD(0,1)(z) =

{
z, |z| ≤ 1,

1/z, |z| ≥ 1.

For the stationary phase approximation, we parametrize ∂Ω via
γ(t) = eit, t ∈ [0, 2π[. Writing k = |k|eiϑ, ϑ ∈ R, we have Φ =
−2i|k| sin(t+ϑ) and a = ieit in (4.5). The critical points are t± = ±π

2
−

ϑ (the relation to the previously introduced t± is t± := t∓). We have
Φ(t±) = −Φ′′(t±) = Φ(4)(t±) = ∓2i|k|, whereas Φ′(t±) = Φ(3)(t±) = 0
and a(t±) = −a′′(t±) = ∓e−iϑ. This implies for the right hand side of
(4.7
(4.8)
i

2k̄

∫

∂Ω

ekz−kzdz =

√
π

|k|3/2
(
sin(2|k| − π/4) +

3

16|k| cos(2|k| − π/4)

)
+O(|k|−7/2).

Similarly we get for (4.6)

(4.9)

∫

Γ̃

DΩ(w)e
iu(w,k)dw =

√
π

|k|2i cos(2|k| − π/4) +O(|k|−1).

Thus we get for the leading terms of the reflection coefficient (1.16)
the result conjectured in [18] (note that the formula for R/2 was given
there),

(4.10) R ≈ 2√
π|k|3

(
sin(2|k| − π/4)− 5

16|k| cos(2|k| − π/4)

)
.

Note that the conjectured error term is smaller than what is proven in
this paper.

5. Conclusion

In this paper, we have presented asymptotic relations for large |k|
for the solutions to the Dirac system (1.1) subject to the asymptotic
conditions (1.2). Previous results for potentials being the characteristic
function of a compact domain with smooth convex boundary have been
improved and extended to the reflection coefficient, the scattering data
in the context of an integrable systems approach to the DS II equation.
The results are now extended to O(|k|−5/2) which makes it possible to
apply these formulae to complement numerical computations in order
to get the reflection coefficient for all k ∈ C with the same precision as
discussed in [18]. This allows to treat the reflection coefficient with a
hybrid approach combining numerical and analytical results.

An interesting question in the context of EIT would be to extend the
results of this paper to a compact domain with cavities. Since in ap-
plications to the human body, the organs of a patient are of essentially
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constant conductivity, this corresponds to a situations of a domain
with compact support and cavities all of which have smooth compact
boundaries. The boundary data at the cavities are a consequence of
the conductivity in the interior. It will be the subject of further work
to adapt the present formulae to this case. An interesting question to
be addressed is also to find the optimal error term in Theorem 1.4.
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[18] C. Klein, J. Sjöstrand, N. Stoilov, Large |k| behavior of complex geometric

optics solutions to d-bar problems, accepted for publication in Comm. Pure
Appl. Maths. https://arxiv.org/abs/2009.06909.
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