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DISPERSIVE ESTIMATES FOR THE WAVE EQUATION OUTSIDE A CYLINDER IN

R3

FELICE IANDOLI, OANA IVANOVICI

Abstract. We consider the wave equation with Dirichlet boundary conditions in the exterior of a cylinder
in R3 and we construct a global in time parametrix to derive sharp dispersion estimates for all frequencies
(low and high) and, as a corollary, Strichartz estimates, all matching the R3 case.

1. General setting

We consider the linear wave equation on an exterior domain Ω ⊂ R3 with smooth boundary; let ∆D be the
Laplacian with constant coefficients and Dirichlet boundary conditions,

{
(∂2t −∆D)u = 0, in Ω,
u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0.

(1.1)

A basic homogeneous (local) estimate says that on any smooth Riemannian manifold (Ω, g) without boundary,
a solution u to the wave equation satisfies (for T <∞)

‖u‖Lq(0,T )Lr(Ω) ≤ CT
(
||u0||Ḣβ(Ω) + ||u1||Ḣβ−1(Ω)

)
, (1.2)

where β = d(12− 1
r )− 1

q is dictated by scaling and the pair (q, r) is wave-admissible, i.e such that 2
q+

d−1
r ≤ d−1

2

and (q, r, d) 6= (2,∞, 3). Here Ḣβ(Ω) denotes the homogeneous L2 Sobolev space over Ω. If (1.2) holds for
T = ∞, Strichartz estimates are said to be global. Such inequalities were established long ago for Minkowski
space (flat metrics) and can be generalized to any smooth Riemannian manifold (Ω, g) because of their local
character (finite propagation speed). They are sharp on every Riemannian manifold (Ω, g) with ∂Ω = ∅.
The aforementioned results for Rd and manifolds without boundary are now well understood. Euclidean
results go back to R.Strichartz’s pioneering work [17], where he proved the particular case q = r for the wave
and Schrödinger equations. This was later generalized to mixed LqtL

r
x norms by J.Ginibre and G.Velo [3] for

Schrödinger equations, where (q, r) is sharp admissible and q > 2; wave estimates were obtained by J.Ginibre
and G.Velo [4, 5], H.Lindblad and C.Sogge [8], as well as L.Kapitanski for a smooth variable coefficients
metric,[9]. Endpoint cases for both equations were finally settled by M.Keel and T.Tao [10]. On manifolds
without boundary, by finite speed of propagation it suffices to work in coordinate charts and to establish
estimates for variable coefficients operators in Rd. For operators with C1,1 coefficients, Strichartz estimates
were shown by H.Smith [14] (see also D.Tataru [18] for metrics with Cα coefficients).

The canonical path leading to such Strichartz estimates is to obtain a stronger, fixed time, dispersion
estimate, which is then combined with energy conservation, interpolation and a duality argument to obtain

(1.2). If e±it
√

−∆
Rd are the half-wave propagators in (Rd, (δi,j)), χ ∈ C∞

0 (]0,∞[) then the following holds:

‖χ(hDt)e
±it

√
−∆

Rd‖L1(Rd)→L∞(Rd) ≤ C(d)h−dmin{1, (h/|t|) d−1
2 }. (1.3)

Our aim in the present paper is to prove dispersion for (1.1) when ∂Ω is a cylinder in R3 : a parametrix
near diffractive points may be explicitly obtained in a similar way as in [7] (where the case of the wave
and Schrödinger equations outside a ball of R3 was dealt with by the second author and G.Lebeau) and the
diffractive effects in the shadow region are much weaker; however, dealing with the case when both the source
and the observation points are located very close to the boundary at a long distance is a real hurdle. In fact,
this situation corresponds to rays that remain close to the boundary for a large time interval and propagate
near points where the curvature vanishes : to our knowledge, a parametrix near such points, allowing for
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sharp amplitude estimates, was only constructed in [11] inside a cylindrical domain of R3. However, while
in [11] the time is bounded (as at the time we did not know to handle the reflections in very large time in
the interior case), the parametrix we construct here is global in time, depending on the angle of the initial
directions of propagation and on the initial distance of the data to the boundary: different values of these
parameters completely modify its construction; dealing with points where the curvature vanishes requires
handling separately different situations (involving Hankel and Bessel functions). We expect that in order to
deal with general boundaries with no convexity or concavity assumption, and allowing for possibly vanishing
curvatures along lower dimensional submanifolds, we need to understand a variety of simple models and the
exterior of the cylinder is the first of them after the exterior of a sphere.
Let us provide some details : introducing cylindrical coordinates inR3, our domain becomes Ω = {(r, θ, z), r ≥
1, θ ∈ [0, 2π), z ∈ R} and ∆D = ∂2

∂r2 +
1
r
∂
∂r

+ 1
r2

∂2

∂θ2 +
∂2

∂z2 . With h a small parameter and τ = h∂t/i, η = h∂y/i,

ξ = h∂x/i, ϑ = h∂z/i, the characteristic set of ∂2t −∆D is τ2 = ξ2 + 1
r2 η

2 + ϑ2 and the boundary is {r = 1}.
In [7], G.Lebeau and the second author constructed a global in time parametrix for the wave equation
outside a ball in R3, which allowed them to obtain sharp dispersion bounds. In the particular case of
[7] the model domain was {(r, θ, ω), r ≥ 1, θ ∈ [0, π), ω ∈ [0, 2π)} and the Laplace operator was given by

∆F := ∂2

∂r2 +
d−1
r

∂
∂r

+ 1
r2 (

∂2

∂θ2 +
1

sin2 θ
∂2

∂ω2 ). The main difficulty came from rays that hit the boundary without

being deviated (corresponding to ξ = 0, η = 1 and r near 1; in fact, due to the rotational symmetry, in
the exterior of the ball the characteristic equation is ξ2 + 1

r2 η
2 = τ2) : for this regime, the most efficient

tool is the Melrose-Taylor parametrix (see [20]), as it provides us with the form of the solution to (1.1) near
diffractive points ξ = 0, r = 1 (recall that this parametrix was first used by H.Smith and Ch.Sogge in [16]
to obtain, in a direct way, local in time sharp Strichartz bounds for waves). In the case of the exterior
of a cylinder, the “diffractive regime” would correspond to (η/τ)2 + (ϑ/τ)2 = 1, ξ = 0, r = 1 (instead of
(η/τ)2 = 1, ξ = 0, r = 1 of [7]) : it turns out that when ϑ/τ is very close to 1 the Melrose-Taylor parametrix
fails to apply (essentially because one cannot perform any kind of stationary phase arguments anymore in
the oscillatory integrals that allow to obtain the form of the solution near the boundary in terms of Airy
functions). In particular, the situation ϑ/τ = 1 correspond to rays that (start and) remain close to the
boundary for all time and at our knowledge has been encountered only in [11] where the author studied
dispersive bounds for (1.1) in the interior of a cylindrical domain {(r, θ, z), r ≤ 1, θ ∈ [0, 2π), z ∈ R} ⊂ R3

with Dirichlet Laplacian ∆D = ∂2r + (2 − r)∂2θ + ∂2z (and obtained a “sharp loss” of 1/4 due to swallowtail
type singularities in the wave front set) ; notice however that in [11] the time is bounded so when ϑ/τ is
close to 1 the estimates follow easy by Sobolev embedding (and a parametrix is naturally obtained in terms
of a spectral sum). In the exterior of a cylinder, our aim is to construct the parametrix globally in time,
which makes this situation more difficult (and the case 1− ϑ/τ ∼ 2−j already very delicate when compared
to the exterior of a ball).
Throughout the rest of the paper A . B means that there exists a constant C such that A ≤ CB, such
a constant may change from line to line and it is independent of all parameters, and A ∼ B means that
B . A . B. We may now state our main results.

Theorem 1.1. Let Θ ⊂ R3 be the cylinder in R3 and set Ω = R3 \Θ. Let ∆D denote the Laplace operator
in Ω with Dirichlet boundary condition and let χ ∈ C∞

0 (0,∞). The following estimate holds for all t > 0

‖χ(hDt)e
±it

√
−∆D‖L1(Ω)→L∞(Ω) . h−3min{1, h

t
}. (1.4)

Moreover, let χ0 ∈ C∞
0 (−2, 2), equal to 1 on [0, 3/2]. Then ‖χ0(Dt)e

±it
√
−∆D‖L1(Ω)→L∞(Ω) . 1/(1 + t).

Theorem 1.2. Under the assumptions of Theorem 1.1, Strichartz estimates for the wave flow outside a
cylinder in R3 hold as in the flat case, globally in time.

Theorem 1.2 follows from (1.4) using the usual TT ∗ argument and the conservation of energy. In the re-
maining of this work we focus on the proof of Theorem 1.1, first in the high-frequency situation which is by
far the most difficult one. The small frequency case will be sketched in the last part.

We recall a classical notion of asymptotic expansion: a function f(w) admits an asymptotic expansion for
w → 0 when there exists a (unique) sequence (cn)n such that, for any n, limw→0 w

−(n+1)(f(w)−∑n
0 cjw

j) =
cn+1. We denote f(w) ∼w

∑
n cnw

n.
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1.0.1. The incoming wave. Let D denote the unit disk in R2 and let Θ := D×R ⊂ R3. We set Ω := R3 \Θ,
then ∂Ω = S1 × R is the infinite cylinder. We introduce cylindrical coordinates as follows: a point of Q of
Ω with coordinates (x1, x2, x3) ∈ R3 is defined by (r, θ, z) where r > 1, θ ∈ [0, 2π) and z ∈ R and where
x1 = r cos(θ), x2 = r sin(θ), x3 = z. We also set r = 1 + x, x ≥ 0, y := π/2 − θ, θ ∈ [0, 2π), z ∈ R. In these
coordinates, the Laplacian becomes

∆ =
∂2

∂x2
+

1

(1 + x)

∂

∂x
+

1

(1 + x)2
∂2

∂y2
+

∂2

∂z2
. (1.5)

In the new coordinate system, x→ (x, y, z) is the ray orthogonal to ∂Ω at (0, y, z) ∈ ∂Ω. Any point in Q ∈ Ω
can be written under the form Q = (0, y, z)+x~ν(y,z), where (y, z) is the orthogonal projection of Q on ∂Ω and
~ν(y,z) the outward unit normal to ∂Ω pointing towards Ω. The dual variable to (x, y, z) is denoted (ξ, η, ϑ).

The principal symbol of ∂2t −∆ associated to (1.5) is p(x, ξ, η, ϑ, τ) = −τ2+ ξ2+(1+x)−2η2 +ϑ2. The time
variable and its dual are t and τ . We let Q = {(x, y, z, t, ξ, η, ϑ, τ), x = 0}, P = {(x, y, z, t, ξ, η, ϑ, τ), p = 0}.
The cotangent bundle of ∂Ω × R is the quotient of Q by the action of translation in ξ, and we take as
coordinates (y, z, t, η, ϑ, τ). A point (y, z, t, η, ϑ, τ) ∈ T ∗(∂Ω× R) is classified as one of three distinct types:
it is said to be hyperbolic if there are two distinct nonzero real solutions ξ to p|x=0 = 0. These two solutions
yield two distinct bicharacteristics, one of which enters Ω as t increases (the incoming ray) and one which
exits Ω as t increases (the outgoing ray). The point is elliptic if there are no real solutions ξ to p|x=0 = 0.
In the remaining case τ2 = η2 + ϑ2, there is an unique solution ξ = 0 to p|x=0 = 0 which yields a glancing
ray, and the point is said to be a glancing point. A glancing ray has exactly second order contact with the
boundary if we have in addition η2 d

dx (1 + x)−2|x=0 = −η2/2 < 0, which means if η 6= 0. We set α = η/τ ,

γ = ϑ/τ : the glancing condition becomes α2 + γ2 = 1, while the hyperbolic (or elliptic) regime satisfy
1− α2 − γ2 > 0 (or 1− α2 − γ2 < 0). A point in T ∗(∂Ω×R) such that 1 ≥ α2 > 0 may be a glancing point
of order exactly two. When α = 0, it is a glancing point of order ∞ (as, in this case, Hj

px = 0 for all j ≥ 1).

Remark 1.3. When 1 − γ2 − α2 ≥ 1/16, then on the boundary ξ2/τ2 = (1 − γ2 − α2) ≥ 1/16 in which
case the corresponding point in the cotangent bundle is hyperbolic. The proof of Theorem 1.1 for such points
follows as in the case of the half-space, so we will focus on the situation 1−γ2−α2 ≤ 1/16, when |ξ/τ | . 1/4.

Let ∆ be the Laplacian in R3, then the solution ufree(Q,Q0, t) to the free wave equation (∂2t −∆)ufree = 0
in R3 with ufree|t=0 = δQ0 , ∂tufree|t=0 = 0, where δQ0 is the Dirac distribution at Q0 ∈ R3, is given by :

ufree(Q,Q0, t) :=
1

(2π)3

ˆ

ei(Q−Q0)ξ cos(t|ξ|)dξ. (1.6)

If win(Q,Q0, τ) := ̂1t>0ufree(Q,Q0, τ) denotes its Fourier transform in time, then the following holds :

win(Q,Q0, τ) =
iτ

4π

e−iτ |Q−Q0|

|Q−Q0|
. (1.7)

Consider the equation (1.1) with initial data (δQ0 , 0), where Q0 ∈ Ω is an arbitrary point
{

(∂2t −∆D)u = 0 in Ω× R,
u|t=0 = δQ0 , ∂tu|t=0 = 0, u|∂Ω = 0.

(1.8)

Let u(Q,Q0, t) = cos(t
√−∆D)(δQ0)(Q) denote the solution to (1.8) : in order to prove Theorem 1.1 we

construct u for all t and then deduce global in time dispersive bounds. We may assume, without loss of
generality, that dist(Q0, ∂Ω) ≥ dist(Q, ∂Ω) : indeed, when this is not the case we can use the symmetry of
the Green function to change Q0 and Q. We may assume that, in the coordinates (r, θ, z), the source point
is of the form Q0 = (s, 0, 0), where s− 1 > 0 represents the distance from Q0 to the boundary. Let Q be an
arbitrary point of Ω, then Q := (r cos θ, r sin θ, z). We introduce the distance between Q and Q0 as follows

φ̃(r, θ, z, s) := |Q−Q0| =
√
r2 − 2sr cos θ + s2 + z2. (1.9)

In the normal coordinates (x, y, z) we have Q0 = (s − 1, π2 , 0) and Q = ((1 + x) sin y, (1 + x) cos y, z);

letting φ(x, y, z, s) := φ̃(1 + x, π2 − y, z, s), we have φ(x, y, z, s) =
√
(1 + x)2 − 2s(1 + x) sin y + s2 + z2. The

coordinates (x, y, z) will be particularly useful when working near a glancing point; near hyperbolic (or
elliptic) points we keep the cylindrical coordinates (r, θ, z). We will switch them when necessary.
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Let ufree be given in (1.6). By finite speed of propagation, for any sufficiently small time 0 < t < d(Q0, ∂Ω),
the solution to (1.8) in Ω is just 1t>0ufree, whose Fourier transform equals win. In the following, we
decompose win according to the initial directions of propagation as follows : let ψ0(β) be a smooth function
supported near 1, equal to 1 for 1 ≥ β ≥ 1/36, equal to 0 for β ≤ 1/64 and such that 0 ≤ ψ0 ≤ 1. Let also
ψ ∈ C∞

0 (1/4, 4) equal to 1 near 1 such that 1− ψ0(β) =
∑

j≥1 ψ(2
2jβ). Write win = w0 +

∑
j≥1 wj , with

w0(Q,Q0, τ) =
τ2

(2π)2
iτ

4π

ˆ

ψ0(1 − γ2)

φ(x, ỹ, z̃, s)
eiτ((y−ỹ)α+(z−z̃)γ)e−iτφ(x,ỹ,z̃,s)dαdγdỹdz̃, (1.10)

wj(Q,Q0, τ) =
τ2

(2π)2
iτ

4π

ˆ

ψ(22j(1− γ2))

φ(x, ỹ, z̃, s)
eiτ((y−ỹ)α+(z−z̃)γ)e−iτφ(x,ỹ,z̃,s)dαdγdỹdz̃. (1.11)

Let ψj(β) := ψ(22jβ). We set u+free := 1t>0ufree =
´

eiτtwin(Q,Q0, τ)dτ . Using (1.10) and (1.11), we

decompose as follows ufree = ufree,0 +
∑
j≥1 ufree,j and set u+free,j := 1t>0ufree,j , where F(u+free,j) = wj .

The paper is organized as follows : in Section 2 we consider h ∈ (0, h0) for some small h0 ∈ (0, 1) and s ≥
√
2

and we show that, for all u+free,j with 0 ≤ j ≤ 1
3 log2(s/h), we may construct the outgoing wave in a similar

way to that used in [7] in the exterior of a ball as each wj hits the obstacle at hyperbolic or glancing points
of order exactly 2. The assumptions on s and j are necessary to construct the reflected waves near glancing
points and to make sure that stationary phase methods do apply. In Section 3 we obtain dispersive bounds
first for each j ≤ 1

3 log2(s/h) and show that the sum over j is still bounded as expected. Both Sections 2 and

3 deal separately with the glancing and hyperbolic regimes, and also with the cases dist(Q, ∂Ω) ≥
√
2− 1 or

dist(Q, ∂Ω) ≤
√
2−1 as each case needs to be handled in a different way. In Section 4 we consider h ∈ (0, h0)

and either s ≤
√
2 or s ≥

√
2 and j & 1

3 log2(s/h) : in these cases we cannot construct the reflected waves
as before, either because the data is too close to the boundary or because the phase functions of wj don’t
oscillate anymore. We obtain an explicit parametrix in terms of Bessel and Hankel functions and proceed
with the dispersive bounds. In the last Section we explain why the last parametrix still allows to obtain
dispersion in the case of small frequencies.

2. Parametrix for (1.1) when s ≥
√
2, h ∈ (0, h0) and 2−3js/h & 1

We consider the source point to be of the form Q0 = (s, 0, 0), where s− 1 represents the distance from Q0

to the ∂Ω. In this section we consider s ≥
√
2. Let h0 ∈ (0, 1) be small and h ∈ (0, h0).

Lemma 2.1. Let Q0 = (s, 0, 0) with s ≥
√
2 and j such that 2−3js/h & 1. Then ufree,j,h(·, Q0, t) solves the

free wave equation and ufree,j,h(·, Q0, 0)|∂Ω = O(h∞). Moreover, ufree,j,h(P,Q0, t)|P∈∂Ω = O((h/t)∞) for
P = (0, ·, z) with |z| ≥ 4t.

Proof. The first statement follows from the fact that ∆ commutes with Dz; for j as above, the second
statement follows using non-stationary phase arguments for the phase τ(t+(z− z̃)γ+(y− ỹ)α−φ(0, ỹ, z̃, s))
of ufree,j,h. If |z| ≥ 4t, the phase is also non-stationary with respect to τ which allows to conclude. �

Our goal in this section is to construct, for each 0 ≤ j ≤ 1
3 log2(s/(hM)), the solution uj to the Dirichlet

wave equation on Ω whose incoming part (before reflection) equals ufree,j. To do that, we first set

uj(Q,Q0, t) :=

{
uj(Q,Q0, t), if Q ∈ Ω,
0, if Q ∈ Θ.

(2.1)

Then, using Duhamel formula and with u+j := 1t>0uj , uj reads as follows

uj |t>0 = u+free,j − u#j , u#j (Q,Q0, t) :=

ˆ

∂Ω

∂νu
+
j (P,Q0, t− |Q− P |)

4π|Q− P | dσ(P ). (2.2)

Let h0 ∈ (0, 1) small enough and h ∈ (0, h0). Let χ ∈ C∞
0 ([ 12 , 2]) be a smooth cutoff equal to 1 on [ 34 ,

3
2 ] and

such that 0 ≤ χ ≤ 1. As we are interested in evaluating χ(hDt)uj(Q,Q0, t), let

u+free,j,h := χ(hDt)u
+
free,j , u#j,h := χ(hDt)u

#
j (Q,Q0, t). (2.3)
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As the free wave flow ufree,j,h satisfies the usual dispersive estimates, we are reduced to evaluating the sum

over j ≤ 1
3 log2(s/(M)) of u#j,h(Q,Q0, t) (or, when possible, of χ(hDt)u

+
j := u+j,h). Using (2.2) we have

u#j,h(Q,Q0, t) =

ˆ

eitτχ(hτ)

ˆ

P∈∂Ω
F(∂νu

+
j |∂Ω)(P,Q0, τ)

1

4π|Q− P |e
−iτ |Q−P |dσ(P )dτ, (2.4)

where F(∂νu
+
j |∂Ω)(P,Q0, τ) denotes the Fourier transform in time of ∂νu

+
j |∂Ω(P,Q0, t).

Definition 2.2. For a source point Q0 as above, we define its apparent contour CQ0 as the set of points

P ∈ ∂Ω such that the ray Q0P is tangent to ∂Ω : in other words, for φ̃ defined in (1.9), we have

CQ0 := {P ∈ ∂Ω with coordinates (1, θ, z) such that ∂rφ̃(1, θ, z, s) = 0}.
As ∂rφ̃ = (r − s cos θ)/φ̃ cancels at r = 1 when cos θ = 1

s , we find CQ0 := {P = (1, arccos(1/s), z), z ∈ R}.
In the coordinates (x, y, z) we have CQ0 = {P = (0, y, z), y = arcsin(1/s)}. In the following we set θ∗ :=
arccos(1/s) = π

2 − arcsin(1/s) and y∗ := arcsin(1/s).

Definition 2.3. Let h ∈ (0, h0). We define j(s, h) := sup{j, 2−3js/h ≥ 1} so that 2−3j(s,h)s/h ∼ 1.

On the support of ψj(1− γ2) we have
√
1− γ2 ∼ 2−2j and in this section we consider only 0 ≤ j ≤ j(s, h).

In the following we deal separately with the case α√
1−γ2

near 1, when the possible glancing points have

exactly second order contact with the boundary and the case α√
1−γ2

outside a small neighborhood of 1.

Let χ0 ∈ C∞
0 ([−2, 2]) and equal to 1 on [− 3

2 ,
3
2 ], fix ε > 0 small enough and set χε(·) := χ0((·−1)/ε). We let

wj,gl be defined by (1.10), (1.11) with additional cutoff χε(
α√
1−γ2

) supported for | α√
1−γ2

− 1| ≤ 2ε . Define

also wj,he as in (1.10), (1.11) with additional cutoff 1− χε1(
α√
1−γ2

). Then u+free,j = u+free,j,gl + u+free,j,he,

u+free,j,gl :=

ˆ

eitτwj,gldτ, u+free,j,he :=

ˆ

eitτwj,hedγ, u+free,j,h = χ(hDt)u
+
free,j .

2.1. The glancing part of u+j for 0 ≤ j ≤ j(s, h). We construct u+j,gl, then ∂νu
+
j,gl, in order to obtain the

”glancing part” of u#j from formula (2.2). For j = 0, the following result due to Melrose and Taylor holds:

Proposition 2.4. Microlocally near a glancing point of exactly second order contact with the boundary there
exist smooth phase functions ι(x, y, z, α, γ) and ζ(x, y, z, α, γ) such that φ± = ι± (−ζ)3/2 satisfy the eikonal
equation and there exist symbols a, b satisfying the transport equation such that, for any parameters α, γ in
a conic neighborhood of a glancing direction and for τ > 1 large enough,

Gτ (x, y, z, α, γ) := eiτι(x,y,z,α,γ)
(
aA+(τ

2/3ζ) + bτ−1/3A′
+(τ

2/3ζ)
)
A−1

+ (τ2/3ζ0) (2.5)

satisfies (τ2 + ∆)Gτ = eiτι(x,y,z,α,γ)
(
a∞A+(τ

2/3ζ) + b∞τ−1/3A′
+(τ

2/3ζ)
)
A−1

+ (τ2/3ζ0), where the symbols

verify a∞, b∞ ∈ O(τ−∞) and where we set ζ0 = ζ|x=0. Moreover, the following properties hold

• ι and ζ are homogeneous of degree 0 and −1/3 and satisfy 〈dι, dι〉 − ζ〈dζ, dζ〉 = 1, 〈dι, dζ〉 = 0,
where 〈·, ·〉 is the polarization of p; the phase ζ0 is independent of y, z so that ζ0(α, γ) vanishes at a
glancing direction; the diffractive condition means that ∂xζ|x=0 < 0 near a glancing point ;

• the symbols a(x, y, z, α, γ) and b(x, y, z, α, γ) belong to the class S0
(1,0) and satisfy the appropriate

transport equations. Moreover a|x=0 is elliptic at the glancing point with essential support included
in a small, conic neighborhood of it, while b|x=0 = 0.

The functions ι and ζ of the Melrose-Taylor parametrix solve the system of equations




(∂xι)
2 +

(∂yι)
2

(1 + x)2
+ (∂zι)

2 − ζ
(
(∂xζ)

2 +
(∂yζ)

2

(1 + x)2
+ (∂zζ)

2
)
= 1,

∂xι∂xζ +
∂yι∂yζ

(1 + x)2
+ ∂zι∂zζ = 0.

(2.6)

The system (2.6) admits the pair of solutions ι(y, z, α, γ) = yα+ zγ, ζ(x, α, γ) = α2/3ζ̃((1 + x)
√

1− γ2/α),

where for ρ := (1 + x)

√
1−γ2

α , ζ̃ is the (unique) solution to 1
ρ2 − ζ̃(ρ)[ζ̃′(ρ)]2 = 1, ζ̃(1) = 0.
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Lemma 2.5. The equation −ζ̃(∂ρζ̃)2 + 1/ρ2 = 1, ζ̃(1) = 0 has a unique solution of the form

2

3
(−ζ̃(ρ))3/2 =

ˆ ρ

1

√
w2 − 1

w
dw =

√
ρ2 − 1− arccos

(
1

ρ

)
, (2.7)

if ρ > 1, while for ρ < 1 we have

2

3
ζ̃(ρ)3/2 =

ˆ 1

ρ

√
1− w2

w
dw = log[(1 +

√
1− ρ2)/ρ]−

√
1− ρ2. (2.8)

We note that at ρ = 1 we have ζ̃ = 0 and limρ→1
(−ζ̃)(ρ)
ρ−1 = 21/3.

Corollary 2.6. Let ψ̃0(β) ∈ C∞[ 1
81 , 2] be a smooth function supported near 1 and such that ψ̃0 = 1 on the

support of ψ0. Consider the operator Mτ : E ′(R2) → D(R3), where E ′(R2) is the dual space of C∞(R2),

Mτ (f)(x, y, z) :=
( τ

2π

)2
ˆ

Gτ (x, y, z, α, γ)ψ̃0(1− γ2)f̂(τα, τγ)dαdγ.

Near the glancing region (τ2 +∆)Mτ (f) ∈ O(τ−∞) (up to the boundary) for all f ∈ E ′(R2). Moreover, the
restriction to the boundary Mτ (f)|∂Ω =: Jτ (f) defined by

Jτ (f)(y, z) =
( τ

2π

)2
ˆ

eiτ(ι(y,z,α,γ)−ỹα−z̃γ)a(0, y, z, α, γ, τ)ψ̃0(1− γ2)f(ỹ, z̃)dαdγdỹdz̃,

has a microlocal inverse J−1
τ as a(x, y, z, α, γ, τ) is the elliptic symbol of Proposition 2.4.

We define the following operator Tτ : E ′(R2) → D(R3) for F ∈ E ′(R2)

Tτ (F )(x, y, z) =
( τ

2π

)2

τ1/3
ˆ

eiτ(yα+zγ+
σ3

3 +σζ(x,α,γ))(a+ b
σ

i
)ψ̃0(1− γ2)F̂ (τα, τγ)dαdγ. (2.9)

According to [15, Lemma A.2], Tτ is an elliptic FIO near a glancing point and (τ2 +∆)Tτ (F ) ∈ OC∞(τ−∞).

Lemma 2.7. Let Q0 = (s, 0, 0) with s ≥
√
2, y∗ = arcsin(1/s) and assume τ > 1 is large enough. Then

there exists an unique function Fτ satisfying w0,gl(x, y, z, τ) = Tτ (Fτ )(x, y, z) for (x, y) in a neighborhood of
(0, y∗). Moreover, Fτ is explicit and has the following form

F̂ (τα, τγ) = τ
1
6 e

−iτ
√

1−γ2Γ0(
α√

1−γ2
,s)
f(α, γ, τ)

χε(
α√
1−γ2

)ψ0(1 − γ2)

(1 − γ2)5/12(s2 − 1)1/4
, (2.10)

where f(α, γ, τ) is an elliptic symbol of order 0 ψ0(1 − τ2) is the smooth cutoff from (1.10) and χε is the

smooth cut-off introduced to define w0,gl. For |α̃−1| ≤ 2ε, Γ0(α̃, s) = y∗α̃+
√
s2 − 1+ (1−α̃)2

2
√
s2−1

(1+O(1− α̃)).

The proof of Lemma 2.7 follows exactly as in [7] as
√
1− γ2 ≥ 1/8 on the support of ψ0. Our goal is to

describe, microlocally near the glancing regime, u+j,gl,h := χ(hDt)u
+
j,gl(·, t) for all 0 ≤ j ≤ j(s, h). For j = 0 :

Proposition 2.8. For Q = (x, y, z) near the glancing region we have

u+0,gl(Q,Q0, t) =
1

(2π)2

ˆ

eitτ
(
w0,gl(x, y, z, τ)−Mτ (J

−1
τ (w0,gl|∂Ω)(x, y, z))

)
dτ,

where, for Fτ provided by Lemma 2.7 satisfying w0,gl(·, τ) = Tτ (Fτ ), Mτ (J
−1
τ (w0,gl|∂Ω)) reads as

( τ

2π

)2
ˆ

eiτ(yα+zγ)
(
aA+(τ

2/3ζ) + bτ−1/3A′
+(τ

2/3ζ)
) A(τ2/3ζ0)

A+(τ2/3ζ0)
ψ̃0(1− γ2)F̂τ (τα, τγ)dαdγ. (2.11)

Corollary 2.9. For P = (0, y, z) ∈ ∂Ω near CQ0 we have

F(∂xu
+
0,gl)(P,Q0, τ) =

( τ

2π

)2

τ2/3+1/6

ˆ

e
iτ(yα+zγ−

√
1−γ2Γ0(

α√
1−γ2

,s))

× b∂f
χε(

α√
1−γ2

)ψ0(1− γ2)

(s2 − 1)1/4
(1− γ2)−5/12+1/3

A+(τ2/3ζ0(α, γ))
dαdγ,

(2.12)

where ζ0(α, γ) = α2/3ζ̃(
√
1− γ2/α) with ζ̃ defined in Lemma 2.5. For α̃ near 1, b∂(y, z, α̃, τ) is elliptic of

order 0 in τ with main contribution a0α̃
−1/3(∂ρζ̃)(ρ)|ρ= 1

α̃
, a0 = a|x=0.



DISPERSION ESTIMATES FOR THE WAVE EQUATION OUTSIDE OF A CYLINDER 7

Proof. Using (2.11), we can compute the normal derivatives of each of the two contributions of u+0,gl and

then take the difference. As such, for P = (0, y, z) near the glancing region, we obtain the following

F(∂xu
+
0,gl)(P,Q0, τ) =

( τ

2π

)2
ˆ

eiτ(yα+zγ)τ2/3(1− γ2)1/3b∂

(
A′ −A′

+

A

A+

)
(τ2/3ζ0)F̂τ (τα, τγ)dαdγ,

(2.13)
where (1 − γ2)1/3b∂(y, z, α, γ, τ) = a(0, y, z, α, γ, τ)(∂xζ)(0, α, γ) + τ−1∂xb(0, y, z, α, γ, τ). As a0 := a|x=0

is elliptic and as ∂xζ|x=0 = (1 − γ2)1/3 1
α̃1/3 (∂ρζ̃)(ρ)|ρ= 1

α̃
for α̃ = α√

1−γ2
on the support of χε then

b∂(y, z, α̃, τ) := a0
α̃1/3 (∂ρζ̃)(ρ)|ρ= 1

α̃
is elliptic, close to 1 on the support of the symbol. Replacing F̂τ by

(2.10) and using the Wronskian relation A′(z)A+(z)−A′
+(z)A(z) = ie−iπ/3 allows to conclude. �

In the remaining of this section we show that, if j ≤ j(s, h), similar integral formulas hold for each wj,gl;
moreover we explicitly compute the corresponding functions Fj,τ to determine F(∂xu

+
j,gl)(P,Q0, τ), P ∈ ∂Ω.

For j = 0 we may follow closely the approach in [7, Section 3.1.1] (as the glancing order contact is exactly
2) to provide a detailed proof. Let 1 ≤ j ≤ j(s, h) : we use the explicit form of wj,gl and write it as an

oscillatory integral involving the Airy function A(τ2/3ζ) and its derivative. After the changes of variables

α =
√
1− γ2α̃ and z̃ = φ(x, ỹ, 0, s)z1 in (1.11), wj,gl(Q,Q0, τ) becomes

τ2

(2π)2
iτ

4π

ˆ

ψj(1− γ2)√
1 + z21

χε(α̃)
√
1− γ2eiτ(zγ+

√
1−γ2(y−ỹ)α̃−φ(x,ỹ,0,s)(z1γ+

√
1+z21))dα̃dγdỹdz̃1.

The critical point w.r.t. z1 satisfies γ + z1√
1+z21

= 0 hence 1 + z21 = 1
1−γ2 . Set z1 = −

√
w2

1−γ2 − 1, then the

phase is stationary w.r.t. w at w = 1 and at this point, the second order derivative of the phase equals

τφ(x, ỹ, 0, s)
√
1− γ2 ∼ 2−js/h. As j ≤ j(s, h), then 2−j ≥ 2−j(s,h) ∼ (s/h)−1/3, hence 2−js/h & (s/h)2/3

with s ≥
√
2. For w near 1 the stationary phase applies and the critical value of the phase depending of z1

becomes −φ(x, ỹ, 0, s)
√
1− γ2. For w /∈ [1/

√
2,
√
2] we perform integrations by parts with large parameter

∼ 2−js/h > (s/h)2/3. We obtain, modulo O((h/2−js)∞) contributions,

wj,gl(Q,Q0, τ) = Cτ2+1/2

ˆ

ψj(1− γ2)χε(α̃)

φ1/2(x, ỹ, 0, s)
(1− γ2)

1
2+

1
2− 1

2− 1
4 eiτ(zγ+

√
1−γ2((y−ỹ)α̃−φ(x,ỹ,0,s)))dα̃dγdỹ.

(2.14)
For α̃ near 1, we can perform a suitable change of variable w.r.t. ỹ such that the phase ỹα̃ + φ(x, ỹ, 0, s)

transforms into an Airy type phase function of the form σ3/3 + σζ̃(1+xα̃ ) + Γ0(α̃, s), where ζ̃ is the function

defined in Lemma 2.5. Let ϕ(x, ỹ, α̃, s) := ỹα̃+φ(x, ỹ, 0, s). As ∂ỹφ(x, ỹ, 0, s) = − s(1+x) cos ỹ
φ , ∂2ỹφ(x, ỹ, 0, s) =

s(1+x) sin ỹ−(∂ỹφ)
2

φ , then ∂2ỹϕ(x, ỹ, α̃, s) = 0 when ỹ = y∗(x) := arcsin
(
1+x
s

)
and there ∂xφ(x, ỹ, 0, s)|y∗(x) = 0

and ∂ỹφ(x, ỹ, 0, s)|y∗(x) = −(1 + x). For ỹ near y∗(x) there are two critical points y± = y±(x, α̃) satisfying

s(1 + x) sin(y±) = α̃2 ±
√
s2 − α̃2

√
(1 + x)2 − α̃2, φ(x, y±, 0, s) =

√
s2 − α̃2 ∓

√
(1 + x)2 − α̃2. (2.15)

Lemma 2.10. Let ỹ = y∗(x) + Y. There exists a unique change of variables Y 7→ σ which is smooth and

satisfying dY
dσ /∈ {0,∞} such that, for ζ̃ given by Lemma 2.5, we have

ϕ(x, y∗(x) + Y, α̃, s) =
σ3

3
+ σα̃2/3ζ̃(

1 + x

α̃
) + Γ0(α̃, s), (2.16)

where Γ0(α̃, s) :=
√
s2 − 1 + arcsin(1s )α̃+ (1−α̃)2

2
√
s2−1

(1 +O(1 − α̃)
)
for α̃ near 1.

Proof. As the phase ϕ has degenerate critical points of order exactly two, it follows from [2] that there exists
a unique change of variables Y 7→ σ which is smooth and satisfying dY

dσ /∈ {0,∞} and that there exist smooth

functions ζ#(x, α̃, s) and Γ(x, α̃, s) such that

ϕ(x, y∗(x) + Y, α̃, s) =
σ3

3
+ σζ#(x, α̃, s) + Γ(x, α̃, s). (2.17)

As the change of coordinates is regular the critical points Y± := y±(x, α̃) − y∗(x) of ϕ must correspond

to σ± = ±
√
−ζ#(x, α̃, s). Write ζ#(x, α̃, s) := α̃

2
3 ζ̃#

(
1+x
α̃ , α̃, s

)
. We will show that ζ̃# satisfies the same
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equation as ζ̃ in (2.5). As the critical values of the two functions in (2.17) must coincide, we have

ϕ(x, y∗(x) + Y±, α̃, s) = ∓2

3
(−ζ#)

3
2 (x, α̃, s) + Γ(x, α̃, s), (2.18)

from which we deduce 4
3 α̃(−ζ̃#)

3
2 (1+xα̃ , x, s) = ϕ(x, y−, α̃, s) − ϕ(x, y+, α̃, s). Taking the derivative with

respect to x in the last equation yields (with y± = y∗(x) + Y±)

2(−∂xζ̃#)(−ζ̃#)
1
2 =∂xφ(x, y∗(x) + Y−, 0, s)− ∂xφ(x, y∗(x) + Y+, 0, s)

− ∂xy+∂yϕ(x, y+, α̃, s) + ∂xy−∂yϕ(x, y−, α̃, s).
(2.19)

The last two terms in the second line of (2.19) vanish as y± are the critical points of the function ϕ with re-
spect to y ; for the same reason we have that ∂yφ(x, y±(x, α̃), 0, s) = −α̃. As φ(x, y, 0, s) satisfies the eikonal
equation (∂xφ)

2(x, y, 0, s) + 1
(1+x)2 (∂yφ)

2(x, y, 0, s) = 1, then (∂xφ(x, y±(x), 0, s))2 = 1 − α̃2

(1+x)2 . Moreover,

∂xφ|y± = s
φ(x,y±,0,s)

(ρ̃− sin(y±)) (with ρ̃ = 1+x
s ) which is non positive in the “y+ case” and positive in the

“y− case”. Eventually we obtain, using (2.19) and the right signs of ∂xφ, −ζ̃#[−∂xζ̃#]2 = 1− α̃2

(1+x)2 , which

is the same equation as in Lemma 2.5 with ρ = 1+x
α̃ = (1+x)

√
1−γ2

α . As the degenerate critical point occurs

at σ = 0, hence at ζ# = 0, we deduce by uniqueness of the solution that ζ̃# = ζ̃ = ζ̃(1+xα̃ ).

Next, we compute the explicit form of the function Γ(x, α̃, s). Taking the sum in (2.18) gives Γ(x, α̃, s) =
1
2 (ϕ(x, y+(x), α̃, s) + ϕ(x, y−(x), α̃, s)) ; taking the derivative w.r.t. x yields ∂xΓ(x, α̃, s) = 0. As such, Γ is
independent of x and we define Γ0(α̃, s) := Γ(0, α̃, s), then

Γ0(α̃, s) =
1

2

(
(y+ + y−)α̃+ φ(0, y+, 0, s) + φ(0, y−, 0, s)

)
,

where y± = y±(0). For small x ≥ 0 and for y in a neighborhood of y∗ = y∗(0), y remains sufficiently close
to y∗(x) : shrinking the support if necessary, we may assume |y− y∗(x)| < 1/2. For |y± − y∗| < 1/2 we may
compute, using (2.15) with x = 0, the first approximation of y± : we have

y± = arcsin
( α̃2

s
±
√
1− α̃2

√
1− α̃2

s2

)
, y∗ = arcsin(

1

s
). (2.20)

As Γ0(α̃, s) =
1
2 (ϕ(0, y+, α̃, s)+ϕ(0, y−, α̃, s)) and ∂yϕ|y± = 0 then ∂α̃Γ0 = 1

2 (y++y−)+
1
2

∑
± ∂α̃y±∂yϕ|y± =

1
2 (y+ + y−). This yields Γ0(1, s) =

√
s2 − 1 + arcsin 1

s and ∂α̃Γ0(1, s) = arcsin(1/s). We need the higher
order derivatives : using (2.20), it follows that (y+ + y−) reads as an asymptotic expansion of even powers

of
√
1− α̃2 and with main term arcsin( α̃

2

s ). We find, with Z± = α̃2

s ±
√
1− α̃2

√
1− α̃2

s2 , Z±|α̃=1 = 1
s ,

1

2
∂α̃(y+ + y−) =

α̃

s

( 1√
1− Z2

+

+
1√

1− Z2
−

)
− α̃(s2 + 1− 2α̃2)

2s2
√
1− α̃2

√
1− α̃2

s2

( 1√
1− Z2

+

− 1√
1− Z2

−

)
.

As
(

1√
1−Z2

+

− 1√
1−Z2

−

)
=

Z2
+−Z2

−√
1−Z2

+

√
1−Z2

−
(
√

1−Z2
++

√
1−Z2

−
)
and Z2

+ − Z2
− = 4 α̃

2

s

√
1− α̃2

√
1− α̃2

s2 ,

1

2
∂α̃(y+ + y−) =

α̃

s

( 1√
1− Z2

+

+
1√

1− Z2
−

)
− 2α̃3(s2 + 1− 2α̃2)

s3
√
1− Z2

+

√
1− Z2

−(
√

1− Z2
+ +

√
1− Z2

−)
.

At α̃ = 1 we obtain ∂2α̃Γ0(1, s) =
1
2∂α̃(y+ + y−)|α̃=1 = 1√

s2−1
. In the same way we notice that all the higher

order derivatives of Γ0 come with a factor 1√
s2−1

. The proof is achieved. �

After the changes of coordinates ỹ = y∗(x) + Y, Y → σ, σ = (τ
√

1− γ2)−1/3σ̃ we obtain wj,gl(Q,Q0, τ) as

follows (with Y = Y(σ) = Y((τ
√
1− γ2)−1/3σ̃))

τ2+
1
2− 1

3

ˆ

ψj(1− γ2)(1 − γ2)
1
4− 1

6χε1(α̃)

φ1/2(x, y∗(x) + Y, 0, s)

dY

dσ
eiτ(zγ+

√
1−γ2(yα̃−Γ0(α̃,s)))e−i(

σ̃3

3 +σ̃(τ
√

1−γ2)2/3 ζ̃( 1+x
α̃ ))dσ̃dα̃dγ.
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At this point we let again α =
√
1− γ2α̃. Following [2], we integrate by parts in σ̃ and apply the Malgrange

theorem to write wj,gl under the form wj,gl = Tj,τ (Fj,τ ), where the operator Tj,τ has the same phase as Tτ
and symbols aj , bj which are asymptotic expansions with small parameter h/2−js and where the function F̂j,τ

has phase −τ
√
1− γ2Γ0(

α√
1−γ2

, s) and symbol τ
1
2
− 1

3

(s2−1)1/4
(1−γ2) 1

12− 1
2ψj(1−γ2)fj , where fj is an asymptotic

expansion with parameter h/2−js. Notice that, if for j = 0 the powers of (1 − γ2) in play no role in (2.10)
or in (2.12) as ψ0(1− γ2) is supported in [ 1

64 , 2], for 1 ≤ j ≤ j(s, h) it is essential to keep track of them.

2.2. The ”non-glancing” parts of u+j , 0 ≤ j ≤ j(s, h). In this section we describe the form of u+j,he,h
whose incoming part equals u+free,j,he,h :=

´

eitτχ(hτ)wj,hedτ . We obtain as before wj,he(Q,Q0, τ) under the

form (2.14) but where χε(α̃) is now replaced by (1−χε(α̃)). The phase τ(zγ+
√

1− γ2((y−ỹ)α̃−φ(x, ỹ, 0, s)))
has two critical points y±(x, α̃) satisfying (2.15) such that |y+(x, α̃)− y−(x, α̃)| & ε, as α̃ stays away from a
fixed neighborhood of 1 on the support of 1− χε and it is stationary with respect to α̃ when ỹ = y.

The stationary phase applies with large parameter τ
√

1− γ2 ∼ 2−j/h and gives, modulo O((h2j)∞) terms,

wj,he(Q,Q0, τ) = τ1+1/2

ˆ

ψj(1− γ2)(1 − χε(∂yφ(x, y, 0, s)))√
φ(x, y, 0, s)

(1− γ2)
1
4− 1

2 σ̃±
free,j,hee

iτ(zγ−
√

1−γ2φ(x,y,0,s))dγ.

(2.21)

Recall from (2.15) that φ(x, y±(x, α̃), 0, s) =
√
s2 − α̃2∓

√
(1 + x)2 − α̃2. Here σ̃±

free,j,he are classical symbols

that read as asymptotic expansion with small parameter h2j. Let now 1 − γ2 = 2−2jϕ2, then ϕ ∼ 1 on

the support of ψj(2
−2jϕ2) = ψ(ϕ2) and dγ/dϕ ∼ 2−2j . The phase τ(z

√
1− 2−2jϕ2 − 2−jϕφ(x, y, 0, s)) is

stationary when 2−j(−z) ∼ φ(x, y, 0, s) and its second order derivative equals τ(−z)2−2j/
√
1− 2−2jϕ

3
. At

the critical points τ(−z)2−2j ∼ 2−js/h & (s/h)2/3, so the stationary phase yields, modulo O((h/s)∞),

wj,he(Q,Q0, τ) = τψ̃
(φ(x, y, 0, s)

2−j(−z)
) (1− χε(∂yφ(x, y, 0, s)))

φ(x, y, 0, s)
2−2j+j/2+j/2σ±

free,j,hee
−iτφ(x,y,z,s), (2.22)

where ψ̃ is a smooth cutoff supported near 1, equal to 0 near 0 and such that ψ̃ = 1 on the support of ψ. The
symbols σ±

free,j,he are asymptotic expansions with main contribution σ̃±
free,j,he and small parameter h2j/s.

If we denote Σfree,j the factor of e−iτφ(x,y,z,s) in (2.22), then u+free,j,he,h =
´

eiτ(t−φ(x,y,z,s))χ(hτ)Σfree,jdτ .
After the reflection on the boundary, the solution to the wave equation with Dirichlet boundary condition
reads as

´

eiτ(t−φR(x,y,z,s))χ(hτ)ΣR,jdτ , where φR satisfies the eikonal equation (2.6) and the boundary condi-
tion φR|x=0 = φ|x=0 and ∂xφR|x=0 = −∂xφ|x=0. The symbol ΣR,j is an asymptotic expansion with small pa-
rameter (τ2−js)−1 that reads as ΣR,j(·, τ) =

∑
k τ

−kΣR,k, where ΣR,k solve a system of the transport equa-

tions and ΣR,j |x=0 = Σfree,j |x=0. We obtain ∂xu
+
j,he,h|x=0 =

´

eiτ(t−φ(0,y,z,s))χ(hτ)(−i)τΣj(y, z, s, τ)dτ ,
where Σj is a classical symbol that reads as an asymptotic expansion with small parameters τ−1, (τ2js)−1

and whose main contribution equals 2i∂xφ(0, y, z, s)Σj|x=0.

Remark 2.11. On the support of 1 − χε we have 1 − ∂yφ|x=0 & ε : from the eikonal equation, we obtain

the following lower bound : (∂xφ)
2|x=0 =

(
1− (1+ x)−2(∂yφ)

2 − (∂zφ)
2
)∣∣∣
x=0

≥ c(ε), where c(ε) > 0 depends

only on ε. As ∂xφ|x=0 = 1−s sin y
φ(0,θ,z,s) , this implies s| sin y∗ − sin y| ≥ c(ε)φ(0, y, z, s), where y∗ = arcsin(1/s).

For all 0 ≤ j ≤ j(s, h) we eventually find, for all P = (0, y, z) ∈ ∂Ω,

∂xu
+
j,he,h(P,Q0, t) =

ˆ

eiτ(t−φ(0,y,z,s))χ(hτ)
τ2

ψ(0, y, z, s)
2−jσj,he(y, z, s, τ)dτ, (2.23)

where σ2−2j ,he is an asymptotic expansion with small parameters τ−1, (τ2−3js)−1 supported for s| sin y∗ −
sin y| ≥ c(ε)φ(0, y, z, s) and 2−j(−z) ∼ φ(0, y, 0, s).

3. High-frequency case. Dispersive estimates when d(Q0, ∂Ω) ≥
√
2− 1

3.1. Dispersion for the glancing part when d(Q, ∂Ω) ≥
√
2 − 1. Let Q0 = (s, 0, 0), Q = ((1 +

xQ) sin yQ, (1 + xQ) cos yQ, zQ) in Ω, and assume s ≥ r := 1 + xQ ≥
√
2. We prove the following :
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Proposition 3.1. There exists C > 0 such that for all t > h, the following holds uniformly with respect to

Q,Q0 such that s ≥ r ≥
√
2 where s = 1 + xQ0 , r = 1 + xQ:

∑
0≤j≤j(s,h) |u

#
j,gl,h(Q,Q0, t)| ≤ C

h2t .

Proof. We write the details of the proof for j = 0 while keeping track of the factors
√
1− γ2. The proof of

dispersive bounds for 1 ≤ j ≤ j(s, h) will follows exactly in the same way as all stationary arguments follow
for such values of j and we will be able to sum up all the contributions as these bounds have additional

non-positive powers of 2j . Let j = 0 and set I0,gl(Q,Q0, τ) :=
´

P∈∂Ω
F(∂xu

+
j,gl)(P,Q0,τ)

4πτ |P−Q| e−iτ |P−Q|dσ(P ). Then

u#0,gl,h(Q,Q0, t) =
1

4π

ˆ

χ(hτ)eitτ τI0,gl(Q,Q0, τ)dτ. (3.1)

Writing |P −Q| = φ(xQ, y− yQ, z− zQ, 1) for a point P = (sin y, cos y, z) on the boundary ∂Ω and replacing

(2.12) in (2.4) we find, after the change of coordinates α =
√
1− γ2α̃,

I0,gl(Q,Q0, τ) =

ˆ

τ−1+2+ 5
6 eiτ(zγ+

√
1−γ2(yα̃−Γ0(α̃,s))−φ(xQ,y−yQ,z−zQ,1))

× f(α, γ, τ)b∂(y, z, α̃, τ)

φ(xQ, y − yQ, z − zQ, 1)
(1−γ2)−

5
12

+1
3
+1

2 ψ0(1−γ2)χε(α̃)

(s2−1)1/4A+(τ
2
3 ζ0(α,γ))

dα̃dγdydz.

(3.2)

Lemma 3.2. There exists a constant C > 0 such that |I0,gl(Q,Q0, τ)| ≤ C/t uniformly with respect to Q,Q0

and t such that
√
s2 − 1 + z2Q ∼ t. Moreover, for t√

s2−1+z2Q
/∈ [1/4, 4], we have |I0,gl(Q,Q0, τ)| ≤ C√

s2−1
.

If t√
s2−1+z2Q

∈ [1/4, 4], the estimate of Proposition 3.1 follows using (3.1) and Lemma 3.2. If not, the phase

of (3.1) is not stationary w.r.t. τ and we proceed by integrations by parts which give at most O(h∞/t). �

Proof. (Proof of Lemma 3.2) We apply the stationary phase with respect to z in the integral (3.2): let

r = 1 + xQ and set z = zQ + z̃
√
1 + r2 − 2r cos(yQ − y). As r ≥

√
2, this is well defined and dz/dz̃ =

φ(xQ, y−yQ, 0, 1). As φ(xQ, y−yQ, z−zQ, 1) = φ(xQ, y−yQ, 0, 1)
√
1 + z̃2 the phase of I0,gl becomes τ(zQγ−√

1− γ2(−yα̃+Γ0(α̃, s))+φ(xQ, y− yQ, 0, 1)(z̃γ−
√
1 + z̃2)) and its critical point with respect to z̃ satisfies

z̃ = γ√
1−γ2

. As, in case j large, this value is large, we renormalize z̃ by taking z̃ =
√

w2

1−γ2 − 1; as such, the

critical point is w = 1 and the second order derivative of the phase equals τφ(xQ, y− yQ, 0, 1)
√
1− γ2. The

stationary phase in w yields a factor τ−1/2× (1−γ2)− 1
2− 1

4 and the symbol τ1+5/6 b∂ (1−γ2)5/12

φ(xQ,y−yQ,z−zQ,1) becomes

τ1+1/3(1− γ2)
5
12− 3

4
b̃∂(y,zQ,α,γ,τ)

φ1/2(xQ,y−yQ,0,1) , where b̃∂ has main contribution b∂ . We obtain

I0,gl(Q,Q0, τ) =τ
4
3

ˆ

eiτ(zQγ−
√

1−γ2(−yα̃+Γ0(α̃,s)+φ(xQ,y−yQ,0,1)))

(1 − γ2)−1/3 b̃∂(y,Q, α̃, γ, τ)

φ1/2(xQ, y − yQ, 0, 1)

f(α, γ, τ)ψ0(1 − γ2)χε(α̃)

(s2 − 1)1/4A+(τ
2
3 ζ0(α, γ))

dα̃dγdy.

(3.3)

The phase φ(xQ, y−yQ, 0, 1) has two degenerate critical points of order exactly two at y = yQ±arccos(1/r),
where r = 1 + xQ. Near yQ − arccos(1/r), its first order derivative equals −1, hence for y near this

point the phase of I0,gl is non-stationary w.r.t. y and repeated integrations by parts yield O( τ−∞

√
s2−1

). Let

yc := yQ + arccos(1/r). Notice that, if y ∈ [0, 2π) is sufficiently close to y∗ on the support of I0,gl (say
|y − y∗| ≤ π

16 ) and is such that |y − yc| ≥ π
8 , then 1 − α̃ has to be bounded from below by a fixed constant

there where the phase of I0,gl is stationary w.r.t. y. Taking ε smaller if necessary, it follows that for such
value of y outside a small, fixed neighborhood of yc, α̃ cannot belong to the support of χε(α̃). We are
reduced to studying the integral (3.3) for |y− yc| ≤ π

8 < 1. Let ǫ1 > 0 be small enough. We study separately

the cases |y − yc| ≤ τ−1/3+ǫ1 and τ−1/3+ǫ1 . |y − yc| ≤ π
8 ; to do that, we introduce a smooth cut-off χ0

supported in [−2, 2] and equal to 1 on [−3/2, 3/2] and split I0,gl = Iχ0

0,gl + I1−χ0

0,gl , where Iχ0,gl has the form

(3.3) with additional cut-off χ((y − yc)τ
1/3−ǫ1 ).
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3.1.1. Case τ−1/3+ǫ1 ≤ |y−yc| ≤ π
8 : study of I1−χ0

1,gl . We set α̃ = α̃(β, τ) := 1−τ−2/3β : as on the support of

χε1(α̃) we have 1− α̃ . ε, it follows that τ−2/3β . ε. This choice of coordinates is motivated by the behavior

of the Airy factor A+(τ
2
3 ζ0(α, γ)) : as τ

2/3ζ0(α, γ) = τ2/3α2/3ζ̃(

√
1−γ2

α ) = τ2/3
√
1− γ2

2/3
α̃2/3ζ̃( 1

α̃ ), then

τα(−ζ̃)3/2( 1
α̃
) =

√
2
√
1− γ2β3/2(1 +O(τ−2/3β)), (3.4)

where we used Lemma 2.5. As such, for (
√
2
√
1− γ2β3/2)2/3 large enough, A+(τ

2
3 ζ0(α, γ)) does oscillate,

while for (
√
2
√
1− γ2β3/2)2/3 bounded it may be brought into the symbol. Write 1 = χ0(β)+(1−χ0)(β). On

the support of 1−χ0(β) the Airy factor may oscillate and the phase function of I1−χ0

0,gl equals zQγ−
√
1− γ2ϕ,

where we have set

ϕ(y, α̃, r) := −yα̃+ Γ0(α̃, s) + φ(xQ, y − yQ, 0, 1)−
2

3
(−ζ̃)3/2( 1

α̃
). (3.5)

With ϕ defined in (3.5) we have

I1−χ0

0,gl (Q,Q0, τ) = τ
4
3− 2

3

ˆ

e−iτ(zQγ−
√

1−γ2ϕ)χ̃ε(1− τ−2/3β̃)(1− χ0)((y − yc)τ
1/3−ǫ1)

β1/4(1 − γ2)
1
12− 1

3 (b̃f)(y, β, γ, τ)× ψ0(1− γ2)

(s2 − 1)1/4φ1/2(xQ, y − yQ, 0, 1)
dydγdβ, (3.6)

where the factor β1/4(1− γ2)1/12 comes from the Airy term A−1
+ (using (3.4)).

Lemma 3.3. Let y = yc+ Y, where yc = yQ+arccos(1/r). There exists a unique change of variables Y 7→ σ

which is smooth and satisfying dY
dσ /∈ {0,∞} such that, for ζ̃ given by Lemma 2.5, we have

− (yc + Y)α̃+ φ(xQ, y − yQ + Y, 0, 1) =
σ3

3
+ σα̃2/3ζ̃(

1

α̃
) + Γ̃(α̃, r), (3.7)

and where Γ̃(α̃, r) :=
√
r2 − 1− ycα̃+ (1−α̃)2

2
√
r2−1

(1 +O(1 − α̃)
)
.

Proof. We proceed exactly as in the proof of Lemma 2.10 (where now x = 0 and s is replaced by r). As yc
is the degenerate critical point of order 2 of φ, there exist a smooth change of variable Y → σ and smooth

phase functions ζ# and Γ̃ such that the LHS term in (3.7) reads as σ3

3 + σζ#(α̃, r) + Γ̃(α̃, r). Exactly as in

Lemma 2.10 we obtain that ζ# = α̃2/3ζ̃( 1
α̃ ). It remains to determine Γ̃. The two critical points satisfy

r cos(arccos(1/r) + Y±) = α̃2 ∓
√
r2 − α̃2

√
1− α̃2.

We have as before φ(xQ, yc+Y±, 0, 1) =
√
r2 − α̃2±

√
1− α̃2. As cos(arccos(1/r)+Y) = sin(arcsin(1/r)−Y) we

use the computations from Lemma 2.10 to determine arcsin(1/r)− 1
2 (Y++Y−). As−yc = −yQ−arccos(1/r) =

−yQ − π
2 + arcsin(1/r) we obtain Γ̃(α̃, r) = −(yQ + π

2 )α̃+ Γ0(α̃, r) where Γ0(α̃, r) is the same as in Lemma
2.10 and compute the derivatives of this new function at α̃ = 1 using those of Γ0 as follows

Γ̃(1, r) =
√
r2 − 1− yc, Γ̃

′(1, r) = −yc, Γ̃′′(1, r) =
1√
r2 − 1

, Γ̃(k) =
ck√
r2 − 1

(1 +O(
1√

r2 − 1
)).

�

Using the changes of variable y → yc + Y, Y → σ from Lemma 2.10 yields

ϕ(y, α̃, r) =
σ3

3
+ σα̃2/3ζ̃(

1

α̃
) + Γ̃(α̃, r) + Γ0(α̃, s)−

2

3
(−ζ̃)3/2( 1

α̃
).

Let y = yc + Y, Y → σ as in the Lemma 3.3 and set moreover σ = τ−1/3w : then τ ǫ1 . |w| on the support of

the symbol (and if |τ−1/3w| ≥ π
4 the integral defining I1−χ0

0,gl is O(τ−∞)). We apply the stationary phase in
w near the critical points : let χ be a smooth cut-off supported in a fixed neighborhood of 1 and equal to 1

near 1 and set χ± := χ(±
√
2β
w ), α̃ = 1− τ−2/3β; let also χ := 1− χ+ − χ−. Write

I1−χ0

0,gl (Q,Q0, τ) =
∑

χ∈{χ±,χ}
I1−χ0,χ
0,gl ,

where I1−χ0,χ
0,gl are given by (3.6) with additional cutoffs χ(

√
2β
w ).
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Lemma 3.4. For w in a small, fixed neighborhood of ±√
2β, we have

I
1−χ0,χ±

0,gl (Q,Q0, τ) = τ4/3−2/3−1/3

ˆ

e−iτ(zQγ−
√

1−γ2ϕ±)χε(1− τ−2/3β)Σ±(β, γ, τ)(1 − γ2)
1
12− 1

3− 1
4

× (1− χ0)(Y(τ
−1/3w)τ1/3−ε1 )ψ0(1− γ2)

(s2 − 1)1/4φ1/2(xQ, arccos(1/r) + Y(τ−1/3w±), 0, 1)
dγdβ, (3.8)

where ϕ± := ∓ 2
3 (−ζ̃)3/2( 1

α̃ ) + Γ̃(α̃, r) + Γ0(α̃, s)− 2
3 (−ζ̃)3/2( 1

α̃ )|α̃=1−τ−2/3β. Here Σ± are asymptotic expan-

sions with parameter τ−ǫ1 and main contribution dY
dσ

β1/4√
|w±|

χ±(
√
2β
w±

)Σ(yc + τ−1/3w±, β, τ).

Proof. The critical points are w± := ±τ1/3
√
−ζ̃( 1

1−τ−2/3β
) which gives w± = ±√

2β(1 + O(
√

2τ−2/3β)).

As |w| ≥ τ ǫ1 on the support of (1 − χ0)(Y(τ
−1/3w)τ1/3−ε1 ) and w√

2β
∼ ±1 on the support of the symbol,

we also have
√
2β & τ ǫ1 . At w±, the second order derivative of the phase equals ∂2w(τ

√
1− γ2ϕ)|w±

=√
1− γ2w±(1 + O(τ−1/3w±)). As

√
1− γ2 ≥ 1/8 on the support of ψ0 and |w| ≥ τ ǫ1 on the support of

(1−χ0)(wτ
−ǫ1 ), it follows that

√
1− γ2×w± & τ ǫ1 and the stationary phase applies at w± with a parameter

larger than τ ǫ1 . The exponent of the factor (1 − γ2) is 1/12− 1/3− 1/4 = −1/2. The factor τ−1/3 before
the integral (3.8) comes from the change of variables σ → w. (For 1 ≤ j ≤ j(s, h), replace τ by τ2−j). �

We now consider the integral I1−χ0,χ
0,gl (Q,Q0, τ) whose symbol is supported for w2

2β /∈ [1/2, 3/2].

Lemma 3.5. The stationary phase applies in γ with large parameter τ and yields

I1−χ0,χ
0,gl (Q,Q0, τ) = τ

4
3−1− 1

2

ˆ

e−iτ
√
ϕ2+z2Qχε(1− τ−2/3β)(1 − χ0)(|w|τ−ǫ1 )

β1/4χ(

√
2β

w
)Σ(y, β, τ)

( ϕ2

ϕ2 + z2Q

) 1
2 1

ϕ1/2
×

ψ0(
ϕ2

ϕ2+z2Q
)

(s2 − 1)1/4φ1/2(xQ, y − yQ, 0, 1)
dβdy, (3.9)

where Σ is an asymptotic expansion with small parameter τ−1 and main contribution b∂f .

Proof. The critical point satisfies : γc = −zQ/
√
ϕ2 + z2Q and at γc, the second order derivative of the

phase equals ϕ√
1−γ2

c

3 = ϕ ×
√
ϕ2+z2Q

3

ϕ3 ≥ ϕ and its critical value equals −
√
z2Q + ϕ2. In order to show

that the stationary phase applies we will show that ϕ ≥
√
s2 − 1. From Lemmas 3.3 and 2.10 we have

Γ̃(α̃, r) + Γ0(α̃, s) =
√
r2 − 1 +

√
s2 − 1 + (y∗ − yc)α̃ + O(1 − α̃). As y is close to y∗ on the support of

the symbol I1,gl (|y − y∗| ≤ π
16 ) and |y − yc| ≤ π

8 (these constants may be shrunk if necessary), then

|yc−y∗| ≤ 3π
16 <

5
8 while

√
r2 − 1 ≥

√
2
√√

2− 1 ≥ 4
5 . Moreover, on the support of χε(α̃) we have |1− α̃| . ε

so we conclude taking ε1 small enough compared to ε0. The stationary phase yields (3.9). The exponent of(
ϕ2

ϕ2+z2Q

)
equals 1

12 − 1
3 + 3

4 , where the last term comes from the second order derivative. �

Corollary 3.6. We have I1−χ0,χ
0,gl (Q,Q0, τ) = O(τ−∞/t). Moreover, modulo O(τ−∞/t),

I
1−χ0,χ±

0,gl (Q,Q0, τ) = τ4/3−1−1/2

ˆ

e−iτ
√
ϕ2

±
+z2Qχε1(1− τ−2/3β)

Σ̃±(β, τ)

ϕ
1/2
±

×
ψ̆0(

ϕ±√
ϕ2

±
+z2Q

)

(s2 − 1)1/4φ1/2(xQ, yc − yQ + Y(τ−1/3w±), 0, 1)
dγdβ, (3.10)

where ψ̆0(·) = (·)1/2χ̃1 and Σ̃− is a classical symbol with main contribution Σ(β, γc, τ).

Proof. Using Lemma 3.5, I1−χ0,χ
0,gl (Q,Q0, τ) of the form (3.9) : with symbol supported for w far from

w±: repeated integrations by parts yield O(τ−∞/t) where the factor 1/t is obtained from the symbol

(ϕ
√
s2 − 1)−1/2 . 1/

√
s2 − 1 . 1/t as 2

√
s2 − 1 ≥ ϕ ≥

√
s2 − 1, as t ∼

√
ϕ2 + z2Q ≤ 8ϕ on the support of

ψ0 and r ≥
√
2. To obtain (3.10) we use the proof of Lemma 3.5 to (3.8) for the ± signs. �
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Using the Corollary, we obtain I1−χ0

0,gl (Q,Q0, τ) =
∑

± I
1−χ0,χ±

0,gl + O(τ−∞/t), where I
1−χ0,χ±

0,gl are given

in (3.10). We are left with the integration with respect to β in the integrals (3.10) whose symbols (1 −
χ0)(

√
βτ−ǫ1)χε1(1 − τ−2/3β) are supported for β & τ2ǫ1 and τ−2/3β . ε1. As β takes values in a large

interval, we consider separately dyadic intervals where β ∼ 22k and then sum all the contributions. Let χ̃
supported near 1 and equal to 1 on [ 34 ,

5
4 ] such that

(1 − χ0)(
√
βτ−ǫ1)χε1 (1− τ−2/3β)

∑

k

χ̃(β2−2k) = (1− χ0)(
√
βτ−ǫ1)χε1(1 − τ−2/3β). (3.11)

On the support of (1 − χ0)(
√
βτ−ǫ1)χε1(1 − τ−2/3β) we have τ2ǫ1 < β . ε1τ

2/3 and for each k in the
previous sum, χ̃(β2−2k) localize at β ∼ 22k. The sum is thus taken for ǫ1 log2(τ) ≤ k < 1

3 log2(τ). Recall

that ϕ|± = ϕ|w±
where ϕ− = Γ̃(α̃, r) + Γ0(α̃, s) and ϕ+ = ϕ− − 4

3 (−ζ̃)3/2( 1
α̃ ). We deal separately with the

± signs. Let I
1−χ0,χ±,k
0,gl denote the integrals in (3.10) with additional cutoff χ̃(β2−2k). Using (3.11) we have

I
1−χ0,χ±

0,gl =

(log2 τ)/3∑

k=ǫ1 log2 τ

I
1−χ0,χ±,k
0,gl .

Lemma 3.7. There exists a constant C = C+(ε) such that |I1−χ0,χ+

0,gl | ≤ ∑(log2 τ)/3
k=ǫ1 log2 τ

|I1−χ0,χ+,k
0,gl | ≤ C+(ε)/t.

Proof. At w+ =
√
2β(1 + O(

√
2τ−2/3β)), the phase ϕ+ is stationary when τ1/3(yc − y∗) = 2

√
2β(1 +

O(
√
τ−2/3β)). Let β = 22kΞ on the support of χ̃(β2−2k), with Ξ ∈ [1/2, 3/2]. As

∂Ξ(τ
√
ϕ2
+ + z2Q) =

ϕ+√
ϕ2
+ + z2Q

∂β

∂Ξ
(τ∂βϕ+)

=
ϕ+√

ϕ2
+ + z2Q

22k+k
(τ1/3(yc − y∗)

2k
− 2

√
2Ξ(1 +O(

√
τ−2/3β))

)
,

(3.12)

the phase is stationary for Ξ ∼ 1 only when τ1/3(yc−y∗)
2k

∼ 2
√
2 ; as ϕ+√

ϕ2
++z2Q

≥ 1/8 on the support of ψ0 and

as 23k ≥ τ3ǫ1/2, it follows that, for | τ
1/3(yc−y∗)

2k − 2
√
2| ≥ 4 and Ξ ∈ [1/2, 3/2], repeated integrations by parts

yield a contribution O(τ−∞/t). We deduce that there are at most a finite number of values of k for which the

phase may be stationary ; for such k the stationary phase applies at the critical point 2
√
2Ξ ∼ τ1/3(yc−y∗)

2k

as, there, the second order derivative equals − ϕ+√
ϕ2

++z2Q
23k ×

√
2√
Ξ

and Ξ ∼ 1. For all such k, the stationary

phase yields a factor 22k × 2−3k/2 ×
√
ϕ2
+ + z2Q

1/2

/ϕ
1/2
+ , where the exponent 2k comes from the change of

variables and the exponent 2−3k/2 from the second order derivative at Ξ ∼ 1. As 22k ≤ τ2/3, the sum over
all such k yields at most 2k/2 ≤ τ1/6 and the exponent 1/6 is canceled by the exponent of τ4/3−2/3−1/2−1/3

from I
1−χ0,χ+

0,gl . We conclude using that (ϕ+

√
s2 − 1)−1/2 ≤ C+(ε)/t, where C+(ε) depends only on ε. �

Lemma 3.8. There exists a constant C = C−(ε) such that
∑(log2 τ)/3
k=ǫ1 log2 τ

|I1−χ0,χ−,k
0,gl (Q,Q0, t)| . C−(ε)/t.

Proof. We have ϕ− = Γ̃(α̃, r) + Γ0(α̃, s) hence, for α̃ = 1− τ−2/3β, we have

τϕ− = τ
(√

r2 − 1 +
√
s2 − 1− (yc − y∗)α̃

+
(1− α̃)2

2

( 1√
r2 − 1

(1 +O(1 − α̃)) +
1√
s2 − 1

(1 +O(1− α̃))
))

τ∂βϕ− = τ1/3(yc − y∗) + τ−1/3β
( 1√

r2 − 1
(1 +O(τ−2/3β)) +

1√
s2 − 1

(1 +O(τ−2/3β))
)
.

(3.13)
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At β = 22kΞ we have ∂Ξ(τ
√
ϕ2
− + z2Q) =

ϕ−√
ϕ2

−
+z2Q

22k∂β(τϕ−)|β=22kΞ hence

∂Ξ(τ
√
ϕ2
− + z2Q) =

24kτ−1/3ϕ−√
ϕ2
− + z2Q

(τ2/3
22k

(yc−y∗)+Ξ
( 1√

r2 − 1
(1+O(τ−2/322k))+

1√
s2 − 1

(1+O(τ−2/322k))
))
,

∂2Ξ(τ
√
ϕ2
− + z2Q)|∂βϕ−=0 =

24kτ−1/3ϕ−√
ϕ2
− + z2Q

( 1√
r2 − 1

(1 +O(τ−2/322k)) +
1√
s2 − 1

(1 +O(τ−2/322k))
)
.

As s ≥ r and for ϕ−√
ϕ2

−
+z2Q

on the support of ψ0 we obtain a lower bound for the second order derivative of

24kτ−1/3
√
r2−1

. From now on we can proceed as in the case of ϕ+ : if 24kτ−1/3
√
r2−1

≥ τ ǫ for some ǫ > 0, we apply the

stationary phase if moreover τ2/3
√
r2−1

22k
(y∗ − yc) ∼ 1 : the last condition reduces the number of such k to at

most three values for which we find

|I1−χ0,χ−,k
0,gl (Q,Q0, t)| .

τ−1/6

t
× 22k

φ1/2
(

ϕ−√
ϕ2
− + z2Q

)3/4−1/2 ×
(24kτ−1/3

√
r2 − 1

)−1/2 ∼ 1/t, (3.14)

where we used that (ϕ
√
s2 − 1)−1/2 . 1/t and φ ≥ r − 1 to obtain (r2−1)1/4

φ1/2 . 1. If τ2/3
√
r2−1

22k (y∗ − yc) /∈
[1/4, 4], repeated integrations by parts yield a O(τ−∞/t) contribution (and we conclude using that 2k . τ1/3).

Fix M > 4 large enough and consider 24kτ−1/3 1√
r2−1

∈ [M2, τ ǫ
′

] for some ǫ′ > 0. As this parameter is large,

we still may apply the stationary phase but we need to verify that the remainders are sufficiently small and
that we can bound their sum. There is still a finite number of k for which the phases may be stationary. At
the critical points Ξc, the stationary phase applies and we obtain, for all N ≥ 1,

I
1−χ0,χ−,k
0,gl (Q,Q0, t) = τ−1/6e−iτ

√
ϕ2

−
+z2Q

Σ̃−(22kΞc, τ)

ϕ
1/2
− (s2 − 1)1/4

22k × |∂2Ξ(τ
√
ϕ2
− + z2Q)|−1/2

φ1/2(xQ, arccos(1/r) + τ−1/3w−, 0, 1)

+ O
(
(
24kτ−1/3

√
r2 − 1

)−Nτ−1/6 × 22k√
s2 − 1(r − 1)1/4

)
, (3.15)

where the main contribution of I
1−χ0,χ−,k
0,gl (Q,Q0, t) in the first line still satisfies (3.14) and where the re-

mainder in the second line is O
(
(2

4kτ−1/3

4
√
r2−1

)−N/t
)
. In the second line we used φ ≥ (r − 1)1/2. The bounds

for the remainders follow using sup |∂2Ξ(τ
√
ϕ2
− + z2Q)| ≥ 24kτ−1/3

√
r2−1

. Notice that, taking one derivative of

the cutoff χε(τ
−2/322kΞ) = χ(τ−2/322kΞ/ε) yields a factor τ−2/322k/ε but, as Ξ ∼ 1 on the support of

χ(β2−2k) = χ(Ξ), on the support of χ(τ−2/322kΞ/ε)χ(Ξ) we have τ−2/322k/ε . 1 hence for M > 4 suffi-
ciently large this factor doesn’t change the contribution of the remainder. For all k s.t. the phase is not
stationary, integration by parts yields a contribution of at most

τ−1/6 22k

t(r − 1)1/2
× (2−4kτ1/3

√
r2 − 1)N+1 =

1

t
× (2−2kτ1/6

√
r2 − 1

1/2
)× (2−4kτ1/3

√
r2 − 1)N

for all N ≥ 0. Let N = 0 and sum over k with 24kτ−1/3 1√
r2−1

∈ [M2, τ ǫ], then

1

t

( ∑

M2≤24kτ−1/3
√
r2−1

−1≤τǫ′

2−2k
)
× τ1/6

√
r2 − 1

1/2
. 1/(Mt).

Let now k such that τ ǫ1 . 2k and 24kτ−1/3 1√
r2−1

≤ M2 for some large, fixed M > 1. We bound each

I
1−χ0,χ−,k
0,gl by τ−1/6 22k

t(r−1)1/4
.M/t using 22k ≤Mτ1/6

√
r2 − 1

1/2
and conclude. �

Remark 3.9. In the two previous Lemmas, the bounds for I
1−χ0,χ±

0,gl come with additional factors ( ϕ±√
ϕ2

±
+z2Q

)1/4.

This is useful to keep in mind for the case when 1− γ2 behaves like 2−2j.
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For β on the support of χ0(β), using (3.4), the Airy factor can be brought in the symbol. The phase of I1−χ0

0,gl

equals τ(zQγ−
√
1− γ2ϕ0), where ϕ0 := (−(yc− y∗+ τ−1/3w)(1− τ−2/3β)+

√
s2 − 1+φ(xQ, arccos(1/r)+

τ−1/3w, 0, 1)) ≥
√
s2 − 1. As

√
1− γ2×w ≥ τ ǫ1 on the support of ψ0(1−γ2)(1−χ0)(wτ

−ǫ1 ), it follows that
the phase is non-stationary in w as β ≤ 2 ≪ τ2ǫ1 . w2/2 and we integrate by parts to obtain O(τ−∞/t).

3.1.2. Case |y−yc| ≤ 2τ−1/3+ǫ1 : study of Iχ0

0,gl. Let y = yc+τ
−1/3w, with |w| ≤ τ ǫ1 . As ∂wφ(xQ, arccos(1/r)+

τ−1/3w, 0, 1) = τ−1/3
(
1− τ−2/3w2/2(1 +O(τ−1/3w))

)
, the derivative w.r.t. w of phase of Iχ0

0,gl equals

τ1−1/3
√
1− γ2

(
1− τ−2/3β − 1 + τ−2/3w2/2(1 +O(τ−1/3w))

)
=

√
1− γ2(−β + w2/2(1 +O(τ−1/3w)),

hence, for β ≥ τ2ǫ1 we perform repeated integrations by parts to obtain a O(τ−∞/t) contribution (using
that the support in w, β is bounded). We introduce χ0(βτ

−2ǫ1) into the symbol of Iχ0

0,gl without changing

its contribution modulo O(τ−∞/t) terms. If we introduce moreover a cutoff χ0(β) supported for β ≤ 2, the
Airy factor doesn’t oscillate and may be brought into the symbol : in this case the phase of Iχ0

0,gl is given by

τ(zQγ −
√
1− γ2(−(yc − y∗ + τ−1/3w)(1 − τ−2/3β) +

√
s2 − 1 + φ(xQ, arccos(1/r) + τ−1/3w, 0, 1))).

Let ϕ0 := −(yc−y∗+ τ−1/3w)(1− τ−2/3β)+
√
s2 − 1+φ(xQ, arccos(1/r)+ τ

−1/3w, 0, 1), then ϕ0 ≥
√
s2 − 1

and the stationary phase w.r.t. γ applies exactly as before. The critical point γ satisfies zQ = γ√
1−γ2

ϕ0.

The contribution of Iχ0

0,gl(Q,Q0, τ) is of the form (3.9) where moreover β ≤ 2 and |w| ≤ τ ǫ1 . We then obtain

|Iχ0

0,gl(Q,Q0, τ)| .
τ1/6−1/3

ϕ
1/2
0 (s2 − 1)1/4

× τ ǫ1 , (3.16)

where the exponents 1/6− 1/3 come from (3.9) and the change of variable y = yc + τ−1/3w, and the factor
τ ǫ1 from the size of the support in w. Let now β ∈ [3/2, τ2ǫ1 ] on the support of (1− χ0(β))χ0(βτ

2ǫ1 ), when

the Airy factor does oscillate. We also have ϕ ≥
√
s2 − 1 and the stationary phase w.r.t γ applies. The

corresponding contribution of Iχ0

0,gl(Q,Q0, τ) may be bounded as in (3.16) but with an additional factor τ2ǫ1

arising from the support wr.t. β ≤ τ2ǫ1 . Taking ε1 < 1/18 allows to conclude. �

3.2. Dispersive bounds when d(Q, ∂Ω) ≤
√
2 − 1 ≤ d(Q0, ∂Ω). Let 1 ≤ r ≤

√
2 ≤ s and let 0 ≤ j ≤

j(s, h). We proceed as in [7, Section 3.3] to obtain directly the form of the reflected wave, which may be
done using the Melrose and Taylor parametrix as the observation point Q is close to the boundary; formula
(2.4) becomes useless since d(Q, ∂Ω) may be arbitrarily small. By Proposition 2.8 we are reduced to prove

|∑j(s,h)
j=0

´

χ(hτ)τeitτ Ij(Q0, Q, τ)dτ | ≤ C
h2t for a constant independent of Q0 and Q, where we set

Ij(τ,Q0, Q) := τ

ˆ

eiτ(yα+zγ)
(
ajA+(τ

2/3ζ) + bjτ
−1/3A′

+(τ
2/3ζ)

) A(τ2/3ζ0)

A+(τ2/3ζ0)
ψj(1− γ2)F̂j,τ (α, γ)dαdγ

obtained as done in the last part of Section 2.1.

Lemma 3.10. There exists a constant C > 0, such that, for all Q in a small neighborhood of CQ0 , |y−y∗| ≤
π
16 and t ∼ dist(Q0, ∂Ω) + dist(Q, ∂Ω) the following holds

∣∣∑j(s,h)
j=0 Ij(Q0, Q, τ)

∣∣ ≤ C
t .

The Lemma follows exactly as in [7, Lemma 3.25] for all j ≤ j(s, h) as the observation point Q is located
near a glancing point of the boundary (notice that, in the case Q far from ∂Ω, the geometry of the obstacle
was important and the approach to obtain dispersive bounds in the case of the exterior of the cylinder was
different from the one in the exterior of a ball; when Q is near ∂Ω the same arguments hold in both cases so
we do not reproduce the proof here. Moreover, all stationary arguments hold for j ≤ j(s, h)).

3.3. Dispersive bounds for the ”non-glancing” part, d(Q0, ∂Ω) ≥
√
2− 1. Let s ≥

√
2− 1 as before.

We let u#j,he,h(Q,Q0, t) :=
´

∂Ω

∂xu
+
j,he,h(P,Q0,t−|Q−P |)

4π|Q−P | dσ(P ), where ∂xu
+
j,he|∂Ω has been defined in (2.23).
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Proposition 3.11. There exists C = C(ε) > 0 such that for all t > h, the following holds uniformly with

respect to Q,Q0 such that s ≥ r ≥
√
2 (where s = 1 + xQ0 , r = 1 + xQ) :

j(s,h)∑

j=0

|u#j,he,h(Q,Q0, t)| ≤
C

h2t
.

Proof. Using (2.23), it follows that the phase function of u#j,he,h(Q,Q0, t) is τ(t− Φ) where Φ := |Q − P |+
|P −Q0| and the symbol is τ2

|P−Q||P−Q0|σj,he(y, z, s, τ) with σj,he a classical symbol of order 0 with respect

to τ supported for P with coordinates (x, y, z)P = (0, y, z) such that s(sin y∗ − sin y) ≥ c(ε)|P − Q0| and
2−j(−z) ∼ φ(0, y, 0, s). In the following it will be convenient to work with the coordinates (r, θ, z) (instead
of (x, y, z)). Recall that we set r = 1 + x, θ = π

2 − y. In these coordinates, the support conditions for σj,he
become s(cos θ∗ − cos θ) ≥ c(ε)|P −Q0|, θ∗ = arccos(1/s). We compute the derivative of the phase Φ, where

Φ := |Q− P |+ |Q0 − P | = φ̃(1, θ − θQ, rQ, z − zQ) + φ̃(1, θ, s, z),

where now P = (cos θ, sin θ, z) ∈ R3, Q0 = (s, 0, 0) and Q = (rQ cos θQ, rQ sin θQ, zQ) and where φ̃ is defined
in (1.9). Let r = rQ. The critical points satisfy ∂θΦ = ∂zΦ = 0, which is equivalent to





z

φ̃(1, θ, s, z)
+

z − zQ

φ̃(1, θ − θQ, r, z − zQ)
= 0,

s sin θ

φ̃(1, θ, s, z)
+

r sin(θ − θQ)

φ̃(1, θ − θQ, r, z − zQ)
= 0.

(3.17)

We aim at applying the stationary phase with respect to both θ and z. We evaluate the second order
derivatives of Φ at ∇θ,zΦ = 0. The second order derivative of Φ satisfies

∂2z,zΦ|∂zΦ=0 =
( 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

)(
1− z2

φ̃2(1, θ, s, z)

)
. (3.18)

Next, as ∂2θ,zΦ = −
(

zs sin θ
φ̃3(1,θ,s,z)

+
(z−zQ)r sin(θ−θQ)

φ̃3(1,θ−θQ,r,z−zQ)

)
, we obtain, using the system (3.17),

∂2θ,zΦ|∇θ,zΦ=0 = −
( 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

) zs sin θ

φ̃2(1, θ, s, z)
. (3.19)

Finally, we compute

∂2θ,θΦ =
s cos θ

φ̃(1, θ, s, z)
− s2 sin2 θ

φ̃3(1, θ, s, z)
+

r cos(θ − θQ)

φ̃(1, θ − θQ, r, z − zQ)
− r2 sin2(θ − θQ)

φ̃3(1, θ − θQ, r, z − zQ)
. (3.20)

To evaluate ∂2θ,θΦ|∇z,θΦ=0 we need a refined analysis of the critical points. Using both equations in (3.17) gives
s sin θ
ψ(s,θ) = − r sin(θ−θQ)

ψ(r,θ−θQ) , where ψ(s, θ) =
√
1− 2s cos θ + s2, and hence θ ∈ [θQ − π, θQ]. Taking the square in

the last equality in (3.17), subtracting 1 and then using the first in (3.17) yields s cos θ−1
φ̃(1,θ,s,z)

= ± (r cos(θ−θQ)−1)

φ̃(1,θ−θQ,r,z−zQ)
.

Depending on the sign, we separate three situations :

Different signs. Consider first the case s cos θ−1
φ̃(1,θ,s,z)

= − (r cos(θ−θQ)−1)

φ̃(1,θ−θQ,r,z−zQ)
when

s cos θ

φ̃(1, θ, s, z)
+

r cos(θ − θQ)

φ̃(1, θ − θQ, r, z − zQ)
=

1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)
.

We find

∂2θ,θΦ|∇θ,zΦ=0 =
( 1

φ̃(1, θ, s, z)
+

1

φ(1, θ − θQ, r, z − zQ)

)(
1− s2 sin2 θ

φ̃2(1, θ, s, z)

)
. (3.21)

Using (3.18), (3.21), (3.19), the determinant of the Hessian matrix equals

( 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

)2

× (s cos θ − 1)2

φ̃2(1, θ, s, z)
|∇θ,zΦ=0 (3.22)
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and on the support of the symbol σ1,he the second factor in (3.22) takes values in [c2(ε1), 1]. The unique

critical point w.r.t. z reads as zc = zQ × ψ(s,θ)
ψ(s,θ)+ψ(r,θ−θQ) .

Lemma 3.12. When τ ×
(

1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)
≥ M for some M > 1 large enough, the usual

stationary phase applies for θ, z near the critical points and yields |F(u#j,he,h)(Q,Q0, τ)| . τ
t when t ∼

φ̃(1, θc−θQ, r, zc−zQ)+ φ̃(1, θc, s, zc). For z, θ outside a fixed neighborhood of the critical points the previous
estimate still holds.

Proof. We let j = 0 for simplicity. When τ ×
(

1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)
≥ τ ǫ for some ǫ > 0, the

stationary phase obviously applies with large parameter & τ ǫ : then F(u#0,he,h)(Q,Q0, τ) takes the form

F(u#0,he,h)(Q,Q0, τ) =
τ2−1eiτ(t−Φ)zc,θc σ̃0,he(θ, z, s, τ)

φ̃(1, θ − θQ, r, z − zQ)φ̃(1, θ, s, z)

( 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

)−1∣∣∣
zc,θc

+O
( τ−∞

φ̃(1, θc − θQ, r, zc − zQ) + φ̃(1, θc, sc, z)

)
(3.23)

for some new symbol σ̃0,he which reads as an asymptotic expansion with main contribution σj,he and small pa-

rameter. τ−ǫ
′

. As the main contribution ofF(u#0,he,h)(Q,Q0, τ) can be bounded by
τσ̃0,he(θ,z,s,τ)

φ̃(1,θ−θQ,r,z−zQ)+φ̃(1,θ,s,z)
,

for t ∼ φ̃(1, θc − θQ, r, zc − zQ) + φ̃(1, θc, s, zc) this allows to conclude using the integration w.r.t. τ . For
t that doesn’t satisfy this condition we conclude by integrations by parts, finite speed of propagation and
support properties of the symbol. If we replace τ ǫ

′

by some large constant M , the main contribution of

F(u#0,he,h)(Q,Q0, τ) can be bounded in the same way, but we need to bound the remainder terms as follows

τ2

φ̃(1, θ − θQ, r, z − zQ)φ̃(1, θ, s, z)
× τ−1

( 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

)
M−N

for all N ≥ 1, which is enough to conclude. For j ≤ j(s, h) we conclude in the same way.

Let now z, θ outside a fixed neighborhood of the critical points. If moreover |z| ≥ 2t, the phase τ(t−Φ) is not

stationary w.r.t. τ ; let |z| ≤ 2t such that | zzc −1| ≥ c for some fixed constant c > 0. If τ
|zQ|

φ̃(1,θ−θQ,r,z−zQ)
≥M1

for some largeM1 > 1, then we make repeated integrations by parts as τ∂zΦ =
zQ

φ̃2(1,θ−θQ,r,z−zQ)
( zzc −1). Let

τ
|zQ|

φ̃(1,θ−θQ,r,z−zQ)
< M1. As τ∂zΦ = τ

(
1

φ̃(1,θ,s,z)
+ 1

φ̃(1,θ−θQ,r,z−zQ)

)
z− τ

zQ

φ̃(1,θ−θQ,r,z−zQ)
, then if τ∂zΦ ≥M2

for some large constant M2 > 1, repeated integrations by parts allow to conclude; if, instead, τ∂zΦ ≤ M2

then

|z| ≤
(M2

τ
+

|zQ|
φ̃(1, θ − θQ, r, z − zQ)

) 1

( 1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)

and we directly obtain, using the size of the support of the integrand (z, θ) (with θ bounded)

|F(u#0,he,h)(Q,Q0, τ)| .
τ2

φ̃1φ̃2

M1 +M2

τ
× φ̃1φ̃2

φ̃1 + φ̃2
.

1

t
,

where φ̃1 = φ̃(1, θ, s, z) and φ̃2 = φ̃(1, θ − θQ, r, z − zQ). Similar arguments hold for all j ≤ j(s, h). �

Lemma 3.13. When τ ×
(

1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)
≤ M estimate (3.23) still holds for t ∼ φ̃(1, θc −

θQ, r, zc − zQ) + φ̃(1, θc, s, zc).

Proof. For |z/zc − 1| ≥ c we may proceed as in the second part of the proof of the previous lemma. Let
therefore z/zc ∈ [1/4, 4] and make the change of variables z = zcΞ. Then

τ∂ΞΦ = τzc∂zΦ|z=zcΞ = τzc ×
zQ

φ̃2
(Ξ − 1) = τz2Q

φ̃1

φ̃2

1

φ̃1 + φ̃2
(Ξ− 1).
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Using (3.18), we obtain τ∂2ΞΦ|Ξ=1 = τz2c∂
2
zΦ|z=zcΞ = τ( 1

φ̃1
+ 1
φ̃2
)z2c

ψ2
1

φ̃2
1

, where, from the support properties of

the symbol, the last factor is bounded from below by a fixed constant. If τ( 1
φ̃1

+ 1
φ̃2
)z2c ≥ M , we apply the

stationary phase near Ξ = 1 only with respect to Ξ (and not with θ) as in the previous lemma and, using
that θ belongs to a compact set, we find the following uniform bound

|F(u#0.he,h)(Q,Q0, τ)| .
τ2

φ̃1φ̃2
× zc × τ−1/2z−1

c (
1

φ̃1
+

1

φ̃2
)−1/2 .

τ

φ̃1 + φ̃1
×
(
τ(

1

φ̃1
+

1

φ̃2
)
)1/2

(3.24)

and we conclude using the hypothesis τ ×
(

1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)
≤M . Same for all j ≤ j(s, h). �

Same sign, P in the illuminated regime of Q0, Q. Consider now the situation s cos θ−1
ψ(s,θ) =

r cos(θ−θQ)−1
ψ(r,θ−θQ) .

The formula (3.18) remains unchanged and ∂2z,zΦ is strictly positive. Moreover, from the support condition
of σ1,he we have s cos θ > 1 then r cos(θ− θQ) > 1 and in (3.20) we obtain a lower bound for the sum of the
first and third terms at the critical points as follows :

s cos θ

φ̃(1, θ, s, z)
+

r cos(θ − θQ)

φ̃(1, θ − θQ, r, z − zQ)
≥ 1

φ̃(1, θ, s, z)
+

1

φ̃(1, θ − θQ, r, z − zQ)

and we can proceed exactly as in the previous case.

Remark 3.14. Notice that the positivity condition s cos θ > 1 is equivalent to cos θ > cos θ∗, where θ∗ =
arccos(1/s), which in turn assures that the point P belongs to the illuminated region of Q (as θ < θ∗). When
both conditions hold (cos θ > 1/s and cos(θ−θQ) > 1/r), the point P belongs to the illuminated regions from
Q0 and Q. In fact, the line Q0Q is tangent to the boundary when arccos(1/s)+arccos(1/r) = θQ : if P ∈ ∂Ω
is such that the cosine of the angle between QO and OP is larger than 1/r, then the point Q belongs to the
illuminated regime of Q0. As such, the previous case when ±(s cos θ − 1) > 0 and ±(1− r cos(θ − θQ)) > 0
corresponds to points P which belong to the illuminated regime of only one of the two points Q0 and Q. In
the last case s cos θ− 1 < 0 and 1− r cos(θ− θQ) < 0 that will be dealt with in the remaining of this section,
P does not belong to the illuminated regions of Q0, Q.

Same sign, P in the shadow regime of Q0, Q. In this case we do not have a lower bound for the

determinant of the Hessian matrix as before. Replacing
r cos(θ−θQ)

φ̃2
= − 1

φ̃1
+ 1

φ̃2
+ s sin θ

φ̃1
in the expression

(3.20) yields the following form for the determinant of the Hessian matrix at this critical point :
( 1

φ̃1
+

1

φ̃2

)
× (1− s cos θ)

φ̃1
×
∣∣∣
( 1

φ̃1
+

1

φ̃2

) (1− s cos θ)

φ̃1
− 2

ψ2
1

φ̃21

∣∣∣|∇θ,zΦ=0. (3.25)

Lemma 3.15. At ∇θ,zΦ = 0 the following holds

ψ2
2

φ̃22
− 1

φ̃2

(1− r cos(θ − θQ))

φ̃2
=
r(r − cos(θ − θQ))

φ̃22
≥ r(r − 1)

φ̃22
.

ψ2
1

φ̃21
− 1

φ̃1

(1− s cos θ)

φ̃1
=
s(s− cos θ)

φ̃22
≥ s(s− 1)

φ̃21
.

The lemma is a direct computation. Taking the sum of the terms in the left hand side and using that

φ̃j = ψj

√
1 +

z2Q
(ψ1+ψ2)2

for j ∈ {1, 2} and (1−s cos θ)
φ̃1

=
(1−r cos(θ−θQ))

φ̃2
yields, at ∇θ,zΦ = 0,

(
2
ψ2
1

φ̃21
−
( 1

φ̃1
+

1

φ̃2

)(1 − s cos θ)

φ̃1

)
≥ s(s− 1)

φ̃21
+
r(r − 1)

φ̃22
,

which further induces the following lower bound for the determinant of the Hessian matrix
( 1

φ̃1
+

1

φ̃2

)
× (1 − s cos θ)

φ̃1
×
(s(s− 1)

φ̃21
+
r(r − 1)

φ̃22

)
.

From now on we may proceed as in the proof of the first case, applying the stationary phase when this
determinant is sufficiently large and obtaining bounds using the size of the intervals of integration when the
stationary phase fails to apply. Thus, we obtain the equivalent of Lemma 3.12



DISPERSION ESTIMATES FOR THE WAVE EQUATION OUTSIDE OF A CYLINDER 19

Lemma 3.16. When τ ×
(

1
φ̃(1,θ,s,z)

+ 1
φ̃(1,θ−θQ,r,z−zQ)

)1/2(
s(s−1)

φ̃2
1

+ r(r−1)

φ̃2
2

)1/2

≥M for some large M > 1,

the usual stationary phase applies for θ, z near the critical points and yields |F(u#0,he,h)(Q,Q0, τ)| . τ
t for

t ∼ φ̃(1, θc − θQ, r, zc − zQ) + φ̃(1, θc, s, zc). For z, θ outside a fixed neighborhood of the critical points the
previous estimate still holds.

Proof. The main contribution of F(u#0,he,h)(Q,Q0, τ) after applying the stationary phase is bounded by

τ2

φ̃1φ̃2
× τ−1

( 1

φ̃1
+

1

φ̃2

)−1/2(s(s− 1)

φ̃21
+
r(r − 1)

φ̃22

)−1/2

.
τ

φ̃1 + φ̃2
×
√

1

φ̃1
+

1

φ̃2

( φ̃1
4s

+
φ̃2
4r

)
.

On the support of σ1,he we obtain the desired estimates. We let the other situations to the reader. �

When 1 ≤ j ≤ j(s, h) the phase is the same, only the symbol comes with non positive powers of 2j : to sum
them up, notice that the phase is stationary in τ only when t ∼ |z| ∼ 2js, hence for a finite number of j. �

4. High-frequency case. Parametrix and dispersive estimates for d(Q, ∂Ω) <
√
2− 1 and

d(Q0, ∂Ω) <
√
2− 1, or for d(Q, ∂Ω) ≥

√
2− 1 and

√
1− γ2 ∼ 2−j with τ2−3jd(Q, ∂Ω) . 1

In this section both Q and Q0 are close to the boundary and t > 0. For convenience, we will assume this time
that s ≤ r ≤

√
2. Denote R(Q,Q0, τ) the outgoing solutions of the Helmholtz equation (τ2 + ∆)w = δQ0 ,

w|∂Ω = 0 with Q0 = (s, 0, 0) where we recall that, in cylindrical coordinates, ∆ = ∂2r +
∂r
r +

∂2
θ

r2 + ∂2z . Then
the solution of the wave equation with initial condition (u0, u1) = (δQ0 , 0) is given by

u(Q,Q0, t) =

ˆ ∞

0

eitτR(Q,Q0, τ)
dτ

π
. (4.1)

For a given w0(r, θ, z), the solution to the inhomogeneous equation (τ2 +∆)w = w0 reads as

w(τ, r, θ, z) =

ˆ

R

eizϑ
∑

n∈Z

einθ
ˆ ∞

1

Gn(r, r̃, κ(ϑ, τ))r̃
2ŵ0(r̃, n, ϑ)dr̃dϑ,

where the kernel Gn is symmetric w.r.t. r, r̃ and, for r ≥ r̃, it is given by

Gn(r, r̃, κ) =
π

2i
(rr̃)−

1
2

(
Jn(r̃κ)−

Jn(κ)

Hn(κ)
Hn(r̃κ)

)
Hn(rκ),

=
π

4i
(rr̃)−

1
2

(
Hn(r̃κ)−

Hn(k)

Hn(k)
Hn(r̃κ)

)
Hn(rκ).

(4.2)

Here Jn(z) =
1
2 (Hn(z) +Hn(z)) denotes the Bessel function and κ(ϑ, τ) :=

√
τ2 − ϑ2. As n is an integer,

H−n(z) = (−1)nHn(z), therefore Gn = G−n. Taking w0 = δQ0 , Q0 = (s, 0, 0) and s ≤ r yields r̃ = s and

R(Q,Q0, τ) = s2
ˆ

R

eizϑ
∑

n∈Z

einθG|n|(r, s, κ(ϑ, τ))dϑ.

Let ψ0, ψ ∈ C∞
0 as in Section 1.0.1 such that ψ0 is equal to 1 on [1/81, 1], and to 0 on [0, 1/100], ψ ∈

C∞
0 (1/4, 4) is equal to 1 near 1 is such that 1− ψ0(β) =

∑
j≥1 ψ(2

2jβ) and 0 ≤ ψ0, ψ ≤ 1, and set

Rj(Q,Q0, τ) = s2
ˆ

R

eizϑ
∑

n∈Z

einθψ(22j(1− (ϑ/τ)2))G|n|(r, s, κ(ϑ, τ))dϑ,

for j ≥ 1 ; for j = 0, replace ψ by ψ0(1− γ2).

Lemma 4.1. Fix 0 < h0 < 1 small enough and let h ≤ h0. Let χ ∈ C∞
0 (1/2, 2) valued in [0, 1] and equal to

1 on [ 34 ,
3
2 ]. There exist a constant C > 0 such that for all 1 ≤ s ≤ r ≤

√
2 and all t > 0, we have

I(Q,Q0, h) :=

ˆ ∞

0

eitτχ(hτ)R(Q,Q0, τ)dτ ≤ C

h2t
. (4.3)
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Moreover, for j ≥ j(r, h) with j(r, h) defined in Definition 2.3, we have
∑

j≥j(r,h) I
j(Q,Q0, τ) ≤ C

h2t , where

Ij(Q,Q0, h) :=

ˆ ∞

0

eitτχ(hτ)Rj(Q,Q0, τ)dτ. (4.4)

In the remaining of this section we prove Lemma 4.1. Let κ = κ(ϑ, τ) =
√
τ2 − ϑ2 and set

G+
n (r, s, κ) =

π

4i
√
rs
Hn(sκ)Hn(rκ), G

−
n (r, s, κ) :=

π

4i
√
rs

Hn(κ)

Hn(κ)
Hn(sκ)Hn(rκ). (4.5)

Substitute (4.5) in (4.2) and denote R± and I±(Q,Q0, τ) the corresponding contributions, respectively, so
that I = I++I−. Let χ0 ∈ C∞

0 (−2, 2) valued in [0, 1] and equal to 1 on [−1, 1] and χ±(ℓ) := (1−χ0(ℓ))1±ℓ>0.
Consider n 6= 0 and write I± =

∑
∗∈{0,±} I

±
χ∗
, where, for χ∗ ∈ {χ0, χ±}, n ≥ 1 and j ≥ 0 we define

I±,n,jχ∗
:=

ˆ ∞

0

eitτχ(hτ)

ˆ

eizϑχ∗
(
(

√
τ2 − ϑ2

n
− 1)/ε

)
s2ψ(22j(1− (ϑ/τ)2))G±

n (r, s, κ(ϑ, τ))dϑdτ (4.6)

and set I±χ∗
=

∑
j≥0

∑
n∈N\{0}(e

inθ+e−inθ)I±,n,jχ∗
for some small ε > 0. Then Ij = 2

∑
∗∈{0,±}

∑
n cos(nθ)I

±,n,j
χ∗

.

Then
√
τ2 − ϑ2/n < 1−ε,

√
τ2 − ϑ2/n ∈ [1−2ε, 1+2ε] and

√
τ2 − ϑ2/n > 1+ε on the support of χ−, χ0, χ+.

In the following, we look for upper bounds for |I±,n,jχ∗
| first when s ≤ r ≤

√
2, then for r ≥

√
2 and j ≥ j(r, h)

and check that the sums over n, j remain bounded by C/(h2t) for some uniform constant C > 0 independent
of the parameters. We may assume that n ≥ n0 for some large n0, as, for bounded values, the result is
trivial. We start with the main part I±χ+

which corresponds to values ρ := (
√
τ2 − ϑ2)/n ≥ 1+ε. Let ϑ = τγ

then ρ = τ
√
1− γ2/n ≥ 1 + ε. Let ρ̃ ∈ {ρ, rρ, sρ}. With Φ+ given in Lemma 6.1 we get from (6.3)

Hn(nρ̃) ∼1/n 2e−
iπ
3

( 4ζ̃(ρ̃)

1− ρ2

) 1
4

n− 1
3A+(n

2
3 ζ̃(ρ̃))

[∑

j≥0

(
aj + n− 4

3Φ+(n
2
3 ζ̃(ρ̃))bj

)
(−n 2

3 ζ̃(ρ̃))−3j/2
]
, (4.7)

A+(n
2
3 ζ̃(ρ̃)) ∼1/n n

− 1
6

(
− ζ̃(ρ̃)

)− 1
4 e−i 23n(−ζ̃(ρ̃))

3
2

(
1 +O

(
(−n 2

3 ζ̃(ρ̃))−1
))
, if n

2
3 ζ̃(ρ̃) > 2.

On the support of the cut-off functions in (4.6) for ∗ = +, the symbol of I±,n,jχ+
becomes

J±,n,j
χ+

(r, s, ρ) := n−2× 1
3−2× 1

6
s2χ+((τ

√
1− γ2/n− 1)/ε)

(rs)
1
2 ((rρ)2 − 1)

1
4 ((sρ)2 − 1))

1
4

Σ±(r, s, ρ, n)τχ(hτ)ψ(2
2j(1− γ2)), (4.8)

where Σ± are asymptotic expansions with small parameter n−1 and with main contribution obtained as a
product of a0 in (6.3) and σ0 in (6.1) hence elliptic. The phase functions of I±,n,jχ+

, denoted φ±n , read as

τφ±n := tτ + zγτ − n
(
f0(r, ρ)∓ f0(s, ρ)

)
, f0(r, ρ) :=

2
3

(
− ζ̃(rρ)

) 3
2 − 2

3

(
− ζ̃(ρ)

) 3
2 , (4.9)

where we recall ρ =
τ
√

1−γ2

n . The phases φ±n of I±,n,jχ+
are stationary when ∇τ,γ(τφ

±
n ) = 0, that is

∂τ (τφ
±
n ) = t+ zγ − n

τ

(
f1(r, ρ)∓ f1(s, ρ)

)
, τ∂γφ

±
n = τ

(
z +

γ√
1− γ2

(f1(r, ρ)∓ f1(s, ρ))

ρ

)
, (4.10)

where f1(r, ρ) :=
√
(rρ)2 − 1−

√
ρ2 − 1 and where the derivative of f0 is obtained from Lemma 2.5.

Lemma 4.2. There exists C > 0 so that for all
√
2 ≥ r ≥ s ≥ 1 the following holds

∑
n≥n0,j≥0 |I±,n,jχ+

| ≤ C
h2t .

For r ≥ s with r ≥
√
2 and for j(r, h) given in Definition 2.3 we also have

∑
n≥n0,j≥j(r,h) |I±,n,jχ+

| ≤ C
h2t .

Proof. We focus on I−,n,jχ+
. Let ϕ := 2j

√
1− γ2, then ϕ ∈ (1/2, 2) on the support of ψ(22j(1− γ2)) = ψ(ϕ2)

and |γ| ≥ 1/4 (when j = 0 there is no need to change variables). Let φ−n,j := φ−n |γ=√1−2−2jϕ2 for ϕ ∼ 1. As

r ≥ s and ρ ≥ 1 + ε, the factor depending on r, s, ρ in (4.11) is uniformly bounded by 1/ρ.
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Let first 1 < s ≤ r ≤
√
2 and t ∼ |z|. If 2−2j |z| & 1 then τ |∂ϕφ−n,j | = τ | ∂γ∂ϕ∂γφ

−
n,j | ∼ τ2−2j |z| & 1/h :

repeated integrations by parts yield O(hN (2−2j |z|)−N) for all N ≥ 1, hence for small r we find

|I−,n,jχ+
(Q,Q0, h)| .

1

h2
× 2−2j

n
× s2

(rs)1/2
hN(2−2j |z|)−N

((rρ)2 − 1)1/4((sρ)2 − 1)1/4
. (4.11)

Take N = 1, then
∑
n<2−j/h

∑
22j.|z| 2

−2j/(nρ)× h(22j/|z|) ≤ 1
|z|

∑
22j.|z| 2

j × 2−j/h ≤ h log(1/h)
|z| where we

used (nρ)−1 = 2jh, n < 2−j/h and j ≤ log2(1/h). Same computation with N ≥ 1 yields
∑
n,22j.t |I−,n,jχ+

| .
O(hN ) log(1/h)

h2t . For 2−2j |z| ≤ 1 we have again, |I−,n,jχ+
| . 1

h2
2−2j

nρ and
∑

n<2−j/h

∑
22j≥|z| 2

−2j/(nρ) .∑
22j≥|z| 2

−2j+jh × (2−j/h) ≤ ∑
22j≥|z| 2

−2j ≤ 1/|z| ∼ 1/t. If t/|z| 6∈ [1/2, 2], repeated integrations by

parts in τ yield the same kind of bounds with additional factors hN for all N ≥ 1.

Let now r ≥
√
2 and s ≤ r such that τ2−3jr ≤ 1; since the phase is stationary w.r.t. γ when |z| ∼ 2jr,

it follows that, if τ2−4j |z| ≥ 4, we may integrate by parts in ϕ (in which case the remainders may be
dealt with as before) to conclude. Let therefore τ2−4j |z| ≤ 4. We notice that when t ≥ 4(|z| + 2jr)
the phase τφ−n,j is not stationary in τ : in this case we integrate by parts in τ and obtain an upper

bound for |I−,n,jχ+
| of the form (4.11) but with hN (2−2j|z|)−N replaced by (h/t)N . For N ≥ 1 gives

∑
n<2−j/h,j≥j(r,h) |I−,n,jχ+

| . hN

h2t

∑
n<2−j/h,j≤log(1/h)

2−2j

nρ ≤ hN log(1/h)
h2t (where we didn’t use that j ≥ j(r, h)).

Let |z| ∼ 2jr and t ≤ 4(|z|+ 2jr) ∼ 4|z|, then we have again |I−,χ+,j
χ0,χ0,n| . 1

h2
2−2j

nρ and we are left to estimate

the sum over j ≥ 1 satisfying τ2−4j |z|, τ2−3jr . 1. If moreover 2−2j|z| ≤ 1, we find

∑

1<2−j/(nh),j≥j(r,h)
|I−,n,jχ+

| . 1

h2

∑

n≤2−j/h,2−2j |z|≤1

2−2j

n
× nh2j =

1

h2

∑

2−2j≤1/|z|
h2−2j+j × 2−j

h
.

1

h2t
. (4.12)

When 2−2j |z| & 1 we bound from below τ̃
h∂

2
ϕφ

−
n,j |∂ϕφ−

n,j=0 &
2−2j |z|
h . The stationary phase yields

I−,n,jχ+
=

1

h2

ˆ

e
i
h τ̃φ

−

n,jχ(τ̃ )
(τ̃ /h)−1/2

√
∂2ϕφ

−
n,j |∂ϕφ−

n,j=0

(
J̃−,n,j
χ+

(r, s,
τ̃

2jnh
) + h2−jO((2−2j |z|/h)−∞)

)
dτ̃ , (4.13)

where J̃−,n,j
χ+

(r, s, τ
2jn ) is the symbol with main contribution J−,n,j

χ+
introduced in (4.8) and where h2−j comes

from the factors 2−2j × 1
n × nh

2−j of the symbol. In order to uniformly bound the sum of (4.13), notice that

the phase is stationary when t ∼ |z| ∼ 2jr. As 2−4j |z| . h, then |z|1/2 ≤ h1/222j and

|I−,n,jχ+
| . 1

h2t
× h1/2|z|1/22−2j+j

n
× nh2j ≤ 1

h2t
× h222j , h2

∑

n0≤n,2j<1/(hn)

22j ≤ h
∑

2j ., (4.14)

where we used that n ≤ 2−j/h on the support of χ+. Notice that the condition j ≥ j(r, h) was particularly
useful here in order to obtain the sharp bounds in (4.14). In the same way one may deal with I+,n,jχ+

and
obtain similar bounds. The proof of the Lemma is achieved. �

Next, we turn to I±,n,jχ0
whose symbols are supported for

τ
√

1−γ2

n ∈ [1 − 2ε, 1 + 2ε]. For each j ≥ 1,

it will be convenient to take τ2−jϕ = n + n1/3w : on the support of the symbol of I±,n,jχ0
we now have

wn−2/3 ∈ [−2ε,+2ε] and 2−j/h ∼ n ≥ 1 as τ ∼ 1/h. Write again 1 =
∑

∗∈{0,±} χ∗(w) where χ±(ℓ) =

(1 − χ0)(ℓ)1±ℓ>0 and denote I±,n,jχ0,χ∗
the corresponding integrals (defined as in (4.6) but with additional

cutoffs χ∗(n2/3(
√
τ2−ϑ2

n − 1))). We deal separately with the cases w > 1, |w| ≤ 2 and w < −1.

Lemma 4.3. For 1 < s ≤ r ≤
√
2 we have

∑
n≥n0,j≥1 |I±,n,jχ0,χ∗

| . 1
h2t , ∗ ∈ {0,+}. For r ≥ s with r ≥

√
2

and j(r, h) as in Definition 2.3 we have
∑
n≥n0,j≥j(r,h) |I±,n,jχ0,χ∗

| . 1
h2t , ∗ ∈ {0,+}.

Proof. On the support of χ+(w) we may proceed in a similar way as in Lemma 4.2 as the same asymptotic
expansions hold for the Hankel factors; as the computations are similar (modulo the change of variable w.r.t.
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τ) we focus on I−,n,jχ0,χ0
with symbol χ0(w). The expansion (4.7) still holds (with the simpler form (6.5)): when

n2/3(−ζ̃(ρ̃)) < 2 (with ρ̃ ∈ {ρ, rρ, sρ}), the Airy factors don’t oscillate and may be brought into the symbol.

Let first 1 < s ≤ r ≤
√
2 when the last inequality holds. The phase of I−,n,jχ0,χ0

equals τ(t + z
√
1− 2−2jϕ2),

and taking τ = 2j

ϕ (n+ n1/3w) we are reduced to obtaining uniform bounds for

s2

(rs)1/2

ˆ

ei
2j

ϕ (n+n1/3w)(t+z
√

1−2−2jϕ2)χ(h
2j

ϕ
(n+ n1/3w))

2j

ϕ
(n+ n1/3w)ψ(ϕ)χ0(w)n

−2/3+1/3 2
−2j+j

ϕ
dϕdw,

(4.15)

where the factors 2−2j+j n1/3

ϕ come from γ → ϕ, τ → w and where n ∼ 2−j

h , For t . h−1/3, the sum of all

contributions of the form (4.15) may be bounded as follows

∑

j,n

|I−,n,jχ0,χ0
| ≤

∑

j,n∼2−j/h

n2/3 ∼
∑

j,h1/32j/3≤1

(2−j/h)5/3 ≤ h1/3

h2
.

1

h2t
. (4.16)

For t & h−1/3 satisfying t ≥ 2|z|, the phase is non-stationary w.r.t. w ; integrations by parts with the
large parameter 2jn1/3 ∼ 22j/3/h1/3 yield a contribution O((2jn1/3/|t|)−N ) for all N ≥ 1 and we conclude.
For h−1/3 . t ≤ 4|z| we have 1

|z| ≤ 4
t and we apply the stationary phase in both w,ϕ: let φ−0,n,j :=

2j

ϕ (n + n1/3w)(t + z
√
1− 2−2jϕ2) then ∂2wφ

−
0,n,j = 0 and the determinant of the Hessian matrix equals

(∂2w,ϕφ
−
0,n,j)

2 ∼ (2−jn1/3|z|)2 for ϕ ∼ 1. If 2−jn1/3|z| ≥ h−ǫ for some small ǫ > 0, we find, for small r, s,

∑

j,n≥n0

|I−,n,jχ0,χ0
| ≤

∑

j,n∼2−j/h

n2/3

2−jn1/3|z| .
∑

j,2j<1/h

2j

|z| × (2−j/h)4/3(1 +O(h∞)) .
h2/3

h2t
.

If 2−jn1/3|z| ≤ 2h−ǫ then we bound the sum of |I−,n,jχ0,χ0
| as in (4.16) by

∑
j,n∼2−j/h n

2/3 and use that

2−j/3/h1/3 ∼ n1/3 ≤ 2j+1h−ǫ/|z| which gives
∑

j,n∼2−j/h n
2/3 ≤ 1

h2|z|h
2/3−ǫ∑

j 2
j+1−4j/3 . h2/3−ǫ

h2t .

Let now r ≥
√
2 such that n2/3(−ζ̃(rρ)) > 1. If moreover n2/3(−ζ̃(sρ)) > 1, then both Airy factors

A(n2/3ζ̃(rρ)), A(n2/3ζ̃(sρ)) do oscillate and we may proceed as with χ+(w) (the only differences with the case

χ+ are the absence of the phase functions of Hn(nρ)/Hn(nρ), which means replacing f1(r, ρ) by
√
(rρ)2 − 1,

and also the fact that the factor depending on r, s, ρ in (4.14) may not be bounded but at most n1/3).

Consider n2/3(−ζ̃(sρ)) ≤ 2, then |Hn(nsρ)| ∼ n−1/3 and the symbol of I−,n,jχ0,χ0
becomes

J−,n,j
χ0,χ0

(r, s, ρ) := n−2× 1
3− 1

6
s2Σ0(r, s, ρ, n)

(rs)1/2((rρ)2 − 1)
1
4

ψ(ϕ)χ0(w)χ(h
2j

ϕ
(n+ n1/3w))

2j

ϕ
(n+ n1/3w)2−2j 2

jn1/3

ϕ

where the elliptic symbol Σ0 is an asymptotic expansion with small parameter n−1 and with main contribu-

tion obtained as a product of a0 in (6.3), σ0 in (6.1) and Hn(nsρ)n
−1/3× Hn(nρ)

Hn(nρ)
. The factor ((rρ)2 − 1)−1/4

is always bounded by n1/6. The factors 2j(n + n1/3w) × 2−2j × 2jn1/3/ϕ occur from the changes of vari-
ables ϑ → τγ, γ → ϕ, τ → w. If t . h−1/3 we conclude as in (4.16). Let t ≥ h−1/3. The phase φ−0,n,j :=

τ(t+z
√
1− 2−2jϕ2)− 2

3n(−ζ̃(rρ))3/2 is not stationary for z such that τ2−j |z| ∼ 2jn×2−2j |z| ∼ 2−jn|z| ≥ h−ǫ

for some small ǫ > 0 and we perform repeated integrations by parts to conclude. If 2−jn|z| ≤ 2h−ǫ, then for
|t| ≥ 4|z| we integrate by parts, while for |t| ≤ 4|z| we use 2−jn|z| ∼ 2−2j|z|/h ≤ 2h−ǫ, 2−j/h ≥ 1 to obtain

∑

j≥1,n∼2−j/h

|I−,n,jχ0,χ0
| ≤

∑

n∼2−j/h,2−2j≤h1−ǫ/|z|
n2/3 ≤ h1/3

h2

∑

h2≤2−2j≤2h1−ǫ/|z|
2−2j+j/3 <

h1−ǫ

h2t
.

Let r ≥
√
2 and j ≥ j(r, h): for s such that n2/3(−ζ̃(sρ)) ≤ 2 we conclude as before (with an additional factor

1/r in the symbol). For n2/3(−ζ̃(sρ)) ≥ 1, the situation is similar to the one of χ+ dealt with before. �

Lemma 4.4. For 1 < s ≤ r ≤
√
2 we have

∑
n≥n0,j≥1 |

∑
± I

±,n,j
χ0,χ−

| . 1
h2t . For r ≥ s with r ≥

√
2 and

j(r, h) given in Definition 2.3, we also have
∑

n≥n0,j≥j(r,h) |
∑

± I
±,n,j
χ0,χ−

| . 1
h2t .
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Proof. Recall that 1 − γ2 = 2−2jϕ2, with ϕ ∼ 1 on the support of ψ, and ρ = τ
√

1− γ2/n = 1 + n−2/3w:

as w < −1 on the support the symbol of I±,n,jχ0,χ−
then ρ ∈ [1 − ε, 1− n−2/3]. It will be convenient to use the

representation of Gn in terms of Bessel functions Jn instead of Hn, hence the first line in (4.2). We estimate

s2

(rs)1/2

∑

n≥1

einθ
∑

j≥1

ˆ

ei
2j (n+n1/3w)

ϕ (t−z
√

1−2−2jϕ2)χ
(2jh(n+ n1/3w)

ϕ

) Jn(n(1 + n− 2
3w))

Hn(n(1 + n− 2
3w))

× ψ(ϕ)χ−(w)Hn(nr(1 + n− 2
3w))Hn(ns(1 + n− 2

3w))
2j

ϕ
(n+ n1/3w)2−2j+jn

1
3 dwdϕ.

(4.17)

The Bessel function Jn(nρ) is given by (6.4). The factor Jn/Hn corresponds to the quotient A
A+

(n
2
3 ζ̃(ρ)) =

e−2iπ/3 + e−
4
3 |n|ζ̃(ρ)

3
2 (see Lemma 6.1). On the support of the cut-offs of I−,n,jχ0,χ−

, its symbol has the form

J−,n,j
χ0,χ−

:=
s2

(rs)1/2
n−2/3

( 4ζ̃(rρ))

1− (rρ)2

)1/4( 4ζ̃(sρ))

1− (sρ)2

)1/4

A+(n
2/3ζ̃(rρ))A+(n

2/3ζ̃(sρ))e−
4
3nζ̃(ρ)

3
2 Σ−, (4.18)

for some symbol Σ− of order 0. In the case of I+,n,jχ0,χ−
one should replace A+(n

2/3ζ̃(sρ)) by A(n2/3ζ̃(sρ)) and

remove the exponential decreasing factor. When n2/3|ζ̃(rρ)|, n2/3|ζ̃(sρ)| < 2 we can proceed exactly as for

I−,n,jχ0,χ0
with r − 1, s− 1 . n−2/3 small. Assume n2/3ζ̃(sρ) ≥ n2/3ζ̃(sρ) ≥ 1 with ρ ≤ 1− 1

n2/3 < 1, then

J−,n,j
χ0,χ−

:=
s2

(rs)1/2
n− 1

3− 1
6

(1− (rρ)2)
1
4

n− 1
3− 1

6

(1 − (sρ)2)
1
4

e−
4
3nζ̃(ρ)

3
2 + 2

3nζ̃(sρ)
3
2 + 2

3nζ̃(rρ)
3
2 Σ−. (4.19)

As we are assuming ζ̃(rρ), ζ̃(sρ) > 0, we have, using Lemma 2.5, 2
3 ζ̃(sρ)

3/2− 2
3 ζ̃(ρ)

3/2 = −
´ sρ

ρ

√
1−w2

w dw ≤ 0.

The phase function of I±,n,jχ0,χ−
is τ(t + zγ) and the factor s2

(rs)1/2(1−(sρ)2)
1
4 (1−(rρ)2)

1
4

is at most n1/3 when

1− sρ ∼ 1− rρ ∼ n−2/3, while for r, s ≥ 2 this term is uniformly bounded by 1. From now one can proceed
as in the case of I−,n,jχ0,χ0

as on the support of χ(hτ) we still have n ∼ 2−j/h, the phase is stationary for t ∼ |z|
and for 2−jn|z| ≥ h−ǫ we integrate by parts, while for 2−jn|z| ≤ 2h−ǫ we conclude as done previously. �

Lemma 4.5. For 1 < s ≤ r ≤
√
2 we have

∑
n≥n0,j≥1 |

∑
± I

±,n,j
χ−

| . 1
h2t . For r ≥ s with r ≥

√
2 and

j(r, h) as in Definition 2.3, we also have
∑
n≥n0,j≥j(r,h) |

∑
± I

±,n,j
χ−

| . 1
h2t .

Proof. On the support of I−,n,jχ−
we have ρ =

τ
√

1−γ2

n ≤ 1− ε. The symbol of I−,n,jχ−
has also the form (4.18).

For small r, s ≤
√
2 and ε > 2(

√
2−1), we write 1−rρ = 1−r+r(1−ρ) to deduce that, if ρ ≤ 1−ε, then the

symbol (4.18) takes the form (4.19) where the factor s2

(rs)1/2(1−(sρ)2)
1
4 (1−(rρ)2)

1
4

is uniformly bounded by a

constant depending only on ε and we conclude as before. When r, s are large (and τ2−2j |z| ≤M , τ2−jr ≤M
for largeM > 1), we separate the possible situations : the only new one is the case n2/3(1−rρ), n2/3(1−sρ) ≥
1 and r such that r < 1/ρ ≤ 1/(1− ε), in which case s2

(rs)1/2(1−(sρ)2)
1
4 (1−(rρ)2)

1
4
≤ rn1/3 ≤ n1/3

(1−ε) . In this case

we have additional decay from the exponential factors and conclude as before. �

5. Small frequency case

Let τ ≤ 1/h0 for some fixed h0 > 0, small enough. We use again the parametrix in terms of Bessel functions
introduced in Section 4 and keep the same notations. We split I = I+ + I−, and for n ≥ 1 large enough,
I± =

∑
∗∈{0,±} I

±
χ∗
, with I±χ∗

introduced as a sum of I±,n,jχ∗
given in (4.6) where χ(hτ) is replaced by χ̃(τ)

supported for τ ≤ 2/h0. Take n0 = 4/h0. We aim at proving that |∑± I
±
χ∗
| . C(h0)/t.

• On the support of I±χ∗
, ∗ ∈ {+, 0}, and for n ≥ n0 we have n0 ≤ n ≤ τ

√
1−γ2

1−ǫ < 4
h0

= n0.

• On the support of I±χ∗
, ∗ ∈ {+, 0}, and for 1 ≤ n ≤ n0 as

√
1− γ2 ∼ 2−j and τ ≤ 2/h0, only a finite

number of j such that 2j ≤ 1/(h0(1−ε)) may contribute. For each j, n on this finite set, the symbols
of I±χ∗

are bounded and their phase may oscillate only for large t or large |z|. If t is bounded then if r or
|z| are larger than max{4t,M} for someM > 1 large enough, integrations by parts allow to conclude
(using that the sum is finite); if |z|, r ≤ 4t each integral is bounded and we obtain |I±χ∗

| . C(h0).
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If t be sufficiently large, then if t/(|z| + 2jr) /∈ [1/8, 8], integrations by parts yields a contribution
O(1/tN ) for each pair (j, n) on the support of I±,n,jχ∗

. If t/(|z| + 2jr) ∈ [1/8, 8], we separate the

cases 2−2j|z| ≥M for some large M , when we apply the stationary phase in ϕ = 2j
√
1− γ2 and we

conclude as in (4.14) or 2−2j |z| ≤M , when we bound directly as in (4.12).

• On the support of I±χ−
we have n ≥ τ

√
1− γ2/(1 − ε), hence the sum over n is unbounded but as

n≫ τ
√
1− γ2 we may use (6.7) and conclude.

6. Appendix

6.1. Airy functions. For w ∈ C, the Airy function is defined as follows : A(w) = 1
2π

´

R
ei(s

3/3+sw)ds.

Let A±(w) := A(e∓2iπ/3w), then A−(w) = A+(w) and A(w) = eiπ/3A+(w) + e−iπ/3A−(w). Moreover,
A±(w), A′

±(w) are not zero for any w ∈ R, while all the zeros of A(w) and A′(w) are real and non positive.
We say that f(w) admits an asymptotic expansion for w → 0 if there exists (cj)j∈N such that for any j ≥ 0

we have limw→0 w
−j−1(f(w) −∑j

0 ciw
i) = cj+1. We write f(w) ∼w

∑
j cjw

j .

Lemma 6.1. Let Σ(w) := (A+(w)A−(w))1/2, then Σ(z) = |A+(w)| = |A−(w)| is real, monotonic increasing

in w and nowhere vanishing. We let µ(w) := 1
2i log(

A−(w)
A+(w) ) for w < −1/4. Then A±(w) = Σ(w)e∓iµ(w). For

w < −1, the following asymptotic expansions hold

Σ(w) ∼ 1
w
(−w)− 1

4

∑

j≥0

σj(−w)−
3j
2 , µ(w) ∼ 1

w

2

3
(−w) 3

2

∑

j≥0

ej(−w)−
3j
2 , σ0 =

1

2
√
π
, e0 = 1. (6.1)

The Airy quotient Φ+(w) =
A′

+(w)

A+(w) =
Σ′(w)
Σ(w) − iµ′(w) satisfies everywhere Φ′

+(w) = w−Φ2
+(w). In particular

Φ′
+(w) is bounded on (−∞,−1) and Φ+(w) ∼ 1

w
(−w) 1

2

∑
j≥0 dj(−w)−

3j
2 , d0 = 1, for (−w) > 1 large.

For w > 1, the functions A±(w) grow exponentially A±(w) = Σ±(w)e
2
3w

3/2

, where Σ± are classical symbols

of order −1/4 and we have A−(w)
A+(w) + e2iπ/3 = O(w−∞) when w → ∞ and A−(w)

A+(w) ∼ 1
w
e2iµ(w) when w → −∞.

Moreover the Airy function A(w) decays exponentially for w > 1, A(w) ∼ 1
w
|w|− 1

4 e−
2
3w

3/2

.

6.2. Bessel and Hankel functions. The Hankel function Hν(z) is a solution to the Bessel’s equation
w2H ′′

ν (w) +wH ′
ν(w) + (w2 − ν2) = 0. The couple {Hν(w), Hν(w)} is a fundamental system of solutions for

the Bessel equation. The real and imaginary part of Hν(w), denoted Jν(w) and Yν(w) respectively, are the
usual Bessel function of the first and second type. The Hankel function of order ν is defined by ([1, (9.1.25)])

Hν(w) =

ˆ +∞−iπ

−∞
ew sinh t−νtdt. (6.2)

For large positive order ν and w = νρ, the Hankel functions have the following expansions that hold uniformly
with respect to ρ in the sector | arg(ρ)| < π − ǫ, where ǫ > 0 is an arbitrary number [1, (9.3.37)]:

Hν(νρ) = 2e−
iπ
3

(
−4ζ̃(ρ)
ρ2−1

) 1
4
(
ν−

1
3A+(ν

2
3 ζ̃(ρ))

(∑

j≥0

aj(ζ̃)ν
−2j

)
+ ν−

5
3A′

+(ν
2
3 ζ̃(ρ))

(∑

j≥0

bj(ζ̃)ν
−2j

))
, (6.3)

Jν(νρ) = 2e−
iπ
3

(
−4ζ̃(ρ)
ρ2−1

) 1
4
(
ν−

1
3A(ν

2
3 ζ̃(ρ))

(∑

j≥0

aj(ζ̃)ν
−2j

)
+ ν−

5
3A′(ν

2
3 ζ̃(ρ))

(∑

j≥0

bj(ζ̃)ν
−2j

))
. (6.4)

Here aj(ζ̃), bj(ζ̃) are given in [1, (9.3.40)] and ζ̃(ρ) is provided in Lemma 2.5 (see [1, (9.3.38),(9.3.39)]).

When ρ = 1 + ν−2/3v, v = O(1), w = νρ = ν + ν1/3v, these formulas reduce to (see [1, (9.3.23),(9.3.24)])

Hν(ν + ν1/3v) =
21/3

ν
1
3

A+(−21/3v)
(
1 +

∑

j≥1

ãj(v)ν
−2j/3

)
+

22/3

ν
A′

+(−2
1
3 v)

(∑

j≥0

b̃j(v)n
−2j/3

)
, (6.5)

Jν(ν + ν1/3v) =
21/3

ν
1
3

A(−21/3v)
(
1 +

∑

j≥1

ãj(v)ν
−2j/3

)
+

22/3

ν
A′(−2

1
3 v)

(∑

j≥0

b̃j(v)n
−2j/3

)
. (6.6)

where ãj , b̃j are polynomials in v given in [1, (9.3.25),(9.3.26)].
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Remark 6.2. The formulas (6.3), (6.4) are among the deepest and most important results in the theory of
Bessel functions. In order to prove (6.4) starting from (6.2) one may chose a suitable contour that yields
Jν(νρ) = (2π)−1

´

eiνφ(ρ,t)dt with φ(ρ, t) = ρ sin t − t; for ν large enough and for ρ > 1, the critical point

t(ρ) := arccos(1/ρ)) is real and the critical value equals φ(ρ, t(ρ)) =
√
ρ2 − 1 − arccos(1/ρ) = 2

3 (−ζ̃)3/2,
where ζ̃(ρ) is defined as in (2.7). As the phase function of A(ν2/3ζ̃) equals ν(s3 + sζ̃) and has critical points

s2 = −ζ̃ and critical values ± 2
3 (−ζ̃)3/2, one obtains (6.4) by stationary phase (see [13] for details).

When the order is much larger than the argument n≫ w, (6.3), (6.4) reduce to (see [1, (9.3.1)])

Jn(w) =

√
1

2πn

(ew
2n

)n(
1 +O(

|w|
n

)
)
, Yn(w) = −

√
1

2πn

(ew
2n

)−n(
1 +O(

|w|
n

)
)
, n≫ 1. (6.7)

As we consider cylindrical coordinates we deal only with ν = n ∈ Z : in view of the well-known relations
H−n(w) = (−1)nHn(w) (see [1, (9.1.6)]), we may consider only non negative values of n in our discussion.
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