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RATIONAL PENTA-INNER FUNCTIONS AND THE DISTINGUISHED

BOUNDARY OF THE PENTABLOCK

ABHAY JINDAL AND POORNENDU KUMAR

Abstract. In this note, we give a description of rational maps from the open unit disc D to the
pentablock that map the boundary of D to the distinguished boundary of the pentablock. We also
obtain a new characterization of the distinguished boundary of the pentablock.

1. Introduction

In 2015, Agler, Lykova and Young introduced a new bounded domain called pentablock in [6].
The pentablock is a subdomain of C3 denoted by P and defined as the image of the domain
{A ∈ M2(C) : ‖A‖ < 1} under the mapping

π : A = [aij] 7→ (a21, tr(A), det(A)).

We denote the closure of P by P. The set P ⊂ C
3 is non-convex, polynomially convex, and star-

like about the origin, see [6]. The pentablock is an inhomogeneous domain, see [23]. The complex
geometry and function theory of the pentablock were further developed in [6, 23, 26, 27].

Attempts to solve particular cases of the µ−synthesis problem have also led to the study of two
other domains namely the symmetrized bidisc

G := {(tr(A), det(A)) : A = [aij ]2×2, ‖A‖ < 1} ⊂ C
2,

see [7] and the tetrablock

E := {(a11, a22, det(A)) : A = [aij ]2×2, ‖A‖ < 1} ⊂ C
3,

see [1]. We denote the closure of G by Γ. The set G and E are polynomially convex and non-convex
domains. The symmetrized bidisc and the tetrablock have attracted a considerable amount of
interest in recent years. For a greater exposition on these domains, see [1,4,7,9,14–16,19,22,24,25].

Let Ω ⊂ Cd be a bounded polynomially convex domain with closure Ω. Let A(Ω) be the algebra
of continuous scalar functions on Ω that are holomorphic in Ω. A boundary for Ω is a subset C of Ω
such that every function in A(Ω) attains its maximum modulus on C. The distinguished boundary
of Ω, to be denoted by bΩ (some authors write bΩ), is the smallest closed boundary of Ω.

The distinguished boundaries of the symmetrized bidisc and the tetrablock were found in [7]
and [1] to be

bΓ = {(s, p) ∈ C
2 : |s| ≤ 2, s = sp, |p| = 1}

= {(tr(U), det(U)) : U = [uij]2×2, U is a unitary}

and

bE = {(u11, u22, det(U)) : U = [uij]2×2, U is a unitary},
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2 JINDAL AND KUMAR

respectively. A key fact used in the above descriptions of distinguished boundaries is that the set
of 2 × 2 unitary matrices is the distinguished boundary of the 2 × 2 matrix operator-norm unit
ball. It was shown in reference [6] that the sets

K0 =

{

(a, s, p) ∈ C
3 : (s, p) ∈ bΓ, |a| =

√

1−
1

4
|s|2

}

and

K1 =

{

(a, s, p) ∈ C
3 : (s, p) ∈ bΓ, |a| ≤

√

1−
1

4
|s|2

}

both are boundaries of the pentablock. It was further shown in reference [6] that the set K0 is the
distinguished boundary of the pentablock while

K1 = {(u21, tr(U), det(U)) : U = [uij]2×2, U is a unitary}.

This suggests that, unlike in the cases of the symmetrized bidisc and tetrablock, the distinguished
boundary of the pentablock is attuned to a certain special class of unitary matrices rather than
whole class of unitary matrices. This note finds exactly that special class that describes K0 via the
map π. This, in turn, leads to a new description of the distinguished boundary of the pentablock.

Let T denote the unit circle in the complex plane C. An analytic map x = (x1, . . . , xd) : D → Ω
is called a rational Ω−inner (some authors call it rational Ω−inner) function if each xi is a rational
function with poles outside D and

(x1(λ), . . . , xd(λ)) ∈ bΩ

for all λ ∈ T. In [17], W. Blaschke studied the rational D−inner functions and proved that all
rational D−inner functions are of the form

B(z) := eiθ
n
∏

j=1

z − aj
1− ajz

for some a1, a2, ..., an ∈ D and θ ∈ [0, 2π]. Functions of this form are well-known to be the finite
Blaschke product. For a survey of results, see [18]. If Ω = Dd, then it follows from d = 1 case that
all rational Dd−inner functions are of the form

(B1(z), . . . Bd(z))

for some finite Blaschke products B1, . . . , Bd. A description of rational Γ−inner functions is given
by Agler–Lykova–Young, see [3]. Alsalhi–Lykova gave a description of rational E−inner functions,
see [13]. In section 3, we give a description of rational P−inner functions, see Theorem 3.9.

Sometime after this paper was finished and uploaded to arXiv, [12] appeared on arXiv. There
is an overlap of one result of our paper with [12]. Theorem 3.9 also appears there. The proofs
are different. Fejér-Riesz Theorem is used in [12] whereas our proof uses a study of the zeros and
poles of certain functions.

2. A new characterization of the distinguished boundary

In the following theorem, we shall give a characterization of points in bP. The proof of the
theorem will manifest a recipe to construct a 2× 2 unitary matrix U = [uij] for any (a, s, p) ∈ bP
such that (a, s, p) = (u21, tr(U), det(U)).

Theorem 2.1. For (a, s, p) ∈ C3, the following are equivalent:

(1) (a, s, p) ∈ bP,
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(2) There exists a unique unitary matrix U =

(

u11 u12

u21 u22

)

such that

u11 = u22 and (a, s, p) = (u21, tr(U), det(U)).

Proof. First, we shall prove that (1) ⇒ (2). Let (a, s, p) ∈ bP. Since bP = K0, we have

|s| ≤ 2, s = sp, |p| = 1 and |a|2 = 1−
|s|2

4
.

In order to find the desired matrix U = [uij]2×2, we need to solve the following four equations in
four variables.

u11 − u22 = 0, u21 = a, u11 + u22 = s and u11u22 − u12u21 = p.

If a 6= 0, then we get a unique solution

(u11, u12, u21, u22) =

(

s

2
,
s2 − 4p

4a
, a,

s

2

)

.

A simple computation will show that the matrix U is unitary. If a = 0, then the set of solutions is

{(u11, u12, u21, u22) = (
s

2
, λ, 0,

s

2
) : λ ∈ C, s2 = 4p}.

Since |p| = 1, we get |s| = 2 and hence the matrix U = [uij]2×2 is unitary if and only if λ = 0.
Now we shall prove that (2) ⇒ (1). Let U = [uij]2×2 be a unitary matrix with

u11 = u22 and (a, s, p) = (u21, tr(U), det(U)).

Since U is a unitary, we get that (s, p) = (tr(U), det(U)) ∈ bΓ, also

4|a|2 + |s|2 = 4|u21|
2 + | tr(U)|2 = 4(|u21|

2 + |u11|
2) = 4.

This proves that (a, s, p) ∈ bP. �

3. Rational P−inner functions

In this section, we give a description of rational P−inner functions. First, recall that, a rational
map x = (x1, x2, x3) : D → P is said to be rational P−inner if

(

x1(λ), x2(λ), x3(λ)
)

∈ bP

for all λ ∈ T. Note that if (s, p) ∈ Γ and α ∈ D, then 1 − sα + pα2 6= 0, see [8]. For each α ∈ D,
we define a function Ψα : C× Γ → C by

Ψα(a, s, p) =
a(1− |α|2)

1− sα + pα2
.

The function Ψα is analytic in C × G and continuous on C × Γ. One of the main results of [6]
contains several characterization of a point to be in P . We recall the one characterization which
we shall use later.

Theorem 3.1. [6, Theorem 5.3] For (a, s, p) ∈ C× Γ, the following are equivalent:

(1) (a, s, p) ∈ P ,
(2) |Ψα(a, s, p)| ≤ 1 for all α ∈ D.

For any positive integer n and for any polynomial f of degree less than or equal to n, we define
the polynomial f∼n by the formula,

f∼n(λ) = λnf

(

1

λ

)

.
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For a C−valued rational function x = f/g, where f and g are relatively prime polynomials, we
define deg(x) to be the maximum of deg(f), deg(g). Note that if x is a finite Blashcke product,
then deg(x) is same as number of Blaschke factors in the product. The following theorem gives a
description of rational Γ−inner functions.

Theorem 3.2. [3, Proposition 2.2] Let h = (s, p) be a rational Γ−inner function with deg(p) = n.
Then there exist polynomials D and N such that

(1) deg(D), deg(N) ≤ n
(2) N∼n(λ) = N(λ) on D,
(3) D(λ) 6= 0 on D,
(4) |N(λ)| ≤ 2|D(λ)| on D,
(5) s = N

D
on D, and

(6) p = D∼n

D
on D.

Conversely, if N and D are polynomials satisfying (1), (2) and (4) above, D(λ) 6= 0 on D, and s
and p are defined by (5) and (6) respectively, then h = (s, p) is a rational Γ−inner function with
deg(p) = n.

Furthermore, a pair of polynomials N ′ and D′ satisfies (1)–(6) if and only if there exists a
non-zero real number t such that N = tN ′ and D = tD′.

Note that if x = (x1, x2, x3) is a rational P−inner function, then in particular,

(1) (x2(λ), x3(λ)) ∈ G for every λ ∈ D; and
(2) (x2(λ), x3(λ)) ∈ bΓ for every λ ∈ T.

Consequently, it is necessary for x = (x1, x2, x3) to be rational P−inner that (x2, x3) be Γ−inner.
The latter class is completely understood in view of Theorem 3.2. Thus, our job reduces to
understanding just the first coordinate of a rational P-inner function. This is what we do in the
following sequence of preliminary results.

Lemma 3.3. If (x2, x3) is a rational Γ−inner function and x1 is a rational function with poles
outside D such that

|x1(λ)|
2 = 1−

|x2(λ)|
2

4

for all λ ∈ T, then x = (x1, x2, x3) is a rational P−inner function.

Proof. First note that x(λ) =
(

x1(λ), x2(λ), x3(λ)
)

∈ bP for all λ ∈ T. We need to show that
(

x1(λ), x2(λ), x3(λ)
)

∈ P for all λ ∈ D. Fix α ∈ D and consider the map Ψα ◦x : D → C. The map

Ψα ◦ x is analytic in D and continuous on D. Since x(λ) ∈ bP ⊂ P for λ ∈ T, by Theorem 3.1, for
all λ ∈ T we get

|Ψα

(

x(λ)
)

| = |Ψα

(

x1(λ), x2(λ), x3(λ)
)

| ≤ 1

for all α ∈ D. By the maximum modulus principle, for λ ∈ D we get

|Ψα

(

x(λ)
)

| = |Ψα

(

x1(λ), x2(λ), x3(λ)
)

| ≤ 1

for all α ∈ D. Again by Theorem 3.1, x(λ) =
(

x1(λ), x2(λ), x3(λ)
)

∈ P for all λ ∈ D. Thus, x =

(x1, x2, x3) is a rational map from D to P which sends T into bP. This proves that x = (x1, x2, x3)
is a rational P−inner function.

�

Now, we shall give some examples of rational P−inner functions.
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Example 3.4. Let B be a finite Blaschke product. Then the function x : D :→ P defined by

x(λ) =
(

B(λ), 0, B(λ)
)

is rational P−inner.

Proof. It is easy to see that (0, B(λ)) is a rational Γ−inner function. Now we show that, for λ ∈ T,
the point x(λ) lies in bP. Here

x1(λ) = B(λ), x2(λ) = 0, and x3(λ) = B(λ).

Since |B(λ)| = 1 on the circle, it follows that

|x1(λ)|
2 = 1 = 1−

|x2(λ)|
2

4
.

Thus, by Lemma 3.3, x is a rational P−inner function. �

The following lemma gives a class of rational P−inner functions.

Lemma 3.5. Let β ∈ T. Then the map x : D → P by the setting

λ 7→

(

β − βλ

2
, β + βλ, λ

)

is rational P−inner.

Proof. By virtue of Lemma 3.3, we need to show that (x2, x3) is a Γ−inner function, and the
following equality holds for λ ∈ T,

4|x1(λ)|
2 + |x2(λ)|

2 = 4.

Here,

x1(λ) =
β − βλ

2
, x2(λ) = β + βλ and x3(λ) = λ.

Note that, for λ ∈ T, x2(λ) = x2(λ)x3(λ), |x3(λ)| = 1, and |x2(λ)| ≤ 2. So the map (x2, x3) maps
T into bΓ. Since (x2(λ), x3(λ)) ∈ Γ for all λ ∈ D, it follows that (x2, x3) is a rational Γ−inner
function. Now, for λ ∈ T,

|x1(λ)|
2 = x1(λ)x1(λ) = 1/4(β − βλ)(β − βλ)

=
1

4

[

|β|2 − β
2
λ− β2λ+ |β|2|λ|2

]

=
1

2
−

1

4

[

β
2
λ+ β2λ

]

. (3.1)

We also have

|x2(λ)|
2 = x2(λ)x2(λ) = (β + βλ)(β + βλ)

= |β|2 + β2λ+ β
2
λ+ |β|2|λ|2

= 2 + β2λ+ β
2
λ (3.2)

Thus, from equations (3.1) and (3.2), for all λ ∈ T,

4|x1(λ)|
2 + |x2(λ)|

2 = 4.

�

The next two lemmas give some more examples of rational P−inner functions. These will also
be used in the proof of the main theorem of this section.



6 JINDAL AND KUMAR

Lemma 3.6. If x = (x1, x2, x3) is a rational P−inner function, then xB
def
= (Bx1, x2, x3) is also a

rational P−inner function for any finite Blaschke product B.

Proof. Since (x1, x2, x3) is a rational P−inner function, (x2, x3) is a Γ−inner function. For λ ∈ T,

4|Bx1(λ)|
2 + |x2(λ)|

2 = 4|B(λ)|2|x1(λ)|
2 + |x2(λ)|

2

= 4|x1(λ)|
2 + |x2(λ)|

2

= 4.

Thus, by Lemma 3.3, xB = (Bx1, x2, x3) is a rational P−inner function. �

Lemma 3.7. If B is a finite Blaschke product, x1 is a rational function with poles outside D and
(Bx1, x2, x3) is a rational P−inner function, then (x1, x2, x3) is also a rational P−inner function.

Proof. Since (Bx1, x2, x3) is a rational P−inner function, (x2, x3) is a Γ−inner function. For λ ∈ T,

4|x1(λ)|
2 + |x2(λ)|

2 = 4|B(λ)|2|x1(λ)|
2 + |x2(λ)|

2

= 4|Bx1(λ)|
2 + |x2(λ)|

2

= 4.

Thus, by Lemma 3.3, (x1, x2, x3) is a rational P−inner function. �

If f(z) =
n
∑

i=1

aiz
i is a polynomial, then define

f∨(z) =

n
∑

i=1

aiz
i.

If f1, f2 are two polynomials and r = f1/f2 is a rational function, then define r∨ = f∨

1 /f
∨

2 . The
following proposition is an intermediate step to prove the main theorem of this section.

Proposition 3.8. Let x = (x1, x2, x3) be a rational P−inner function. Let x1 = B f1
g1

where B

is a Blaschke product and f1, g1 are relatively prime polynomials such that f1/g1 has no Blaschke
factor. Then the following hold.

(1) If g1(a) = 0, then x∨

1 (1/a) 6= 0; and
(2) if x2 = f2/g2, where f2 and g2 are relatively prime polynomials, then g1 = tg2 for some

non-zero constant t.

Proof. Let x = (x1, x2, x3) be a rational P−inner function. Let g1(a) = 0. Suppose if possible
x∨

1 (1/a) = 0. This implies that f∨

1 (1/a) = 0, which in turn implies that f1(1/a) = 0, this together
with g1(a) = 0, imply that f1/g1 has a Blaschke factor, which is a contradiction. Hence, x∨

1 (1/a) 6=
0. This proves (1).

Since x = (x1, x2, x3) is a rational P−inner function, (x2 and x3) is a Γ−inner function. There-
fore, x2, x3 satisfy

x2(λ) = x2(λ)x3(λ) = x∨

2 (λ)x3(λ) = x∨

2 (1/λ)x3(λ)

for all λ ∈ T. Since the first and last terms are rational functions,

x2(λ) = x∨

2 (1/λ)x3(λ) for all λ ∈ C.

Hence,

x2(a) 6= 0 ⇒ x∨

2 (1/a) 6= 0.
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Since x = (x1, x2, x3) is a rational P−inner function, x1 and x2 satisfy

x1(λ)x1(λ) = 1−
1

4
x2(λ)x2(λ)

⇒x1(λ)x
∨

1 (λ) = 1−
1

4
x2(λ)x

∨

2 (λ)

for all λ ∈ T. This implies

x1(λ)x
∨

1 (1/λ) = 1−
1

4
x2(λ)x

∨

2 (1/λ) for all λ ∈ T. (3.3)

Since both the left hand side and the right hand side are rational functions in equation (3.3), it
follows that

x1(λ)x
∨

1 (1/λ) = 1−
1

4
x2(λ)x

∨

2 (1/λ) for all λ ∈ C.

For m ≥ 1, we have

(λ− a)m−1x1(λ)x
∨

1 (1/λ) = (λ− a)m−1(1−
1

4
x2(λ)x

∨

2 (1/λ)) (3.4)

for all λ ∈ C.
Let a be a pole of x1 of multiplicity m ≥ 1. Clearly, |a| > 1. Hence |1/a| < 1, and so x∨

1 , x
∨

2

are analytic at 1/a. Also by part-1 of the proposition x∨

1 (1/a) 6= 0. Therefore, on letting λ → a in
(3.4), we get

(λ− a)m−1x2(λ) → ∞.

Thus a is a pole of x2 of multiplicity at least m.
Let a be a pole of x2 of multiplicity m ≥ 1. Again on letting λ → a in equation (3.4) we get

that a is a pole of x1 of multiplicity at least m. This proves that g1 and g2 have same zeros with
same multiplicities. Hence g1 = tg2 for some non-zero constant t. �

Now we are ready to prove the main result of this section.

Theorem 3.9. If x = (x1, x2, x3) is a rational P−inner function and the degree of x3 is n, then
there exist polynomials N1, N2, D and a finite Blaschke product B such that

(1) (x2, x3) =
(

N2

D
, D

∼n

D

)

is a Γ−inner function,

(2) x1 = BN1

D
on D,

(3) |N1(λ)|
2 = |D(λ)|2 − 1

4
|N2(λ)|

2 on T, and
(4) deg(N1) ≤ n.

Conversely, if N1, N2, and D are polynomials satisfying (1) and (3) above, then (N1

D
, N2

D
, D∼n

D
) is a

rational P−inner function and the degree of D∼n

D
is equal to n.

Furthermore, a triple of polynomials N ′

1, N
′

2 and D′ satisfy (1)–(4) if and only if there exists a
non-zero real number t such that

N1 = tN ′

1, N2 = tN ′

2 and D = tD′.

Proof. Let x = (x1, x2, x3) be a rational P−inner function and the degree of x3 be n. Then (x2, x3)
is a rational Γ−inner function. By Theorem 3.2, there exist two polynomials N2 and D of degree
less than or equal to n such that

(x2, x3) =

(

N2

D
,
D∼n

D

)

.

This proves condition (1). Note that D(λ) 6= 0 for all λ ∈ D. Since x1 is a rational function with
poles outside D, we have

x1 = B
f

g
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where B is a finite Blaschke product and f, g are relatively prime polynomials such that f/g does
not contain any Blaschke factor. By Proposition 3.8, g can be taken to be D. Let us denote f by
N1. Thus,

x1 = B
N1

D
.

This proves condition (2).
Since

(

x1(λ), x2(λ), x3(λ)
)

∈ bP for all λ ∈ T, we have

|x1(λ)|
2 = 1−

1

4
|x2(λ)|

2.

By virtue of conditions (1) and (2), we have
∣

∣

∣

∣

N1(λ)

D(λ)

∣

∣

∣

∣

2

= 1−
1

4

∣

∣

∣

∣

N2(λ)

D(λ)

∣

∣

∣

∣

2

⇒|N1(λ)|
2 = |D(λ)|2 −

1

4
|N2(λ)|

2 (3.5)

for all λ ∈ T. This proves condition (3).
From equation (3.5), it follows that

N1(λ)N
∨

1 (λ) = D(λ)D∨(λ)−
1

4
N2(λ)N

∨

2 (λ).

This is same as

N1(λ)N
∨

1 (1/λ) = D(λ)D∨(1/λ)−
1

4
N2(λ)N

∨

2 (1/λ) (3.6)

for all λ ∈ T. Since N1(0) 6= 0, the coefficient of λdeg(N1) is non-zero in N1(λ)N
∨

1 (1/λ), which is the
highest degree coefficient in this expression. Since the degree of the right hand side in equation
(3.6) is at most n, we get deg(N1) ≤ n. This proves condition (4).

Proof of the converse follows from Theorem 3.2 and Lemma 3.3.
Finally, suppose a triple of polynomials N ′

1, N
′

2 and D′ satisfy (1)− (4). By Theorem 3.2, there
exists a non-zero real number t such that N2 = tN ′

2 and D = tD′. Using (2) we get N1 = tN ′

1. The
converse is straightforward. �
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