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Abstract

Data sharing barriers are paramount challenges arising from multicenter clinical trials
where multiple data sources are stored in a distributed fashion at different local study sites.
Merging such data sources into a common data storage for a centralized statistical analysis re-
quires a data use agreement, which is often time-consuming. Data merging may become more
burdensome when causal inference is of primary interest because propensity score modeling
involves combining many confounding variables, and systematic incorporation of this addi-
tional modeling in meta-analysis has not been thoroughly investigated in the literature. We
propose a new causal inference framework that avoids the merging of subject-level raw data
from multiple sites but needs only the sharing of summary statistics. The proposed collabo-
rative inference enjoys maximal protection of data privacy and minimal sensitivity to unbal-
anced data distributions across data sources. We show theoretically and numerically that the
new distributed causal inference approach has little loss of statistical power compared to the
centralized method that requires merging the entire data. We present large-sample properties
and algorithms for the proposed method. We illustrate its performance by simulation experi-
ments and a real-world data example on a multicenter clinical trial of basal insulin treatment
for reducing the risk of post-transplantation diabetes among kidney-transplant patients.

Keywords: Collaborative causal inference; Data privacy; Distributed inference; Meta-analysis;
Multicenter study.
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1 Introduction

Estimation of causal effects is the central interest in the analysis of data collected from a mul-

ticenter clinical trial (Hernán et al. 2002). This statistical task can be greatly challenged when

serious data sharing barriers are present across multiple participating clinical centers and hard to

resolve in the short run due to various logistic constraints, such as data security and privacy re-

quirements, and tedious institutional IRB approval procedures (Carter & Ardery 2016, Mello et al.

2013, Coates et al. 2020). Such data-sharing obstacles may be significantly magnified in some

trials involving international study sites. Holdups in data procurement can delay the publication of

clinical findings, and consequently hold back the delivery of new therapeutics to patients.

Among several solutions available in the literature, meta-analysis is of great popularity. A

meta-estimation of treatment effect may be calculated by an inverse-variance weighted average

of site-specific treatment effects obtained from individual data sources respectively, termed the

classical meta-analysis in this paper (for example, (Cochran 1954)). In this approach or others of

the same meta-analytic nature, only site-specific summary statistics, rather than the full subject-

level data, are involved in pooling site-specific treatment effects. However, this classical meta-

analysis has two significant limitations. First, meta-analysis often concerns a single final estimator,

while causal inference typically relies on intermediate steps such as building a propensity score

model, the key weighting scheme of critical importance in clinical studies to balance covariate

distributions across all sites (Rosenbaum & Rubin 1983). In fact, a typical meta-analysis has

limited or no control over model specification at each participating site, and the pooled estimate

from each site may suffer narrow interpretability, especially in the case of causal effect, due to

lack of a well-defined common estimand as well as a uniform operation for the correction of

confounding effects. Second, it may suffer from data attrition due to varying recruitment capacity

across study sites leading to small sample sizes and low sample variability at some study sites,

which can impair the statistical power of the analysis.

Several methods have been developed to improve the classical meta-analysis approach with

different objectives other than estimating causal treatment effects. Jordan et al. (2018) developed a

surrogate likelihood framework that communicates locally estimated gradients to update the like-

lihood function for estimation and inference, and the convergence rate for the estimators are at the

order of the local sample size. The framework is later extended by Duan et al. (2018, 2019) for
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distributed clinical datasets. A distributed empirical likelihood method designed for unbalanced

datasets is recently proposed by Zhou et al. (2017). Recent work by Xiong et al. (2021) considers

producing global propensity scores from the locally estimated gradients in a federated learning

setting. Han et al. (2021) introduces an adaptive federated procedure of weighing the estimators

locally estimated from source sites to augment average treatment effect estimate in a target site,

meanwhile allowing potential heterogeneity in covariate distributions. Most of the newly proposed

meta-analytic approaches adopt a divide-and-conquer strategy, similar to a parallelized operation

that requires reliable local estimates and inferential quantities. Unfortunately, due to various rea-

sons pointed out above, the demand for high-quality numerical results from all local sites is rarely

satisfied in practice.

This paper focuses on the development of a more flexible and reliable meta-analysis methodol-

ogy by overcoming the above-marked impediments to evaluating causal treatment effects through

effective data-sharing management. Among multiple possible strategies concerning the calculation

and utilization of propensity scores in the case of distributed data, we design four new procedures

for effectual communication of summary statistics across study sites. Consequently, we can seam-

lessly integrate the propensity score calculation and causal treatment effect estimation using a sys-

tematic cross-site collaboration. We term this new approach as collaborative operation of linked

analysis (COLA).

The reason that the COLA method appears more flexible than existing meta-analysis is that it

adopts a serial updating machinery (Luo & Song 2020), different from the currently popular paral-

lelized operation, in the cross-site communication of summary statistics. The improved flexibility

is achieved by different options of passing information in the COLA machinery to reach a desirable

trade-off between information communication cost and statistical estimation efficiency. Figure 1

shows our proposed relays for summary data communications, which leads to a fully efficient in-

verse probability weighting estimation of treatment effect in the sense that its convergence rate

is at the order of the cumulative sample size. We show both theoretically and numerically that

the COLA has no loss of statistical power in comparison to the oracle estimation obtained by the

centralized analysis that merges data from all sites.

To elucidate key elements and insights of the proposed COLA methodology, we choose a sim-

ple but practically important setting of logistic regression with binary outcomes, which is largely

motivated by a multicenter clinical study of the Insulin Therapy for the Prevention of New-Onset
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Figure 1: A diagram showing 1R-COLA, 2R-COLA, and 3R-COLA procedures of the collaborative
causal inference framework. Different types of arrows indicate the major updates involved in each
round as shown in the legend. ATE which is short for Average Treatment Effect denotes the causal
effect estimate. Panel a) shows 1R-COLA evolves one round operation that updates PS, ATE, and
inferential quantities simultaneously. Panel b) shows 2R-COLA involving two rounds of updates
where the first round produces PS estimates, and the second round produces a causal effect and its
variance. Panel c) shows 3R-COLA involving three-rounds of updates.
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Diabetes after Transplantation (ITP-NODAT) trial. This cross-border clinical study is a multi-

center randomized clinical trial conducted at four kidney transplant centers in Barcelona, Berlin,

Graz, and Vienna, respectively. The goal of the study is to estimate the average treatment effect of

basal insulin intervention on preventing overt post-transplantation diabetes mellitus (PTDM) using

data collected from the four hospitals. According to Schwaiger et al. (2021), the collected data

exhibit strong imbalances in some covariate distributions and logistic challenges in the creation

of a centralized database. Meta-analysis is not the choice to bypass the need for data merging

because zero disease cases are observed from the treatment group in Barcelona and likewise, from

the control group in Graz. Thus, these two hospitals cannot provide local estimates, and the clas-

sical meta-analysis would use results only from two sites (Vienna and Berlin) and would thus be

clearly underpowered. To expedite the delivery of clinical findings, it is of great interest to extend

the capacity of existing meta-analysis for the needed flexibility of embracing rare outcomes and

balancing covariate distributions to retain statistical power and produce an efficient and reliable

estimation of the causal effect of the insulin therapy. With little effort, the COLA framework devel-

oped for the binary outcome may be extended to other continuous and categorical outcomes in the

context of generalized linear models.

The organization of this paper is as follows. Section 2 begins with formulation and model

assumptions for estimating causal effects and then introduces the proposed COLA framework.

Section 3 presents different options for passing information in the COLA machinery. Section 4

establishes the theoretical guarantees for our proposed methods. We illustrate our proposed meth-

ods with simulation studies in Section 5 and an application to the ITP-NODAT data example in

Section 6. We make some concluding remarks in Section 7.

2 Basic setup

Consider a random sample of N individuals independently sampled from K clinical sites, indexed

by j = 1, · · · , K, each site having a sample size of nj . For each individual i, we observe an

outcome Yi of interest , a binary treatment indicatorAi ∈ {0, 1}, and a vector of baseline covariates

Xi. Let Ij = {nj−1 + 1, . . . , nj−1 + nj} to be the index set for subjects from the jth site and we

denote the jth site-specific data as Sj = {(Yi, Ai, Xi) : i ∈ Ij}. We assume {(Yi, Ai, Xi) :

i ∈
⋃K
j=1 Ij} are independent and identical observations under the same underlying population.
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Following the potential outcome framework (Neyman 1923, Rubin 2005), we assume that there

exists a pair of potential outcomes {Yi(1), Yi(0)} for each individual i, representing the outcomes

had the individual received treatment (1) or control (0). The causal effect is typically defined as a

contrast between µ1 = E{Y (1)} and µ0 = E{Y (0)}, such as the mean difference, ∆D = µ1−µ0,

the causal log risk ratio (logRR), ∆RR = log (µ1/µ0), and the causal log odds ratio (logOR),

∆OR = log[{µ1/(1− µ1)}/{µ0/(1− µ0)}]. To proceed, we postulate the following four standard

assumptions for the identification of the causal estimands:

Assumption 1 (Causal effect identification). For a ∈ {0, 1},

(a) Consistency: Y = Y (a) almost surely when A = a .

(b) Ignorability: {Y (0), Y (1)} ⊥⊥ A | X .

(c) Positivity: 0 < pr(A = a | X) < 1 for all a almost surely .

Under Assumption 1, the mean potential outcome is identified as E[Y (a)] = E[E(Y | A =

a,X)] = E[I(A = a)Y/P (A = a | X)], and can be estimated through different methods including

the inverse probability of treatment weighting (IPTW), G-computation, and augmented inverse

propensity weighting (AIPTW) (Robins et al. 1994).

2.1 Inverse Propensity Treatment Weighting estimator

In this paper, we illustrate our method using IPTW estimation, although our method also applies

to other causal estimation methods such as G-computation and AIPTW. The propensity score

e(X) is the probability of being assigned to the treatment group conditional on the covariates,

i.e., e(X) = pr(A = 1 | X). The propensity score model for e(X) used in IPTW method needs

to be correctly specified for consistent estimation of the causal effect. As such we introduce the

following assumption.

Assumption 2 (Propensity score model). A propensity score model e(X; γ) with a finite-dimensional

parameter γ is correctly specified for e(X).

Typically, the propensity score is modelled and estimated by the logistic regression, namely

e(X; γ) = logit(XTγ). We begin with a brief review of the classical estimation and inference

method based on IPTW in the setting where data from all sites are available and analyzed in
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a centralized fashion. We term this situation as the oracle setting in this paper. The IPTW

method is a two-stage procedure. First, we estimate γ as the solution to the logistic model

equation
∑N

i=1 Ψps(Ai, Xi; γ) = 0, denoted by γ̂, where the kernel function is, suppressing in-

dex i, Ψps(A,X; γ) = X{A − e(X; γ)}. Then, we fit a marginal structural model by solving∑N
i=1 Ψ∆(Ai, Xi, Yi; γ̂, β) = 0, with Ψ∆(A,X, Y ; γ, β) = (1, A)Tω(A,X; γ){Y − g(β0 + βAA)}

, where the weight is ω(A,X; γ) = A/e(X; γ) + (1 − A)/{1 − e(X; γ)}. The link function g(.)

is a known link function (McCullagh & Nelder 2019). For example, when the outcome is binary,

one typically uses the logistic link function g(x) = 1/(1 + e−x) and the slope parameter, i.e the

coefficient for treatment βA = ∆OR. To establish a valid inference, we jointly estimate all model

parameters related to propensity scores and the causal effects. Let θ = (γ, β)T where true values

are θ0 = (γ0, β0)T. Stacking Ψps and Ψ∆, we form a joint estimating function

Ψ(θ) = Ψ(A,X, Y ; θ) =

 Ψps(A,X; γ)

Ψ∆(A,X, Y ; γ, β)

 . (1)

Under Assumption 1 and 2, the estimating function has mean zero when evaluated at the true value

θ0, i,e., E{Ψ(θ0)} = 0 which will be needed for deriving the asymptotic results in Section 4.

Let θ̂ora denote the oracle estimator obtained from the centralized analysis which solves∑N
i=1 Ψi(θ) = 0, where Ψi(θ) = Ψ(Ai, Xi, Yi; θ). Since Ψ(θ) is an unbiased estimating func-

tion, under some mild regularity conditions, we have the asymptotic normality for θ̂ora, namely
√
N(θ̂ora − θ0)

d−→ N(0, J(θ0)) where J(θ0) = H(θ0)−1V (θ0) {H(θ0)−1}T, where the variabil-

ity matrix V (θ0) = Eθ0{Ψ(θ0)ΨT(θ0)}, and the sensitivity matrix H(θ0) = −Eθ0{∂Ψ(θ0)/∂θT}.

J is the inverse of the Godambe information matrix also named as the sandwich covariance ma-

trix (Godambe 1960, 1991, Stefanski & Boos 2002, Song 2007). We can estimate this asymp-

totic covariance using their sample counterparts given by V (θ̂ora) =
∑N

i=1 Ψi(θ)Ψ
T
i (θ)

∣∣
θ=θ̂ora

,

and H(θ̂ora) =
∑N

i=1−∂Ψi(θ)/∂θ
T
∣∣
θ=θ̂ora

. The resulting centralized oracle estimator θ̂ora and

its covariance serve as the gold standard to contrast the performance of our proposed distributed

methods.
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2.2 Incremental causal effect estimator

We consider a situation of practical importance where pooling data from multiple sites is prohib-

ited. To address this data-sharing challenge, we propose a regularized estimation method, termed

Collaborative Operation of Linked Analysis (COLA), which does not require sharing individual-

level data but only certain summary statistics across institutes. Note that COLA is not derived in

a parallel computing paradigm, different from most of the existing solutions. Specifically, given

an order of study sites, an incremental estimator obtained at site k, denoted by θ̂k, is sequentially

updated over the first k sites, beginning with θ̂1 at study site 1. Obviously, θ̂1 is the same as a local

estimator as a root of the estimating equation
∑

i∈I1 Ψi(θ) = 0 with the local data of S1. We define

Hj(θ̂j) =
∑
i∈Ij

−∂Ψi(θ)

∂θT

∣∣
θ=θ̂j

, Vj(θ̂j) =
∑
i∈Ij

Ψi(θ)Ψ
T

i (θ)
∣∣
θ=θ̂j

as the sensitivity and variability matrix, respectively, evaluated at a local site j ∈ {1, . . . , K}. The

initial estimates of the sensitivity matrix and variability matrix {H1(θ̂1), V1(θ̂1)}with the local data

S1, are also updated by COLA. After obtaining {θ̂1, H1(θ̂1), V1(θ̂1)} from site 1, COLA passes these

summary statistics to site 2 where the triplet updates θ̂1 to θ̂2 by solving the following estimating

equation (Luo & Song 2020):

Ψn2(θ̂2) +H1(θ̂1)(θ̂1 − θ̂2) = 0,

where Ψnj
(θ̂j) =

∑
i∈Ij Ψi(θ̂j). Repeating this sequential updating, COLA can be carried out over

a sequence of all sites to produce estimators and inferential quantities. In particular, when updating

θk−1 to θk at site k, we solve for a root of the following estimating equation:

Ψnk
(θ̂k) +

k−1∑
j=1

Hj(θ̂j)(θ̂k−1 − θ̂k) = 0. (2)

The estimating function in (2) consists of two parts: the first term Ψnk
(θ̂k) is based on the local

data Sk at site k, and the second term assembles the cumulative summary statistics preceding from

all previous k − 1 sites. The Newton-Raphson algorithm is applied to numerically find a solution

θ̂k.

For statistical inference, we sequentially compute the cumulative sensitivity and variability
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matrices over the first k sites evaluated at a given point estimate. For example, if we update

the sensitivity and variability matrices along with the incremental estimates, then at site k, the

sensitivity matrix is given by
∑k

j=1{Hj(θ̂j)} and the variability matrix is given by
∑k

j=1{Vj(θ̂j)}.

Then we compute the estimated covariance matrix using the sandwich formula.

3 Implementation

This section illustrates three ways to implement the incremental causal estimator as defined in

Section 2.2, where the main nuance lies in the trade-off between communication efficiency and

finite-sample numerical accuracy. The outputs at each round of updates for the three procedures

introduced below are summarized in Fig 2. For ease of illustration, we vary the numbers of “+” in

the subscripts of the estimator to correspond to the number of rounds used in each implementation

of COLA.

3.1 A three-round algorithm

An accurate estimate γ̂ in the propensity score model is essential for accurate estimation and in-

ference of the causal effect which is related to the performance of logistic regression in propensity

score estimation. To implement COLA, we propose a three-round estimation algorithm, denoted by

3R-COLA, for the population-level causal effect estimation, as shown in Fig. 1(c).

Round 1: The first round fits the propensity score model using our sequential method and

produces a “global” estimate of the model parameter, executing a full round of sequential

updating through all K sites. We output the coefficient estimate γ̂
+++
+++
+++

K at the last site K. By

Theorem 3 in Section 4, this γ̂
+++
+++
+++

K approximates the oracle estimate at the order of op(N−1/2).

Round 2: The second round estimates the causal effect by the same method. We communi-

cate γ̂
+++
+++
+++

K back to all local sites so that equation (2) can sequentially update the causal effect

β̂
+++
+++
+++

j = β̂j(γ̂
+++
+++
+++

K). This round outputs the global estimate of causal effect, β̂
+++
+++
+++

K = β̂K(γ̂
+++
+++
+++

K), which

is communicated back to all sites.

Round 3: The third round estimates the asymptotic covariance by updating the cumulative

sums
∑K

j=1Hj(γ̂
+++
+++
+++

K , β̂
+++
+++
+++

K) and
∑K

j=1 Vj(γ̂
+++
+++
+++

K , β̂
+++
+++
+++

K) sequentially over all K sites.
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3.2 A two-round algorithm

The 3R-COLA algorithm above may be simplified to a two-round algorithm, denoted by 2R-COLA

illustrated in Fig. 1(b). It combines “Round 2” and “Round 3” of 3R-COLA for operation, with

some details below. The pseudo-code for 2R-COLA is detailed in the supplementary material.

Round 1: The same “Round 1” of 3R-COLA is used to output γ̂‡K which is the same as γ̂
+++
+++
+++

K .

Round 2: While updating β̂‡j = β̂j(γ̂
‡
K), the covariance is updated simultaneously using

current β̂‡j , namely
∑k

j=1Hj(γ̂
‡
K , β̂

‡
j ) and

∑k
j=1 Vj(γ̂

‡
K , β̂

‡
j ). Obviously, the current update

β̂‡j differs from the output from 3R-COLA β̂
+++
+++
+++

K . The numerical performance of the resulting

inference would be different and is illustrated in simulation results.

2R-COLA and 3R-COLA produce the same point estimates for propensity scores model coefficients

and causal effect, but the different covariance estimations. Using a fully updated β̂
+++
+++
+++

K in the co-

variance calculation may gain some numerical stability than that of the concurrent estimator β̂‡j
using preceding data information available in the incremental updating paradigm. An alternative

two-round algorithm named 2R-COLA-INF estimates β and γ simultaneously in “Round 1” and

only computes and updates covariances in a “Round 2”. The details for 2R-COLA-INF are given in

the supplementary material.

3.3 A one-round algorithm

Considering minimizing communication cost, we may further simplify the updating procedure by

combining all three rounds into a one-round 1R-COLA algorithm shown in Fig. 1(a). It minimizes

between-site communication, at the price of reduced numerical stability and finite-sample per-

formance. Instead of communicating global γ̂†K back into equation 2, concurrent estimate γ̂†j is

used to compute β̂†j (γ̂
†
j ) within the same round. Concurrently, the covariance is updated through∑K

j=1 Hj(γ̂
†
j , β̂

†
j (γ̂
†
j )), and

∑K
j=1 Vj(γ̂

†
j , β̂

†
j (γ̂
†
j )). At the last site, 1R-COLA produces point estimate

γ̂†K and β̂†K = β̂K(γ̂†K), with a different covariance estimate compared to 2R-COLA and 3R-COLA.
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4 Large-sample Properties

Let Nk be the cumulative sample size for the first k sites, Nk =
∑k

j=1 nj . We choose 1R-COLA

to discuss the large sample proprieties of our incremental estimators as Nk =
∑k

j=1 nk → ∞

instead of minj∈{1,··· ,k}nj → ∞ in the parallel computing paradigm. This condition is satisfied

when nk → ∞ at one of the sites, or when the number of sites k → ∞ and the former is the

focus of this paper. The asymptotic properties of COLA methods with more than one round can be

minimally established with analytic effort. Thus, their proofs are omitted. Denote the L2-norm of

a vector u by ‖u‖. Let Nρ(θ0) = {θ : ‖θ − θ0‖ ≤ ρ}, ρ > 0 be a compact neighborhood of size

ρ around the true value θ0. In addition to Assumptions 1 − 2 for causal effects identifiability and

estimatability, we assume the following regularity conditions for the estimating function Ψ given

in equation (1) to establish some key asymptotic properties.

Assumption 3 (Regularity Conditions). We assume the following on estimating function in equa-

tion 1

(a) The true value θ0 is the unique solution to λ(θ) = E{Ψ(θ)} = 0.

(b) The estimating function Ψ(θ) is continuously differentiable for all θ in the neighborhood

Nρ(θ0).

(c) The sensitivity matrix H(θ) and the variability matrix V (θ) are positive definite for all θ ∈

Nρ(θ0).

(d) The sensitivity matrix H(θ) is Lipschitz continuous for all θ ∈ Nρ(θ0).

Conditions 3(a) − 3(d) are mild regularity conditions needed for legitimate asymptotic behav-

iors of the COLA estimator θ̂k under the classical theory of estimating functions (Song 2007, Tsiatis

2006). Condition 3(d) is satisfied usually for the generalized linear models (McCullagh & Nelder

2019).

Theorem 1. Under the regularity conditions 3(a) − 3(d), the COLA estimator θ̂k is consistent for

the true value θ0, i.e. θ̂k
p−→ θ0, as Nk →∞.

Theorem 2. Under the regularity conditions 3(a) − 3(d), the COLA estimator θ̂k is asymptotically

normally distributed, i.e.,
√
Nk(θ̂k − θ0)

d−→ N(0, J(θ0)), as Nk →∞.
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Theorem 3. Under the regularity conditions 3(a) − 3(d), the COLA estimator θ̂k and the oracle

estimator θ̂ora are asymptotically equivalent, in the sense that ‖θ̂k−θ̂ora‖2 = op(N
−1
k ) asNk →∞.

Theorem 3 implies that the asymptotic difference between θ̂k and θ̂ora is op(Nk
−1/2), and thus

they are stochastically equivalent in the sense that they have the same asymptotic normal distribu-

tion. This implies that the COLA estimator is fully efficient.

5 Simulation Experiments

We evaluate the finite-sample performance of the proposed collaborative causal inference method,

comparing the above 3R-COLA, 2R-COLA, and 1R-COLA procedures with the classical meta-

analysis (the inverse-variance weighted meta method (Cochran 1954)) and the oracle estimation

(i.e., the gold standard obtained by the centralized analysis). To mimic the motivating data ex-

ample of the ITP-NODAT trial, we consider a binary outcome and estimate the causal log odds

ratio. Additional simulations for continuous and count outcomes are included in the supplemen-

tary material. We first generate the full data under an assumed model and then split the data

into 5 subsets, one for a study site. We include three continuous variables X1, X2, and X3 in-

dependently drawn from standard normal distribution N(0, 1), and two independent binary co-

variates X4 and X5 from Bernoulli distribution with success probability of 0.5 and 0.6, respec-

tively. We use X to denote the vector of all five covariates. The treatment, A, follows Bernoulli

distribution with pr(A = 1 | X) = expit(0.5 + 0.3X1 + 0.3X2 + 0.5X3 + 0.5X4 + 0.3X5),

where expit(x) = 1/(1 + e−x). The outcome, Y , is drawn from a Bernoulli distribution with

pr(Y = 1 | A,X) = expit(−2.75 + 0.4A+ 0.3X1 + 0.5X2 + 0.3X3 + 0.3X4 + 0.5X5). The causal

log odds ratio is estimated as 0.364 using the Monte-Carlo simulation of 1, 000, 000 random sam-

ples, and the proportion of cases (Y = 1) is approximately 30%. To simulate the scenarios of both

unequal and equal proportions of cases across sites, we generate group indicators I(j = 5) which

follows the Bernoulli distribution with pr{I(j = 5) | Y } = expit(a + bY ), the probability that a

sample belongs to the 5th site. The parameters a and b are predetermined such that we control the

5th site to have approximately 50 samples, of which 5% or 30% are cases. The sample size n5 at

the 5th site may not be exactly 50 because it is round to the next integer. We split the rest of the

samples into sites 1 to 4 with sizes of 100, 80, 80, and 100 − n5 , respectively. We consider the

following scenarios to illustrate the finite performances of the proposed procedures.

12



Table 1: Simulation results for both equal outcome prevalence across sites and unequal outcome
prevalence across sites.

n = (100, 80, 80, 50, 50), P (Y = 1) ≈ 0.05 at the 5th site
Methods FAILS(%) CP(%) ABIAS × 10−3 MSE × 10−3 ESE × 10−3

Oracle 0.00 94.5 214 262 270
3R-COLA 0.00 94.5 213 261 268
2R-COLA 0.01 93.0 213 244 268
2R-COLA-INF 0.00 93.2 222 260 282
1R-COLA 0.01 92.4 222 249 282
Meta 58.49 91.6 237 261 297

n = (100, 80, 80, 50, 50) P (Y = 1) ≈ 0.3 at the 5th site
Methods FAILS(%) CP(%) ABIAS × 10−3 MSE × 10−3 ESE × 10−3

Oracle 0.00 94.7 217 264 273
3R-COLA 0.00 94.7 216 262 271
2R-COLA 0.05 94.8 216 262 271
2R-COLA-INF 0.00 93.7 225 262 283
1R-COLA 0.05 94.1 225 266 283
Meta 3.86 91.3 238 258 298

FAILS the number of non-convergence for incremental methods and the traditional meta-
analysis method over 30, 000 replications; CP, coverage probability; ABIAS, average absolute
bias; MSE, median estimated standard error of the estimates; ESE empirical standard error.

Scenario 1. Cases are unequally distributed among all sites, and the 5th site has a small proportion

of cases, namely 5%, while holding the overall cases rate constant.

Scenario 2. Cases are equally distributed among all sites at approximately 30% at each site.

Scenario 3. The number of sites K varies to be 5, 10, and 15 and n5 = 50 to mimic the setting in

the motivating example.

Due to space limit, we report simulation results from a typical case under Scenarios 1 and 2

with sample sizes of 100, 80, 80, 50, 50 at each of the five sites in Table 1. Results from scenario 3

are presented in the supplementary material. Simulation results are summarized over 30, 000 repli-

cations limited to those where all algorithms converge successfully in order to make a fair compar-

ison to the classical meta and oracle estimations. We evaluate the estimation and inference perfor-

mances for different methods of estimating the causal effects for Scenario 1 in the first sub-table of

Table 1 and we make the following observations: (i) The classical meta-analysis suffers substantial

numerical failures due to low proportions of cases at site 5, evident by the fact that 58.49% of the
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simulation replicates fail to reach convergence. In contrast, the rate of failures (< 0.01%) of the

proposed incremental methods is significantly less than the meta-analysis method. (ii) The oracle

estimation and the 3R-COLA estimation produce very close coverage probability (CP) and average

absolute bias (ABIAS). This fully confirms the theoretical results given in Section 4. By contrast,

the CP of the meta-analysis estimation is at 91.6%, much lower than the 95% nominal level, and

the ABIAS and empirical standard error (ESE) are larger than those of the other competing meth-

ods. (iii) The average bias of 2R-COLA is the same as that of 3R-COLA due to the same fully

updated estimate γ̂
+++
+++
+++

K , , equivalently γ̂‡K , being used to update the casual effect in “Round 2” of

each method.

In Scenario 2, in which site 5 has a comparable case rate to other sites (30%), in addition to

the observations we made above, the coverage probability of both 2R-COLA and 1R-COLA is close

to that of 3R-COLA and the oracle estimator. Overall, in both Scenarios 1 and 2, little statistical

efficiency is lost by 3R-COLA in the estimation of causal log odds ratio compared to the oracle

method even when the outcome is severely unevenly distributed.

The previous simulation results are conducted under a relatively ideal situation when we know

which site deviates the most from the overall distribution and place the site with the worst data

quality as the last site in the sequence of updating. To gain some insight into how the ordering

of sites affects the results, we investigate a less desirable situation where we do not know a priori

which site has the highest likelihood of failure in convergence due to either rare outcomes or

skewed covariates. We consider three additional scenarios.

Scenario 4. Vary pr(X2 = 1) at site 1 to be rare such that site 1 has a rare binary covariate.

Scenario 5. Rearrange the order of operation in Scenario 4.

Scenario 6. Vary pr(Y = 1) at site 1 to be rare such that the first site has a rare outcome.

When the binary X2 is skewed at the first site as considered in Scenario 4, the local propensity

score model may run into positivity assumption violations (Assumption 1(c)), and consequently,

the PS model fitted within a local site may fail to converge or fail to generate stable and trustworthy

results. The left panel in Fig 3 shows that COLA and meta fail to converge 13 · 6% and 16 · 7% of

the time respectively when the starting site has poor quality data. To address this issue, one may

rearrange the order of sites. In Scenario 5, we switch bad starting sites that violate the positivity
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assumption with the latter good large sites that satisfy this assumption, so that the first “good”

site after excluding the one that violates the positivity assumption is the new starting site. All

COLA methods including 1R-COLA, 2R-COLA, and 3R-COLA perform well and reach CP close

to the oracle after the rearrangement due to fully updated propensity score model estimates are

used for causal effect estimation and inference. This reordering strategy is not applicable to the

meta-analysis method because it does not yield viable local results.

In Scenario 6 in which the positive case rate is low at the first site, a local treatment effect

estimate is likely to be unstable. It is interesting to note that, once the COLA updating procedure

continues and incorporates data from more sites, the incrementally updated point estimate becomes

close to the true value. 3R-COLA performs equally well in comparison to the oracle method as

shown in the right panel of Fig 3.

The simulation results above lead to the practical guidelines summarized as follows. In general,

when using COLA, we suggest starting with the largest site to take advantage of large sample

properties. If the outcome is rare or binary covariates are unbalanced at the largest site, then one

can choose 3R-COLA, or combine smaller sites with less severe distribution imbalances to create a

new starting site and then proceed with either 2R-COLA or 1R-COLA. 3R-COLA is the top choice

if the communication cost is allowed as it provides higher statistical accuracy.

6 Data Application Example

We apply the proposed collaborative inference method to analyze data from the Insulin Therapy

for the Prevention of New-Onset Diabetes after Transplantation (ITP-NODAT) trial (Schwaiger

et al. 2021). Two hundred and thirty-six kidney-transplantation patients are recruited in the study

and randomized within each hospital to receive a diabetics preventive treatment, namely basal in-

sulin injection right after kidney transplantation. The primary goal of the ITP-NODAT trial is

to estimate the effectiveness of basal insulin intervention in preventing overt post-transplantation

diabetes mellitus (PTDM) at month 12 after the randomization. Following the original analysis

conducted by Schwaiger et al. (2021), we will estimate the intent-to-treat effect of the basal insulin

treatment. The case is defined as Y = 1 if a patient receives antidiabetic therapy (which indicates

the occurrence of diabetes), has 2-hour plasma glucose ≥ 200 mg/dL, or has Hemoglobin A1C

(HbA1c) ≥ 6.5%; otherwise Y = 0. We adjust for the following covariates: age, gender, family
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Table 2: Propensity score estimates for basal insulin treatment from combined data via centralized
analysis and collaborative inference method.

“Gold-standard” from combined data Collaborative inference method
Estimates Std.Errors p-value Estimates Std.Errors p-value

Gender 0.13 0.30 0.72 0.13 0.30 0.67
Age −0.01 0.01 0.39 −0.01 0.01 0.46
Family diabetes
history 0.72 0.44 0.10 0.72 0.44 0.10

First transplant 0.03 0.46 0.97 0.02 0.46 0.95
Glomerular
disease −0.33 0.32 0.31 −0.33 0.32 0.32

Polycystic kidney
disease −0.41 0.36 0.24 −0.42 0.35 0.25

Living Doner 0.86 0.45 0.05 0.87 0.45 0.05

We use 2R-COLA algorithm for estimating collaborative inference “global” PS parameters.

history of diabetes, whether the living donor or deceased donor, whether first-time transplanta-

tion or repeated transplantation, whether having polycystic kidney diseases, and whether having

glomerular diseases. The proportion of missingness in the covariates is mild, thus we conduct a

complete-case analysis excluding 42 dropouts and 8 participants following Schwaiger et al. (2021).

We conduct COLA implementing the 2R-COLA algorithm without requiring subject-level data

sharing. This analysis is particularly meaningful for the ITP-NODAT trial because pooling data

from the four hospitals took three years to complete due to various cross-country data-sharing

barriers. We also perform a centralized analysis of the pooled data as the gold standard for bench-

marking, as well as the classical meta-analysis based on site-specific estimates for comparison.

The biggest challenge in the data analysis pertains to the unequal proportions of PTDM cases

across hospitals, as shown in Section 4 of the supplementary material. There were zero PTDM

cases recorded in the treatment group at the Barcelona hospital and zero PTDM cases in the control

group at the Graz hospital, which prevent us from getting any site-specific results at Barcelona and

Graz, leading to an exclusion of two out of four site-specific estimates. This data attrition is

undesirable in classical meta-analysis.

Table 2 presents the estimated coefficients in the propensity score model obtained from the

COLA method based on summary statistics and the centralized method based on the pooled data.

Then we obtain an inverse probability of treatment weighted estimate of the causal odds ratio and
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its 95% confidence interval (CI). The estimated causal odds ratio is 0.37 (96% CI: 0.15, 0.93),

which is very similar to the gold standard, 0.37 (96% CI: 0.15, 0.91). In contrast, the classical

meta-analysis is based on site-specific estimates from two out of four study sites due to rare out-

comes, and the meta-estimated odds ratio is 0.62 (96% CI: 0.20, 1.93) which overestimates the

treatment effect by twice than the one from the centralized analysis.

It is evident from our analysis that the basal insulin treatment reduces occurrences of PTDM

with an estimated odds ratio that is significantly less than one. This is in agreement with the

findings reported in Schwaiger et al. (2021), which performed a standard clinical trial analysis

with no considerations of propensity score weighting. Little loss of statistical power occurred

in our collaborative inference approach, while thoroughly overcoming data sharing barriers and

enjoying the maximal protection of data privacy. Had our method and analysis been available, these

important clinical findings could be published a few years earlier to add a new clinical treatment

that benefits transplant patients. It is also worth noting that our proposed causal inference approach

is not affected by imbalanced distributions of disease cases across study sites, a striking advantage

over the classical meta-analysis method.

7 Discussion

In this paper, we introduce a collaborative operation of linked analysis (COLA) framework that

overcomes data-sharing barriers and provides an efficient population average treatment effect esti-

mate. We show the desirable asymptotic properties of the proposed distributed inference method.

We also investigate the finite-sample performance through numerical experiments with four algo-

rithms to implement COLA at different levels of communication costs. We find that little statistical

efficiency is lost compared to the centralized method when estimating causal log odds ratios in-

crementally via 3R-COLA and 2R-COLA procedures. Even when the outcome is severely rare,

3R-COLA achieves similar results as the oracle method. Although we focus our attention on binary

outcomes, our COLA framework enjoys the same properties and performance in the numerical il-

lustrations for other outcome types under the generalized linear models as shown in Section 4 of

the supplementary material.

Meta-analytic types of causal inference methods in certain parallel computing diagrams can fail

at two levels: local sites fail to converge and thus the pooled inference results fail to reflect the true

17



parameters of the underlying population. Convergence failures occur when some sites do not have

enough variability in outcome measurements. In practice, our COLA methods only require the first

site to have enough data variability which makes it an appealing method for multi-center clinical

trials that involve small study sites. To facilitate COLA in practice, we provide an R package for

data analysis and an interactive information communication platform that allows each site to run

the R program independently and upload and download the summary statistics via our platform.

Meanwhile, the emergence and development of federated learning which allows individual sites to

collaboratively conduct data analysis while mitigating data privacy risks can be another possible

solution to help us build an automated privacy-preserving software (Li, Sahu, Talwalkar & Smith

2020, Kairouz et al. 2021, Li, Fan, Tse & Lin 2020).

The current COLA framework is developed under a set of reasonable assumptions for identifia-

bility and large-sample properties. Future work can potentially relax those assumptions and focus

on examining the model’s robustness in estimation by flagging out incompatible or outlying local

data sites and reducing communication burdens between sites by allowing a varying control of

data privacy in different parallel problems. In recent causal inference method development, a line

of research is primarily aimed at combining multiple datasets collected by different designs from

potentially heterogeneous populations (Yang & Ding 2020, Wang et al. 2020, Bareinboim & Pearl

2016, Shi et al. 2021). Most data fusion methods estimate causal treatment effect by incorporating

patient-level data from auxiliary data sources into the main data source without consideration of

data privacy issues. We plan to take advantage of the privacy-preserving nature of COLA and extend

it to data fusion problems. Another interesting potential extension of our method is to transport our

COLA estimation which targets the population underlying the current multi-center clinical trials to

a new population (Dahabreh et al. 2020, Han et al. 2021).
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γ̂†K = γ̂‡K = γ̂
+++
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K : fully updated propensity score estimates at the last site.
γ̂†j : incrementally updated propensity score estimates at the jth site.

β̂‡K = β̂
+++
+++
+++

K = β̂K(γ̂
+++
+++
+++

K) : fully updated causal treatment effect at the last site.
β̂‡j = β̂j(γ̂

‡
K) : partially updated causal treatment effects using fully updated prop-
ensity score estimates at the jth site.

β̂†K : partially updated treatment effect estimate at the last site with γ̂†j plug-
ged in at each preceding site.

β̂j(γ̂
†
j ) : incrementally updated treatment effect estimate at the jth site using γ̂†j .

Figure 2: Final outputs obtained after each round of update by four COLA methods

Figure 3: A comparison of coverage probabilities for all methods when the binary covariates or
outcome incidence are rare based on 30000 replications.
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