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1 Introduction

L∞-algebras or homotopy Lie algebras are generalizations of Lie algebras with infinitely-
many higher brackets, related to each other by higher homotopy versions of the Jacobi
identity [1, 2, 3]. From a physical point of view, these higher algebras represent the ge-
ometrical structure providing deeper understanding of quantization of field theory and
gravity. In particular, there exists a correspondence between the BV-formalism used in the
quantization of gauge theories and L∞-algebras, as noticed by Zwiebach in his seminal work
on closed string field theory [2]. Recently, the BV L∞-algebra of Yang-Mills theory was
used in relating the square of gluon amplitudes to that of (N = 0 super) gravity amplitudes
to all orders of perturbative quantum field theory [4]. On the other hand, in the framework
of deformation quantization [5], Kontsevich’s famous formality theorem on the existence
and classification of star products on Poisson manifolds has been proven using the concept
of L∞-quasi-isomorphisms [6]. Subsequently, Cattaneo and Felder [7] provided an inter-
pretation of the Kontsevich quantization formula in terms of the perturbative expansion of
the path integral for the Poisson sigma model [8, 9].

More recently, attempts to improve the understanding of consistent non-commutative
deformations of field theory using an L∞-framework resulted in two interesting proposals.
In Ref.[10], the homotopy relations defining an L∞-algebra were used to bootstrap a consis-
tent star-gauge invariant theory starting from the star-deformed commutator of the sym-
metry algebra. However, there is another consistent way of introducing non-commutative
deformations based on Drinfel’d twists of the symmetry Hopf algebra [11]. The analysis
of twisted gauge symmetries was initiated in Refs.[12, 13, 14, 15], but only recently was
it shown that these twisted symmetries can be understood in the framework of braided
L∞-algebras [16, 17]. The construction of braided L∞-algebras in [16] was based on a
reinterpretation of all the defining relations of an L∞-algebra in terms of morphisms in
a suitable category. By twisting the enveloping Hopf algebra of vector fields on a mani-
fold M to a non-cocommutative Hopf algebra and simultaneously deforming its category
of modules, the L∞-algebra was deformed into a braided L∞-algebra. Here we show that
an L∞-algebra itself can be extended to a graded Hopf algebra with a compatible codiffer-
ential, and using this observation we construct the braided L∞-algebra using a Drinfel’d
twist of its underlying Hopf algebra structure.

In the next section we recall the coalgebra structure of an L∞-algebra and show that it
can be extended to a graded Hopf algebra with a codifferential. In section 3 we apply Drin-
fel’d twists to the Hopf algebras underlying L∞-algebras and obtain twisted LF

∞-algebras.
In the spirit of deformation quantization, after twisting the algebra, one further twists its
modules. Taking the Hopf algebra as its own module, we obtain another Hopf algebra,
L⋆
∞, which is exactly the braided L∞-algebra defined in [16]. Furthermore, we reinterpret

the Hopf algebra (iso)morphism in terms of strict L∞-(iso)morphisms, and define a more
general class of braided L∞-morphism. In the conclusion, we briefly discuss the relevance
of our results for the braided gauge field theory.
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2 L∞ as Hopf algebra

An L∞-algebra can be defined in several different ways, depending on the context. In the
standard approach one defines an L∞-algebra on a graded vector spaceX as a generalization
of a Lie algebra with possibly infinitely-many higher brackets, related to each other by
higher homotopy versions of the Jacobi identity [1, 2, 3]. Alternatively, one can describe
an L∞-structure as a degree 1 coderivation on the coalgebra generated by the suspension5

of X , as shown in Refs.[3, 20]. In order to identify the Hopf algebra structure underlying
an L∞-algebra this coalgebra picture is more appropriate and we shall review it here6.

Let us start with a graded symmetric tensor algebra:

S(X) :=

∞⊕

n=0

SnX ,

where X is a Z-graded vector space X =
⊕

d∈Z Xd over the field K = S0X and the degree of
a homogeneous element xi ∈ X is denoted as |xi|. The tensor product µ : S(X)⊗S(X) →
S(X) is graded symmetric,

µ(x1 ⊗ x2) = x1 ∨ x2 = (−1)|x1||x2|x2 ∨ x1 = (−1)|x1||x2|µ(x2 ⊗ x1), x1, x2 ∈ X ,

and we use ∨ to denote the product in S(X). The algebra structure can be endowed with
a unit map η : K → S(X), where η(1) = 1.

The coalgebra structure on S(X) is given by the coproduct:

∆(x1 ∨ · · · ∨ xm) =

m∑

p=0

∑

σ∈Sh(p,m−p)

ǫ(σ; x)(xσ(1) ∨ · · · ∨ xσ(p))⊗ (xσ(p+1) ∨ · · · ∨ xσ(m)) , (2.1)

where ǫ(σ; x) is the Koszul sign,

x1 ∨ · · · ∨ xk = ǫ(σ; x)xσ(1) ∨ · · · ∨ xσ(k), xi ∈ X ,

and Sh(p,m − p) ∈ Sm denotes those permutations ordered as σ(1) < · · · < σ(p) and
σ(p + 1) < · · · < σ(m). We use the conventions that Sh(n, 0) = Sh(0, n) equals id ∈ Sn

and that an empty slot in the product equals the unit, 1 ∈ K. Thus we have

∆(1) = 1⊗ 1 ,

∆(x) = 1⊗ x+ x⊗ 1 ,

∆(x1 ∨ x2) = 1⊗ (x1 ∨ x2) + (−1)|x1||x2|x2 ⊗ x1 + x1 ⊗ x2 + (x1 ∨ x2)⊗ 1 ,

· · ·

As a map ∆ : S(X) → S(X)⊗ S(X), this reads:

∆ ◦ id∨m =
m∑

p=0

∑

σ∈Sh(p,m−p)

(id∨p ⊗ id∨(m−p)) ◦ τσ , p,m ≥ 0 , (2.2)

5The suspension map is also called a shift isomorphism [19], see Appendix A for more details.
6In the rest of the paper we work in the coalgebra picture and denote with X the underlying graded

vector space to simplify notation.
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where the τσ denotes the action of permutations [16], e.g. the non-identity permutation of
two elements is:

τσ(x1 ∨ x2) = (−1)|x1||x2|x2 ∨ x1 ,

and includes the Koszul sign. Furthermore, the coalgebra structure on S(X) includes counit
ε : S(X) → K, where ε(1) = 1 and ε(x) = 0, x ∈ X .

Next, we introduce a coderivation D that squares to zero and thus generates the appro-
priate homotopy relations. The coderivation is a map D : S(X) → S(X) of degree 1 such
that the co-Leibniz property is satisfied,

∆ ◦D = (1⊗D +D ⊗ 1) ◦∆ . (2.3)

This coderivation is given as [3]:

D =

∞∑

i=0

bi , (2.4)

where the graded symmetric multilinear maps bi are of degree 1. When b0 is non-vanishing
one talks about curved L∞-algebras [21, 22], while for b0 = 0 we have flat L∞-algebras7.
The bi maps act on the full tensor algebra as a coderivation:

bi : S
jX → Sj−i+1X , (2.5)

bi(x1 ∨ . . . ∨ xj) =
∑

σ∈Sh(i,j−i)

ǫ(σ; x)bi(xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j), j ≥ i ,

and can be written using the permutation map τσ as:

bi ◦ id
∨j =

∑

σ∈Sh(i,j−i)

(bi ∨ id∨(j−i)) ◦ τσ , j ≥ i . (2.6)

Note that b0(1) = b0 is a degree 1 element of S1X = X . Now one can define an L∞-algebras
as a Z-graded vector space with multilinear graded symmetric maps bi : X

⊗i → X of degree
1 such that the coderivation D =

∑∞
i=0 bi is nilpotent [20]. As an example, we calculate

the first few homotopy relations:

D2(x1 ∨ x2) =

∞∑

i=0

bi

2∑

j=0

bj(x1 ∨ x2)

=

3∑

i=0

bi(b0 ∨ x1 ∨ x2 + b1(x1) ∨ x2 + (−1)|x1||x2|b1(x2) ∨ x1 + b2(x1, x2))

= b1(b0) ∨ x1 ∨ x2+

+ b21(x1) ∨ x2 + (−1)|x1||x2|b21(x2) ∨ x1 + b2(b0, x1) ∨ x2 + (−1)|x1||x2|b2(b0, x2) ∨ x1+

+ b1(b2(x1, x2)) + b2(b1(x1), x2) + (−1)|x1||x2|b2(b1(x2), x1) + b3(b0, x1, x2) .

The vanishing of the above expression is equivalent to the following three identities:

b1b0 = 0 ,

b2b0 + b21 = 0 , (2.7)

b3b0 + b2b1 + b1b2 = 0 .

7We shall use the term L∞-algebra for both cases when the distinction is not relevant.
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Additionally, we used the fact that b20 is trivially zero due to the odd degree of b0, and is
therefore not a constraint. The homotopy relations defining an L∞-algebra can be written
in the closed form [19]:

i∑

j=0

∑

σ∈Sh(j,i)

bi−j+1(bj ∨ id∨i) ◦ τσ = 0 . (2.8)

Moreover, we have ε ◦D = 0 as ε(b0(1)) = 0.

So far we have identified an L∞-structure with a counital coalgebra over a graded
vector space with compatible coderivation that squares to zero. Now we wish to compare
this structure with the one of a Hopf algebra. In short, a Hopf algebra is a bialgebra that
admits an antipode map with certain compatibility properties. While the formal definition
is given in Appendix B, we discuss here the prototypical example – a tensor algebra.

A tensor algebra T (V ) =
⊕∞

n=0 T
nV , where V is a vector space over the field K can be

seen as a Hopf algebra (T (V ), ·,∆, ε, S). The coproduct ∆, counit ε and antipode S are
defined on v ∈ V as:

∆(v) = v ⊗ 1 + 1⊗ v , ∆(1) = 1⊗ 1 ,

ε(v) = 0 , ε(1) = 1 ,

S(v) = −v , S(1) = 1 .

Since the coproduct and counit are algebra homomorphisms and the antipode is an algebra
(and coalgebra) anti-homomorphism, we can extend the definition from the basis elements
to the full tensor algebra:

S(v1 · . . . · vm) = (−1)mvm · . . . · v1 ,

∆(v1 · . . . · vm) =
m∑

p=0

∑

σ∈Sh(p,m−p)

(vσ(1) · . . . · vσ(p))⊗ (vσ(p+1) · . . . · vσ(m)) ,

where we use · for the product in the tensor algebra. This example can be trivially extended
to the symmetric graded tensor algebra used in the construction of an L∞-algebra above.
In particular, the coproduct will be of the form (2.1), and the antipode will be extended
to the graded antipode:

S(x1 ∨ · · · ∨ xm) = (−1)m(−1)
∑m

i=2

∑i−1

j=1
|xi||xj |xm ∨ · · · ∨ x1. (2.9)

Using the axioms of a Hopf algebra given in Appendix B, one can easily verify that the
symmetric graded tensor algebra is indeed a Hopf algebra. Thus we arrive to the following
theorem.

Theorem 2.1. An extended L∞-algebra is a bialgebra (S(X), µ, η,∆, ε) with coderivation
D : S(X) → S(X) of degree 1 s.t. the co-Leibniz property is satisfied

∆ ◦D = (1⊗D +D ⊗ 1) ◦∆ ,

and D2 = 0. It naturally inherits the structure of a Hopf algebra from the graded symmetric
tensor algebra, with:

S ◦D = D̃ ◦ S, ε ◦D = 0,
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where the codifferential D̃

D̃ =
∞∑

i=0

b̃i =
∞∑

i=0

(−1)1−i bi ,

induces the same homotopy relations as D.

Note that the unit map η : K → S(X) is in general a morphism of graded coalgebras,
and only for a flat L∞-algebra, i.e., when b0 = 0 does it become a morphism of differential
graded coalgebras with D ◦ η = 0.

Proof. We need to show that the Hopf algebra structure of the symmetric graded tensor
algebra is compatible with the L∞-algebra structure encoded in the nilpotent coderivation.
The compatibility of the unit and counit with coderivation was already discussed, therefore
we need to check only the antipode compatibility relation. We apply the coderivations bi
and b̃i on an element of SjX using (2.5). The left hand side is

S(bi(x1 ∨ . . . ∨ xj)) =
∑

σ∈Sh(i,j−i)

ǫ(σ; x)S(bi(xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j))

=
∑

σ∈Sh(i,j−i)

ǫ(σ; x)(−1)PS(xσ(j)) ∨ . . . ∨ S(xσ(i+1)) ∨ S(bi(xσ(1), . . . , xσ(i)))

=
∑

σ∈Sh(i,j−i)

ǫ(σ; x)(−1)j−i+1(−1)Pxσ(j) ∨ . . . ∨ xσ(i+1) ∨ bi(xσ(1), . . . , xσ(i))

=
∑

σ∈Sh(i,j−i)

ǫ(σ; x)(−1)j−i+1bi(xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j) ,

where in the second line we introduced the sign

P =

(
i∑

m=1

|xσ(m)|+ 1

)
j∑

n=i+1

|xσ(n)|+

j∑

m=i+2

m−1∑

n=i+1

|xσ(n)||xσ(m)| ,

induced by the graded action of antipode (2.9) and in the third line we used S(x) =
−x, ∀x ∈ X . Similarly, the right hand side gives

b̃i(S(x1 ∨ . . . ∨ xj)) = b̃i((−1)P̃S(xj) ∨ . . . ∨ S(x1)) = (−1)j b̃i(x1 ∨ . . . ∨ xj)

=
∑

σ∈Sh(i,j−i)

ǫ(σ; x)(−1)j b̃i(xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j) ,

where P̃ =
∑j

m=2

∑m−1
n=1 |xn||xm|. Equating the two sides gives b̃i = (−1)1−ibi. Inspecting

the homotopy relations (2.7) it is easy to see that the relations induced by D̃2 = 0 are the
same.

A coderivation of a graded Hopf algebra with similar properties was previously introduced
in Ref.[23] in the context of the BRST formulation of quantum group gauge theory.
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3 Braided L∞-algebra from a Drinfel’d twist

The Hopf algebra underlying an L∞-algebra we have discussed so far is cocommutative and
coassociative, as it is based on a (graded) symmetric tensor algebra. A systematic way to
introduce a non-(co)commutative deformation is by applying the Drinfel’d twist approach
[11]. We twist a Hopf algebra H using a twist element F ∈ H⊗H , which is invertible and
satisfies:

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id⊗∆)F , (3.1)

(ε⊗ id)F = 1⊗ 1 = (id⊗ ε)F . (3.2)

Relation (3.1) is known as the 2-cocycle condition, whereas the condition (3.2) is known as
(normalized) counitality. The 2-cocyle condition ensures that the deformed algebra remains
coassociative. Using Sweedler’s summation notation we can write the twist element and its
inverse as:

F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α . (3.3)

It was shown in Refs.[24, 25] that a twist F of a Hopf algebra H results in a new Hopf
algebra HF which is given by (H, µ,∆F , ε, SF). On the level of vector spaces HF = H , the
product µ and counit ε are unchanged, while the coproduct transforms as:

∆F (h) = F∆(h)F−1, h ∈ H . (3.4)

In the case of an Abelian twist8, which we assume in the following, the antipode is not
deformed, SF = S. Thus using the Drinfel’d twist we obtain a twisted L∞-algebra, namely
(LF

∞,∨,∆F , ε, S), where LF
∞ and L∞ are the same as vector spaces.

Drinfel’d twist deformation quantization consists of twisting the Hopf algebra as above,
while simultaneously twisting all of its modules [26]. Taking the Hopf algebra L∞ as a
module itself, one obtains another Hopf algebra (L⋆

∞,∨⋆,∆⋆, ǫ, S⋆) with the corresponding
vector space once again being the same as before, namely L∞, with the following product:

x1 ∨⋆ x2 = f̄α(x1) ∨ f̄α(x2) . (3.5)

This algebra is a Hopf algebra with:

∆⋆(x) = x⊗ 1 + R̄α ⊗ R̄α(x) , (3.6)

S⋆(x) = −R̄α(x)R̄α . (3.7)

The R-matrix R ∈ S(X)⊗ S(X) is an invertible matrix induced by the twist,

R = F21F
−1 =: Rα ⊗Rα , R−1 = R̄α ⊗ R̄α (3.8)

where F21 = fα⊗ fα. In the case of an Abelian twist, R is triangular Rα⊗Rα = R̄α ⊗ R̄α,
and R = F−2. The inverse R-matrix controls the non-commutativity of the ∨⋆-product
and provides a representation of the permutation group [26] and, in particular, the action
of a non-identity permutation of two elements is:

τσR(x1 ∨⋆ x2) = (−1)|x1||x2|R̄α(x2) ∨⋆ R̄α(x1) .

8The twist generators commute in the case of an Abelian twist.
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As R is triangular, τσR squares to the identity. Now we can extend the coproduct (3.6) to
the whole tensor algebra:

∆⋆ ◦ id
∨⋆m =

∑

σ∈Sh(p,m−p)

(id∨⋆p ⊗ id∨⋆(m−p)) ◦ τσR , p,m ≥ 0 . (3.9)

The coderivation D⋆ =
∑∞

i=0 b
⋆
i is defined in terms of braided graded symmetric maps b⋆i :

b⋆i ◦ id
∨⋆j =

∑

σ∈Sh(i,j−i)

(b⋆i ∨⋆ id
∨⋆(j−i)) ◦ τσR , j ≥ i , (3.10)

b⋆i (x1, . . . , xm, xm+1, . . . , xi) = (−1)|xm||xm+1|b⋆i (x1, . . . , R̄
α(xm+1), R̄α(xm), . . . , xi) ,

with the condition D2
⋆ = 0 reproducing the deformed homotopy relations. In particular we

have:

D2
⋆(x1 ∨⋆ x2) =

∞∑

i=0

b⋆i

2∑

j=0

b⋆j (x1 ∨⋆ x2)

=

3∑

i=0

b⋆i (b
⋆
0 ∨⋆ x1 ∨⋆ x2 + b⋆1(x1) ∨⋆ x2 + (−1)|x1||x2|b⋆1(R̄

α(x2)) ∨⋆ R̄α(x1) + b⋆2(x1, x2))

=

3∑

i=0

b⋆i (b
⋆
0 ∨⋆ x1 ∨⋆ x2 + b⋆1(x1) ∨⋆ x2 + (−1)|x1|x1 ∨⋆ b

⋆
1(x2) + b⋆2(x1, x2)) .

In passing to the last line we assumed the equivariance of the maps b⋆i , i.e. we assumed
that they commute with the action of the twist generators. Thus one can show that the
homotopy relations are the same9 as (2.7). The braided coproduct (3.9) and the compatible
coderivation (3.10) equivariant under the action of the degree zero twist element reproduce,
in the coalgebra picture, the braided L∞-algebra constructed in [16], c.p. Definition 4.73
in [17]. Formally, the homotopy relations have the same form as (2.8):

i∑

j=0

∑

σ∈Sh(j,i)

b⋆i−j+1(b
⋆
j ∨⋆ id

∨⋆i) ◦ τσR = 0 . (3.11)

Moreover, we have ε ◦D = 0 as ε(b0(1)) = 0.

The Hopf algebras L⋆
∞ and LF

∞ are isomorphic and there exists an invertible map ϕ

between the underlying vector spaces [18]

ϕ(1) = 1, ϕ(x) = f̄α(x)f̄α , (3.12)

such that:

ϕ(x1 ∨⋆ x2) = ϕ(x1) ∨ ϕ(x2) , (3.13)

∆⋆ = (ϕ−1 ⊗ ϕ−1) ◦∆F ◦ ϕ , (3.14)

ε⋆ = ε ◦ ϕ , (3.15)

S⋆ = ϕ−1 ◦ S ◦ ϕ . (3.16)

9Only when acting on explicit elements of the tensor algebra does one have to take into account the
braided transposition map. In that case, the first difference with respect to the untwisted algebra appears
when acting on three or more elements, as shown in [16].
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On the other hand, there exist maps between L∞-algebras: an L∞-morphism is a col-
lection of graded symmetric maps φ = {φi : S

iX → X ′, i ≥ 0} of degree zero from S(X)
to S(X ′), such that they define a coalgebra morphism i.e. satisfy:

∆′ ◦ φ = (φ⊗ φ) ◦∆ , (3.17)

and such that φ is compatible with the coderivations:

D′ ◦ φ = φ ◦D . (3.18)

The first few components are:

φ(1) = 1 + φ0 +
1
2!
φ0 ∨

′ φ0 + · · · ,

φ(x) = φ1(x) + φ0 ∨
′ φ1(x) +

1
2!
φ0 ∨

′ φ0 ∨
′ φ1(x) + · · · ,

φ(x1 ∨ x2) = φ1(x1) ∨
′ φ1(x2) + φ0 ∨

′ φ1(x1) ∨
′ φ1(x2) + · · ·+

+ φ2(x1, x2) + φ0 ∨
′ φ2(x1, x2) + · · · . (3.19)

When φ0 6= 0 we talk about curved L∞-morphisms. From the compatibility of coderivations
(3.18) one obtains the explicit relation between coderivation maps bi and b′i [27]

∑

σ∈Sh(l,n−l)

φ1+l ◦ (b(n−l) ⊗ id⊗l) ◦ τσ =

∞∑

j=0

∑

k1+···+kj=n

∑

σ∈Sh(k1,...,kj)

1
j!
b′j(φk1 ∨ · · · ∨ φkj) ◦ τ

σ .

(3.20)

When the map φ1 is invertible, we have an L∞-isomorphism. Applying the L∞-morphism to
our case of interest, namely finding a map φ⋆ : L⋆

∞ → LF
∞, we need to define the component

maps φ⋆
i which are braided graded symmetric, i.e.

φ⋆
i (x1, . . . , xm, xm+1, . . . , xi) = (−1)|xm||xm+1|φ⋆

i (x1, . . . , R̄
α(xm+1), R̄α(xm), . . . , xi) , (3.21)

and equivariant with respect to the action of twist generators. The expression for the
morphism φ⋆ is then obtained from (3.20) by exchanging bi with b⋆i and the action of the
permutation τσ with τσR.

However, things are much simpler here; the Hopf algebra morphism is both an algebra
morphism (3.13) and a coalgebra morphism (3.14, 3.17), so we obtain that the only non-
vanishing component of the morphism φ⋆ is φ⋆

1:

φ⋆
1(x) = ϕ(x) = f̄α(x)f̄α . (3.22)

The relation we established between Hopf and L∞-algebras implies that the morphism ϕ be-
tween Hopf algebras (3.13)-(3.16) can be extended to a strict L∞-morphism by demanding
compatibility of the morphism with the coderivation (3.18)

ϕ ◦D⋆ = DF ◦ ϕ ,

ϕ(b⋆n(x1, . . . , xn)) = bn(ϕ(x1), . . . , ϕ(xn)) . (3.23)

Notice that in Refs.[28, 29] the authors discussed the special example of twisting of an L∞-
algebra, where the L∞-morphisms of twisted algebras went beyond strict L∞-morphisms.

8



The difference comes from the difference between Hopf algebra modules which we discuss
here and more general L∞-algebra modules, see [20, 30].

Finally, in complete analogy with Thm 2.1. we can relate the braided L∞-algebra
(L⋆

∞, D⋆) with the Hopf algebra (L⋆
∞,∨⋆,∆⋆, ǫ, S⋆). The compatibility relation between the

antipode S⋆ and the codifferential D⋆ follows from the equivariance of the coderivation
maps b⋆i and the fact that the antipode S⋆ is a graded algebra anti-homomorphism.

4 Concluding remarks

In this paper we have identified the cocommutative and coassociative Hopf algebra structure
underlying L∞-algebras. Thus we were able to introduce a non-(co)commutative deforma-
tion by applying the Drinfel’d twist approach [11] and obtaining the braided L∞-algebra of
Ref.[16] as a module of the twisted one. In Ref.[16] the braided L∞-algebra was used in the
construction of a non-commutative deformation of the Chern-Simons and Einstein-Cartan-
Palatini actions with a braided gauge symmetry. However, the physical interpretation of
braided gauge symmetries encountered in these models was not well understood. One way
to improve this situation is to construct an appropriate generalization of the BV formalism
[31, 17] that could help in identifying equivalent physical configurations. This is particularly
natural in the coalgebra formulation, where one can interpret the dual of the codifferential
as locally being a cohomological vector field Q of degree 1 on a manifold M , i.e. Q = D∗

or:

Q =
∞∑

i=0

1

i!
Cβ

α1...αi
zα1 · · · zαi

∂

∂zβ
.

Here, the structure constants of the L∞-algebra are the components of the coderivation D

on a basis {τα} of X :
bi(τα1

, ..., ταi
) = Cβ

α1...αi
τβ ,

and {zα} represent a basis of the dual10 vector space X⋆. In the BV formalism, Q becomes
the BRST operator and zα the physical fields.

Furthermore, in the L∞-framework there exists a well-defined notion, at least for flat
L∞-algebras, of an L∞-quasi-isomorphism that relates physically (gauge) equivalent con-
figurations. Namely, when the 0-bracket vanishes, the 1-bracket is a differential, see (2.7),
and there is a cochain complex underlying the L∞-algebra. In that case one defines the
L∞-quasi-isomorphisms by the requirement that the linear morphism component φ1 induces
an isomorphism of cohomologies of the respective L∞-algebras, see detailed discussion in
[19]. For the case of a non-vanishing 0-bracket, a natural setting would be that of σ-models
and L∞-spaces introduced by Costello [33]. An L∞-space includes target manifold data
and 0-bracket can be identified with the curvature of a connection on the target. Said
differently, the connection x ∈ X is a degree zero solution of Maurer-Cartan equation

∞∑

i=0

1
i!
bi(x, . . . , x︸ ︷︷ ︸

i times

) = 0 .

10In the infinite-dimensional case one either restricts X
⋆ to the space spanned by {zα}, or considers

continuous duals in infinite-dimensional topological vector spaces, see discussion in [32].
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Using this solution one can define new L∞-algebra on the same vector space, but with
vanishing curvature [34, 35].

Acknowledgments. We thank Marija Dimitrijević Ćirić and Peter Schupp for extensive
discussions and Paolo Aschieri, Athanasios Chatzistavrakidis and Richard Szabo for useful
comments. The work is supported by the Croatian Science Foundation project IP-2019-04-
4168.

A On L∞-algebras

Definition A.1. (L∞-algebra [3]) An L∞-algebra (X, µi) is a graded vector space X

equipped with a collection of multilinear maps that are graded totally antisymmetric:

µi : X
⊗i → X ,

of degree 2− i where i ∈ N0 and satisfy the homotopy Jacobi identities:
∑

j+k=n

∑

σ

χ(σ; x)(−1)kµk+1(µj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0 ;

for all xi ∈ X, n ∈ N0. Here χ(σ; l) indicates the graded Koszul sign including the sign
from the parity of the permutation of {1, . . . , n} that is ordered as: σ(1) < · · · < σ(j) and
σ(j + 1) < · · · < σ(n).

We use the convention that totally graded antisymmetric means:

µi(. . . , xr, xs, . . .) = −(−1)|xr ||xs|µi(. . . , xs, xr, . . .) ,

with |xr| the degree of homogeneous element xr ∈ X . When µ0 6= 0 this algebra is called
a curved L∞-algebra, while the name flat L∞-algebra refers to the case µ0 = 0.

The homotopy Jacobi identities defining the L∞ structure exist for any given level n,
and there can be, in principle, an infinite number of them. The first few homotopy relations
are:

n = 0 : µ1µ0 = 0 ,

n = 1 : µ2
1(x) = µ2(µ0, x) ,

n = 2 : µ1(µ2(x1, x2))− µ2(µ1(x1), x2)− (−1)1+|x1||x2|µ2(µ1(x2), x1) = −µ3(µ0, x1, x2) .

These homotopy relations can be related to (2.7) using a degree −1 map s between the
algebra and coalgebra pictures called a suspension or shift isomorphism:

s : X → X [1] s.t. (X [1])d = Xd+1 ,

which induces an isomorphism of the graded tensor algebras,

s⊗i : x1 ∧ · · · ∧ xi → (−1)
∑i−1

j=1
(i−j)sx1 ∨ · · · ∨ sxi ,

and décalage isomorphism of the brackets:

µi = (−1)
1
2
i(i−1)+1s−1 ◦ bi ◦ s

⊗i .
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B On Hopf algebras

Definition B.1 (Bialgebra). A bialgebra (A, µ, η,∆, ε) over K is a vector space which is
both an algebra and a coalgebra in a compatible way:

∆(hg) = ∆(h)∆(g), ∆(1) = 1⊗ 1, ε(hg) = ε(h)ε(g), ε(1) = 1, ∀h, g ∈ A. (B.1)

The comultiplication ∆ : A → A⊗A and counit map ε : A → K are both algebra homomor-
phisms, whereas the multiplication µ : A⊗ A → A and unit map η : K → A are coalgebra
homomorphisms.

Definition B.2 (Hopf algebra). A Hopf algebra (H, µ,∆, ε, S) over K is a bialgebra over
K equipped with an antipode map S : H → H satisfying the following:

µ ◦ (id⊗ S) ◦∆ = µ ◦ (S ⊗ id) ◦∆ = η ◦ ε . (B.2)

Remark B.3. If an antipode exists, it is unique [24].

The existence of an inverse antipode map S−1 is not assumed, but if S2 = id, the inverse
is equivalent to the antipode map itself. A consequence of the antipode’s uniqueness is that
it obeys the following relations ∀h, g ∈ H :

S(hg) = S(g)S(h) , S(1) = 1 , (B.3)

(S ⊗ S) ◦∆(h) = ∆ ◦ S(h) , εS(h) = ε(h) . (B.4)

The first two relations state that the antipode is an antialgebra map, whereas the second
two state that it is an anticoalgebra map.
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