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Abstract. To admit a canonically conjugate time operator, the Hamiltonian has to

be a generator of translations (like the momentum operator generates translations in

space), so its spectrum must be unbounded. But the Hamiltonian governing our world

is thought to be bounded from below. Also, judging by the number of fields and

parameters of the Standard Model, the Hamiltonian seems much more complicated.

In this article I give examples of worlds governed by Hamiltonians generating

translations. They can be expressed as a partial derivative operator just like the

momentum operator, but when expressed in function of other observables they can

exhibit any level of complexity. The examples include any quantum world realizing a

standard ideal measurement, any quantum world containing a clock or a free massless

fermion, the quantum representation of any deterministic time-reversible dynamical

system without time loops, and any quantum world that cannot return to a past state.

Such worlds are as sophisticated as our world, but they admit a time operator.

I show that, despite having unbounded Hamiltonian, they do not decay to infinite

negative energy any more than any quantum or classical world.

Since two such quantum systems of the same Hilbert space dimension are unitarily

equivalent even if the physical content of their observables is very different, they

are concrete counterexamples to Hilbert Space Fundamentalism (HSF). Taking the

observables into account removes the ambiguity of HSF and the clock ambiguity

problem attributed to the Page-Wootters formalism, also caused by assuming HSF.

These results provide additional motivations to restore the spacetime symmetry in

the formulation of Quantum Mechanics and for the Page-Wootters formalism.

Keywords: Quantum time operator; quantum measurements; dynamical systems;

Koopman representation; Page-Wootters formalism; Hilbert space fundamentalism.
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1. Introduction

Unlike the Theory of Relativity, Quantum Mechanics seems to treat space and time

completely differently. While the position operator x̂ is the canonical conjugate of the

momentum operator p̂x, a generic Hamiltonian operator Ĥ does not admit a self-adjoint

canonically conjugate operator τ̂ to represent time as a dynamical variable or observable.

According to Pauli ([1], footnote 2, page 63),

In the older literature on Quantum Mechanics, we often find the operator

equation

Ht− tH =
h

i
I,

[...] It is generally not possible, however, to construct a Hermitian operator

(e.g. as a function of p and q) which satisfies this equation. This is so because,

from the C.R. [commutation relation] written above, it follows thatH possesses

continuously all eigenvalues from −∞ to +∞ (cf. Dirac, Quantum Mechanics,

First edition (1930), 34 and 56) whereas on the other hand, discrete eigenvalues

of H can be present. We, therefore, conclude that the introduction of an

operator t is basically forbidden and the time t must necessarily be considered as

an ordinary number [...] in Quantum Mechanics (cf. for this E. Schrödinger,

Berl. Ber. (1931) p. 238).

Since the discovery of the position-momentum energy relations by Heisenberg [2],

it was assumed that similar relations should hold between time and energy, due to

the similar role played by space and time in relativity. This belief was criticized by

Pauli [1]. Nevertheless, forms of time-energy uncertainty that do not violate Pauli’s

observation were shown to be possible, due to the fact that they can be interpreted

to refer to various context, for example involving the characteristic times of average

expectation values [3], the time of arrival [4], [5], and the traversal or tunneling time

(found to require, apparently, exceeding the speed of light) [6]. Wigner clarified that

the time-energy uncertainty relations should be understood to apply to the life-time

of a definite state of a system, and examined the contrast with Heisenberg’s position-

momentum uncertainty [7]. Aharonov and Bohm found situations where the energy

can be measured with arbitrary precision in an arbitrarily short time interval [8], and

Fock contradicted this on the grounds that it assumes “the introduction of a field which

does not obey the uncertainty relation” [9]. Time-energy uncertainty relations based on

positive operator-valued measures are discussed in [10, 11]. For clarifications of various

meanings of the time-energy uncertainty relations see Hilgevoord [12, 13, 14]. There

are several thorough reviews of these problems [15, 16, 17, 18, 14, 19], also see some

important collections like [20, 5, 21].

Here we will explore the properties of quantum systems whose Hamiltonian admits

a canonical conjugate observable that can be understood as time, territory considered

“basically forbidden” by Pauli, as per the above quote. The aim is to see whether this

Hamiltonian can govern the dynamics of a world like the one we observe.
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Definition TQS. A translational quantum system is a closed quantum system with the

Hamiltonian operator of the form

Ĥτ = −iℏ ∂
∂τ
. (1)

The evolution of the state vectors |ψ(t)⟩ in the Hilbert space H is given, as usual,

by the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥτ |ψ(t)⟩. (2)

Its solutions for |ψ(0)⟩ = |ψ0⟩ are |ψ(t)⟩ = Û(t)|ψ0⟩, where Û(t) := e−
i
ℏ tĤτ is the

evolution operator. In general,

|ψ(t+∆t)⟩ = e−
i
ℏ∆tĤτ |ψ(t)⟩. (3)

The Hamiltonian Ĥτ admits a canonical conjugate operator τ̂ , so that together they

satisfy the canonical commutation relation

[τ̂ , Ĥτ ] = iℏÎ , (4)

where Î is the identity operator on H.

The only allowed states of the system are eigenstates of the operator τ̂ . The unitary

evolution operator by e−
i
ℏ tĤτ of an eigenstate corresponding to an eigenvalue τ results

in an eigenstate corresponding to the eigenvalue τ + t.

We will see that τ̂ can play the role of time operator.

Remark 1 (Motivation for TQS). There are several reasons to embark in exploring

the possibility that our world is a TQS. Mainly, it seems that relativity requires that

time and energy are in the same relation as position and momentum, both to ensure

similar uncertainty relations, and as pairs of canonically conjugate observables. But the

Stone-von Neumann Theorem, which (see e.g. [22], p. 239)

states that any two self-adjoint operators A and B satisfying [A,B] = iℏI “look
like” [author’s note: i.e. “it is unitarily equivalent to a direct sum of”] several

copies of the standard position and momentum operators acting on L2(R)

implies that, if the Hilbert space is separable, the system can only be a TQS.

Another reason comes from Canonical Quantum Gravity [23], whose solutions seem

to be “timeless”. Page and Wootters proposed a formalism to accommodate this

apparent timelessness with a relational notion of time based on correlations between

a system and a clock [24]. For critical assessments of their proposal see [25, 26]. The

relation between the TQS and the Page-Wootters formalism will be shown in Sections

§4 and §8.
Another reason to explore TQSs is the revived interest in the Page-Wootters

formalism [24], this time motivated by the recent results regarding indefinite causal
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order. Indefinite causal order occurs when considering superpositions of states consisting

of subsystems whose interactions take place in opposite causal orders [27, 28, 29]. A

possible and perhaps the most natural solution is to quantize time, and in particular to

use the Page-Wootters formalism [30, 31].

A secondary reason (simply because it is unknown) is a recent result, showing that

unless the world is a TQS, there is always a nonvanishing probability that the world will

return to a previous state [32]. The proof from [32] is very simple: if the entire system

evolves into a state that is not orthogonal to a previous state, the total state vector has

a nonvanishing component corresponding to the previous state. Whether we resolve the

superposition by appealing to the wavefunction collapse or to decoherence into branches,

there is a nonvanishing probability that the system will return to a previous state. To

prevent this, it can be shown that, at least for the Hilbert subspace spanned by the

irreversible histories, the Hamiltonian has to be the generator of some translations, so

the world must be describable as a TQS. Therefore, a system that is not a TQS violates

the Second Law of Thermodynamics. The following quote by Eddington gives therefore

another motivation to reconsider the possibility that the world is a TQS [33],

If your theory is found to be against the second law of thermodynamics I give

you no hope; there is nothing for it but to collapse in deepest humiliation.

Finally, another reason to study the TQSs is that they can be very diverse and

sophisticated, much like our world, as we shall see.

We anticipate some possible objections against TQSs, discussed in Sections §7–§9:

Objection 1. The TQS is unique and simple, so what can be interesting about this?

Objection 2. While we do not yet know the Hamiltonian of the unified theory, and

hence of the entire world, we know the laws governing the Standard Model of particle

physics, and the Hamiltonian has to be much more complex than (1).

Perhaps the best known objection, which is more general, is the following [34]:

Objection 3. If the Hamiltonian of the entire world were not bounded from below, its

state would decay towards infinite negative energy states. Such a world would contain

systems able to generate free energy, for example by charging infinitely many batteries.

Therefore, the spectrum of the Hamiltonian operator of the world cannot be (1).

We will see that there are TQSs of any desired complexity, empirically

indistinguishable from our world, which do not decay to infinite negative energy states,

or if they decay, the same should happen to systems with the Hamiltonian bounded

from below.

We will see that the following are TQSs:

• Any closed quantum system consisting of a measuring device and an observed

system realizing the standard model of ideal quantum measurements (Section §3). The

two systems are assumed to not have free evolution.
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• Any closed quantum system having a closed subsystem which is translational.

The subsystem may be an ideal clock (Section §4) or a sterile massless fermion in a

certain state (Section §5) or any other translational system.

• The Koopman-von Neumann-Schönberg quantum representation of any

deterministic time-reversible dynamical system without time loops (Section §6). We

will also see that all observables and properties of the original dynamical system and its

evolution equations are faithfully encoded as quantum observables.

These quantum systems provide countless counterexamples of unlimited complexity

to Objections 1 and 2 (Section §7) and Objection 3 (Section §9), allowing for the

possibility to interpret τ̂ as a time observable canonically conjugate to the Hamiltonian.

In addition, they are concrete counterexamples to the “Hilbert Space Fundamentalism”

Thesis (HSF) that the Hamiltonian and the state vector are sufficient to recover the 3D-

space, the tensor product structure, the preferred basis, or any other physical property,

proving the necessity of taking into account the physical meaning of the observables

(Section §7). The clock ambiguity problem often attributed to the Page-Wootters

formalism is also due to assuming the thesis (HSF), and it can be avoided by taking

into account the physical meanings of other observables (§8).
Finally, Section §10 summarizes the conclusions regarding the empirical adequacy

of the hypothesis that the world is a TQS.

2. Preliminary remarks

Remark 2 (Terminology. General). Translation operators are also named shift

operators in Functional Analysis. Consider a function f(x1, . . . , xj, . . .) of some

independent parameters x1, . . . , xj, . . .. They may be space degrees of freedom, but they

may be other degrees of freedom as well. A translation operator T̂j
(
∆xj

)
translates any

function f(x1, . . . , xj, . . .) with respect to the parameter xj,

T̂j
(
∆xj

)
f(x1, . . . , xj, . . .) = f(x1, . . . , xj −∆xj, . . .). (5)

For example, if the parameter xj is a space coordinate and the function is a

wavefunction ψ(x1, . . . , xj, . . .), the translation operators along xj are generated by the

corresponding momentum operator p̂j := −iℏ ∂
∂xj

(see Figure 1),

T̂j
(
∆xj

)
ψ(x1, . . . , xj, . . .) = e−

i
ℏ∆xj p̂jψ(x1, . . . , xj, . . .) = ψ(x1, . . . , xj −∆xj, . . .). (6)

If a function ψ(x1, . . . , xj, . . .) is translated with ∆xj, in the original reference frame

the value of the translated function at xj = 0 is the value of the original function at

xj −∆xj, as in equation (2). This is akin to a (passive) change of the reference frame,

so an eigenvector |x̃j⟩ of the position operator x̂j is transformed into the eigenvector

|x̃j + ∆xj⟩ (we denote the eigenvectors by the corresponding eigenvalues). We can

check in one dimension that indeed ⟨x|x̃+∆x⟩ = δ
(
x− (x̃+∆x)

)
= δ

(
(x− x̃)−∆x

)
=

T̂
(
∆x

)
δ(x− x̃) = ⟨x|T̂

(
∆x

)
|x̃⟩. This is not different from the usual changes of reference
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e−
i
ℏ∆x·p̂

x0 −∆x x0 x0 +∆x x

⟨x0|ψ⟩

⟨x0 −∆x|ψ⟩ ⟨x0|e−
i
ℏ∆x·p̂|ψ⟩

ψ

Figure 1. The operator e−
i
ℏ∆x·p̂ translates ψ with ∆x.

frames: the coordinates in the new reference frame are obtained by applying to the

coordinates in the old reference frame the inverse of the transformation changing the

old reference frame into the new one.

Let |τ̃ , a⟩ be an eigenstate of τ̂ corresponding to the eigenvalue τ̃ , where we denote

by a =
(
a1, a2, . . .

)
the additional parameters needed to account for the degeneracy of

the eigenvalue τ . They are eigenvalues of some Hermitian operators â =
(
â1, â2, . . .

)
that can be chosen to form, together with τ̂ , a complete set of commuting observables,

so they are simultaneously diagonalizable.

There are many ways to choose the operators â1, â2, . . ., resulting in many different

representations. The following choice makes explicit how Ĥτ generates translations.

Example 1 (Parmenidean representation). We can choose â1, â2, . . . to also commute

with Ĥτ , so that they are conserved. This is possible because the Hilbert space

H is isomorphic with the tensor product of Hilbert spaces, H ∼= HC ⊗ HR, where

HC := L2
(
R,C

)
is the space of square-integrable functions and HR is another Hilbert

space, such that the Hamiltonian has the form Ĥτ = ĤC ⊗ ÎR, where ĤC = −iℏ ∂
∂τC

,

τC ∈ R, and ÎR is the identity operator on HR. We choose the operators â1, â2, . . . of the

form âj := ÎC⊗b̂j, where b̂1, b̂2, . . . form a complete set of commuting observables onHR.

Then, the action of Û(t) on |τ̃ , a⟩ changes it into an eigenstate |τ̃ + t, a⟩ corresponding
to the eigenvalue τ̃ + t. Therefore, the solution of equation (2) with the initial condition

|ψ0⟩ = |τ, a⟩ is |ψ(t)⟩ = |τ + t, a⟩,

|τ + t, a⟩ = e−
i
ℏ tĤτ |τ, a⟩. (7)

A state vector |ψ(0)⟩ has the general form

|ψ(0)⟩ =
∫
C

ψ0(τ, a)|τ, a⟩dτda, (8)

where ψ0(τ, a) = ⟨τ, a|ψ(0)⟩ is the wavefunction and C is the configuration space,
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parametrized by τ and a. The state vector is evolved by e−
i
ℏ tĤτ into

|ψ(t)⟩ = e−
i
ℏ tĤτ |ψ(0)⟩

=

∫
Rn+1

ψ0(τ, a)|τ + t, a⟩dτda

=

∫
Rn+1

ψ0(τ − t, a)|τ, a⟩dτda,

(9)

where n is the number of parameters a =
(
a1, a2, . . .

)
, or, equivalently, of the operators

â1, â2, . . . forming together with τ̂ a complete set of commuting observables on H. The

number n is the degeneracy (or multiplicity) of the operator τ̂ .

Then,

ψ0(τ − t, a) = e−
i
ℏ tĤτψ0(τ, a). (10)

Therefore, a wavefunction ψ0(τ, a) is evolved by e−
i
ℏ tĤτ into ψt(τ, a) = ψ0(τ − t, a).

For example, for t > 0, ψ0(0, a) is translated forward along τ (see Figure 2).

e−
i
ℏ tĤτ

τ = −t τ = 0 τ = t τ

ψ0(0, a)

ψ0(−t, a) ψt(0, a)

ψ

Figure 2. The operator e−
i
ℏ tĤτ translates ψ0 forward with t along the parameter τ .

Since in this representation there is no explicit change under time evolution (except

for the value of τ), we can call it Parmenidean representation. It is similar to a physical

system that does not change in time, even if it undergoes inertial motion. However,

in Section §4, Remark 12, we will recall that Canonical Quantum Gravity implies that

there is a “truly Parmenidean” representation that appears to be timeless.

This may give the impression that translational quantum systems are unable to

describe any interesting physics. The next example shows that this is not the case, and

is the key to the examples from this article.

Example 2 (Heraclitean representation). Suppose now that the operators â1, â2, . . .,

commuting with τ̂ , are chosen so that not all of them commute with Ĥτ . Then the

unitary evolution of a state represented by a state vector |ψ(0)⟩, which is initially an

eigenstate |0⟩C |φ(0)⟩R of τ̂ , where |0⟩C ∈ HC and |φ(0)⟩R ∈ HR, has the general form

|t⟩C |φ(t)⟩R = e−
i
ℏ tĤτ |0⟩C |φ(0)⟩R, (11)

so that at any time the system is in an eigenstate of τ̂ , but |φ(t)⟩R changes in time. The

subsystem
(
HC , ĤτC

)
plays the role of a clock. It will be discussed in Section §4, where

we will see that it is possible for the rest of the system to have any Hamiltonian.
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The possibility that the operators â1, â2, . . . don’t commute with the Hamiltonian,

together with the possibility to interpret them physically in many different ways, allows

translational quantum systems to be very diverse, proving their versatility. Sections

§3–§6 illustrate this versatility with concrete examples.

Remark 3 (Terminology. Time translation). The unitary evolution operators e−
i
ℏ tĤ of

any closed quantum system are sometimes called time translations (e.g. [35] p. 101).

But, considering that any unitary operator can be put in an exponential form e−
i
ℏ tĤ for

some Hermitian operator Ĥ, does this mean that all unitary operators are translations?

The answer is no, the notion of “time translation operator” is different from the notion

of “translation operator”. Translation operators like e−
i
ℏ∆xj p̂j and e−

i
ℏ∆τĤτ produce

translations with respect to the parameters xj, respectively τ , which are degrees of

freedom of the system. But the time parameter is not a degree of freedom of the

system. For example, if |ψ(t1)⟩ = |ψ(t2)⟩, the two states are identical with respect to

all degrees of freedom of the system even if t1 ̸= t2, while for a TQS different values of

τ correspond to orthogonal states.

However, it is possible to interpret the unitary evolution operators of a generic

closed quantum system as translations, but only in a limited sense. To do this, we

can interpret the time-dependent wavefunction ψ(q, t), where q ∈ C is a point in the

configuration space C of the system, as a wavefunction on a time-extended configuration

space C×R. Here C×R denotes the Cartesian product between the original configuration

space of the system and the time axis R. This makes time a degree of freedom of the

system. In this case, ∫
C×R

|ψ(q, t)|2dqdt = ∞, (12)

so the time-extended wavefunctions do not form a Hilbert space. But for any fixed

t ∈ R,
∫
C
|ψ(q, t)|2dq = 1 as usual, so the wavefunctions ψ(q, t) defined on C×{t} form

a Hilbert space Ht.

The unitary evolution operators e−
i
ℏ tĤ act like translations on the time-extended

configuration space C × R, but only for those time-extended wavefunctions that are

solutions of the Schrödinger equation for the Hamiltonian Ĥ. If ψ(q, t) = ⟨q|ψ(t)⟩ is

a general wavefunction, or if it is a solution of the Schrödinger equation for a different

Hamiltonian Ĥ ′, obviously Ĥ does not generate the time translation of ψ(q, t), because

in general e−
i
ℏ tĤ |ψ(t)⟩ ≠ e−

i
ℏ tĤ

′|ψ(t)⟩.
This is true in particular for the time-extended configuration space of a TQS,

obtained by including the time among the degrees of freedom of the system: the

unitary evolution operators e−
i
ℏ tĤτ act like time translations only on the time-extended

wavefunctions that are solutions of the Schrödinger equation (2).

On the other hand, on the original configuration space, the translation operators

e−
i
ℏ tĤτ translate any function ψ(τ, a) with respect to τ , as in equation (10). This applies

even to those functions that don’t satisfy the Schrödinger equation with the Hamiltonian

(1), so the operators e−
i
ℏ tĤτ satisfy the standard definition of translation operators.
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Remark 4 (Relation between τ and t). It may seem that, by working on the time-

extended configuration space as in Remark 3, we can introduce a time observable for

any Hamiltonian. Even if we find a way to avoid the technical difficulties arising from

the fact that the time-extended wavefunctions do not form a Hilbert space, as seen

in equation (12), such a time operator would not satisfy the canonical commutation

relation with the Hamiltonian.

On the other hand, in the case of a TQS, τ is a degree of freedom of the system, and

since the allowed solutions are eigenstates of τ̂ , τ̂ can play the role of a time operator,

and it satisfies the canonical commutation relation (4), just like we would expect for

time and energy.

From Definition TQS, the allowed states of a TQS are eigenstates of the operator τ̂ ,

and they remain eigenstatesof τ̂ at any time t. Suppose that at time t0 the state of the

system is in an eigenstate of τ̂ , corresponding to the eigenvalue τ0. Then, at any other

time t0 +∆t, the state of the TQS is τ0 +∆t, cf. equations (7) and (11). Therefore, τ

and t are correlated so that as t increases with ∆t, τ increases with the same amount.

This justifies the interpretation of τ as time.

Remark 5 (Probabilities for a TQS). A TQS is a quantum system like any other

quantum system, with some particularities. One of these particularities is that the state

vector is an eigenstate of the operator τ̂ , and it remains an eigenstate at all times.

For example, cf. equation (7), at any time t the state vector is |t, a⟩ = e−
i
ℏ tĤτ |0, a⟩.

While |τ, a⟩ is not normalizable because ⟨τ1, a|τ2, a⟩ is a Dirac distribution, it satisfies

the “normalization condition” ⟨τ1, a|τ2, a⟩ = δ
(
τ1 − τ2

)
. Unitary evolution ensures that

this remains true at all times.

Another particularity is that the Hamiltonian (1) admits a canonical conjugate τ̂ .

If we do not know the value τ , we represent this limited knowledge by a state vector

|ψ⟩ =
∫
C

ψ(τ, a)|τ, a⟩dτda, (13)

as in equation (8), where ⟨ψ|ψ⟩ = 1. Then, ⟨τ |ψ⟩ is the probability distribution for the

value of τ , just like in the case of any observable, for example the position observable.

And since cf. Remark 4 the value τ correlates with time, ⟨τ |ψ⟩ can be interpreted as

the probability distribution for time.

Note that we do not consider the state of the TQS to be represented by the totality

of states at all times,
∫
C
|τ, a⟩dτda as for the time-extended wavefunction (12). There

is no reason to do this, and no probabilistic interpretation for this. Therefore, we do

not have to deal with the fact that
∫
R⟨τ, a|τ, a⟩dτ = ∞. This corresponds to complete

lack of knowledge about τ , similar to how the uncertainty of position is maximal for the

eigenstates of the momentum observable. Also, τ cannot stand for the absolute time,

but it can be interpreted as relative time, just like x represents relative position.

Remark 6 (Sign convention). From Remark 3 we learn that, even though any

Hamiltonian operator generates time translations for the solutions of the corresponding
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Schrödinger equation, in order to generate translations for all wavefunctions on the

configuration space, the Hamiltonian has to be −iℏ ∂
∂τ

(or a multiple −irℏ ∂
∂τ

of it, where

r ̸= 0 is a real constant). Since r ̸= 0, it can be absorbed in τ , by substituting τ

with τ/r. But even so, there are two distinct interesting choices for the Hamiltonian,

−iℏ ∂
∂τ

and iℏ ∂
∂τ
, and both are used in the literature. The choice Ĥτ = iℏ ∂

∂τ
satisfies the

canonical commutation relation [τ̂ , Ĥτ ] = −iℏÎ. The choice Ĥτ = −iℏ ∂
∂τ

from equation

(1) satisfies the canonical commutation relation [τ̂ , Ĥτ ] = iℏÎ. Which choice is better

may depend of applications and personal preferences. For example, in [36], p. 183,

it is argued for [τ̂ , Ĥτ ] = −iℏÎ, because this “is the requirement of time-translation

invariance of the theory”, while Jammer argues that [τ̂ , Ĥτ ] = iℏÎ is the right choice,

because “the time-energy and position-momentum relations would have the same logical

status” and “the relativity requirement of treating time and position coordinates as well

as energy and momentum components on a common footing” ([15] p. 150).

If we compare equations (10) and (3), we see that the time evolution generated

by the Hamiltonian −iℏ ∂
∂τ

translates the wavefunction along τ in opposite direction to

how it translates it along t. So, at first sight, it may seem better to choose iℏ ∂
∂τ

as the

Hamiltonian. But there is a difference between time as a parameter that is not a degree

of freedom of the system, and τ , which is, and this is why the translation happens

differently with respect to t compared to τ . With the choice −iℏ ∂
∂τ
, the evolution

operator e−
i
ℏ tĤτ translates an eigenstate |τ⟩C |φ(τ)⟩R to an eigenstate |τ+t⟩C |φ(τ+t)⟩R,

so that the corresponding eigenvalue increases with t, as in equation (11). This motivates

equations (1) and (4) as the appropriate choice if we want to treat time as a degree of

freedom of the system.

3. Quantum measurements

In this Section I show that the Hamiltonian of a well known model of ideal measurements,

named the standard model of measurements in [10] §II.3.4, is a TQS.

Let M be the measuring device, S the observed system, and HM and HS their

Hilbert spaces. Suppose that a property of system S is measured, represented by

the Hermitian operator Ô on HS with discrete spectrum σ(Ô) and eigenstates |λ, a⟩S,
λ ∈ σ(Ô), where a is a degeneracy index. We assume that 0 is not an eigenvalue of Ô.

We assume that the pointer observable is a Hermitian operator M̂ on HM ,

with nondegenerate and continuous spectrum σ(M̂), and eigenstates |ζ⟩M labeled by

ζ ∈ σ(M̂). Since the pointer states have to represent the eigenstates of the operator

Ô, we assume that an injective function ζ : σ(Ô) → σ(M̂) associates the eigenvalue

ζ = ζ(λ) to each λ ∈ Ô, so that ζ(λ) ̸= 0 for all λ ∈ σ(Ô). We reserve 0 ∈ σ(M̂) to

represent the “ready” pointer state.

Suppose that the measurement starts at t = 0 and ends at t = T > 0. Let Û be

the unitary evolution operator of the total system. For each λ ∈ σ(Ô), we assume that

Û(T )|λ, a⟩S|ready⟩M = |λ, a⟩S|ζ(λ)⟩M . (14)
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For any initial state of the observed system, the total system evolves into a

superposition of states (14). Then, the Projection Postulate (or another mechanism

based on decoherence) is invoked to explain that only one term in the superposition

remains. If the pointer’s final state is |ζ(λ)⟩M , the result of the measurement is taken

to be the eigenvalue λ of O.

In the standard model of quantum measurements (see e.g. [37] §2.2(b) and [10]

§II.3.4), condition (14) is ensured by the following Hamiltonian, which ignores the free

Hamiltonians of the two systems or assumes them to vanish,

Ĥ = Ĥint = gÔ⊗ p̂M, (15)

p̂M is the canonical conjugate of the pointer operator M̂ with σ(M̂) = R. We assume

that the coupling g is constant in the interval [0, T ] and negligible outside, for example

due to an interaction potential. Then, for any λ and a,

Û(T )|λ, a⟩S|ready⟩M = |λ, a⟩Se−
i
ℏgTλp̂M|ready⟩M . (16)

Since [M̂, p̂M] = iℏÎ, we get for any λ

eigTℏ−1λp̂MM̂e−igTℏ−1λp̂M = M̂+ gTℏ−1λ1̂M . (17)

From (14) and (16), the pointer eigenstates are

|ζ(λ)⟩M = e−
i
ℏgTλp̂M|ready⟩M . (18)

From (17) and ζready = 0 the pointer eigenvalues are

ζ(λ) = gTλ. (19)

Now I prove the main result of this Section.

Theorem 1. There is a basis of the total Hilbert space H = HM ⊗ HS in which the

Hamiltonian from eq. (15) has the form Ĥ = −iℏ ∂
∂τ

on a subspace containing the

possible measurement results.

Proof. The representation of the pointer observable M̂ is ⟨ζ|M̂|ψ⟩M = ζ⟨ζ|ψ⟩M , and

that of p̂M is p̂M = −iℏ ∂
∂ζ
. The Hamiltonian (15) becomes

Ĥ = −g
∑
λ,a

λ|λ, a⟩⟨λ, a| ⊗ iℏ
∂

∂ζ
. (20)

On the total Hilbert space we define an operator τ̂ whose restriction on each

subspace |λ, a⟩S ⊗HM is

τ̂ ||λ,a⟩S⊗HM
=

1

gλ
M̂. (21)

On each subspace {|λ, a⟩S} ⊗ HM , where {|λ, a⟩S} is the set containing only the

state vector |λ, a⟩S, its eigenvalue τ satisfies

ζ = gλτ. (22)
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Then, on each subspace {|λ, a⟩S} ⊗HM ,

−gλiℏ ∂
∂ζ

= −gλiℏ ∂

∂(gλτ)
= −iℏ ∂

∂τ
. (23)

Therefore, Ĥ = −iℏ ∂
∂τ

on the subspace spanned by the state vectors of the form

Û(t)|λ, a⟩S|ready⟩M , for all λ ∈ σ(Ô), all a, and all t ∈ [0, T ]. If g is constant for all

times, this extends to the entire Hilbert space HS ⊗HM .

Remark 7. The unitary transformation from the proof of Theorem 1 does not preserve

the factorization into subsystems HM ⊗ HS. It is not a change of basis of the factor

Hilbert spaces HM and HS separately, but of the total Hilbert space HM ⊗ HS, and

this is consistent with the statement of Theorem 1.

Remark 8. In practice, the coupling g from eq. (15) is negligible outside the time

interval [0, T ] when the measuring device and the observed system interact in a non-

negligible way. Theorem 1 applies only to this interval, and only if the total system

S +M is closed. Whether the Hamiltonian can be put in the form (1) for all times,

including before and after the measurement, depends on the mechanism of turning the

interaction on and off. In most practical cases this is achieved by having g depend on

the distance between S and M . This can happen if the position of the observed system

changes in time, so its free Hamiltonian is not zero. Alternatively, g can depend on an

external system responsible for turning the coupling on and off, which would make the

total Hamiltonian time dependent. Theorem 1 does not cover these cases.

Remark 9. The standard model of quantum measurements described in [10] §II.3.4
applies both to ideal (projective) and generalized (POVM) measurements. There are

many concrete realizations of this model, including for the Stern-Gerlach experiment

and various experiments with photons ([10] §VII). But in general these measurements

are unsharp in practice, hence the necessity of POVM, while Theorem 1 applies only to

ideal projective measurements.

4. Systems containing ideal clocks

In this Section I show that any quantum system containing an ideal clock, or, more

generally, any closed translational subsystem, has the Hamiltonian (1).

Consider a quantum system composed of two closed subsystems: a generic system

R with state vectors |ψ(t)⟩ ∈ HR and any Hamiltonian ĤR, and a TQS C with state

vectors |η(t)⟩ ∈ HC and Hamiltonian ĤC = −iℏ ∂
∂τC

. Let τ̂C be the canonical conjugate

of −iℏ ∂
∂τC

. At t = 0, and therefore at any time t, |η(t)⟩ is assumed to be an eigenstate

of τ̂C . The total Hamiltonian is

ĤC+R = ĤC ⊗ ÎR + ÎC ⊗ ĤR. (24)

Theorem 2. There is a basis of the total Hilbert space HC+R := HC ⊗HR, consisting

of eigenstates of τ̂ := τ̂C ⊗ ÎR, in which ĤC+R = −iℏ ∂
∂τ
. The total Hamiltonian ĤC+R

is the canonical conjugate of the operator τ̂ .
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Proof. Let ÛC+R(t) := e−
i
ℏ tĤC+R . Let

(
|b⟩

)
b∈B be an orthonormal basis of HR.

Then, for any τ1 ̸= τ2 ∈ R, any eigenstate |η(τ1)⟩ ∈ HC of τ̂C , and any b ∈ B,

ÛC+R(τ2 − τ1)|η(τ1)⟩|b⟩ = |η(τ2)⟩e−
i
ℏ tĤR(τ2 − τ1)|b⟩. (25)

Since ⟨η(τ2)|η(τ1)⟩ = 0, from eq. (25) it follows that ÛC+R(τ1)|η(0)⟩|b⟩ and

ÛC+R(τ2)|η(0)⟩|b⟩ are orthogonal for any τ1 ̸= τ2. Therefore, the system of vectors

{ÛC+R(τ)|η(0)⟩|b⟩|τ ∈ R} is orthogonal, and the one-parameter unitary group(
ÛC+R(τ)

)
τ∈R acts on it like a translation group.

We recall the following theorem, due to Stone [38] ([22], Theorem 10.15 p. 210):

Stone’s Theorem. If
(
Û(t)

)
t∈R is a strongly continuous one-parameter unitary group on

the Hilbert space H, there is a unique densely defined self-adjoint operator Â which is

the infinitesimal generator of
(
Û(t)

)
t∈R, and Û(t) = eitÂ for all t ∈ R.

From the Stone Theorem we obtain that the restriction of ĤC+R to the subspace

Vb := span{ÛC+R(τ)|η(0)⟩|b⟩|τ ∈ R} (26)

is unique, and therefore it is −iℏ ∂
∂τ
.

For any b1 ̸= b2 ∈ B and τ1, τ2 ∈ R, the state vectors ÛC+R(τ1)|η(0)⟩|b1⟩ and

ÛC+R(τ2)|η(0)⟩|b2⟩ are orthogonal, because at equal times e−
i
ℏ tĤR |b1⟩ and e−

i
ℏ tĤR |b2⟩

are orthogonal and ⟨η(τ1)|η(τ2)⟩ = δ
(
τ1 − τ2

)
. Therefore, for any b1 ̸= b2 ∈ B,

Vb1 ⊥ Vb2 . It follows that the total Hilbert space is the direct sum of the subspaces

Vb, HC+R =
⊕

b∈BVb, and ĤC+R has the form −iℏ ∂
∂τ
. Its canonical conjugate is the

operator τ̂ = τ̂C ⊗ ÎR.

In particular, system C may be an ideal clock.

Remark 10. Theorem 2 shows that any closed quantum system combined with a TQS

has the Hamiltonian (1). But the dynamics of the original system does not change, it

simply becomes part of the translation in the new basis. When expressed in function

of observables, for example in function of positions and momenta, it is still there in its

original form.

Remark 11. Curiously, by its mere existence, a translational subsystem makes any

quantum system C + R translational. However, in general, the Hamiltonian (1) does

not require the existence of a subsystem that explicitly acts like a clock, but it is always

possible to exhibit a clock, as seen in the representations from Examples 1 and 2.

Remark 12. For any state vector |ψ(0)⟩R, we can represent the orbit {|t⟩C |ψ(t)⟩R|t ∈
R} of |0⟩C |ψ(0)⟩R under the action of the group

(
ÛC+R(t, 0)

)
t∈R as a vector

||Ψ⟩⟩ =
∫
R
|τ⟩C |ψ(τ)⟩Rdτ, (27)
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which is not normalizable. Since the orbit is invariant under the action of the group(
ÛC+R(t, 0)

)
t∈R, so is ||Ψ⟩⟩, and ÛC+R(t, 0)||Ψ⟩⟩ = ||Ψ⟩⟩ for any t ∈ R. Therefore,

ĤC+R||Ψ⟩⟩ = 0. (28)

This connects Theorem 2 and Canonical Quantum Gravity [23], where the Wheeler-

DeWitt constraint equation has the form (28). Its solutions are “timeless”, but Page

and Wootters [24] proposed that the dynamics is encoded in ||Ψ⟩⟩ as correlations between
system R and the clock C, as in equation (27). As we can see from Theorem 2, not only

the clock’s Hamiltonian, but the total Hamiltonian ĤC+R as well has the form from eq.

(1) when applied to quantum states, even though for τ -extended quantum states it has

the form (28). Equation (28) for τ -extended quantum states provides a more timeless

picture, in addition to the Parmenidean representation from Example 1.

5. Worlds containing a sterile massless fermion

Consider a Dirac fermion φ that is massless and sterile, i.e. it does not interact at all.

Since its chiral components are mixed only by the mass term, which is absent, φ(t)

decouples into two independent Weyl spinor fields φ±(t) : R3 → C2, where R3 is the

Euclidean space. In the Weyl representation, the Hamiltonian operators for the chiral

components are

Ĥ± = ±cℏ
(
−σx ∂

∂x
− σy ∂

∂y
− σz ∂

∂z

)
, (29)

where σx, σy, σz are the Pauli matrices.

Let φ = φ+ (or φ = φ−) be a chiral planar wave. The basis of the Euclidean space

R3 can be chosen so that φ is independent of x and y. Since the space coordinates

decouple from the spin degrees of freedom, for φ,

Ĥ+φ = −cσz ⊗ ℏ
∂

∂z
φ. (30)

This is a particular case of eq. (20), so the system is a TQS. If the planar wave

φ(t) is an eigenstate of ẑ at t = 0, it remains an eigenstate of ẑ at all times t.

From Theorem 2, any world containing such a sterile massless fermion is a TQS.

6. Quantum representation of dynamical systems

In this Section I show that the quantum representation of a deterministic time-reversible

dynamical system without time loops has the Hamiltonian (1).

A deterministic time-reversible dynamical system [39] (S, α) is an action α : R×S →
S of the additive group (R,+) on a set S. The set S, containing the states of the system,

is endowed with a Lebesgue measure µ(A) =
∫
A
sds for any measurable subset A of S.

The action α is measure-preserving, and represents the evolution law. For any s ∈ S, the
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orbit {α(t, s)|t ∈ R} of the action α is a history of the system, with the initial condition

fixed by s. A periodic orbit will be called a time loop.

The quantum representation of a classical Hamiltonian system was introduced, in

the Heisenberg picture, by Koopman and developed by von Neumann [40, 41]. Here

we will use the Schrödinger picture introduced by Schönberg [42, 43], generalized to a

dynamical system (S, α).

We associate to (S, α) a quantum system on the Hilbert space HS := L2(S,C) of

square-integrable complex functions on S, in the following way.

(i) We define the scalar product of ψ1, ψ2 ∈ L2(S,C) by

⟨ψ1|ψ2⟩ :=
∫
S

ψ∗
1(s)ψ2(s)ds. (31)

It satisfies ⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ for all ψ1, ψ2 ∈ L2(S,C), as required.
(ii) The Dirac distributions on S form a canonical basis

(|s⟩)s∈S . (32)

We define the one-parameter unitary group
(
Û(S,α)(t)

)
t∈R acting as evolution

operators on the basis vectors from (32), so that for any t ∈ R and s ∈ S,

Û(S,α)(t)|s⟩ = |α(t, s)⟩. (33)

Since for any ψ ∈ L2(S,C)

|ψ⟩ =
∫
S

ψ(s)|s⟩ds, (34)

it follows by linearity from equation (33) that

Û(S,α)(t)|ψ⟩ :=
∫
S

ψ(s)|α(t, s)⟩ds. (35)

The one-parameter unitary group (35) is generated by a Hermitian operator Ĥ(S,α),

Û(S,α)(t) := e−
i
ℏ tĤ(S,α) . The histories {|α(s, t)⟩|t ∈ R} satisfy the Schrödinger equation

(2) with the initial condition |α(s, 0)⟩ = |α(s)⟩.

Example 3. The representation was developed starting with classical Hamiltonian

systems [42, 43, 40]. The state space S is the phase space, assumed here to be S = R2N ,

and having canonical coordinates (p,q) := (p1, . . . , pN , q
1, . . . , qN). The phase space S is

a symplectic manifold, and the measure is preserved automatically by the evolution law

due to Liouville’s theorem. The action α : R×S → S associates to any initial state s(0)

the state s(t) resulting from classical dynamics. In terms of the classical Hamiltonian

function H, the quantum Hamiltonian is the Liouville operator,

Ĥ(S,α) = −iℏ
N∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj

)
. (36)
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Then a classical probability density ρ(p,q) on S satisfies the classical Liouville equation.

This extends by linearity to a complex function ψ(p,q) on S, and therefore |ψ⟩ satisfies
the Schrödinger equation for the Hamiltonian Ĥ(S,α).

Theorem 3. Let (S, α) be a deterministic time-reversible dynamical system which is not

ergodic and doesn’t have time loops. Then, the Hamiltonian operator is Ĥ(S,α) = −iℏ ∂
∂τ
,

and at all times the states are eigenstates of its canonical conjugate τ̂ .

Proof. The representation (35) associates to each non-periodic orbit of the action α

a history
(
Û(S,α)(t)|s0⟩

)
t∈R consisting of mutually orthogonal states. Then, the one-

parameter unitary group
(
Û(S,α)(t)

)
t∈R acts like a translation group on the mutually

orthogonal vectors {Û(S,α)(t)|s0⟩|t ∈ R}. Therefore, the restriction of Ĥ(S,α) to the

subspace spanned by
(
Û(S,α)(t)|s0⟩

)
t∈R can be put in the form −iℏ ∂

∂τ
. At all times, the

states of the system are eigenstates of the canonical conjugate τ̂ of −iℏ ∂
∂τ
. Since in the

absence of time loops S is partitioned into non-periodic orbits, the result extends to the

entire Hilbert space H.

An observable of the original dynamical system is a function f : S → R. Any

observable can be uniquely represented by a Hermitian operator

f̂ =

∫
S

f(s)|s⟩⟨s|ds. (37)

Remark 13. If the original dynamical system is a classical Hamiltonian system, the

state space S is a classical phase space. The regular multiplication of the phase space

coordinates (pa, q
a) ∈ S commutes, paq

a = qapa. Therefore, the corresponding operators

in the quantum representation also commute, [q̂a, p̂a] = 0. This is because the operator

p̂a is not the canonical conjugate of q̂a! In fact, any two observables f1, f2 : S → R
commute, being just real functions, and the operators representing them also commute.

The operators q̂a and its canonical conjugate −iℏ ∂
∂qa

satisfy the canonical commutation

relations [q̂a,−iℏ ∂
∂qa

] = iℏÎ, but p̂a, the classical momentum pa, is different from the

canonical conjugate −iℏ ∂
∂qa

, which does not represent any classical observable. When

applied to a state vector |s⟩, representing the classical state s, the operators −iℏ ∂
∂qa

result in superpositions of state vectors representing classical states. The operators f̂

representing classical observables f : S → R, in particular the classical momenta p̂a,

only multiply |s⟩ with the value of the classical observable f(s) of the classical state s.

7. Diversity from the physical meaning of the observables

Before discussing Objection 1, let us understand it exactly.

Let us consider two TQSs specified by the triples, (H1, Ĥ1, |ψ1(t)⟩) and

(H2, Ĥ2, |ψ2(t)⟩), with the operators τ̂1 and respectively τ̂2. Due to the τ -translation

symmetry, all eigenspaces of the operator τ̂ for a TQS have the same dimension, denoted

here by d(Ĥ), equal to the multiplicity of the energy eigenspaces. If d(Ĥ1) = d(Ĥ2),

there is a unitary map M̂ : H1 → H2, so that Ĥ2 = M̂Ĥ1M̂
−1.
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Proposition 1. For any fixed t1, t2 ∈ R, we can choose M̂ so that M̂ |ψ1(t1)⟩ = |ψ2(t2)⟩.

Proof. Since M̂ |ψ1(t1)⟩, |ψ2(t2)⟩ ∈ H2 are eigenvectors of τ̂2, let τ1 and τ2 be their

eigenvalues. Then, the vector M̂Û1(τ2 − τ1)|ψ1(t1)⟩ = Û1(τ2 − τ1)M̂ |ψ1(t1)⟩ ∈ H2

corresponds to the eigenvalue τ2. The representation from Example 1 ensures the

existence of a unitary operator Ŝ2 on H2 that commutes with Ĥ2, so that Ŝ2M̂Û1(τ2 −
τ1)|ψ1(t1)⟩ = |ψ2(t2)⟩. Then, all we have to do is to replace M̂ with Ŝ2M̂Û1(τ2−τ1).

Then, since M̂ |ψ1(t1+ t)⟩ = |ψ2(t2+ t)⟩ for any t ∈ R, even the histories of the two

TQSs (H1, Ĥ1, |ψ1(t)⟩) and (H2, Ĥ2, |ψ2(t)⟩) are unitarily equivalent.

This suggests a more precise restatement of Objection 1:

Objection 1′. Two quantum systems specified by the triples (H1, Ĥ1, |ψ1(t)⟩) and

(H2, Ĥ2, |ψ2(t)⟩) with the same multiplicity of the eigenspaces of Ĥ are the same.

Therefore, there is no difference between the various examples from this article (up

to the multiplicity). There is basically only one such system, and it is too simple to be

interesting.

Objection 1′ is based on an assumption called the Hilbert Space Fundamentalism

Thesis (HSF), as coined by Carroll [44], although this thesis was assumed under various

other names [45, 46, 47, 48]:

Thesis HSF. Everything about a physical system, including the 3D-space, a preferred

basis, a preferred factorization of the Hilbert space (a tensor product structure, needed

to represent subsystems, e.g. particles), emerge uniquely from the triple

(H, Ĥ, |ψ(t)⟩). (38)

No other information is assumed to be needed, for example a preferred basis or

additional observables to which we assign a particular physical meaning like position

operators. More precisely, Thesis HSF states that the following are sufficient to give a

complete description of a quantum system:

(i) The dimension of the Hilbert space H: “a particular choice of Hilbert space

is completely specified by its dimension” ([44], p. 4). Any two Hilbert spaces of the

same dimension are unitarily equivalent. Any two infinite-dimensional separable

Hilbert spaces are unitarily equivalent.

(ii) The spectrum of the Hamiltonian (including the multiplicities of the

eigenvalues): “the laws of physics are determined solely by the energy eigenspectrum

of the Hamiltonian” ([44], p. 1). This is because the Hamiltonian can be

diagonalized by a unitary transformation, and there is no preferred basis.

(iii) The state vector |ψ(t)⟩, taken as abstract, basis-independent vector, and not

as a wavefunction ⟨q|ψ(t)⟩, which would assume again a preferred basis
(
|q⟩

)
q∈C:

“the fundamental ontology of the world is completely and exactly represented by a

vector in an abstract Hilbert space, evolving in time according to unitary Schrödinger

dynamics” ([44], p. 2).



Empirical adequacy of the time operator 18

Sometimes QuantumMechanics is introduced based only on the triple (H, Ĥ, |ψ(t)⟩)
from (38). But when we study physical examples the observables, represented by self-

adjoint operators on H, have attached clear physical meanings. For example, consider

the set of position observables q̂j, j ∈ {1, . . . , 3n}, where n is the number of particles in

a three-dimensional space. If a transformation Ŝ of H that commutes with Ĥ is applied

to these observables, we obtain different observables Ŝq̂jŜ
−1. If the Hamiltonian has a

particular form in terms of the observables q̂j, in the new basis it will have the same

form in terms of the observables Ŝq̂jŜ
−1. But in standard Quantum Mechanics we

never identify the observables Ŝq̂jŜ
−1 with positions (unless, of course, Ŝ represents

a combination between an isometry of space, a permutation of particles of the same

type, and a gauge transformation). This means that in standard Quantum Mechanics,

in addition to the triple (H, Ĥ, |ψ(t)⟩), we also need to identify what each observable

means physically, i.e. whether it is a position or a momentum observable or what other

physical property it represents. Without this, all states would be identical unit vectors.

But the association of physical meanings to observables allows us to represent a state

vector |ψ⟩ as a wavefunction ψ(q1, q2, . . .) := ⟨q1, q2, . . . |ψ⟩. In addition, for more than

one particle, the position observables are positions of configurations of particles, so

ψ(q1, q2, . . .) is a wavefunction in the position configuration space C. To recover the

3D-space R3, in the case of a fixed number of particles, we need a way to decompose the

configuration space as a Cartesian product of n copies of R3, C = R3 ×R3 × . . ., and an

identification between their points. This decomposition corresponds to a tensor product

structure of the total Hilbert space, H ∼= L2(R3)⊗L2(R3)⊗. . .. More complex structures

are built from collections of observables, for example how space is represented as a

triple of possible eigenvalues of position operators. We see that even in Non-Relativistic

Quantum Mechanics we need a much richer structure than an abstract unit vector and

the Hamiltonian’s spectrum.

Therefore, a “less Zen” [48] definition of a quantum theory requires more than just

the triple (H, Ĥ, |ψ(t)⟩):

Definition 1 (Quantum theory). A quantum theory is given by specifying

(i) A triple (H, Ĥ, |ψ(t)⟩) as in equation (38).

(ii) A set of self-adjoint operators {Â1, Â2, . . .} on H.

(iii) Optionally, a tensor product structure H ∼= H1 ⊗ H2 ⊗ . . ., so that some of the

operators can be expressed as a product of operators on the factors Hk of the form

Âj = . . .⊗ Î︸︷︷︸
k−1

⊗ ̂̃
Aj︸︷︷︸
k

⊗ Î︸︷︷︸
k+1

⊗ . . . . (39)

That is, the observables corresponding to subsystems are also observables of the

total system. The tensor product structure can be more complicated in the

case of identical particles, its definition involving also direct sums of spaces and

symmetry/anti-symmetry under permutations.
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The tensor product structure is optional because, as explained in [49], the tensor

product itself can be encoded in a set of algebras of observables satisfying certain

locality and completeness conditions that allow them to be interpreted as acting

locally on the factors of the Hilbert space.

(iv) An expression of the Hamiltonian operator in terms of operators from {Â1, Â2, . . .}
(for example in terms of the position and momentum operators).

(v) A dictionary that associates to each operator Âj a physical meaning, i.e. what

physical property it represents. For example, the dictionary can specify what

operators represent position or momentum observables, and for which particle.

(vi) Other structures, like the 3D-space structure, can be specified too, although they

can be derived from the position observables and the tensor product structure, at

least in Non-Relativistic Quantum Mechanics.

And often Quantum Mechanics is presented in a way that clearly introduces the

tensor product structure, and at least the position and momentum observables and other

observables depending on them (like angular momentum), and the spin observables. And

sometimes it is presented only as a triple (H, Ĥ, |ψ(t)⟩) as in equation (38).

But can we get rid of the dictionary that associates physical properties to the

operators, so that all we need is the triple (H, Ĥ, |ψ(t)⟩), from which they are supposed

to emerge? Thesis HSF claims that all we need is the triple (H, Ĥ, |ψ(t)⟩), and a recipe

to recover uniquely the other structures, and their physical meaning becomes clear from

these. That no tensor product structure, no position observables, no position basis,

no position configuration space, and nothing of this sort based on other observables

and their physical meaning need to be provided a priori, because they can, supposedly,

“emerge” uniquely from (H, Ĥ, |ψ(t)⟩).
Thesis HSF is assumed for example in [44, 48], but also in attempts to show that

preferred pointer states or a preferred basis can emerge due to decoherence [50]. To avoid

restraining the possible solutions to the problem of the preferred pointer observable, no

a priori physical meaning is assigned to the observables, leaving open the freedom to

decide, after decoherence selects a pointer basis, what physical observables it represents.

Some authors interested in decoherence and the Many-Worlds Interpretation (MWI)

believe that preferred pointer observables are selected by decoherence, and after that

we can interpret them physically. This is why Thesis HSF can be encountered among

supporters of the MWI like [45, 46, 47, 48]. But not all of its supporters accept the HSF.

For example, Lev Vaidman is clear about the necessity of the position observables and

the 3D-space, acknowledging that the physical content is given by the wavefunction,

and not merely in the state vector as an abstract unit vector [51, 52].

Thesis HSF is not exclusive to the MWI. A commitment to Thesis HSF may be

observed sometimes also in the Quantum Information community, which mainly works

in abstract Hilbert spaces. The operators and the state vectors are often thought of as

disembodied mathematical entities, and the correspondence with physical reality is seen

merely as an implementation. Since information is considered substrate-independent,
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whether we represent a qubit as a spin 1/2 particle or any other two-level system becomes

irrelevant, from the standpoint of the information. In Quantum Gravity we can also see

a commitment to the HSF, for example by considering the “clock ambiguity” [53, 54, 55]

to be a problem for the Page-Wootters formalism, and attempts to resolve it assuming

HSF as in [56]. I will return to this in Section §8.
In [45, 46, 47, 44, 48], Thesis HSF is inherently associated with the MWI, perhaps

also because of the problem of the preferred pointer observable. However, as we have

seen, HSF is not exclusive to the MWI community. Moreover, Carroll & Singh’s [47]

attempt to reconstruct the space from the Hamiltonian and the unit vector alone, does

not make use of anything specific to the MWI. Their construction has two major steps:

(i) Recovering the topology of space from the Hamiltonian’s spectrum, based on [57].

To this end, they consider that bounded regions of space have associated finite-

dimensional Hilbert spaces, and unions of disjoint regions have associated the tensor

product of their Hilbert spaces. In [57], it was claimed that from the Hamiltonian’s

spectrum and a condition involving the locality of the Hamiltonian it is possible to

recover a unique tensor product structure of the Hilbert space. Carroll & Singh use

this claim (refuted mathematically in [58] and [59])) to interpret the factors in the

tensor product as points or small regions in space.

(ii) Recovering the distances between points, based on the mutual information, which

requires the state vector |ψ⟩ as an input.

As we can see, none of these steps is specific to MWI. In fact, MWI may jeopardize

this construction, because different worlds may have different metric tensors, due to

different distributions of the masses. But their construction of space doesn’t seem to

take this into account, so it is difficult to see how it can be compatible simultaneously

with both MWI and Quantum Gravity.

Only in the next step in [47], the emergence of classicality, which corresponds to

the emergence of the pointer states through decoherence, MWI is invoked.

Giddings proposed another reconstruction motivated by Quantum Gravity [60].

We can identify two major types of ambiguities that can contradict Thesis HSF,

based on how it fails to uniquely recover a quantum theory (as in Definition 1):

Type 1 (Ambiguity between distinct theories). The first type, already known, is the

existence of dual theories, two non-equivalent quantum theories (as in Definition 1),

having different types of observables and different physical meanings associated with

them, represented by the same triple (H, Ĥ, |ψ(t)⟩).
A simple situation is Schmelzer’s construction, using the KdV equation, of examples

of Hamiltonians admitting different sets of position and momentum observables, and

different tensor product structures [61].

A previously known and more famous example is the AdS/CFT correspondence

[62, 63]. It was mentioned in [58], §VI, Problem 4 as a different type of ambiguity than

the main type considered there (Type 2). In the AdS/CFT correspondence, even if the

Hilbert space of the AdS theory of Quantum Gravity in the bulk is unitarily equivalent
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to the Hilbert space of the conformal field theory on the boundary, these theories

have different physical meanings. For example their spaces have different numbers of

dimensions, because the latter is the boundary of the former. Observables from the AdS

theory translate into observables with different physical meaning from the CFT theory.

The existence of dualities like AdS/CFT is known, but one may think that they

are exceptional situations. The name “duality” itself suggests that three or more

distinct quantum theories represented on the same Hilbert space are probably even

more exceptional. But later in this Section we will see that there can be infinitely many

quantum theories with unitarily equivalent triples (H, Ĥ, |ψ(t)⟩).

However, the attempts to reconstruct structures like the tensor product structure

and the 3D-space are based on recipes that specify certain requirements expected for the

resulting structures. An example of such a requirement is the locality of the interaction

in the underlying physical space of the theory. If the CFT theory in dimension d is

local, then it seems very difficult for the dual AdS theory, in a d+1-dimensional space,

to also be local, and if they can both be local, the two characterizations of the locality

are different, so local states in the bulk are not the same as local states on the boundary

[64]. It seems therefore justified to think that, by stronger specifications of the recipe

to obtain a quantum theory as in Definition 1, for example regarding the number of

dimensions, we can exclude dualities and recover a unique quantum theory from the

triple (H, Ĥ, |ψ(t)⟩) alone. This leads to another type of ambiguity:

Type 2 (Ambiguity of recovering the same theory). The second type of ambiguity is

the existence of physically different ways to read a particular quantum theory from a

given triple (H, Ĥ, |ψ(t)⟩). Even if we have a recipe to identify the expected quantum

theory (as in Definition 1, i.e. observables and their correspondence with the physical

properties from the triple (H, Ĥ, |ψ(t)⟩)), as long as this recipe is invariant under

the transformations that preserve (H, Ĥ, |ψ(t)⟩), the same recipe will give physically

different results [58]. For example, a unitary transformation that commutes with the

Hamiltonian can lead to different tensor product structures and position observables,

resulting in non-equivalent 3D-space structures. On these, the same unit vector |ψ(t)⟩
can appear as distinct wavefunctions, representing physically distinct worlds.

But any recipe for the emergence of the 3D-space or of other structures, or for the

emergence of preferred pointer states, leads to Type 2 ambiguities, as shown in [58]. In

fact, the same triple (H, Ĥ, |ψ(t)⟩) can represent completely different physical worlds,

as different as the world differs at different moments of time [58], or as different even

as the worlds corresponding to different measurement outcomes can be [65]. Moreover,

the claim from [57], that under appropriate conditions the tensor product structure

emerges uniquely from the spectrum of the Hamiltonian, is contradicted both by the

results from [58], and especially from [59], where it is shown that the possible physically

distinct tensor product structures can be parametrized by a number of parameters that

increases exponentially with the number of factors. A proof that there are infinitely

many physically distinct worlds described by the same triple (H, Ĥ, |ψ(t)⟩) and the
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same fixed tensor product structure is given in [65]. Therefore, there is nothing remotely

unique in the structures obtained by constructions based on HSF.

The abundance of physically distinct solutions represented by the same triple

(H, Ĥ, |ψ(t)⟩), shown in [58, 65, 59], is of Type 2, i.e. it is about theories that have the

same physical meanings associated with observables, for example the same number of

space dimensions. The difference between them is due to the fact that this association is

different. Because of this, we can identify for example, in the same triple (H, Ĥ, |ψ(t)⟩),
different position configuration spaces and different 3D-space structures. This implies

that the same |ψ(t)⟩ can correspond to different wavefunctions, and therefore it can

represent different physical states. The different ways to associate physical meaning

to the operators can be related by unitary transformations that commute with the

Hamiltonian, and these are very abundant.

Reply to Objection 1. From the statement of Thesis HSF it follows that to contradict

it, it is sufficient to find two TQSs that

1) are unitarily equivalent

2) but represent different physical systems.

The following Corollary shows that the examples from this article provide infinitely

many concrete counterexamples to the HSF Thesis, because the physical content of the

operators representing observables in the two systems can be non-equivalent.

Corollary 1. There are infinitely many quantum systems with the same triple

(H, Ĥ, |ψ(t)⟩) but completely different physical content, exhibiting ambiguities of both

Type 1 and Type 2.

Proof. Let (H1, Ĥτ1 , |ψ1(t)⟩) and (H2, Ĥτ2 , |ψ2(t)⟩) be two TQSs. From Example 1 we

recall that the Hilbert space H of a TQS has the form H ∼= HC ⊗ L2
(
R,C

)
. Then,

let H1
∼= H′

1 ⊗ L2
(
R,C

)
and H2

∼= H′
2 ⊗ L2

(
R,C

)
. If both the Hilbert spaces H′

1 and

H′
2 are finite-dimensional and have the same dimension, they are unitarily equivalent.

If both are infinite-dimensional and separable, they are unitarily equivalent. In both

cases, there is a unitary map M̂ : H1 → H2 . Due to the Stone-von Neumann Theorem

(see Remark 1 or e.g. [22], p. 239), M̂ can be chosen so that Ĥτ2 = M̂Ĥτ1M̂
−1 and

τ̂2 = M̂ τ̂1M̂
−1. Then M̂ maps eigenvectors of τ̂1 into eigenvectors of τ̂2. Moreover, since

for any fixed t1, t2 ∈ R, |ψ1(t1)⟩ is an eigenvector of τ̂1 and |ψ2(t2)⟩ is an eigenvector

of τ̂2, the translational symmetry in the τ -spaces allows M̂ to be chosen so that

M̂ |ψ1(t1)⟩ = |ψ2(t2)⟩. Since Ĥτ2 = M̂Ĥτ1M̂
−1, M̂ |ψ1(t1 + t)⟩ = |ψ2(t2 + t)⟩ for any

t ∈ R, so even their histories are equivalent.

Consider any two of the examples of TQSs from Sections §3–§6 for which H′
1 and

H′
2 as above have the same dimension. Then, the two TQSs are unitarily equivalent.

If the two examples of unitarily equivalent TQSs have different types of observables,

space dimension, or dynamics, this illustrates the existence of ambiguities of Type 1,

or dualities, except that there are infinitely many of them, all sharing the same triple

(H1, Ĥτ , |ψ(t)⟩).
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Moreover, since we can freely choose t1, t2 ∈ R, the first system is equivalent at

any time t1 with the second system at any time t2, and because unitary equivalence

is transitive, the first system at a given time is equivalent to itself at any other time.

Therefore, the structures from Thesis HSF are unable even to capture the physical

differences of the same system at different times. Also since we can freely choose |ψ1(t1)⟩
and |ψ2(t2)⟩, as long as they are eigenvectors of τ̂1, respectively of τ̂2, any history of the

first system is equivalent to any history of the second system, and in particular to any

history of itself. Therefore, the structures from Thesis HSF are unable to distinguish

physical differences between two possible alternative histories of the same system, and

even between two possible alternative histories of systems governed by different physical

laws, as long as they are translational. This illustrates the existence of ambiguities of

Type 2, and of mixed ambiguities of both Type 1 and Type 2.

Therefore, Thesis HSF is contradicted by the existence of ambiguities between

infinitely many physically distinct systems from the same or from different quantum

theories (as in Definition 1).

For a particular example, recall Theorem 3. A Hamiltonian function H(pa, q
a)

is a function H : S → R of the phase space coordinates (pa, q
a) ∈ S. Consider two

classical Hamiltonian systems with Hamiltonian functions H1(p1a, q
a
1) and H2(p2a, q

a
2).

We assume that the two classical systems consist of point particles, and the configuration

spaces are Euclidean spaces of the same dimension. Under the conditions of Theorem 3,

their quantum representations are both TQSs. Let the TQSs (H1, Ĥτ1 , |ψ1(t)⟩) and

(H2, Ĥτ2 , |ψ2(t)⟩) be their quantum representations. Then, there is a unitary map

M̂ : H1 → H2, so that Ĥτ2 = M̂Ĥτ1M̂
−1 and M̂ |ψ1(t1)⟩ = |ψ2(t2)⟩ for any fixed

t1, t2 ∈ R. Then, because Ĥτ2 = M̂Ĥτ1M̂
−1, M̂ |ψ1(t1 + t)⟩ = |ψ2(t2 + t)⟩ for any t ∈ R,

so even their histories are equivalent.

While M̂ maps Ĥτ1 into Ĥτ2 , it does not necessarily map (p̂1a, q̂
a
1) into (p̂2a, q̂

a
2),

because it is possible that H1(p1a, q
a
1) ̸= H2(p2a, q

a
2), even though both quantum

representations have translational Hamiltonians Ĥτ1 = −iℏ ∂
∂τ1

and Ĥτ2 = −iℏ ∂
∂τ2

.

In general, if the two classical dynamical systems are non-equivalent under canonical

transformations, the values of the observables (p̂1a, q̂
a
1) and (p̂2a, q̂

a
2) evolve differently,

and are not equivalent under the unitary map M̂ . Even if the quantum representation of

different dynamical systems have the same quantum Hamiltonian, the information from

the original dynamical system is not lost, because it is preserved in the corresponding

observables f̂ defined in equation (37). But this information cannot be extracted from

(H1, Ĥτ1 , |ψ1(t)⟩) and (H2, Ĥτ2 , |ψ2(t)⟩) alone, we also need the observables.

In particular, the physical spaces of the two classical Hamiltonian systems can

have different dimensions, and the systems factorize differently into subsystems. To see

this, consider two systems of classical particles, with different space dimensions d1 ̸= d2.

Then, we can construct a counterexample by choosing the number of particles so that the

dimensions of the two phase spaces are equal. We can choose for example the first system

to contain nd2 particles, and the second system to contain nd1 particles, where n is a

positive integer. Then, the dimensions of the phase spaces of the two systems are equal.
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If the dimension of the physical space is different for the two systems, the factorization

into subsystems is also different. The classical dynamics is different for the two systems,

because the particles have different degrees of freedom available. For example, in three

dimensions the Laplace equation leads to inverse-square forces, while in four dimensions

it leads to inverse-cube forces. In the quantum representation, the difference is reflected

in the quantum observables that represent the classical positions and momenta. If

there was a procedure by which space dimension can be unambiguously extracted from

the Hamiltonian and the state vector, it should result in the same space dimension,

but d1 ̸= d2. Therefore, there are differences in the number of space dimensions,

but also in the dynamics, but these differences are lost if we ignore the additional

observables like the positions and momenta. Therefore, the triples (H1, Ĥτ1 , |ψ1(t)⟩)
and (H2, Ĥτ2 , |ψ2(t)⟩) are not sufficient to capture the entire physical content.

This shows that the physical content of a quantum system is almost entirely missed

by the triple (H, Ĥ, |ψ(t)⟩), contradicting Thesis HSF.

Now that we understand the role of assigning physical meanings to the operators

and the possibilities resulting from this, we can address Objection 2.

Reply to Objection 2. The translational systems discussed in this article include

ideal quantum measurements (Section §3), and can be as diverse as the deterministic

time-reversible dynamical systems without time loops are (Section §6). Moreover, any

quantum system becomes a TQS by the mere addition of an ideal clock (Section §4), or
of a massless sterile fermion as in Section §5, or by including any translational system,

so the entire diversity of possible quantum theories is inherited by such translational

systems. This proves that the Hamiltonian (1) is very versatile, being able to describe

the dynamics of very complicated worlds, much like our world, and as diverse as classical

or quantum theories can be.

8. Time operator and clock ambiguity

Sections §3–§6 provide examples of worlds of complexity similar to the complexity of

our worlds, and with similar laws, and Theorems 1–3 proved in these Sections show that

they are TQSs. This does not mean that our world is one of these worlds, but it makes

the case that it might be a TQS. Hopefully these examples may increase the plausibility

that our own world is a TQS, but they do not enforce it.

Remarks 4 and 5, allow us to interpret τ̂ as a time operator, for worlds described

as TQSs. However, Theorems 1–3 neither assume, nor do they prove that we should

interpret τ̂ as the time operator, only that we can make this additional step, if it turns

out that such a world is a TQS. Also, the results from this article do not oppose the

various other time-related operators proposed in the literature.

If a world is a TQS, it is possible to interpret τ̂ as a time operator. This provides

new avenues to interpret the time-energy uncertainty relation on the same footing as the

position-momentum uncertainty, as we expect due to special relativity. The existence of
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time operators also allows for the possibility to use the time-extended wavefunction and

to take into account the time when a projector associated with a measurement is applied.

But, as we have seen, the physical meaning associated with the other observables is also

important. This is necessary in particular for the Page-Wootters formalism:

Objection 4 (Clock ambiguity problem). It was argued in [53, 54, 55] that the Page-

Wootters formalism has a clock ambiguity problem. This ambiguity was found by

choosing a different way to express the total Hilbert space HC+R = HC ⊗ HR as a

tensor product, HC+R = HC′ ⊗HR′ .

Reply to Objection 4. This ambiguity is not due to the Page-Wootters formalism,

but to the assumption of Thesis HSF. In addition to the triple (HC+R, ĤC+R, |ψ(t)⟩),
we need the observables characteristic to the system, as seen in Corollary 1. These

include τ̂ . The subspaces of HC+R of the form {|τ⟩} ⊗ HR, where |τ⟩ ∈ HC is an

eigenvector of the operator τ̂C on HC , are eigenspaces of the operator τ̂ on HC+R. For

a different tensor product decomposition HC+R = HC′ ⊗ HR′ , the subspaces of the

form {|t′⟩} ⊗HR′ , where |t′⟩ ∈ HC′ , are not eigenspaces of the operator τ̂ . In addition,

we need all of the observables characterizing the system and their physical meaning,

as seen from Corollary 1. That is, there are observables that apply only to the clock,

having the form ÂC ⊗ ÎR, and there are observables that apply only to the rest of the

world, of the form ÎC ⊗ B̂R. They have different physical meanings. The observables of

the rest of the world are, in the Page-Wootters formalism, just the observables of our

world as described by standard Quantum Mechanics. They determine local algebras

of observables on each factor space HC , respectively HR. The existence of algebras of

local observables enforce a unique factorization, as shown in [49]. For the total system

C + R, the unique factorization into a clock and another system enforced by the local

algebras of physical observables is HC+R = HC ⊗HR. Therefore, the ambiguity is not

due to the Page-Wootters formalism, as usually believed, but to the assumption that

Hilbert Space Fundamentalism is true.

Therefore, the Page-Wootters formalism can be applied unambiguously to the TQS

updated with the interpretation of τ̂ as a time operator and the physical interpretations

of the relevant observables. It can be applied to Quantum Gravity or to describe

experimental situations involving indefinite causal order [30, 31].

9. Is there really a problem of unlimited energy extraction?

The claim from Objection 3 is that, if the Hamiltonian of a world is not bounded

from below, that world may contain systems that decay toward infinite negative energy

states. Or such a world may contain a system able to charge infinitely many batteries,

by extracting energy from another system indefinitely.

Reply to Objection 3. Objection 3 may apply to some quantum worlds whose

Hamiltonian is not bounded from below, but does it apply to all such worlds?
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We consider a world containing an ideal clock C, as in Section §4. We choose the

clock to be a TQS with the Hilbert space L2(R), so that it doesn’t have interacting parts.
Such a clock is equivalent to a scalar particle whose wavefunction is concentrated at a

single point and evolves by translation in the τ -space. The Hamiltonian from equation

(24) implies that the clock C and the rest of the world R don’t interact. From Theorem

2, the total Hamiltonian has the form ĤC+R = −iℏ ∂
∂τ
, so it is not bounded from below.

Without an interaction between system R and the clock C, if the total system

C+R would decay indefinitely, this decay should happen within system R. Recall from

Reply 4 from Section §8 that the physical meanings of the observables applying either

only to the clock (of the form ÂC ⊗ ÎR) or only to the rest of the world (of the form

ÎC ⊗ B̂R), enforce a unique factorization HC+R = HC ⊗ HR into a clock and the rest

of the world. The reason is that all scenarios of indefinite decay require interactions.

Whether a subsystem or a state identified as the vacuum state decays, or a subsystem

extracts energy from another subsystem, this involves interactions. But the clock and

the rest of the world R don’t interact, and the clock doesn’t have interacting subsystems,

so all interactions should be confined within system R. But if the energy of system R

cannot decay indefinitely, for example because its Hamiltonian is bounded from below,

the same should be true for the total system C + R, despite the fact that its total

Hamiltonian is not bounded from below. Let us summarize these observations:

Observation 1. Whatever way to extract energy one may conceive, the entire work of

extraction will happen within system R. Then, if for whatever reason we think there is

a problem with energy extraction in the total system C +R because its Hamiltonian is

unbounded, there should be an identical problem for system R, which does the actual

work. Therefore, if the Hamiltonian of system R is bounded from below, indefinite

energy decay cannot happen in the system C +R either.

It follows that each example of a Hamiltonian ĤR that is bounded from below

provides a counterexample to Objection 3. In general, whatever reason leads us to

believe that Objection 3 applies to any TQS in general, the objection is neutralized by

choosing a system R not having that problem.

For example, if we think that indefinite energy extraction violates the Second Law

of Thermodynamics for the total system C + R, system R should be the one violating

it, because it is closed in the sense that it does not interact with the clock. But if ĤR

is bounded from below and system R obeys the Second Law of Thermodynamics, the

same must be true of the total system ĤC+R. The reason is that entropy is additive, i.e.

the total entropy of two systems is the sum of the entropies of the individual systems

[66], and the entropy of the clock is constant.

To illustrate Observation 1 in more detail, consider two systems of the world, a

system S representing the source of energy that can charge the batteries, and a system

B that contains the batteries to be charged. We assume that the boundary conditions

of the total system S + B are such that the two subsystems start in a state in which

the batteries are not charged, but all mechanisms by which they will be charged are



Empirical adequacy of the time operator 27

in place. We assume that the total system evolves in cycles, so that after each cycle,

system S returns to a state that is similar to its state at the beginning of the cycle,

except that its energy is lower. That is, the state of S is translated along the energy

spectrum with a difference of energy −∆E, where ∆E > 0. In the meantime, at the

end of each cycle, system B gains an additional amount of energy +∆E.

To see this more concretely, let us exhibit in the Hamiltonian of the total system

the free and the interaction terms,

Ĥ = ĤS ⊗ ÎB + ÎS ⊗ ĤB + Ĥint. (40)

Let |ES, aS⟩S and |EB, aB⟩B be the eigenvectors of the free parts of the Hamiltonian,

ĤS and respectively ĤB, where ES and EB are eigenvalues of ĤS and ĤB, and the

multiple parameters aS =
(
aS1, aS2, . . .

)
and aB =

(
aB1, aB2, . . .

)
account for the

multiplicity of the energy eigenvalues. The unit vectors composed of such eigenvectors,

|ES, aS, EB, aB⟩ := |ES, aS⟩S|EB, aB⟩B, (41)

form a basis of H. All allowed collections of eigenvalues (ES, aS, EB, aB) form an energy

configuration space, on which the total state |ψ(t)⟩ can be represented by a wavefunction

ψE(ES, aS, EB, aB, t) := ⟨ES, aS, EB, aB|ψ(t)⟩. (42)

To repeatedly extract energy, we assume that the boundary conditions ensure that

the wavefunction of the total system becomes, and after n cycles of duration ∆t each,

ψE(ES − n∆E, aS, EB + n∆E, aB, t0 + n∆t) = ψE(ES, aS, EB, aB, t0), (43)

where t0 is the initial time. In other words, the wavefunction is translated on the energy

configuration space with −n∆E along the parameter ES and with +n∆E along the

parameter EB. We can assume that system B is infinitely large, and it can use the

already charged batteries to produce more batteries to be charged by S, so that this

process can go on forever.

There seems to be nothing to prevent the possibility in principle of such a scenario.

Now let us particularize this scenario by assuming that S and R are subsystems of

a world with a clock, C + R. Then, from Reply 4 to the clock ambiguity Objection 4

from Section §8,

(i) there is no interaction between R and C,

(ii) and the physical meaning of the observables prevent us from choosing a different

factorization than HC+R = HC ⊗HR into a clock and the rest of the world.

Therefore, the systems S and B can be either subsystems of the clock C, or

subsystems of the rest of the world R.

But since for this example we can choose a simple clock with the Hilbert space

L2(R), the clock doesn’t have interacting parts. Therefore, S and B can only be
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subsystems of R. But if the Hamiltonian ĤR is bounded from below, S cannot be

a subsystem of R, because its Hamiltonian is not bounded from below. Therefore,

Objection 3 doesn’t apply to the total system C + R either, despite the fact that its

Hamiltonian is not bounded from below.

Systems of the type C + R are the relevant ones if we are interested in the

interpretation of the parameter τ as time in the Page-Wootters formalism. And since

we have seen that Objection 3 doesn’t apply to such systems, this is sufficient to defend

the possibility of a time operator against Objection 3.

The lesson learned from the example of a system C + R can be applied to other

TQSs to exclude indefinite energy decay or extraction:

Observation 2. Objection 3 can be used against a quantum theory (as in Definition

1) whose Hamiltonian is not bounded from below only if the mechanism by which the

energy decays indefinitely is compatible with the physical observables of the theory.

For example, the observables of a quantum theory in the Page-Wootters formalism,

for example a system C + R, are those enforcing HC+R = HC ⊗ HR as the only

factorization into a clock and the rest of the world. The physical meaning of these

observables prevented the realization of the conditions necessary to apply Objection 3

to system C + R, if these conditions cannot apply as well to system R, for example if

ĤR is bounded from below and R satisfies the Laws of Thermodynamics.

In the following we will see a well-known example of a Hamiltonian not bounded

from below, which is protected against decay only by the boundary conditions.

Example 4. There are situations in which the conditions of Objection 3 are satisfied

even for Hamiltonians that were not considered problematic in the literature.

Consider a classical particle or a ball in a uniform gravitational field in the direction

z. The gravitational acceleration along z is g, and it is constant. The Hamiltonian

function is

HS =
p2z
2m

−mgz. (44)

Because of the potential term, which is negative, this Hamiltonian function can

take negative values. In general we can add a constant to make it positive, but in this

example there is no such constant for all possible states of the system. However, we can

restrict the state space of the system to exclude negative energy states.

But even if the total energy is positive, if this system evolves freely, it will keep

increasing its kinetic energy at the expense of its potential energy, which will decrease

indefinitely.

By quantization, we obtain the Hamiltonian operator

ĤS = − ℏ2

2m

∂2

∂z2
−mgẑ. (45)

As in the classical case, the energy is transferred more and more from the position

degree of freedom z to the momentum one, pz. It should be possible then to arrange that
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the degrees of freedom exchanging energy belong to different systems. For this, we can

consider another system B, consisting of two fixed vertical rods, and an infinite number

of subsystems . . . , B−1, B0, B1, . . ., placed equidistantly along one of the rods, as in

Figure 3. This should be possible in principle in Non-Relativistic Quantum Mechanics.

S

Bj-1

Bj+1

Bj-2

Bj+2

Bj

Figure 3. A system with non-negative Hamiltonian, able to extract energy indefinitely

and to use it to charge an unlimited number of batteries.

System S consists of a rack and a cylinder wrapped around one of the rods, so that

it can slide along the rod due to gravity. Each system Bj consists of a cogwheel coupled

to a dynamo, so that as S slides down, its rack turns each of the cogwheels. When a

cogwheel turns, it turns the dynamo, which charges a battery. As system S falls, its

interaction with the cogwheels prevents it from accelerating, so that its kinetic energy

remains bounded.

Therefore, this system satisfies the cyclicity condition (43), and the process can

repeat indefinitely. The total Hamiltonian of the system S+B can be positive, but even

so its subsystem S can have negative energies, as long as the total energy is positive.

The negative energy manifests only in the potential energy of the subsystem S.

Such systems seem to be allowed in both Classical Mechanics and in Non-

Relativistic Quantum Mechanics, and they don’t seem to contradict the Second Law

of Thermodynamics, at least not in an obvious way.

We can speculate that something forbids systems as in Figure 3, but what? Maybe

the statistical interpretation of Thermodynamics implies that the initial conditions of the

total system have to be extremely fine-tuned to allow such cyclic processes to be 100%

efficient. For such a cyclic process to exist, maybe the boundary conditions would have
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to be conspiratorial, so that each cycle succeeds with precision, allowing the indefinite

repetition of the extraction. But maybe it is enough to monitor system S well enough

to be able to ensure, at each cycle, that the process does not break down, so that we

can extract how much energy we want. This kind of detailed monitoring may, probably,

be similar to Maxwell’s demon, which was shown, based on Landauer’s principle, to

increase entropy in order to do the work, and therefore not violate the Second Law

[67]. However, this may not be a problem if the system is able to extract energy

at a sufficient rate to supply the “Maxwell demon” with sufficient energy to monitor

and correct the process. Maybe the reason why such systems are not realistic is that

they require a sourceless potential uniformly spread everywhere, or some contraptions

impossible in practice. Whatever explanation we try to find seems to lead to the same

place: reasonable boundary conditions seem to prevent such a system from extracting

energy indefinitely.

In any case, Example 4 shows that a simple criterion to reject systems based only

on the Hamiltonian’s spectrum is premature.

We have seen that the fact that the Hamiltonian of a TQS is not bounded from

below does not necessarily lead to the problem from Objection 3. We have also seen

that there are quantum systems with standard Hamiltonians, which can be used to

extract energy indefinitely, unless the boundary conditions somehow prevent this from

happening. Moreover, any system that is not a TQS would conflict with the Second

Law, by not being able to ensure irreversibility, as shown in [32].

10. Conclusions: Empirical adequacy of the time operator and its

canonically conjugate translational Hamiltonian

The relativistic spacetime symmetry seems to suggest that, just like the position

operators like x̂ and the momentum operators like p̂x are canonically conjugate, so

must be the time operator τ̂ and the Hamiltonian Ĥ. But this implies that Ĥ = −iℏ ∂
∂τ
.

One may expect that this can be true only for a very simple system, in which

time evolution is literally a translation in a configuration space having as coordinate the

parameter τ , hence called translational quantum system. By contrast, the number of

fields and parameters of the Standard Model may suggest that our world is governed by a

much more complicated Hamiltonian, so this doesn’t seem to have the form Ĥ = −iℏ ∂
∂τ
.

We have seen that this judgment would be too rushed, because whatever complexity

we expect to find in our world, it can be found in worlds being translational quantum

systems. Any quantum world, no matter its Hamiltonian, when extended with a clock

turns into a world that can be described as a translational quantum system (Section §4).
The same is true for any quantum world containing a sterile massless fermion (Section

§5), or a system measuring another system according to the standard measurement

scheme (Section §3), and to any quantum world that happens to be the representation

of a classical system evolving without cycles (Section §6).
We have seen that the resolution of the apparent contradiction between the
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simplicity of the translational Hamiltonian and the sophistication of the world is that the

sophistication doesn’t come from the Hamiltonian itself, but from both the Hamiltonian

and the physical meaning of the other observables (Section §7).
Another point raised against translational quantum systems is that they allow,

supposedly, the extraction of indefinite amounts of energy. The examples from this

article show that if this were true, so must be the case for any quantum or classical

system (Section §9). Therefore, these objections against time as a quantum operator

are dissolved (Sections §9, §7, and §8).
Moreover, the rich examples of translational quantum systems from this article

provide infinitely many counterexamples to the Hilbert Space Fundamentalism Thesis

(HSF) (Section §7). The resolution, as seen, is to take into account the physical meaning

of the observables, because this is the source of diversity and sophistication of these

examples. Moreover, the same solution resolves the clock ambiguity objection against

the Page-Wootters formalism (Section §8).
The Hamiltonian Ĥ = −iℏ ∂

∂τ
is sufficiently versatile to describe the dynamics

of worlds of unlimited complexity and extreme diversity. Whether it applies to our

world remains to be seen. In case it does, this would not make it a “theory of

everything”, because, as seen in Corollary 1, the physical meaning of the observables,

and the dependency of the Hamiltonian of these observables, are still needed, and these

observables represent most of the physical content of the theory.

Therefore, there is sufficient evidence to at least take seriously the possibility of

a world governed by a deceptively simple Hamiltonian having the time operator as its

conjugate.
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