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Abstract

We present FCIRK16, a 16th-order implicit symplectic integrator for long-term high precision
Solar System simulations. Our integrator takes advantage of the near-Keplerian motion of the
planets around the Sun by alternating Keplerian motions with corrections accounting for the
planetary interactions. Compared to other symplectic integrators (the Wisdom and Holman
map and its higher order generalizations) that also take advantage of the hierarchical nature of
the motion of the planets around the central star, our methods require solving implicit equations
at each time-step. We claim that, despite this disadvantage, FCIRK16 is more efficient than
explicit symplectic integrators for high precision simulations thanks to: (i) its high order of
precision, (ii) its easy parallelization, and (iii) its efficient mixed-precision implementation which
reduces the effect of round-off errors. In addition, unlike typical explicit symplectic integrators
for near Keplerian problems, FCIRK16 is able to integrate problems with arbitrary perturbations
(non necessarily split as a sum of integrable parts). We present a novel analysis of the effect of
close encounters in the leading term of the local discretization errors of our integrator. Based on
that analysis, a mechanism to detect and refine integration steps that involve close encounters is
incorporated in our code. That mechanism allows FCIRK16 to accurately resolve close encounters
of arbitrary bodies. We illustrate our treatment of close encounters with the application of
FCIRK16 to a point mass Newtonian 15-body model of the Solar System (with the Sun, the
eight planets, Pluto, and five main asteroids) and a 16-body model treating the Moon as a
separate body. We also present some numerical comparisons of FCIRK16 with a state-of-the-art
high order explicit symplectic scheme for 16-body model that demonstrate the superiority of our
integrator when very high precision is required.

1 Introduction

High precision long-term dynamic simulation of planetary systems requires computationally expen-
sive numerical integrations. Efficient computation of long-term ephemerides of the Solar System
can be achieved by exploiting the near Keplerian motion of the planets around the Sun. The main
idea is to alternate Keplerian motions with appropriate corrections accounting for the planetary
interactions. This is the case of symplectic splitting integrators such as the Wisdom and Holman
method [1] and its higher order generalizations [2, 3, 4, 5, 6].

For very long-term integrations, the propagation of roundoff errors is an important limiting factor
of the final accuracy, and the standard 64-bit double precision arithmetic can be insufficient in some

1

ar
X

iv
:2

20
4.

01
53

9v
2 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
0 

M
ay

 2
02

2



cases. An alternative that is used in some long-term integrations of the Solar System [3] is provided
by the 80-bit extended precision arithmetic (one bit for the sign, 15 bits for the exponent, and
64 bits for the significand). Compared to double precision arithmetic (having 53-bit significands)
11 additional binary digits of precision are gained by making all the computations in extended
precision arithmetic at the cost of approximately doubling the computing time. For further reduction
of roundoff errors, one could perform all the computations in quadruple precision at the cost of a
drastic increase (by a factor of twenty or more) of computing time. A more efficient approach to gain
some additional digits of precision (although not providing the full accuracy of quadruple precision,)
is to use a mixed precision methodology [7]. That is, to use quadruple precision for the most critical
computations and perform the rest of the computation in a lower precision arithmetic. In the case
of explicit splitting methods, a natural mixed precision strategy might be to compute the Keplerian
flows in quadruple precision, and the corrections corresponding to the planetary interactions (which
are typically of smaller magnitude) in 80-bit arithmetic. This would allow us to gain a few binary
digits of precision, although with a considerable increase in computing time.

Further improvement of the efficiency of numerical simulations demands the development of
fast and accurate algorithms that take advantage of parallel computer architectures. Although
some attempts have been made in this sense for symplectic splitting integrators for Solar System
simulations [8], the sequential nature of that kind of schemes makes it difficult to get substantial
improvements from parallelization strategies.

We present FCIRK16, a code for long-term high precision integrations of systems with Hamil-
tonian function of the form

H(q, p) = HK(q, p) +HI(q, p),

HK(q, p) =
n∑
i=1

(
‖pi‖2

2µi
− µi ki
‖qi‖

)
,

(1)

where q = (q1, . . . , qn), p = (p1, . . . , pn), qi, pi ∈ R3, i = 1, . . . , n. The Hamiltonian HK(q, p) is the
sum of n uncoupled spatial Kepler problems. For each i = 1, . . . , n, µi (resp. ki) is the effective
mass (resp. the gravitational constant) corresponding to the ith Keplerian problem. The interaction
Hamiltonian HI(q, p) is seen as a perturbation of the Keplerian Hamiltonian HK(q, p).

Our code implements a 16th order implicit symplectic method within the class of FCIRK (flow-
composed implicit Runge-Kutta) schemes proposed in [9]. FCIRK methods are similar to symplectic
splitting schemes in that Keplerian motions are alternated with corrections of smaller magnitude.
But while in symplectic splitting integrators the corrections are computed as the solution operator
of the interaction Hamiltonian, in FCIRK methods, such corrections correspond to the application
to a transformed ODE system of one step of an implicit Runge-Kutta (IRK) method based on
collocation with Gauss-Legendre nodes. As their underlying IRK methods, FCIRK methods are
super-convergent: the method based on s Gauss-Legendre nodes is of order 2s. Compared to
symplectic splitting integrators, the implementation of FCIRK methods is more involved because
an implicit system of equations has to be solved at each time-step. In return, such methods are
better suited than symplectic splitting integrators (i) for exploiting parallel computer architectures
(most of the computations can be done in s processors in parallel), (ii) for the mixed-precision
approach mentioned above, as considerably fewer Keplerian motions in quadruple precision have to
be computed for the same level of precision in a given integration interval, (iii) for the integration of
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equations including additional effects, such as post-Newtonian corrections, which cannot be written
as the sum of integrable parts.

In our preliminary implementation of the 16th order FCIRK scheme [9], time-steps of constant
length were applied. However, for long-term simulations of realistic models of the Solar System, the
larger bodies of the asteroid belt (specially Ceres, Pallas, and Vesta) experience close encounters
that have a significant impact in the chaotic behavior of the Solar System [10]. The precision of the
numerical integration performed with any integrator with constant time-steps (in physical time) is
degraded during close enough encounters, a degradation that may be more pronounced for the 16th
order FCIRK method due to its higher order of precision and to the temporary loss of the hierarchy
HI << HK during close approaches.

Motivated by that, we have analyzed the effect of close encounters on the local discretization
errors of our FCIRK integrators. More precisely, we have obtained rigorous estimates of the leading
error term by applying results and techniques presented in [11].

Based on that analysis, we propose practical mechanism to identify integration steps that involve
close encounters between arbitrary bodies. Actually, our analysis could be used as a theoretical basis
to tray to endow our code with an adaptive time-stepping strategy. However, it is known [12] that
the advantages of symplectic integrators for the long-term integration of Hamiltonian systems are
lost if standard adaptive time-stepping strategies are used.

We adopt a different approach in FCIRK16. Our code is mainly intended for long-term integra-
tions of the Solar System, where close encounters that seriously degrade the accuracy are rare. In the
absence of close approaches, FCIRK16 advances in the integration with constant time-steps so that
the integration enjoys the advantages of symplectic integration during long integration subintervals.
In order to deal with eventual close encounters, FCIRK16 identifies and resolves in higher precision
time-steps which would otherwise suffer from accuracy degradation due to the occurrence of a close
approach.

This paper is organized as follows. Section 2 is devoted to define FCIRK methods and state their
main properties. In Section 3, we analyze the effect of close encounters in the local discretization
errors of FCIRK methods, and provide practical functions to monitor eventual close encounters. In
Section 4, some aspects related to the implementation of FCIRK16 are briefly discussed. Section 5
is devoted to present some numerical experiments: In Subsection 5.1, we check the results and the
ideas of Section 3 with a 15-body point-mass Newtonian model of the Solar System (with the Sun,
the eight planets, Pluto, and five main asteroids) and with a 16-body model where the Moon is
treated as a separate body. In Subsection 5.2, we present some numerical comparisons of FCIRK16
with a state-of-the-art high order explicit symplectic scheme that demonstrate the superiority of
our integrator when very high precision is required. We conclude with a summary of the work in
Section 6.
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2 FCIRK methods for perturbed Kepler problems

The equations of motion of the Hamiltonian function (1), written in terms of qi, vi = pi/µi, read

d

dt
qi = vi + gi(u),

d

dt
vi = − ki

‖qi‖3
qi + gn+i(u),

for i = 1, . . . , n, (2)

where u = (q1, . . . , qn, v1, . . . , vn) ∈ R6n, and

gi(u) =
∂HI

∂pi
(q1, . . . , qn, p1, . . . , pn),

gn+i(u) = − 1

µi

∂HI

∂qi
(q1, . . . , qn, p1, . . . , pn),

(3)

with pi (i = 1, . . . , n) replaced by µi vi in the right-hand sides of (3).
This can be more compactly written in the form

d

dt
u = k(u) + g(u), (4)

where k(u) corresponds to the Keplerian part and for each u ∈ R6n

g(u) = (g1(u), . . . , g2n(u)) ∈ R6n.

In what follows, we will consider systems of the form (4) with arbitrary maps gi(u) not necessarily
of the form (3) (so that (4) may include dissipative terms).

We are concerned with the high-precision long-term numerical integration of (4) supplemented
with the initial condition

u(0) = u0 := (q01, . . . , q
0
n, v

0
1, . . . , v

0
n) ∈ R6n. (5)

In FCIRK methods, as in the Wisdom and Holman (WH) integrator and its generalizations, one
takes advantage of the integrability of the Keplerian equations of motion

d

dt
qi = vi,

d

dt
vi = − ki

‖qi‖3
qi. (6)

That is, one exploits the ability of efficiently computing for any h ∈ R (up to roundoff errors), the
h-flow ϕh : R6n → R6n of the unperturbed system

d

dt
u = k(u). (7)

Recall that, by definition of h-flow, ϕh(u(t)) ≡ u(t+ h) for any solution u(t) of (7).
Application of the time-dependent change of variables u = ϕt(w) transforms (4) into the non-

autonomous system
d

dt
w = (ϕ′t(w))−1g(ϕt(w)).
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From now on, we will use the notation

F (w, t) := (ϕ′t(w))−1g(ϕt(w)). (8)

As shown in [9], any solution u(t) of (4) satisfies the identity

u(t+ h) ≡ ϕh/2(ψh(ϕh/2(u(t)))),

where the map ψh : R6n → R6n is defined as follows: for arbitrary u0 ∈ R6n, ψh(u0) = w(h), where
w(t) is the solution of the initial value problem

d

dt
w = F (w, t− h/2), w(0) = u0. (9)

Hence, u(t+h) can be obtained from u(t) by two Keplerian motions of time-increment h/2 alternated
with one application of the map ψh that accounts for the effect of the interactions.

In FCIRK methods, as in the WH map, the solution u(t) of (4)–(5) is approximated for t = mh,
m = 1, 2, 3, . . ., by computing um ≈ u(mh) in a step-by-step manner as follows: for m = 1, 2, 3, . . .

wm = ϕh/2(u
m−1),

ŵm = ψ̃h(wm),

um = ϕh/2(ŵ
m),

(10)

where the map ψ̃h is an approximation of the exact map ψh accounting for the interactions.
In the WH integrator, ψ̃h(u0) is defined for each u0 ∈ R6n as ψ̃h(u0) := w̃(h), where w̃(t) is the

solution of the initial value problem

d

dt
w̃ = g(w̃), w̃(0) = u0.

The WH map is a second order integrator because ψh(u0) = w̃(h) +O(h3) as h→ 0.
In a FCIRK method, ψ̃h(u0) is defined as a Runge-Kutta approximation of ψh(u0) = w(h)

obtained by applying one step of length h to (9). More precisely,

ψ̃h(u0) = u0 + Φ(u0, h), Φ(u0, h) = h
s∑
i=1

bi Ẇi, (11)

where the vectors Ẇi are implicitly defined by

Ẇi = F

u0 + h

s∑
j=1

aij Ẇj , (cj − 1/2)h

 , i = 1, . . . , s. (12)

Here, bi, ci, aij (1 ≤ i, j ≤ s) are real parameters that determine the IRK scheme. The positive
integer s is referred to as the number of stages of the IRK method. In [9], we considered a particular
family of time-symmetric symplectic IRK methods, the collocation methods based on s Gauss-
Legendre nodes. More precisely, c1, . . . , cs are the zeros of Ps(2x− 1), where Ps(x) is the Legendre
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polynomial of degree s, and the coefficients bi (1 ≤ i ≤ s) and aij (1 ≤ i, j ≤ s) are uniquely
determined from the following equalities [13]:

s∑
i=1

bic
k−1
i =

1

k
, k = 1, . . . , s, (13)

s∑
j=1

aijc
k−1
j =

ci
k
, i = 1, . . . , s, k = 1, . . . , s. (14)

Notice that c1, . . . , cs and b1, . . . , bs are the nodes and weights respectively of the Gauss-Legendre
quadrature formulas on the interval [0, 1].

The s-stage IRK method of collocation type with Gauss-Legendre nodes is of order 2s. More
precisely,

ψ̃h(u0)− ψh(u0) =
h2s+1

(2s+ 1)!
(w̃(2s+1)(0)− w(2s+1)(0)) +O(h2s+2) (15)

as h → 0, where w(2s+1)(0) denotes the (2s + 1)th order derivative of the solution w(t) of (9)
evaluated at t = 0, and w̃(2s+1)(0) denotes the (2s+ 1)th order derivative of the numerical solution
w̃(h) := ψ̃h(u0) evaluated at h = 0.

In addition, if (4) are the equations of motion of a Hamiltonian function (1), then the map

ψ̃h : R6n → R6n

will be symplectic (as the map ψh that is approximating to) (with respect to the 2-form
∑

i µi dqi ∧
dvi), and hence also each step um−1 7→ um of the form (10) of the FCIRK method (see [9] for further
geometric properties of FCIRK methods).

3 Close encounters and local discretization errors

We next try to estimate the effect of close encounters on the leading term of the local discretization
error of FCIRK methods.

3.1 General analysis of local discretization errors

In view of (15), we will next aim at obtaining upper bounds of

1

(2s+ 1)!
‖w(2s+1)

i (0)‖, i = 1, . . . , 2n. (16)

(Here, we have collected the (6n)-vector w(t) in 2n three-dimensional sub-vectors as w(t) = (w1(t), . . . , w2n(t)).)
Such estimates should reflect how local discretization errors increase during close encounters. In or-
der to do that, we will apply some results and techniques (based on the analytic extension to the
complex domain of N -problems) presented in [11].

Under the assumption that g : R6n → R6n is a real-analitic map, for each regular1 initial state
u0 ∈ R6n, there exists ρ = ρ(u0) > 0 such that the following two conditions hold:

1In the sense that g(u) is analytic in u = u0 and that ||q0i || 6= 0 for all i (so that k(u) is analytic in u = u0).

6



C1 The solution u(t) = (q1(t), . . . , qn(t), v1(t), . . . , vn(t)) of (4)–(5) and g(u(t)) can be uniquely
extended as analytic functions of t in the closed disk

Dρ(u0) = {t ∈ C : |t| ≤ ρ(u0)}.

C2 For i = 1, . . . , n,

‖qi(t)− q0i ‖ ≤
1

7
‖q0i ‖.

In that case, it can be proven (we provide a proof in the Appendix) that, for i = 1, . . . , n,

1

(2s)!
‖w(2s+1)

i (0)‖ ≤ 2 ρ(u0)−2s(Mi(u
0) + ρ(u0)Mi+n(u0)), (17)

1

(2s)!
‖w(2s+1)

i+n (0)‖ ≤ ρ(u0)−2s−1(2Mi(u
0) + 3 ρ(u0)Mi+n(u0)), (18)

where for i = 1, . . . , 2n,

Mi(u
0) =

∑
t∈Dρ(u0)

‖gi(u(t))‖. (19)

3.2 Local error estimates for planetary systems in canonical heliocentric coor-
dinates

Next, we will obtain suitable ρ(u0) and Mi(u
0) (i = 1, . . . , 2n) as explicit functions of u0 =

(q01, . . . , q
0
n, v

0
1, . . . , v

0
n) in one particular relevant case: the case where (4) corresponds to a point-

mass (n+ 1)-body problem consisting of a massive body (the Sun) and n bodies (major and minor
planets, and asteroids) orbiting around it, written in Poincaré’s canonical heliocentric coordinates.

Consider the Hamiltonian system corresponding to the (n+ 1)-body Hamiltonian function

H(Q,P ) =
1

2

n∑
i=0

‖Pi‖2

mi
−G

∑
0≤i<j≤n

mimj

‖Qi −Qj‖
, (20)

written in cartesian coordinates Q = (Q0, . . . , Qn), V = (V0, . . . , Vn), where Vi = Pi/mi. According
to Theorem 2 in [11] (applied with λ = 1/7) the following statements S1–S2 hold for the Hamiltonian
system supplemented with regular initial conditions

Qi(0) = Q0
i , Vi(0) = V 0

i , i = 0, 1, . . . , n. (21)

S1 It admits a unique analytic solution (Q(t), V (t)) defined in an open complex domain containing
the closed disk {t ∈ C : |t| ≤ L(Q0, V 0)−1}, where

L(Q,V ) = max
0≤i<j≤n

Lij(Q,V ) (22)

with

Lij(Q,V ) =
7

2

 ‖Vi − Vj‖
‖Qi −Qj‖

+

√(
‖Vi − Vj‖
‖Qi −Qj‖

)2

+
4

7

Ki(Q) +Kj(Q)

‖Qi −Qj‖

 , (23)
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and

Ki(Q) =
n∑

j 6=i, j=0

Gmj

‖Qi −Qj‖2
, i = 0, 1 . . . , n. (24)

S2 In addition, if |t| ≤ L(Q0, V 0)−1, then

‖Qi(t)−Qj(t)−Q0
i +Q0

j‖ ≤
1

7
‖Q0

i −Q0
j‖, 0 ≤ i < j ≤ n.

The Hamiltonian H(q, p) obtained by rewriting the (n + 1)-body Hamiltonian (20) in terms of
canonical heliocentric coordinates is of the form (1), with

HI(q, p) :=
1

m0

 ∑
16i<j6n

pTi pj

− ∑
16i<j6n

Gmimj

‖qi − qj‖
,

and
1

µi
=

1

mi
+

1

m0
, ki = G (m0 +mi), i = 1, . . . , n.

Here, we are assuming that the barycenter of the system is at rest, so that q0 = (0, 0, 0) and
v0 = (0, 0, 0) can be ignored. The equations of motion, expressed in terms of the 3-vectors qi,
vi = pi/µi, read (2), with

gi(u) =

n∑
j 6=i, j=1

εj
1 + εj

vj , (25)

gi+n(u) = −
n∑

j 6=i, j=1

ki εj
‖qi − qj‖3

(qi − qj), (26)

where
εi =

mi

m0
, i = 1, . . . , n.

With that notation, the barycentric coordinates (Qi, Vi) (i = 0, 1, . . . , n) are recovered from the
canonical heliocentric coordinates u = (q1, . . . , qn, v1, . . . , vn) as

Q0 = −
n∑
i=1

mi

M
qi, V0 = −

n∑
i=1

εi
1 + εi

vi, (27)

Qi = Q0 + qi, Vi =
1

1 + εi
vi, i = 1, . . . , n. (28)

The statements S1–S2 imply that C1–C2 hold for

ρ(u) = min
0≤i<j≤n

ρi,j(u) (29)

with
ρi,j(u) = Li,j(Q,V )−1 (30)
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where (27)–(28) is used to compute the barycentric coordinates (Q,V ) from u. We next give upper
bounds for (19) required to get the estimates (17)–(18) of the (2s + 1)th derivatives w(2n+1)(0)
featuring in the leading term of the local discretization error (15).

The statements S1–S2 imply that, for each t ∈ Dρ(u0),

‖qi(t)− qj(t)− q0i + q0j ‖ ≤
1

7
‖q0i − q0j ‖, 1 ≤ i < j ≤ n, (31)

‖vi(t)− v0i ‖ ≤ 2 (1 + εi) ρ(u0)Ki(u
0), 1 ≤ i ≤ n. (32)

From (32), one gets

Mi(u
0) ≤

n∑
j 6=i, j=1

εj
1 + εj

‖v0j ‖+ 2 ρ(u0)
n∑

j 6=i, j=1

εjKj(u
0), 1 ≤ i ≤ n. (33)

Lemma 1 in [11] and (31) finally imply that

Mi+n(u0) ≤ 2
n∑

j 6=i, j=1

ki εj
‖q0i − q0j ‖2

, 1 ≤ i ≤ n. (34)

3.3 The effect of close encounters in the local discretization errors

Consider, as in previous Subsection, an (n + 1)-body system described in canonical heliocentric
coordinates, and assume that the mass ratios εi = mi/m0 (i = 1, . . . , n) are small.

We want to study the effect of close encounters on the local discretization errors δ(wm, h) =
ψ̃h(wm)−ψh(wm), m = 0, 1, 2, 3, . . . made during the FCIRK integration (10). For each i = 1, . . . , n,
we denote as δi(u

0, h) (resp. δi+n(u0, h)) the 3-vector that collects the components of δ(u0, h)
corresponding to the positions (resp. velocities) of the ith body.

While integrating with FCIRK, whenever all the bodies orbiting around the central massive
body are well separated in wm (we next set u0 := wm),

• the upper bounds (33)–(34) will remain small, and

• typically, ρ(u0) = ρ0,1(u
0), where i = 0 corresponds to the central massive body (say, the Sun)

and body i = 1 is nearest the central body (say, Mercury).

In that case, ρ(u0) will oscillate with approximately the orbital period of Mercury, with lowest
values of ρ(u0) at Mercury’s perihelion. In view of (15) and (17)–(18), the components of the local
discretization errors are expected to oscillate likewise.

However, if body i = k and j = ` are close enough to each other in u0, then ρk,`(u
0) will be

smaller than the value of ρ0,1(u
0) at Mercury’s perihelion, and thus ρ(u0) = ρk,`(u

0). (In addition,
among the upper bounds (33)–(34), those for i = k and i = ` will dominate over the rest for close
enough encounters between bodies k and `. )

We thus expect that the local error will grow roughly as ∼ (h/ρ(wm))2s+1 when ρ(wm) decreases
due to a close encounter. This suggest that

• close encounters that may degrade the accuracy of the FCIRK integration (10) can be identified
by monitoring the value of ρ(wm), and
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• in such cases, the local discretization could be controlled by decreasing the step size h of the
IRK scheme as ρ(wm) decreases to keep h/ρ(wm) roughly constant.

3.4 The case of models of the Solar System with the Moon as a separate body

The discussion in previous two subsections was applicable to models of the Solar System where the
Earth-Moon system is treated as a point mass located at their barycenter. We now focus on the case
of (n + 1)-body models of the Solar System with the Earth and the Moon treated as two separate
point masses, say, bodies i = n− 1 and i = n respectively.

We consider canonical Heliocentric coordinates for bodies i = 1, 2, . . . , n− 2 and for the Earth-
Moon barycenter, and geocentric positions and corresponding conjugate momenta for the Moon.
The (n+ 1)-body problem with Hamiltonian (20) described in such canonical coordinates is of the
form (1), where

1

µi
=

1

m0
+

1

mi
, ki = G (m0 +mi), i = 1, . . . , n− 2,

1

µn−1
=

1

m0
+

1

(mn−1 +mn)
, kn−1 = G (m0 +mn−1 +mn),

1

µn
=

1

mn
− 1

(mn−1 +mn)
, kn =

Gm3
n−1

(mn−1 +mn)2
.

and

HI(q, p) =
1

m0

n−1∑
16i<j

pTi pj −
n−2∑
16i<j

Gmimj

‖qi − qj‖

−
n−2∑
i=1

(
Gmimn

‖qi − qn−1 − qn‖
+

Gmimn−1

‖qi − qn−1 + Gmn
mn−1

qn‖

)

+
Gm0(mn−1 +mn)

‖qn−1‖
− Gm0mn−1

‖qn−1 − Gmn
mn−1

qn‖
− Gm0mn

‖qn−1 + qn‖
.

The barycentric coordinates Qi, Vi = Pi/mi, i = 0, 1, . . . , n, are recovered from the coordinates
qi, vi = pi/µi, i = 1, . . . , n, as follows:

Qi = Q0 + qi, Vi =
µi
mi
vi, i = 1, . . . , n− 2,

Qn−1 = Q0 + qn−1 −
mn

mn−1
qn, Qn = Q0 + qn−1 + qn,

Vn−1 =
µn−1

mn−1 +mn
vn−1 −

µn
mn−1 +mn

vn,

Vn =
µn−1

mn−1 +mn
vn−1 +

mn−1µn
mn (mn−1 +mn)

vn,

Q0 = −
n−2∑
i=1

mi

M
qi −

mn−1 +mn

M
qn−1, V0 = −

n−1∑
i=1

µi
m0

vi.

(35)
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It is not difficult to prove, as in Subsection 3.2, that C1–C2 also hold in that case, with ρ(u)
given by (29)–(30), where Li,j(Q,V ) is given by (23) and (35) is applied to compute the barycentric
coordinates (Q,V ) from u. Upper bounds of Mi(u) similar to those obtained in Subsection 3.2 can
also be obtained. The local error (15) can thus be estimated with the help of (33)–(34).

We eventually arrive at the conclusion that the local error will grow roughly as ∼ (h/ρ(wm))2s+1

when ρ(wm) decreases due to some close encounter. During most of the simulation, ρ(wm) =
ρn−1,n(wm) due to the highly oscillatory nature of the orbit of the Moon, and only for very extreme
close encounters between body k and ` does ρ(wm) decrease noticeably (as ρk,`(w

m) becomes smaller
than ρn−1,n(wm) and consequently ρ(wm) < ρn−1,n(wm)). However, we have observed in practice
that some close encounters that degrade the accuracy of the simulation are not close enough to have
ρ(wm) < ρn−1,n(wm), and hence cannot be detected by monitoring the value of ρ(wm). We believe
that this is due to the fact that the contribution of the high oscillation of the Moon on the local
discretization errors of the rest of the bodies is typically small. Moreover, the contribution of such
highly oscillatory local errors over accumulated errors are further reduced because they are partially
averaged out.

Motivated by that, we propose to modify the function ρ(u) for monitoring close encounters when
the Moon is treated as a separated body by excluding ρn−1,n(u) from the definition of ρ(u).

4 Implementation aspects

4.1 Implementation of the IRK approximation

In our implementation of FCIRK methods, we compute the vectors Ẇi from (12) by using the
fixed-point implementation of IRK schemes presented in [14]. This consists of a robust and efficient
implementation that avoids the systematic accumulation of errors in energy (due to round-off errors
and iteration errors) observed in standard fixed-point implementations of symplectic implicit RK
schemes [15, 14].

We compute the initial guesses to start the fixed point iteration with an extrapolation procedure
that allows us to substantially reduce the required number of fixed point iterations for small enough
time-steps h. However, for FCIRK methods with large number s of implicit stages, this is only
true for extremely small values of the step-size. Furthermore, the extrapolation formulae become
numerically unstable (due to cancellation errors caused by large coefficients of opposite sign) for
more large values of s. These two factors limit, for practical computations in 64-bit or 80-bit
floating point arithmetic, the efficiency of FCIRK methods for large values of s, say s ≥ 12. After
some preliminary numerical experiments, we have concluded that s = 6, 7, 8, 9 are good choices
in this respect. Similar considerations apply to implicit Runge-Kutta schemes of collocation type:
in [13], the choice s = 6 is favored for 64-bit floating point arithmetic in the case of Gauss-Legendre
nodes, and s = 8 is chosen in [16, 17] in the case of Gauss-Radau nodes. For FCIRK methods,
we finally choose the scheme with s = 8 stages (hence of order 2s = 16) because it allows a more
efficient parallelization with four or eight threads.

We refer to our implementation of the 16th-order FCIRK method as FCIRK16. In FCIRK16,
the evaluation of the right-hand side of (12) for each i ∈ {1, . . . , 8} is optionally performed in parallel
(with openMP) with a prescribed number of threads.
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4.2 Mixed precision implementation of FCIRK16

A mixed precision approach proposed in [9] to reduce the effect of using finite precision arithmetic is
implemented in FCIRK16. The main idea consists of applying most of the computations in a basic
floating point arithmetic, and perform a few critical operations in a higher precision arithmetic.

In our current implementation of FCIRK16, ŵm = ψ̃h(wm) in (11) is evaluated as

∆m = Φ(wm, h),

ŵm = wm + ∆m, (36)

where Φ(um, h) is evaluated in 80-bit extended precision, while the rest of the computations in (10),
that is, the evaluations of the map ϕh/2 and the sum (36) are performed in quadruple precision
(128-bit floating point arithmetic). This is motivated by the following:

• The evaluation of Φ(wm, h) represents the bulk of the computations of each step (10). Note
that this is true regardless of the complexity of the evaluation of the interaction term g(u)
in (4). Indeed, if m fixed point iterations are needed at each step (typically, m = 5, 6),
sm = 8m evaluations of ϕh and its partial derivatives (in addition to 8m evaluations of g(u))
are required to evaluate Φ(wm, h), compared to two evaluations of ϕh (and 6n additions) in
quadruple precision. Hence, the increase in computing time of one step (10) due to the mixed
precision implementation compared to one step fully implemented in 80-bit extended precision
is always relatively small.

• The components of the vector ∆m in (36) are typically of considerably smaller magnitude
than the corresponding component of wm. If their magnitude is, say, 2−k smaller, then the
overall precision of each step (10) will correspond to a significand of 64 +k bits compared to a
precision of 64-bit significand one would have if all the computations in (36) were performed
in 80-bit floating point arithmetic.

4.3 Dealing with close encounters

We aim at enjoying the favorable behavior of constant time-step symplectic integration during long
integration subintervals, and only occasionally (during eventual close encounters) perform a more
dedicated (computationally more expensive) numerical integration to compute um ≈ u(mh) from
um−1. We thus have endowed FCIRK16 with a mechanism to detect the time-steps (from now on,
critical time-steps) involving a close encounter that would substantially degrade the accuracy of the
numerical integration in constant-step size mode.

In such critical time-steps, ψ̃h(wm) in (10) is replaced by a better approximation of ψh(wm).
While in ordinary steps ûm = ψ̃h(wm) is obtained by applying one step of length h of the underlying
IRK scheme applied to the transformed system, in critical steps, ûm will be computed by applying
k steps of constant length h/k of the IRK scheme to the transformed system. In addition, since the
mixed precision approach becomes less effective during close encounters (as the dominance of the
Keplerian Hamiltonian HK over the interaction Hamiltonian is reduced or lost during such events),
we implement critical time-steps fully in quadruple precision 128-bit floating point arithmetic.

We next specify the criterion to identify critical time-steps that we have implemented in FCIRK16,
and the rule used to choose the number k of substeps of the IRK schemes to be applied in each critical
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step. Both tasks are done with the help of the monitoring function ρ(u) defined in Subsection 3.2 for
(n+ 1)-body problems described in heliocentric coordinates, and the modified monitoring function
(that we will also refer to as ρ(u)) defined at the end of Subsection 3.4 for the case where the Moon
is treated as a separate body. For systems of the form (4) obtained by describing an (n + 1)-body
problem in other coordinates the monitoring function ρ(u) could be defined similarly.

In FCIRK16, the mth step (10) will be considered critical if, once wm = ϕh/2(u
m−1) is computed

ρ(wm) < µ− ν σ, (37)

where µ (resp. σ) is the arithmetic mean (resp. the standard deviation) of the values of ρ(wk) for
all previous ordinary steps, and ν is a prescribed positive number. We set ν = 1.6 as default value
in FCIRK16.

Motivated by second item at the end of Subsection 3.3, we choose the number k of substeps
of constant length h/k of the IRK scheme to be performed when computing ŵm from wm, as the
positive integer k such that

k − 1 <
µ

ρ(wm)
≤ k. (38)

5 Numerical experiments

We next present some numerical experiments: The experiments in the first subsection are aimed
to assess the effectiveness of the technique for monitoring close encounters introduced in Section 3.
In the second subsection, we demonstrate the performance of FCIRK16 for high precision long-
term integrations of the Solar System by comparing it with a state-of-the-art explicit symplectic
integrator.

We consider two Newtonian point-mass (n + 1)-body models of the Solar System: From one
hand, a 15-problem with the Sun, the eight planets, Pluto, and five main bodies of the asteroid belt
(Ceres, Pallas, Vesta, Iris and Bamberga) described in Poincare’s canonical heliocentric coordinates.
On the other hand, we consider the 16-problem obtained from the former by considering the Moon
as a separate body, with canonical coordinates described in Subsection 3.4.

We consider the initial values at Julian time (TDB) 2440400.5 (the 28th of June of 1969), from
the DE430 Ephemerides [18].

All the numerical tests presented here are run in a HP-Z6-G4-Workstation with 8 cores of
Intel©Xeon©Silver 4110 CPU @ 2.10GHz and 32GiB (16 +16 DIMM DDR4) of RAM memory.
The code is written in C and has been compiled under Ubuntu 18.04.3 LTS operating system with
gcc version 7.5.0 with options -O2 -std=c99 -fno-common -mfma. The parallelized implementation
of FCIRK16 is based on the OpenMP library.

5.1 Monitoring close encounters

We first conduct some experiments to check the techniques of monitoring close encounters proposed
and discussed in Section 3. For that purpose, we have first made two integrations of the 15-body
problem with FCIRK16 forward in time for 50000 years with a constant time-step of h = 1.5 days
and h = 3 days respectively.
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Figure 1: Evolution of relative errors in energy for FCIRK16 with h = 1.5 and h = 3 (top), and evolution of
errors in position of each of the body for the non-adaptive (resp. adaptive with ν = 1.6) implementation of
FCIRK16 with h = 1.5 in the middle (resp. lower) subplot.

The evolution of relative errors in energy is displayed in the upper subplot of Figure 1, while the
middle (resp. lower) subplot shows the evolution of the errors in position 2 for each of the bodies
orbiting around the Sun for the non-adaptive (adaptive) integration with constant step-size h = 1.5.

Some jumps in the energy errors are clearly observed in the integration with h = 3. (The largest
jump coincides with a close encounter between Pallas and Vesta.) On the contrary, there is no clear
sign of accuracy degradation in the plot of the evolution of relative errors in energy for h = 1.5.
However, a substantial loss of precision in the positions of some of the bodies can clearly be seen
in the middle subplot of Figure 1. We have also made an analogous experiment for the 16-body
problem, and obtained very similar plots. We conclude that monitoring the energy error is not
enough to identify critical close encounters between minor bodies in the asteroid belt. This is due
to the marginal contribution of the asteroids to the total energy of the system.

The lower subplot of Figure 1 shows that the technique to reduce the accuracy loss due to close
encounters proposed in Subsection 4.3 has been effective in this example. We have used the default
value ν = 1.6, which has resulted in 203 critical steps out of 122 × 105 ordinary steps. It is worth

2We compute the actual position errors by considering as exact the results obtained with constant step-size h = 0.5
with a version of FCIRK16 fully implemented in quadruple precision.
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stressing that, due to the low percentage of critical steps, applying our adaptive technique does not
have any practical impact in the execution time of the integration.
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Figure 2: Close encounter monitoring for the 15-body problem: (a) Curves for mean value µ of ρ, µ − σ
(where σ is the standard deviation of ρ), and min ρ (top), (b) evolution of local errors for each of the orbiting
bodies (bottom)

We next take a closer look to the effectiveness of the monitoring technique proposed in Section 3.
Figure 2 corresponds to an integration of the 15-body problem forward in time for 50000 years with
a constant time-step of h = 6 days. (We have saved the results of the integration every 6100 steps,
that is, every 36600 days.)

• The upper subplot displays the evolution of ρ(wm). Three curves are drawn in that subplot:
The mean value µ (since the beginning of the integration interval) of ρ(wm), the difference
µ−σ, where σ is standard deviation of ρ(wm), and the minimum of ρ(wm) over subintervals of
36600 days. Several sharp minima are observed in the later cuve, corresponding to encounters
between different asteroids.

• The lower subplot displays the evolution of estimated local errors in positions of each of
the bodies (they are computed as the difference of um with the more precise approximation
obtained by applying two steps of length h/2 of the FCIRK scheme starting from um−1).

The sharpest spikes of local error (corresponding to close encounters between asteroids) nicely
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coincide in time with the sharpest local minima of the monitoring function. We conclude that
the proposed monitoring technique works very well in this case.
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Figure 3: Close-encounter monitoring for the 16-body problem: (a) Curves for mean value µ of ρ, µ − σ
(where σ is the standard deviation of ρ), and min ρ with all interactions (top), (b) Curves for µ, µ− σ, and
min ρ with the Earth-Moon interaction excluded (middle), (c) evolution of local errors for each of the orbiting
bodies (bottom)

In Figure 3, the results of a similar experiment performed for the 16-body problem are reported.
This time, the three curves (µ, µ−σ, and min ρ) corresponding to two different monitoring functions
are displayed: (i) the original monitoring function in the upper subplot, (ii) and the modified
monitoring function proposed at last item at the end of Subsection 3.4 (which excludes the Earth-
Moon interaction) in the middle subplot. In the lower subplot, the evolution of the estimated local
errors in positions of each of the bodies are displayed. The upper nearly horizontal curve corresponds
to the local error in position of the Moon. (The local errors in position of Mercury and the Earth
are five orders of magnitude smaller.) The sharp local minima of the original monitoring function
identify correctly the spikes of local error that arise well above the local error of the Moon, but some
of the less pronounced spikes are not reflected in the original monitoring function. The modified
monitoring function, displayed in the middle subplot, is able to identify nicely the spikes of local
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error that arise above Mercury’s local error.

5.2 Comparison with a state-of-the art explicit symplectic integrator

The efficiency of several generalizations of the classical Wisdom and Holman integrators (in Jacobi
coordinates) for high precision long-term integration of the Solar System are compared in [19].
It is there concluded that, for high precision integrations, the symplectic integrator ABA(10,6,4)
presented in [4, 5] is the most efficient among all the considered methods.

The integrator ABA(10,6,4) requires that the interaction Hamiltonian HI only depend on the
positions (or at least, that HI can be written as the sum of two commuting integrable Hamiltonians).
This is for instance the case if Jacobi coordinates are used to rewrite the N -body Hamiltonian (20)
in the form (1). If Poincare’s canonical Heliocentric coordinates are used instead, the interaction
Hamiltonian is of the form

HI(p, q) = A(q) +B(p). (39)

In [4], the integrator ABAH(10,6,4) is constructed as an alternative to ABA(10,6,4) when Poncaré’s
Heliocentric coordinates are used instead of Jacobi coordinates (more generally, for interaction
Hamiltonians of the form (39)). In the numerical integrations of the Solar System performed in [5], it
is concluded that ABAH(10,6,4) applied with Heliocentric coordinates is as efficient as ABA(10,6,4)
applied with Jacobi coordinates.

The three positive integers in the name of the integrators ABA(10,6,4) and ABAH(10,6,4) refer
to their global error estimates, which are in both cases of the form O(ε h10 + ε2 h6 + ε3 h4), where ε
is the maximum of the mass ratios mi/m0. In contrast, the global error of FCIRK16 is of the form
O(ε h16).

In the case of the two models of the Solar system that we are considering in our numerical exper-
iments (that is, the interaction Hamiltonians described in Subsection 3.2 and Subsection 3.4,) are
also of the form (39). We will thus compare FCIRK16 with the symplectic integrator ABAH(10,6,4)
presented in [4, 5].

The splitting symplectic integrator ABAH(10,6,4) is implemented by alternating evaluations of
the Keplerian motions with evaluations of the gradients of A(q) and B(p) in (39). No symplectic
correction is applied. We apply our own optimized implementation of the later in 80-bit extended
precision arithmetic (with Kahan’s compensated summation [20]), which makes use of the same
routines for the evaluation of ϕh and the gradient of the interaction Hamiltonian as in FCIRK16.
We do not attempt the implementation of parallelization techniques for ABAH(10,6,4): splitting
integrators, unlike the FCIRK methods, require the sequential evaluation of the gradients of the
interaction Hamiltonians. Consequently, parallelization of ABAH(10,6,4) is only possible inside the
evaluation of the gradient, hence with a lower granularity than that of FCIRK16, with would have
a considerably higher parallelization overhead.

The technique proposed in Subsection 4.3 can easily be adapted to splitting symplectic integra-
tors and in particular to the method ABAH(10,6,4). For a fair comparison with FCIRK16, we have
implemented ABAH(10,6,4) with a similar mechanism to deal with close encounters. In order to
illustrate the advantage of incorporating that technique into our implementation of ABAH(10,6,4),
we have made two integrations of the 15-body problem considered in the previous subsection with
step-size h = 1, one with fully constant step-size, and the other one with our technique for detecting
and coping with close encounters. In the upper plot of Figure 4, we display the evolution of the
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position errors of each of the orbiting bodies for the integration with fully constant step-size h = 1.
One can observe a clear degradation of the precision of the positions of some of the bodies due
to close encounters. In the lower plot of Figure 4, we can see the evolution of the errors in the
integrations corresponding to ν = 1.6 (304 critical steps out of 183× 105 ordinary steps have been
required in that case).
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Figure 4: Evolution of position errors for ABAH1064 applied with h = 1 to the 15-body problem: fully
constant time-step (top), adaptive implementation with ν = 1.6 (bottom)

In [9], the efficiency of a preliminary implementation of our 16th order FCIRK method was
compared to that of ABAH(10,6,4) (and also to the 16th order implicit Runge Kutta implemented
in [14]). A simple 10-body model of the Solar System (including no asteroids, nor the Moon as
a separate body) was considered. In particular, efficiency diagrams displaying the error in energy
versus execution time for different values of the constant time-step were presented for that purpose.
We have repeated such experiments for the 15-body model and 16-body model of the Solar System
described above for our current implementation of FCIRK16 (with the default value ν = 1.6 in
(37)). We have obtained very similar efficiency diagrams (not shown here), the main difference
(compared to those presented in [14]) being that, due to the higher complexity of the evaluation
of the gradient of the interaction Hamiltonian, higher parallelization speedup is obtained for the
execution of FCIRK16. The parallel execution of FCIRK16 with four threads is (both in the 15-body
problem and the 16-body problem) approximately twice as fast as the sequential execution.
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As in [9], we conclude that ABAH(10,6,4) is more efficient than FCIRK16 for lower precisions.
However, if higher precision is required, ABAH(10,6,4) is limited by the precision of the 80-bit
floating point arithmetic. At that limit, thanks to its mixed precision implementation, FCIRK16 is
able to reduce errors by two orders of magnitude with similar computing time. We have also tested a
mixed-precision implementation ABAH(10,6,4) that computes all the Keplerian flows in quadruple
precision, but its execution time increases by a factor between 6 and 9 in our examples. This is an
expensive toll to be paid for a little of extra precision, while in FCIRK16, this is achieved essentially
for free.
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Figure 5: Evolution of relative errors in energy for FCIRK16 (h = 3) and ABAH1064 (h = 1 and 0.5)

In order to illustrate the superiority of FCIRK16 over ABAH(10,6,4) near the limit of precision
of the 80-bit floating point arithmetic, we next compare the propagated errors of three numerical
long-term integrations of the 16-body model of the Solar System. We integrate backward in time
for 350 thousand years by applying

• FCIRK16 with h = 3 (16 hours for sequential execution, 8.3 hours in parallel execution with
four threads, 0.0015% of critical steps).

• ABAH(10,6,4) with h = 0.5 (17 hours of execution time, 0.0019% of critical steps).

• ABAH(10,6,4) with h = 1 (8.45 hours of execution time, 0.0019% of critical steps).
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Figure 6: Evolution of errors in position: FCIRK16 with h = 3 (top), and ABAH(10,6,4) with h=0.5 (middle)
and ABAH(10,6,4) with h=1 (bottom)

We will next show that the ABAH(10,6,4) integration with h = 1 (resp. h = 0.5), which is com-
parable in computing time to the sequential (resp. parallel) execution of FCIRK, gives less precise
results than FCIRK with h = 3.

We first display the evolution of relative errors in energy for each of the three integrations
in Figure 5. Figure 6 (resp. Figure 7) shows the evolution of the errors in position (resp. in
eccentricities) of each of the bodies: for FCIRK16 with h = 3 (top), for ABAH(10,6,4) with h = 0.5
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(middle), for ABAH(10,6,4) with h = 1 (bottom). The evolution of errors in velocity and in
semi-major axis (not included here,) show a behavior similar to that of positions and eccentricities
respectively.

Comparison of the evolution of errors for ABAH(10,6,4) with h = 1 and h = 0.5, suggests
that no substantial increase of the precision could be expected for ABAH(10,6,4) with step-sizes
smaller than h = 0.5. We conclude that for that accuracy regime (limited by the precision of the
80-bit floating point arithmetic), FCIRK is able to produce (about two orders of magnitude) more
precise results than ABAH(10,6,4) for similar execution times. We stress that, as illustrated in
Figure 4, our implementation of ABAH(10,6,4) also benefits greatly from the ideas and techniques
introduced in Section 3 and Subsection 4.3. The evolution of errors for the fully constant step-size
implementation of ABAH(10,6,4) would be considerably less favorable due to the occurrence of close
encounters between asteroids.

6 Summary of the work

We have presented FCIRK16, an integrator for high-precision long term integration of the Solar
System. It consists of an optimized and robust implementation of a 16th order scheme within the
class of FCIRK methods presented in [9]. Such methods are implicit schemes that take advantage
of the near-Keplerian motion of the planets around the Sun by alternating Keplerian motions with
corrections accounting for the planetary interactions.

We have presented a novel analysis of the local errors of FCIRK methods intended to understand
how discretization errors increase during close encounters. That allows us to endow FCIRK16 with
a practical mechanisms to monitor and accurately resolve eventual close encounters.

We have compared our integrator with a state-of-the-art high precision long term integrator
(which is an explicit scheme that also takes advantage of the near-Keplerian motion of the planets),
the symplectic splitting method ABAH(10,6,4) [4, 5]. Compared to ABAH(10,6,4) (or any available
explicit symplectic integrator), our new integrator FCIRK16

• is better suited to parallel implementations,

• admits the application of a very efficient mixed precision technique to reduce the accumulation
of roundoff errors,

• admits any kind of interaction Hamiltonian, not necessarily the sum of integrable parts.

• includes a mechanism to detect and effectively cope with eventual close encounters.

We present numerical experiments on a point-mass 16-body Newtonian model (including the
Moon as a separate body) of the Solar System to compare our integrator to ABAH(10,6,4) for an
integration backward in time of 350 thousand years. We compare our own optimized implementation
in 80-bit extended precision of the ABAH(10,6,4) with a mixed precision implementation (that
combines 80-bit extended precision with 128-bit quadruple precision) of FCIRK16. Actually, we
have compared FCIRK16 with an improved implementation of ABAH(10,6,4) endowed with the
same mechanism to detect and accurately resolve close encounters.

In our numerical experiments with that 16-body of the Solar System, we conclude that: (i)
ABAH(10,6,4) is more efficient than FCIRK16 for the regime where local truncation errors of
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Figure 7: Evolution of errors in eccentricity: FCIRK16 with h = 3 (top), and ABAH(10,6,4) with h=0.5
(middle) and ABAH(10,6,4) with h=1 (bottom)

ABAH(10,6,4) clearly dominate over the contribution of round-off errors, (ii) for more precise in-
tegrations, FCIRK16 is more efficient than ABAH(10,6,4), (iii) the accuracy of ABAH(10,6,4) is
limited by the precision of the 80-bit extended precision floating point arithmetic (and we do not
see how to gain some digits of precision without compromising seriously its efficiency), (iv) in that
limit, thanks to application of the mixed-precision technique, FCIRK16 is able to improve the preci-
sion with similar computing time. We stress that our implementation of ABAH(10,6,4) also benefits
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from the analysis of Section 3 and the technique for resolving close encounters proposed in Subsec-
tion 4.3. The superiority for high precisions of FCIRK16 over the standard implementation (with
fully constant time-steps) of ABAH(10,6,4) would be considerably higher.

We believe that, for very long integrations such as [3], [10], the above mentioned extra accuracy
may be critical in some cases. For such high precision, it may certainly make sense to use a
more realistic model of the Solar System instead of the simple Newtonian point-mass model we
have considered in our numerical tests. That scenario actually favors FCIRK16 over ABAH(10,6,4).
Indeed, due to the higher computational cost of the evaluation of g(u) of more realistic models of the
Solar System (including expensive relativistic corrections), (i) the relative parallelization overhead
of FCIRK16 should be greatly reduced (hence getting a higher parallelization speedup) compared
to the simple model of the Solar System we have considered in our numerical experiments; (ii)
in addition, the fixed point implementation could be adapted to perform fewer evaluations of the
relativistic corrections per step. This two factors would potentially improve the relative efficiency
of FCIRK16 compared to ABAH(10,6,4). In addition, the inclusion of physical effects that cannot
be written as the sum of integrable parts may hinder the efficient implementation of ABAH(10,6,4),
while this poses no problem to FCIRK16.

FCIRK16 is intended to be applied for planetary systems, like the Solar System, having low
eccentricity orbits, and where close encounters between the modeled bodies are relatively rare. For
higher eccentricity planetary systems or systems with potentially frequent close encounters, a fully
adaptive version of FCIRK integrators should be implemented. We believe that the analysis and
ideas presented in Section 3 could be helpful to pursue that goal.

The current C language implementation of FCIRK16 can be downloaded from our Github soft-
ware repository: https://github.com/mikelehu/FCIRK/. User documentation is provided and many
examples are included, ensuring that the results in the present work are reproducible [21].
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A Proof of error estimates

The identity ϕ′t(w)−1 = ϕ′−t(ϕt(w)) implies that the solution w(t) of (9) satisfies

d

dt
w(t) = ϕ′−t(u(t)) g(u(t)),

where u(t) is the solution of (4)–(5) with u0 = w(0).
We denote R(t, s) := ϕ′s(u(t)) g(u(t)), so that d

dtw(t) = R(t,−t). Since ϕ′t(u) is the Jacobian of
the t-flow ϕt of (7), we have that

R(t, s) = g(u(t)) +

∫ s

0
k′(u(t))R(t, σ) dσ, (40)

where k′(u) denotes the Jacobian of k(u). Here, k(u) and g(u) denote the complex analytic extension
of the original real-analytic maps. In particular, each power ‖qi‖ν = ‖(x, y, z)‖ν of the Euclidean
norm of each 3-vector qi = (xi, yi, zi) ∈ R3 (viz. ‖qi‖−3 in (6)) must be replaced by (qTi qi)

ν/2 =
(x2i + y2i + z2i )ν/2, so that it is analytic for all (xi, yi, zi) such that x2i + y2i + z2i 6= 0.

If we collect R(t, s) in 2n three-dimensional sub-vectors as

R(t, s) = (R1(t, s), . . . , R2n(t, s))

(so that Ri(t, 0) = gi(u(t))) we have that (40) is equivalent to the following: for i = 1, . . . , n,

Ri(t, s) = gi(u(t)) +

∫ s

0
Ri+n(t, σ) dσ, (41)

Ri+n(t, s) = gi+n(u(t)) +

∫ s

0
Si(t)Ri(t, σ) dσ, (42)

where for arbitrary t ∈ C, Si(t) is a 3 × 3-matrix with complex entries defined as follows: for each
γ ∈ C3,

Si(t)γ :=
−ki

(qi(t)T qi(t))3/2
γ +

3

2
(qi(t)

Tγ)
ki

(qi(t)T qi(t))5/2
qi(t).
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The following Cauchy estimate then holds,

1

(2s)!
‖w(2s+1)

i (0)‖ ≤ ρ(u0)−2s sup
t∈Dρ(u0)

∥∥∥∥ ddtwi(t)
∥∥∥∥

≤ ρ(u0)−2s sup
t,s∈Dρ(u0)

‖Ri(t, s)‖.

From (41)-(42) we have for i = 1, . . . , n,

‖Ri(t, s)‖ ≤ ‖gi(u(t))‖+ |s| ‖gi+n(u(t))‖+
|s|2

2
‖Si(t)‖‖Ri(t, s)‖

We will later prove that for all t ∈ Dρ(u0),

ρ(u0)
2 ‖Si(t)γ‖ ≤ ‖γ‖. (43)

This inequality implies, for i = 1, . . . , n,

sup
t,s∈Dρ(u0)

‖Ri(t, s)‖ ≤ 2

(
sup

t∈Dρ(u0)
‖gi(u(t))‖+ ρ(u0) sup

t∈Dρ(u0)
‖gi+n(u(t))‖

)
,

and in turn, taking (42) into account,

sup
t,s∈Dρ(u0)

‖Ri+n(t, s)‖ ≤ 1

ρ(u0)

(
2 sup
t∈Dρ(u0)

‖gi(u(t))‖+ 3 ρ(u0) sup
t∈Dρ(u0)

‖gi+n(u(t))‖

)
.

It then only remains to prove the inequality (43): Condition C2 implies (with the help of Lemma 1
in [11]) that, for all t ∈ Dρ(u0) and all γ ∈ C3,

‖Si(t)γ‖ ≤ ξ(1/7)
ki
‖q0i ‖3

‖γ‖, (44)

where

ξ(λ) =
1

(1− 2λ− λ2)3/2
+

3

2

(1 + λ)2

(1− 2λ− λ2)5/2
.

From the other hand,

ρ(u0)2 ≤ 1

7

‖Q0
i −Q0

0‖
Ki(Q) +K0(Q)

≤ 1

7

‖Q0
i −Q0

0‖3

G (m0 +mi)
=

1

7

‖q00‖3

ki
. (45)

The inequality (43) follows from (44)–(45) as 1
7ξ(1/7) = 0.945022 . . . < 1.
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