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Abstract

In this paper we provide an algorithmic framework based on Langevin diffusion (LD) and its corre-
sponding discretizations that allow us to simultaneously obtain: i) An algorithm for sampling from the
exponential mechanism [MT07], whose privacy analysis does not depend on convexity and which can be
stopped at anytime without compromising privacy, and ii) tight uniform stability guarantees for the ex-
ponential mechanism. As a direct consequence, we obtain optimal excess empirical and population risk
guarantees for (strongly) convex losses under both pure and approximate differential privacy (DP). The
framework allows us to design a DP uniform sampler from the Rashomon set. Rashomon sets are widely
used in interpretable and robust machine learning, understanding variable importance, and characterizing
fairness.

Note: For ease of presentation, some results appear in the previous version of this paper on arXiv (v3)
that do not appear in this version, nor are subsumed by results in this version. Please see Section 1.4 for
more details.

1 Introduction

Differentially private empirical risk minimization (DP-ERM) [CMS11, CYS21, INS+19, KST12, BST14, STU17,
SCS13, STT20, WLK+17] and differentially private stochastic optimization (DP-SCO) [ALD21, BFTT19, BFGT20,
FKT20, KLL21, GLL22] are two of the most widely studied problems in the differential privacy (DP) liter-
ature. The optimal algorithms for either of these settings are either based on differentially private stochastic
gradient descent (DP-SGD) [ACG+16, BST14, SCS13]), or sampling from an appropriate Gibbs distribution
(a.k.a. the exponential mechanism [MT07]). In this paper we revisit the sampling perspective of DP opti-
mization and study its implications.

At a high level, the Gibbs distribution sampling problem is to generate a sample θ from the distribution
with density proportional to exp(−βL(θ; D)). Here β is known as the inverse temperature, and L(θ; D) =

1
n

n

∑
i=1

ℓ(θ; di) (with ℓ : R
p × τ → R) is the empirical loss function. Our main contribution is an algorithmic

framework based on Langevin Diffusion (LD) (see Figure 1) to privately (approximately) sample from a
Gibbs distribution, with the following implications:

1. Our framework recovers all existing (and tight) bounds for DP-ERM [BST14], and in some cases im-
proves on the best known bounds. The framework provides tight O(1/n)-uniform stability guaran-
tees for the Gibbs distribution on strongly convex losses and O(1/

√
n)-uniform stability on mildly

regularized convex losses. This is much tighter than the generic O(ε)-uniform stability provided by
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the DP guarantee [BST14]1. This allows us to obtain optimal DP-SCO bounds under both ε-DP and
(ε, δ)-DP2, and improves on [ALD21] for the ε-DP case. In this sense, the LD framework is universal
for DP optimization.

2. The privacy guarantee of our Langevin Diffusion (LD) based algorithm does not depend on convexity
of the loss function, L(θ; D). Therefore, it can be used in non-convex settings without compromising
privacy.

3. In the (ε, δ)-DP setting, we can release the complete trajectory of the LD until it reaches the stationary
Gibbs distribution. As a direct consequence, our algorithm is “anytime” DP, i.e., the privacy is not
compromised even if we stop before the chain converges to the stationary distribution. This is a very
useful property in practice; in fact, subsequent works [SGM+22, RTT+23] have shown that the path
of LD can be used to quantify predictive uncertainty.

Sampling from Rashomon sets Our framework also allows us to go beyond what can be achieved by
known algorithms for private learning. In particular, it allows us to uniformly and privately sample
from the Rashomon set [Bre01] (Definition 1.4), which has been extensively studied in interpretable and ro-
bust machine learning [RCC+22], understanding spectrum of variable importance [FRD19], decision mak-
ing [TR13, TR14a, TR14b], measuring underspecification [MAD19], and characterizing fairness [CRC21].
At a high level, Rashomon set is the set of equally-performing models in terms of training/testing loss.

1.1 Related Work

We start by giving a brief exposition of some of the related work and a literature survey of works in
Rashomon set, differentially private learning, and dynamical systems.

Rashomon set and predictive multiplicity Rashomon set has been extensively studied in applied ma-
chine learning since its conception [CRK21, FRD19, MB10, LLRB16, NR17, SRP22, SST10, TR14b] (see the
survey [RCC+22] for more references), culminating in a recent work of [SRP22]. For example, [FRD19]
leverages the Rashomon set in order to understand the spectrum of variable importance and other statistics
across the set of good models, and [TR13, TR14a, TR14b] uses the Rashomon set to assist with decision
making. However, it is computationally inefficient to find the simplest model in the Rashomon set, so a
natural question is when should we even search for a simpler model. In a recent work, [SRP22] showed
that, if there is a large Rashomon set of almost-equally-accurate models, a simple model may also be con-
tained in it and that model is guaranteed to generalize well. For this, they defined Rashomon ratio, which is
the ratio of the volume of the set of accurate models to the volume of the hypothesis space. They then used
the insights gained from Rashomon ratios to infer whether a simpler model exists or not.

Rashomon ratios are defined in terms of volumes of the hypothesis (or model parameter) space. In a
recent work, [HC22] proposed a different metric known as Rashomon capacity. It aims to measure the multi-
plicity of classifier outputs for individual samples, i.e., it measures the spread of the scores with divergence
measures for probability distributions (also known as predictive multiplicity). In particular, this helps to dis-
tinguish Rashomon sets where different predictions are a result of highly different predicted probabilities
vs sets where the predictions are different but the come from similar soft outputs.

Some applications of Rashomon sets Rashomon set has many applications, such as in interpretable
and robust machine learning [FRD19, RCC+22], understanding spectrum of variable importance [FRD19],
decision making [TR13, TR14a, TR14b], measuring underspecification [MAD19], and characterizing fair-
ness [CRC21] to name a few. In fact, if we assume that the loss function is smoothness of a loss function,
then one can obtain a tighter excess risk bound through local Rademacher complexity [BBM05]. A line of

1The uniform stability arguments in [BST14] gives the O(ε + p
εn ) SCO bound for convex losses under pure-DP. This is at best

O(
√

p/n). In contrast, we obtain the optimal O(1/
√

n + p/εn).
2Through out the paper we will assume ε = O(log(1/δ)).
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work has also related Rashomon sets with p-hacking and robustness of estimation. The central argument
there is that the Rashomon set is a set on which one might conduct a sensitivity analysis for choices made
by an analyst. We refer the interested readers to the survey by [RCC+22].

Sampling and differential privacy Several lines of work have designed Markov chains that generate
samples from distributions that are close to a given log-concave distribution. For example, there are works
gives sampling algorithms with bounds on the distance to the target density in terms of Wasserstein dis-
tance [DRD20, DM17], KL-divergence [DMM19], and Renyi divergence [VW19]. For privacy, we need a
bound in terms of ℓ∞ distance. For this, the first work that perform sampling with bounded ℓ∞ distance is by
[HT10]. This was extended to bounded Lipschitz log-concave distribution by [BST14]. Since then, several
works have shown efficient algorithms for sampling from log-concave distribution [MV21, GT20]. There
has been some work that find polynomial time sampling algorithms for special loss functions. For example,
[AD20a, AD20b] showed efficient algorithms to sample from the exponential mechanism when the score
function has a specific structure, which they call path-length function. The motivation of [AD20a, AD20b]
was to study instance-optimality of certain wide class of statistical problem. A variant of this function
(which is quasi-convex) has been recently used by [HKMN23] for robust high-dimensional parameter es-
timation problems, including mean and covariance estimation, when the data is picked from multivariate
Gaussian distribution. Using the insights from differential privacy, a recent line of work [AT22b, AT22c]
have improved (and characterized) the mixing time of the discretization of Langevin diffusion.

There has been some recent work to study the asymptotic bias introduced by the discretization of
Langevin diffusion. In a recent work, [AT22a] showed that the stationary distribution of discretization of the
Langevin diffusion is sub-Gaussian when the potential function is strongly convex, and is sub-exponential
when the potential function is convex.

Differential privacy and dynamical systems The connection between dynamical systems and differential
privacy is also not new. [CYS21] and [RBP22] study discretization of the LD algorithm as DP-(Stochastic)
Gradient Langevin Dynamics (DP-SGLD). They show that under smoothness and strong convexity on the
loss function L(θ; D), the privacy cost of DP-SGLD converges to a stationary finite value, even when the
number of time steps goes to ∞. [WCX19] used the result by [RRT17] to prove a sub-optimal excess em-

pirical risk of Õ
(

p log(1/δ)
ε2 log(n)

)
for non-convex loss functions. In a concurrent, and complementary work on

convex losses, [GLL22] study private optimization and show the universality of exponential mechanisms
for both stochastic convex optimization and empirical risk minimization. Their analysis takes the sampling
perspective when the diffusion process has completed.

It is probably important to mention that objective perturbation [CMS11, KST12] can be potentially
thought of as a (near) universal algorithm for the problem classes considered in this paper, albeit the fol-
lowing two caveats: i) The instantiation of the algorithm for ε-DP and (ε, δ)-DP require two different noise
models to be drawn from, namely, Gamma distribution, and Normal distribution, and ii) It requires the
loss functions ℓ(θ; ·) to be twice-continuously differentiable, and∇2

θℓ(θ; ·) to have a near constant rank. As

mentioned in the remainder of our paper, Langevin diffusion does not require any such assumptions.3

Recently, [MV22] used continuous-time viewpoint to study the error incurred by adding a symmet-
ric Gaussian matrix to input covariance matrix. In particular, they viewed the the perturbed matrix as a
continuous-time symmetric matrix diffusion, where each entry of the perturbed matrix is the value reached
by a Brownian motion after the time equals to the scaling of variance required for privacy. In particular,
the corresponding Brownian motion is well studied in statistical quantum physics and is known as Dyson
brownian motion.

There is a contemporary and most closely related work of [GLL22] to ours. We defer the comparison to
Section 2.54.

3In particular, we can always ensure twice differentiability by convolving the loss function with the bump kernel [KST12], and
then make the smoothness parameter finite but arbitrarily large which does not affect the Lipschitzness.

4The claim of contemporarity is also supported by the authors of [GLL22].
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Langevin diffusion (LD). Let Wt be a p-dimensional Brownian motion and β > 0 be the inverse tem-
perature. Then LD is the following stochastic differential equation:

dθt = −β∇L(θt; D) · dt +
√

2 · dWt. (1)

“Projected” Langevin diffusion. Sometimes, we only have the Lipschitz guarantee within a con-
strained set. We can also consider the following “projected” version of LD:

dθt = −β∇L(θt; D) · dt +
√

2 · dWt − νtµ(dt), ∀t ≥ 0 : θt ∈ C . (2)

where µ is a measure supported on {t : θt ∈ ∂C} and νt is an outer unit normal vector at θt for all such
θt. See [BEL18, Section 2.1, 3.1] for a discussion of (2).

Figure 1: (Projected) Langevin diffusion

1.2 Our Contributions

Our main contribution is to design a Langevin diffusion (LD) based DP sampler for the following Gibbs
distribution:

exp(−β max{L(θ; D), ψ + min
θ∗∈C
L(θ∗; D)}).

As we will see in Section 1.3, by setting ψ = 0 we obtain optimal DP-ERM/DP-SCO algorithms, and for
ψ > 0 we obtain a DP Rashomon set sampler. In this section, we first state the main result followed by the
uniform stability result for LD. We end with a discussion of discretization of our LD, that outputs a sample
within δ total variation distance of the stationary distribution of LD at the same privacy/utility trade-off.

We start with the LD algorithm, described in Figure 1, which forms the building block for all the algo-
rithms considered in this paper. Intuitively, one should think of (1) as the limit of noisy gradient descent
and (2) as the limit of projected noisy gradient descent, both as step size η → 0. Here and throughout this

paper, Oδ(·) and Õδ(·) hides polylog factors in 1/δ.

Informal Theorem 1.1 (Corresponds to Theorems 2.1 and 2.3). Assume that the loss functions are 1-Lipschitz,
and the constraint set C has diameter at most one. Then there exists a LD process {θt}t≥0 with stationary distribution
Θ∞ proportional to exp(−β max{L(θ; D), ψ + min

θ∗∈C
L(θ∗; D)}), and

(i) Θ∞ satisfies ε-DP if β = O(εn).

(ii) If the loss function is m-strongly convex and M-smooth, then for t = Õδ

(
1

βm

)
and β = Õδ

(
mε2 min{n2, 1

Mψ}
)

,

releasing {θt′}0≤t′≤t is (ε, δ)-DP and θT is within total variation distance (TVD) δ of Θ∞.
Furthermore, the privacy guarantee only requires Lipschitzness and smoothness.

A key takeaway from the privacy guarantee of Theorem 1.1 is that, as ψ becomes smaller, one can run
the LD at a higher β and thus provide stronger risk guarantees. In particular, we show an excess empirical
risk bound of p/β) in Theorem 2.4. In fact, if ψ ≤ 1/n2, then the choice of β is an approximately n times
more than that in the ε-DP case. We believe the relation β ∝ min{1/ψ, n2} is necessary. (See Section 2.1 for
a formal reasoning.)

For part (i) in Theorem 1.1, the privacy follows from the analysis of the exponential mechanism. For part
(ii), we use a continuous analog of the composition theorem for Rényi-DP (see Lemma 2.2 and more discus-
sion on our continuous time composition theorem below). To show the sampling guarantee, we show that
the stationary distribution satisfies a log Sobolev inequality (a measure of concentration; see Definition A.19)
using standard techniques known as the Bakry-Emery criterion and Holley-Stroock perturbation principle (see
e.g., Appendix A of [Sch19]). The convergence guarantee then follows using the results in [VW19].

Note that part (ii) of Theorem 1.1 also shows that Θ∞ is private via analyzing privacy of the chain rather
than the stationary distribution. This, in particular, shows that the entire trajectory of the LD is private (not

4



just the final iterate). This matters in practice as works such as [SGM+22, RTT+23] have shown improved
performance and uncertainty estimation from using intermediate values.

There is another advantage of analyzing the privacy of the entire chain. Unlike the sampling/utility
guarantee, the privacy in part (ii) does not rely on convexity, i.e., we can use it for non-convex loss functions.
Furthermore, by taking ψ = 0 and comparing to the Gaussian mechanism [DKM+06], we can see our
privacy guarantee is tight up to log factors.

Uniform stability of Langevin diffusion (Section 2.3) While empirical guarantees are useful in their
own regards, it is often desirable to get population risk guarantee. We derive a population risk guarantee
by showing the uniform stability property of the LD on thresholded losses. This implies that any empirical
accuracy guarantee for the Gibbs sampler in Theorem 1.1 also extends to population risk guarantees:

Informal Theorem 1.2 (Corresponds to Theorem 2.5). Under the same assumptions and choice of β as in The-
orem 1.1, the LD at any time (including at its stationary distribution) satisfies O(L

√
ψ/m + L2/ (mn))-uniform

stability.

The proof uses the fact that the time-independent uniform stability for finite-time LD implies the same
uniform stability for its Gibbs distribution, which could be of independent interest. This in particular gives
optimal SCO rates under ε-DP guarantee that matches non-private bound of O(1/

√
n) as ε → ∞, thereby,

improving on the state-of-the-art results (Section 1.3).

Continuous time composition for LD (Section 2.1) We cannot use standard composition theorems of
DP [DR14] because the underlying algorithm is a continuous time process. We quantify the Rényi diver-
gence between two LD processes when run on neighboring data sets. A similar result was also provided
in [CYS21, Theorem 1] only for the last iterate, θt. In contrast, we prove a divergence bound between the
entire histories {θt′}0≤t′≤t, which enables us to output weighted averages of θt′ ’s privately. Furthermore, it
is proven using only tools from the differential privacy literature and Fatou’s lemma, providing an arguably
much simpler proof.

Discretizing our LD (Section 3) In general, sampling from a continuous-time object such as LD is in-
tractable in practice. A common technique for approximately sampling from the distribution induced by
an LD is the Stochastic Gradient Langevin Dynamics (SGLD), which has been extensively studied in the liter-
ature (e.g. [Dal17, RRT17, CB18, CCAY+18, VW19, GT20, EHZ21, CEL+21, WT11, RBP22, CYS21]). SGLD
uses T steps of noisy gradient descent with step size η, which approximates running eq. (1) for time t = Tη.
Using results in [CEL+21], we show that SGLD provides a private approximation (w.r.t. TVD) of our Gibbs
sampler in a polynomial number of gradient oracle calls. One disadvantage of this result is that the oracle
complexity has a worse dependence on the problem parameters than DP-SGD with standard hyperparam-
eters. For example, DP-SGD’s iteration complexity in [BFTT19] is constant w.r.t. dimensions as it goes to
infinity, whereas our SGLD iteration complexity has a linear dependence on dimensions. We leave closing
this gap as a question for future investigation.

1.3 Applications of Our Algorithmic Framework

Recovering DP-ERM/DP-SCO bounds (Section 4): We show that setting ψ = 0 for the Gibbs sampler in
Theorem 1.1 retrieves the optimal DP-ERM/DP-SCO bounds, i.e., using only the LD sampler as a primitive,
one can achieve all the existing bounds for DP-ERM/DP-SCO and improve some prior results (see Table 2)
as corollaries. Since most of these results are known in the literature, in the next theorem, we only present
the improvement exhibited in this paper.

Informal Theorem 1.3 (Corresponds to Theorems 4.1 and 4.2). For L-Lipschitz convex losses over C , there exists

an ε-DP algorithm with O
(

L‖C‖2 p
εn +

L‖C‖2√
n

)
excess population risk. Further, if the loss function is also m-strongly

convex, then there is an ε-DP algorithm that has excess population risk of O
(

L2 p2 log n

mε2n2 + L2

mn

)
.
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The best prior bounds were O

(
p log n

εn + log3/2 n√
n

)
for convex losses, and O

(
p2 log2 n

mε2n2 + log3 n
mn

)
for m-

strongly convex losses, both due to [ALD21], which lacked the ability to match the optimal non-private
bounds of O

(
1/
√

n
)

(and O (1/mn) respectively) as ε → ∞. (To the best of our knowledge, this gap is
inherent in the technique of [ALD21].)

In most cases, the best DP-ERM/SCO bounds can be achieved by setting ψ = 0 in Theorems 1.1 and 1.2
(in the convex case, after adding a quadratic regularizer to enforce strong convexity). The second result
in Theorem 1.3 is the only one which does not directly apply the Rashomon sampler’s risk bounds to the
(regularized) loss. Instead, we use an iterated exponential mechanism, which samples from a sequence of
Gibbs distributions defined over an adaptively chosen sequence of sets Ck ⊂ Ck−1 ⊆ . . . ⊆ C0 = C . To
analyze it, we compose the privacy/utility analysis obtained independently for the Gibbs distribution over
each of these sets. Our analysis simplifies the analysis in [BST14] and does not require running two different
algorithms (i.e., output perturbation and exponential mechanism) to obtain the optimal trade-off. We give
the full description of the iterated exponential mechanism and its analysis in Section 4.

Additionally, for DP-ERM, in Appendix C we provide a lower bound for non-convex losses which
demonstrate that, unlike for convex losses, it is not possible to achieve better utility (up to factors in

log(1/δ)) than Õ(p/εn) even if we relax privacy guarantee to (ε, δ)-DP. We prove this result by appeal-
ing to the lower bound in [SU17].

Sampling from Rashomon Sets (Section 2) Our motivation to design uniform sampler for the Rashomon
set stems from quantifying predictive multiplicity for Rashomon sets (described later) [HC22]5 and that it is
a strict generalization of the problems of DP-ERM and DP-SCO. Given the wide applicability of Rashomon
set mentioned earlier, we believe studying this problem will have more implications.

We start with the formal definition of uniform sampling from Rashomon set.

Definition 1.4 ((λ, ψ, γ)-Rashomon sampler). Given a loss function L(θ; D) = 1
n

n

∑
i=1

ℓ(θ; di) defined over a data

set D, a constraint set C , and a threshold ψ, an algorithm A is (λ, ψ, γ)-sampler for the Rashomon set

G =

{
θ ∈ C : L(θ; D) ≤ min

θ∗∈C
L(θ∗; D) + ψ

}

if distribution of θpriv ← A is λ-far in total variation distance (TVD) from a distribution π such that
1. Uniform sampling: The marginal distribution of π over G is uniform.
2. Maximality condition: For any θ ∈ G and θ′ /∈ G, the distribution π assigns probability density to θ which

is greater than or equal to that of θ′.
3. Excess empirical risk guarantee: EA

[
L(θpriv ; D)

]
≤ min

θ∗∈C
L(θ∗; D) + ψ + γ.

The maximality condition rules out trivial and uninteresting solutions. It ensures that (ignoring privacy
constraints), it is possible to combine the Rashomon sampler with rejection sampling to efficiently get an
uniform sample from G. In particular, we show in Theorem B.6 that, if ψ = ω(pγ), then the Gibbs sampler
has 1− o(1) probability of hitting the Rashomon set for the values of β stated in Theorem 1.1. We presented
Definition 1.4 with respect to empirical accuracy guarantee for the ease of presentation. One can also define
excess population risk guarantee:

EA,d∼D
[
ℓ(θpriv ; d)

]
≤ ψ + min

θ∈C
Ed∼D [ℓ(θ; d)] + γ′,

where γ′ is the population level slack and D is the distribution from which the data samples in the data set D
are drawn i.i.d.

5Predictive multiplicity refers to models that achieve statistically-indistinguishable performance on a test set assign wildly differ-
ent predictions to an input sample. Therefore, if we naively pick a model from a Rashomon set, it can have highly disparate impact
on the predictions on an individual test sample resulting in unfair and potentially individual level harm [Smi20, CH22].
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In Theorems 2.1 and 2.3, we show that our LD based Gibbs sampler from Theorem 1.1 is a (0, ψ, p/β)-
Rashomon sampler. Furthermore, in Theorem 2.6, we show that the excess population risk (i.e., ψ + γ′)
for the Rashomon set sampler, is bounded by

p
β + O

(
ψ + L

√
ψ/m + L2/mn

)
. We give a summary of the

bounds in Table 1.
We next discuss the use case of predictive multiplicity eluded above. Consider a classification prob-

lem with c classes and ∆c be the probability simplex. Let (y, x) be a test sample and let f (x; θ) ∈ ∆c be
the prediction function that provides a probability distribution across the c classes. The objective is to
estimate the variance, Var( f (x, θ)), where θ ∼unif G. One can get its approximate estimate by sampling
{θ1, . . . , θk} ∼iid G, and estimating the standard deviation of { f (x, θ1), . . . , f (x, θk)}. While there is a pri-
vacy cost in sampling k models, [BH18, Section 6.4] shows that the variance estimation comes at no addi-
tional privacy cost when compared to that of outputting a single model. Given the standard deviation, one
can then decide on the class to predict for x, either via further randomization, or other strategy, including
more sophisticated measures like Rashomon capacity [HC22]. We leave exploring their DP variants for future
research.

Organization: For the ease of presentation and owing to the generality of the Rashomon set sampling
problem, we state all our main results in that context in Section 2. In Section 3 we provide the details for the
discretization of the LD algorithm. In Section 4 we provide DP-ERM/DP-SCO results obtained by setting
ψ = 0 for the Rashomon set sampler. Finally, in Section 5 we end with discussions and future directions.
We enumerate our notations in Table 3.

1.4 Omitted results from v3

Most results in the previous version of this paper on arXiv (v3) appear in this version or are subsumed by
results in this version. For ease of presentation, a few results in v3 were not carried over. The following is a
complete list of the omitted results:

• Section 3.3 of v3, which gives a tighter analysis of the empirical loss guarantees for the continuous
exponential mechanism on non-convex losses than the one in Bassily et al. [BST14] by removing the
“small ball’ assumption.

• Section 5 and Appendix F of v3 analyze the DP-ERM/SCO guarantees of finite-time LD under ap-
proximate DP by a gradient descent-like analysis (as opposed to the results in this version, which use
the analysis of the exponential mechanism).

• Section 7 of v3 (i) gives intuition for why the sum of step sizes in DP-SGD can be quite small (ii) shows
that at some time when DP-SGD/LD achieve the asymptotically optimal ERM bound, their output
distribution is total variation distance 1− o(1) from their stationary distribution. Note that (ii) in v3
is shown for a loss which is not strongly convex, i.e. (ii) does not contradict the results in this paper
which rederive the optimal ERM bound by showing the chain mixes for a strongly convex loss.

• Section 8 of v3 shows a bound on the last-iterate Rényi divergence between running DP-LD on two
adjacent databases that does not go to infinity as t goes to infinity. This is somewhat subsumed by
the analysis in section 2, which shows a qualitatively similar statement in terms of approximate DP
instead of Rényi DP.

2 Rashomon Set Sampling

In this section, we provide the privacy analysis (Sections 2.1 and 2.4)6, and the utility analysis (Sections 2.2

and 2.3) for the Rashomon set sampler based on the Gibbs distribution proportional to exp(−βL̃(θ; D)),
where

L̃(θ; D) := max{L(θ; D), ψ + min
θ∗∈C
L(θ∗; D)}.

6The analysis in Section 2.1 is via analyzing the privacy of the path of the LD that converges to the Gibbs distribution, and an
alternate one in Section 2.4 via directly analyzing the privacy of the Gibbs distribution.

7



Both the privacy and the utility guarantee primarily depend on the choice of the inverse temperature
β. Under (ε, δ)-DP, we can operate with higher values of β than in the case of ε-DP (see Theorems 2.1
and 2.3): this translates to a better utility for certain choices of ψ. In Table 1 we provide a summary of the
empirical/population risk guarantees for our Rashomon samplers satisfying a given privacy constraint.

In our algorithmic version of the Gibbs distribution, we instantiate it with the LD described in Figure 1.
The LD that is used to instantiate the Gibbs distribution in the ε-DP case unfortunately requires running
the algorithm for t → ∞ to reach within ε of the stationary distribution in terms of ℓ∞-distance7. However,

if we are willing to tolerate (ε, δ)-DP guarantee, then the LD can be run in time ≈ log(1/δ)
βm , where m is the

strong convexity parameter. A standard discretization of the LD we use in this section (via SGLD), that
makes the algorithm run on a finite precision machine, can be found in Section 3. All the missing proofs of
this section appear in Appendix B.

Privacy guarantee ε-DP (ε, δ)-DP

Excess empirical risk (γ)
Lp
εn

L2 p log(1/δ)
mε2n2

Excess population risk
Lp
εn + ψ + L

√
ψ
m + L2

mn
L2 p log(1/δ)

mε2n2 + ψ + L
√

ψ
m + L2

mn

Table 1: Summary of our Rashomon sampler guarantees. In all results, λ (the sampling error) is 0. In
bounds where the parameters appear, we assume L-Lipschitzness, m-strong convexity, and M-smoothness
within C .

2.1 Privacy Guarantees and Running Time

The privacy in ε-DP case follows from the fact that max{L(θ; D), min
θ∗∈C
L(θ∗; D) +ψ} cannot change by more

than L ‖C‖2 /n when we change one data point because each ℓ ∈ [0, L ‖C‖2].

Theorem 2.1 (ε-DP sampler; Theorem 3.1 of [BST14]). Suppose we have a constraint set C and a loss function
ℓ(θ; d) such that for all d, ℓ(·; d) ∈ R

+, and is L-Lipschitz within C . Then, sampling θpriv from the Gibbs distribution
exp(−β max{L(θ; D), min

θ∗∈C
L(θ∗; D) + ψ}) is ε-differentially private for β = O( εn

L‖C‖2
) and all ψ.

(ε, δ)-DP Sampler: If ℓ(θ; ·) is m-strongly convex and our goal is (ε, δ)-DP, we can use larger values of β.
However, for the settings when ψ > 0, we would additionally require ℓ(θ; ·) to be M-smooth. We first need
a “continuous” composition theorem that bounds the Rényi divergence between two instances of LDs run
on adjacent databases:

Lemma 2.2. Let θ0, θ′0 have the same distribution Θ0, θt be the solution to (2) given θ0 and data set D (and cor-
respondingly θ′0 and θ′t for a data set D′). Let Θ[0,t] (Θ′[0,t]) be the distribution of the trajectory of LD {θt′}t′∈[0,t]

({θ′t′}t′∈[0,t], respectively). Suppose we have that ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆ for all θ. Then ∀α ≥ 1:

Rα(Θ[0,t], Θ′[0,t]) ≤
αβ2∆2t

4
.

The idea behind the proof is to use a bound on the divergence between Gaussians and RDP compo-
sition to provide a bound on the divergence between the projected noisy gradient descents on datasets
D and D′. Then, taking the limit as the step size in gradient descent goes to 0 and applying Fatou’s
lemma (Lemma A.14), we get the bound above. A full proof is deferred to Appendix B.1. Rényi diver-
gence bounds imply (ε, δ)-DP privacy guarantees (Fact A.4), which we use to prove the following theorem
in Appendix B.2:

7[BST14, MV21] provides rejection sampling based polytime algorithms, but lack the generalization properties of LD.
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Theorem 2.3 ((ε, δ)-DP sampler). Suppose we have a constraint set C and a loss function ℓ(θ; d) such that for all

d, ℓ(·; d) ∈ R
+ is m-strongly convex, M-smooth, and is L-Lipschitz within C . For t = Õδ

(
1

βm

)
and an appropriate

choice of θ0, let Θt be the distribution over θt given by running (2) on max{L(θ; D), min
θ∗∈C
L(θ∗; D) + ψ}. Then Θt

is within total variation distance δ of the Gibbs distribution on max{L(θ; D), min
θ∗∈C
L(θ∗; D) + ψ}, and is (ε, δ)-DP

if any of the following holds:

(i) ψ ∈
(

2L2

Mn2 ,
L‖C‖2

2

]
, and β = Θ̃

(
ε2(m/M)

log(L‖C‖2/δ2) log(1/δ)
· 1

ψ

)
,

(ii) ψ ≤ 2L2

Mn2 and β = Θ̃
(

ε2n2m
L2 log(L‖C‖2/δ2) log(1/δ)

)
.

Furthermore, the privacy holds even if we release the entire trajectory {Θt′}t′∈[0,t], and even without convexity.

If ψ has a dependence o(1/n) on n, this gives a better dependence of β on n than Theorem 2.1. For
privacy, we first bound the sensitivity of the thresholded loss by O(max{L/n,

√
Mψ}). We then appeal

to Lemma 2.2 and the translation from Rényi divergence bounds to (ε, δ)-DP bounds (Fact A.4). Since
Lemma 2.2 does not require convexity and allows for releasing the entire trajectory, the same is true for
the privacy guarantee of Theorem 2.3. The sampling guarantee is given by showing that the Gibbs distri-
bution satisfies log-Sobolev inequality (LSI; see Definition A.19), a measure of concentration. This implies
convergence of LD to the Gibbs distribution by results in [VW19]. A few comments are in order about the
theorem.

Direct analysis of Gibbs distribution Note that by triangle inequality, Theorem 2.3 also implies that, un-
der strong convexity, the Gibbs distribution is (ε, 2δ)-DP. We can also analyze the Gibbs distribution directly:
Since the Gibbs distribution satisfies LSI, one can obtain an isoperimetric inequality for the probability mea-
sure via [Led99]. Using this isoperimetric inequality and the coupling between Gibbs distributions that we
later state in Theorem 2.5, one can obtain a bound on β that improves Theorem 2.3 by log factors, giving

tight bounds in the case ψ = O
(

L2

Mn2

)
. However, this privacy proof relies heavily on the convexity and

does not give an “anytime” private sampler like our LD-based proof. For the sake of completeness, we
provide a proof of this result in Section 2.4 (see Theorem 2.7 for a precise statement).

Dependence of β on ψ We believe the relation β ∝ min{1/ψ, n2} in Theorem 2.3 is necessary. To see
this, consider mean estimation on an all zero databases D and on neighboring D′ that contain just a sin-
gle 1. Fix ε = 1 for simplicity. The Gibbs samplers for these datasets have densities proportional to

exp(−β min{‖x‖2
2 /2, ψ}) and exp(−β min{‖x− 1/n‖2

2 /2, ψ}), respectively. For the case ψ = 0, this is
just a Gaussian mechanism with sensitivity 1/n and variance 1/β, and one way to argue this mechanism
is differentially private is to provide a tail bound on x, which gives a tail bound on the privacy loss. For
ψ > 0, the unnormalized density decreases by a factor of exp(−Ω(βψ)) in the range [−√2ψ,

√
2ψ] when

we apply thresholding to the loss function. In turn, if most of the probability mass is in this interval, a tail
bound on events outside this interval can get worse by a factor of exp(−Ω(βψ)). Suppose we use β ≈ n2,
which gives (1, δ)-DP for ψ = 0. Then the interval [−

√
2ψ,

√
2ψ] contains all points within

√
ψ/β ≈ n

√
ψ

standard deviations of the mean. So this interval contains most of the probability mass of the mecha-

nism when ψ = Ω̃(1/n2). This roughly matches the “transition point” in Theorem 2.3. In order for a tail
bound that holds w.p. 1− δ on the Gaussian mechanism to be non-vacuous after thresholding, we need
βψ = O(log(1/δ)). This roughly matches our choice of β after the “transition point.”

Running time In the following discussion, we will assume L = ‖C‖2 = Θ(1) for brevity. The LD for
the ε-DP sampler (mentioned in Theorem 2.1) runs for time t → ∞ to obtain the privacy/utility trade-
off obtained by Theorems 2.1 and 2.4. However, if we are willing to tolerate (ε, δ)-DP, then assuming
the loss function L(θ; D) is m-strongly convex, one can obtain asymptotically the same privacy/utility

trade-off, and run for time tβ = Õδ

(
max

{
1

βm ,
ψ
m

})
. This follows from Lemma B.5. Setting β = εn from

9



Theorem 2.1, we have tβ = Õδ

(
max

{
1

mεn ,
ψ
m

})
. The (ε, δ)-DP sampler from Theorem 2.3 also runs in time

tβ, where β is chosen based on Theorem 2.3. Hence, to obtain the best (ε, δ)-DP Rashomon sampler, one

needs tβ = Õδ

(
max

{
1

mε2n2 ,
ε2 Mψ

m

})
. In Section 3, we discuss how one can obtain an approximate sampler

using only discrete noisy gradient steps.

Probability of hitting the Rashomon Set The Gibbs measure induced by the LD algorithm i.e.,

exp(−β max{L(θ; D), ψ + min
θ∈C
L(θ; D)})

trivially satisfies the maximality condition for the Rashomon sampler. In Theorem B.6, we show that the
ε-DP Rashomon set sampler hits the set G with probability at least 1 − o(1), if ψ = ω̃(p2/(εn)). (Here,
we assumed all other parameters to be constant.) Although all our Rashomon set samplers are forced to
provide non-zero probability mass on the Rashomon set due to the maximality condition, it is unclear how
to obtain a similar guarantee as Theorem B.6 for our (ε, δ)-DP sampler. We leave it as an open question.

2.2 Excess Empirical Risk Guarantees

The excess empirical risk guarantee follows from Theorem 3.2 in [BST14]:

Theorem 2.4. Assume each loss function is convex. Then sampling θpriv from the Gibbs distribution

exp(−β max{L(θ; D), min
θ∗∈C
L(θ∗; D) + ψ})

is a (0, ψ, p/β)-Rashomon sampler.

Using Theorem 2.4, to get the best risk bound it suffices to find the largest value of β that preserves DP
under given assumptions on the loss function. Theorem 2.3 suggest that when ψ = 0, the setting of β that
is required for (ε, δ)-DP is independent of the smoothness parameter M, and, hence can also be applied to
non-smooth functions. Combining Theorems 2.1, 2.3, and 2.4 we get the existence of the following three
Rashomon samplers:

•
(

0, ψ, Õ
(

p · L‖C‖2
εn

))
-sampler for all ψ and is ε-DP.

•
(

0, ψ, Õ
(

pψ · M log(L‖C‖2/δ2) log(1/δ)
mε2

))
-sampler when ψ ∈

(
2L2

Mn2 ,
L‖C‖2

2

]
and is (ε, δ)-DP.

•
(

0, ψ, Õ
(

p · L2 log(L‖C‖2/δ2) log(1/δ)
mε2n2

))
-sampler when ψ ≤ 2L2

Mn2 and is (ε, δ)-DP.

In the (ε, δ)-DP setting if instead of sampling from the Gibbs distribution, we operate with the LD, then
in the Rashomon sampler we set λ = δ instead of λ = 0 as done until now. The loss guarantee worsens by
at most O(δL2/m) if we use LD instead of the Gibbs sampler, so the earlier bounds remain unchanged for
δ = O(1/ε2n2).

Ignoring the polylogarithmic terms, if ψ = Ω̃
(

εL‖C‖2
(M/m)

· 1
n

)
, then our privacy analysis of the ε-DP Rashomon

sampler gives a better bound on β than our analysis of the (ε, δ)-DP sampler, and vice versa when ψ =

õ
(

εL‖C‖2
(M/m)

· 1
n

)
. As previously mentioned, we believe that the weaker bound on β for higher values of ψ in

our analysis of the (ε, δ)-DP sampler is fundamental to the problem.

2.3 Excess Population Risk Guarantees

For the same Rashomon samplers, we can derive bounds on their population risks under strong convexity.
We give a bound on uniform stability (see Definition A.15) of the Gibbs distribution:
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Theorem 2.5. Suppose we have C and ℓ(·; d) ∈ R
+ such that, for all d, ℓ(·; d) is m-strongly convex, and is L-

Lipschitz within C . Then sampling θpriv from the Gibbs distribution proportional to

exp(−β max{L(θ; D), min
θ∗∈C
L(θ∗; D) + ψ})

satisfies

(
4L
√

2ψ
m + 2L2

mn

)
-uniform stability.

Proof. Let θt, θ′t be the solutions to running (2) from the same initialization on L(θ; D) and L(θ; D′), respec-

tively. Similarly, let θ̃t be the solutions to running eq. (2) on max

{
ψ + min

θ∗∈C
L(θ∗; D),L(θ; D)

}
and θ̃′t be the

solutions to running eq. (2) on max

{
ψ + min

θ∗∈C
L(θ∗; D′),L(θ; D′)

}
. Let W∞ denote the the ∞-Wasserstein

distance. Then we will show that for all t, W∞(θ̃t, θ̃′t) ≤ 4
√

2ψ
m + 2L

mn . Taking the limit as t goes to infinity,

we get a ∞-Wasserstein distance bound between the Gibbs samplers. The theorem now follows by using
L-Lipschitzness.

We now show the desired bound on W∞(θ̃t, θ̃′t). By the triangle inequality, we have

W∞(θ̃t, θ̃′t) ≤W∞(θ̃t, θt) +W∞(θ̃′t, θ′t) +W∞(θt, θ′t).

So, it suffices to prove that for all t,

W∞(θ̃t, θt) ≤ 2

√
2ψ

m
, W∞(θ̃′t, θ′t) ≤ 2

√
2ψ

m
, and W∞(θt, θ′t) ≤

2L

mn
.

We first prove the desired bound on W∞(θ̃t, θt), the bound on W∞(θ̃′t, θ′t) follows identically.

Bounding W∞(θ̃t, θt): We show that conditioned on the value of a shared Brownian motion Wt,
∥∥∥θt − θ̃t

∥∥∥
2
≤

2
√

2ψ
m holds deterministically, which implies the desired Wasserstein distance bound. We split [0, ∞) into

intervals of maximal length for which one of the following three holds throughout each interval:

(i) θ̃t /∈ G,
(ii) θ̃t ∈ G, θt ∈ G, and

(iii) θ̃t ∈ G, θt /∈ G.
In case (ii), by strong convexity throughout the interval we have

∥∥∥θt − θ̃t

∥∥∥
2
≤ ‖G‖2 ≤ 2

√
2ψ

m
.

So it suffices to show that in cases (i) and (iii),
∥∥∥θt − θ̃t

∥∥∥
2

is non-increasing throughout the interval. Then

the desired Wasserstein distance bound holds by induction, since initially θ0 = θ̃0.

In case (i), since L is convex, projection is contractive (which implies
d‖θt−θ̃t‖2

2
dt can only increase if we

use (1) instead of (2)), and that we are using a shared Brownian motion Wt, we have

1

2
· d

dt

∥∥∥θt − θ̃t

∥∥∥
2

2
≤
〈

dθt

dt
− dθ̃t

dt
, θt − θ̃t

〉
= β〈−(∇L(θt; D)−∇L(θ′t; D)), θt− θ̃t〉 ≤ 0.

Similarly, in case (iii), by convexity and since θ̃t is in the Rashomon set and θt is not (or L(θ̃t; D) ≤
L(θt; D)), we have

11



1

2
·

d
∥∥∥θt − θ̃t

∥∥∥
2

2

dt
≤
〈

dθt

dt
− dθ̃t

dt
, θt − θ̃t

〉
= β

〈
∇L(θt; D), θ̃t− θt

〉
≤ β(L(θ̃t; D)−L(θt; D)) ≤ 0.

Bounding W∞(θt, θ′t): We again show that conditioned on the value of a shared Brownian motion Wt,

‖θt − θ′t‖2 ≤ 2L
mn holds deterministically. We again use the fact that projection is contractive, so we can

consider using (1) instead of (2). Then by m-strong convexity and L-Lipschitzness:

1

2
· d ‖θt − θ′t‖2

2

dt
≤
〈

dθt

dt
− dθ′t

dt
, θt − θ′t

〉
= −β〈∇L(θt; D)−∇(L(θ′t, D′), θt − θ′t〉

= −β
(〈∇L(θt; D)−∇(L(θ′t, D), θt− θ′t〉+ 〈∇L(θ′t; D)−∇(L(θ′t, D′), θt − θ′t〉

)

≤ β

(
−m

∥∥θt − θ′t
∥∥2

2
+

2L

n

∥∥θt − θ′t
∥∥

2

)
. (3)

Then, if ‖θt − θ′t‖2 >
2L
mn , then we have (3) < 0. That is, we have

d‖θt−θ′t‖
2
2

dt < 0. This implies the desired
Wasserstein distance bound completing the proof of Theorem 2.5.

Remark 1. We note that in the second part of the proof, one can instead take the L2/mn-uniform stability of (noisy)
gradient descent on strongly convex losses proved in [HRS16], and then take the limit as η → 0, T → ∞ to conclude
the same uniform stability bound holds for the Gibbs distribution, rather than appeal to the derivative of the distance
between θt and θ′t.

It is straightforward to see that a (0, ψ, γ)-Rashomon sampler has expected excess empirical risk at most
ψ + γ. Then, an algorithm’s excess population risk is at most its excess empirical risk plus its uniform
stability (see Lemma A.16), giving us the following result:

Theorem 2.6. Assume that each of the individual loss function ℓ(θ; ·) ∈ R
+ is m-strongly convex and L-Lipschitz

within the constraint set C . Then
• There exists an ε-DP rashomon sampler with threshold ψ and excess population risk

O

(
L ‖C‖2 p

εn
+ ψ + L

√
ψ

m
+

L2

mn

)
.

• There exists an (ε, δ)-DP rashomon sampler with threshold ψ and excess population risk (assuming M-smoothness)

Õ

(
p max

{
ψ,

L2

Mn2

}
· M log(L ‖C‖2 /δ2) log(1/δ)

mε2
+ ψ + L

√
ψ

m
+

L2

mn

)
.

2.4 Interlude: Proof of Privacy for the Gibbs Sampler via Isoperimetry

Theorem 2.7. Suppose ℓ is m-strongly convex, M smooth, and L-Lipschitz within C . Let

L′(θ; D) := max{L(θ; D), min
θ∗∈C
L(θ∗; D) + ψ}.

Then for β = O
(

min{ε2,ε}m
max{L2/n2,Mψ} log(1/δ)

)
, sampling from the distribution with density proportional to exp(−βL′(θ; D)) ·

1(θ ∈ C) satisfies (ε, δ)-DP.
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Proof. Let P be the probability measure for the distribution induced by D and Q be the same for D′. Let
g(θ) = log(P(θ)/Q(θ)). Then g is a 6β max{L/n,

√
Mψ}-Lipschitz function. It suffices to show that

Prθ∼P [g(θ) > ε] ≤ δ. We first bound Eθ∼P [g(θ)] as a function of β. This is simply the KL divergence
between P, Q, which must be non-negative. By symmetry, Eθ∼Q [g(θ)] is non-positive. In addition, we
can bound the difference between these two expressions: in the proof of Theorem 2.5, we showed that the

∞-Wasserstein distance between P and Q is at most 4
√

2ψ
m + 2L

mn . Then, by Lipschitzness of g,

Eθ∼P [g(θ)] ≤ Eθ∼Q [g(θ)] + 6β max{L/n,
√

Mψ} ·
(

4

√
2ψ

m
+

2L

mn

)

≤ 6β max{L/n,
√

Mψ} ·
(

4

√
2ψ

m
+

2L

mn

)
(4)

≤ 36
√

2β max

{
L2

mn2
,

√
M

m
ψ

}
. (5)

We next give a high probability bound on g as a function of β. P satisfies LSI with constant βm exp(−βψ)
by Lemma B.4. Then by Proposition 2.3 in [Led99], plugging in our LSI constant and Lipschitzness bound
for g we have:

Pr
θ∼P

[g(θ) > Eθ∼P[g(θ)] + βr] ≤ exp

(
− βm exp(−βψ)r2

18 max{L2/n2, Mψ/2}

)
(6)

Setting

r =
3
√

2 max{L/n,
√

Mψ/2}√
βm exp(−βψ/2)

√
log(1/δ),

the right hand side in eq. (6) becomes δ. Setting

β ≤ min{ε2, ε}m
c max{L2/n2, Mψ} log(1/δ)

,

where c is a sufficiently large constant, gives that the upper bound in (5) is at most ε/2 and βr ≤ ε/2. Here,
we use that for this choice of β, βψ ≤ 1. Plugging in to (6) we get Prθ∼P [g(θ) > ε] ≤ δ exactly as desired.
This completes the proof of Theorem 2.7.

2.5 Comparison with Contemporary Work of [GLL22]

All our results for DP-ERM and DP-SCO, and their relation with Langevin diffusion is contemporary
to [GLL22] (which is also formally acknowledged by [GLL22]). Our results specific to Rashomon sets (i.e.,
with setting ψ > 0) and SGLD are subsequent to their work. In the following, we discuss the technical
differences between two works, and highlight the settings in which one might be better over the other.

On the privacy aspect Since [GLL22] gives Gaussian DP guarantees, which do not translate to ε-DP guar-
antees, we will restrict the discussion specific to (ε, δ)-DP. Unlike [GLL22], our privacy guarantee (for LD
as well as SGLD) is independent of convexity. This is highly desirable for broader applicability in settings
where where the loss function may not be globally convex, but has local convexity properties (e.g., losses
emerging from deep learning settings [IPG+18, KMN+16].) Our privacy holds for the entire path of the
optimization. In contrast, [GLL22] only guarantee privacy for the final model release. In particular, this
implies that we can stop and output the model at any point of the optimization trajectory. While this might
not yield optimal model, the privacy is never compromised. The ability to release the path has been used
in subsequent works [SGM+22, RTT+23] for uncertainty quantification.
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On the proof technique. In Theorem 2.7, we demonstrated that the proof technique of [GLL22] can be
extended to obtain privacy for the Gibbs distribution used in Rashomon set sampling problem (i.e., when
ψ > 0). However, unlike Lemma 2.2, the proof of Theorem 2.7 requires an isoperimetric inequality based on
LSI [Led99], and bounding the LSI constant for the Rashomon set sampler. In addition, while both our work
and [GLL22] shows uniform stability property for the Gibbs distribution, our proof is arguably simpler:
Theorem 2.5 uses only well-known properties of gradient descent and avoids tools such as the Talagrand
transportation inequality. Since the proof techniques of [GLL22] and ours are completely independent, we
believe that both the techniques will find adoption in subsequent works on DP optimization.

On run time In the DP-SCO setting, the gradient oracle complexity of [GLL22] is better than our SGLD
discretization of the Langevin diffusion. In particular, they achieve oracle complexity with logarithmic
dependence on p and the total variation distance error δ, whereas we have a dependence p/δ2 on these
two parameters. Furthermore, we require exact gradient oracles, whereas they only require an unbiased
function oracle.

3 Discrete Approximation of the Langevin Diffusion and SGLD

While exactly sampling from the Gibbs distribution may be computationally intractable, under some ad-
ditional assumptions, a number of papers study polynomial-time algorithms for approximate sampling
from the Gibbs distribution with various metric of approximation, such as Renyi divergence [VW19, GT20,
EHZ21, CEL+21] and ∞-divergence [BST14, MV21]. For sampling from the distribution exp(−βL), a pop-
ular approximate sampler is the Stochastic Gradient Langevin Dynamics (SGLD). The SGLD approximates
a finite-time solution to (1) via the discrete updates: θt+1 = θt − ηβ∇L(θt; D) + ξt, where ξt ∼ N (0, 2ηIp).
This update can be seen as equivalent to eq. (1) if we use ∇L(θη⌊t/η⌋; D) instead of ∇L(θt; D), i.e., instead
of continuously, update the gradient drift term in eq. (1) every η time.

Many works study SGLD as an approximate sampler, and show that, for sufficiently small η and large
T, θT is an approximate sample from the stationary distribution exp(−βL) of (1). For an appropriate defi-
nition of approximation, such as total variation distance, privacy of the stationary distribution then implies
privacy of SGLD. SGLD also converges in polynomial time for stronger notions of convergence such as
the Rényi divergence, but since divergences are “one-directional” bounds, whereas privacy requires “bi-
directional” bounds, these results combined with the privacy of the stationary distribution do not necessar-
ily ensure privacy of SGLD. One could also use the result of [AT22c], which shows SGLD is an approximate
sampler for the discrete chain’s stationary distribution. However, one would then need to show a bound on
the bias due to the discretization that preserves privacy and utility.

Instead, we appeal to the privacy of the noisy gradient steps taken since SGLD is just a reparameteri-
zation of DP-SGD. Using the composition theorem for Rényi divergences (Fact A.8) and translation from
Rényi divergence bounds to (ε, δ)-DP (Fact A.4), we get the following.

Lemma 3.1. If
∥∥∇L(θ; D)−∇L(θ; D′)

∥∥
2
≤ ∆ and β ≤ 2ε

∆
√

Tη log(1/δ)
,

then outputting θT sampled from SGLD is (ε, δ)-DP.
This statement matches Theorem 2.2 as η → 0. For the utility guarantee of SGLD as an approximate

sampler, we use results from [CEL+21], though these require smoothness. The thresholded loss does not
satisfy smoothness for ψ > 0. In Appendix B.4, we show that using standard smoothing techniques, one can
still get a discrete approximate sampler for the Gibbs distribution of a smoothed version of the thresholded
loss, which implies the following sampler:
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Assumption ε-DP (ε, δ)-DP

DP-ERM
Convex

Lp
εn Õδ

(
L
√

p
εn

)

SC
L2(p2+p log n)

mε2n2 Õδ

(
L2 p

mε2n2

)

DP-SCO
Convex L√

n
+

Lp
εn

L√
n
+ Õδ

(
L
√

p
εn

)

SC L2

mn +
L2 p2 log n

mε2n2
L2

mn + Õδ

(
L2 p

mε2n2

)

Table 2: Summary of results that can be (re-)derived using the Rashomon sampler. The bounds marked
in blue were not known even via different algorithms, and all other bounds are tight. Convex: Convex
bounded Lipschitz losses, SC: Convex with ∇2ℓ(θ; ·) < mI.

Theorem 3.2. Suppose ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆, and that each individual loss function ℓ is m-strongly

convex and M-smooth. Let 0 ≤ λ ≤
√

ψ
Mp and Q be the (unconstrained) Gibbs distribution of βL̃′, where

L̃′ := Eξ∼N(0,λ2Ip)

[
min{L(θ + ξ; D), min

θ∗∈C
L(θ∗; D) + ψ}

]
.

Then for

β = Õ

(
ε2m

max{∆2, Mψ} log2(1/δ)

)
, T = Ω̃

(
p(M2 + Mψ

λ2 )max
{

∆4, M2ψ2
}

ε4m4δ2

)
,

there exists an algorithm using T iterations that satisfies (ε, δ)-DP and returns a sample from a distribution whose
TVD from Q is δ. Furthermore, the privacy guarantee holds even without convexity. In particular, if ψ = 0, for

λ = 0 the bounds are β = Õ

(
ε2m

∆2 log2(1/δ)

)
, T = Ω̃

(
pM2∆4

ε4m4δ2

)
.

In Theorem 3.2, we do not know if one can exactly compute the values of∇L̃′(θ), but one can make ap-

proximate oracle calls to the gradients of L̃′ via Monte Carlo sampling. That is, one samples ξ1, . . . , ξk, and

then uses 1
k ∑i∈[k]∇(min{L(θ + ξ; D), min

θ∗∈C
L(θ∗; D) + ψ}) as an estimate of ∇L̃′(θ). It is easy to check that

using Monte Carlo sampling instead of exact gradients does not affect our (worst-case) privacy analysis.
Of course, in practice, the assumptions in Theorem 3.2 may not hold anyway, and using the convolved loss
function and using the unperturbed loss function will lead to similar outcomes for small λ, and also have
the same privacy guarantees.

4 Optimal DP-ERM/SCO Bounds from Rashomon Samplers

In this section we show that just using the Rashomon sampler with ψ = 0 as a primitive is enough to derive
near-optimal bounds for DP-ERM/SCO in all settings. Our results are summarized in Table 2.

4.1 Pure DP, Convex Losses

For L-Lipschitz convex losses on C , the best possible excess empirical risk under ε-DP is O
(

L‖C‖2 p
εn

)
. This

bound is achieved by the exponential mechanism as shown in [BST14], which is exactly what the Gibbs
distribution is for ψ = 0.

The best possible excess population risk under ε-DP is O
(

L‖C‖2 p
εn +

L‖C‖2√
n

)
. We can achieve this via

Theorem 2.6 by setting ψ = 0 and adding the regularizer L
2‖C‖2

√
n
‖θ − θ0‖2

2, where θ0 is an arbitrary point
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in C , to the loss function to give the algorithm uniform stability. The excess population risk of the Gibbs

distribution with respect to the regularized loss is O(
L‖C‖2 p

εn +
L‖C‖2√

n
)) by Theorem 2.6, and the regularized

and unregularized loss differ by at most O(
L‖C‖2√

n
) everywhere in C . Putting it all together, we get the

following:

Theorem 4.1. For convex, L-Lipschitz losses over C , there exists an ε-DP algorithm with excess population risk

O
(

L‖C‖2 p
εn +

L‖C‖2√
n

)
.

4.2 Pure DP and Strongly Convex Losses

For L-Lipschitz, m-strongly convex losses on C , the best possible excess empirical risk under ε-DP is O
(

L2 p2

ε2n2m

)
.

Unfortunately, the guarantee given by Theorem 2.4 is worse by a quadratic factor. In [BST14], the optimal
excess empirical risk is achieved (up to log factors) by first choosing a smaller ball using the Laplace mech-
anism, and then running the Gibbs sampler on this smaller ball. We show the best-known bound can be
achieved using the Gibbs sampler only as a primitive, which does not allow us to use the Laplace mecha-
nism. We propose the iterated exponential mechanism, given as Algorithm 1, with the following guarantee:

Algorithm 1 Iterated Exponential Mechanism

Require: Loss function L, constraint set C0, Lipschitz constant L, strong convexity parameter m, number of
iterations k, privacy parameter sequence {ε i}k

i=1, flag and data set D of n samples.
1: for i = 1 to k do
2: Sample θi from Ci−1 with probability proportional to exp(− ε in

2L‖Ci−1‖2
L(θ; D)).

3: If flag = 1 then

4: Ci ←
{

θ ∈ Ci−1 : ‖θ− θi‖2 ≤
√

cL(p+3 log n)‖Ci−1‖2
mε in

}
.

5: else

6: Ci ←
{

θ ∈ Ci−1 : ‖θ− θi‖2 ≤
√

cL(p+3 log n)‖Ci−1‖2
mε in

+
cL
√

log n

m
√

n

}
.

7: end
8: return θk

Theorem 4.2. Assume each of the individual loss function in L(θ; D) is L-Lipschitz within the constraint set C0.
For any ε, if we instantiate Algorithm 1 with k = 1 + ⌈log log( εn

(p+log n)
)⌉ and ε i = ε/2k−i+1, then Algorithm 1 is

ε-differentially private.
Additionally, if the loss function L(θ; D) is m-strongly convex and the constraint set C0 is convex and flag = 1,

then over the randomness of the algorithm, the output θk of Algorithm 1 has excess empirical risk:

O

(
L2(p2 + p log n)

ε2n2m

)
.

The theorem follows by solving a recurrence for ‖Ci‖2 to bound the diameter of the final set Ck−1. Then
we show that the minimizer over C0 is also in Ck−1 with high probability. Therefore, the analysis of the
exponential mechanism on Ck−1 gives the theorem. We note that in addition to only using the Gibbs sampler
as a primitive, we improve the p2 log n in [BST14] result to p2 + p log n. To bound the excess loss, we first
need the following lemma, which shows that with high probability we choose a series of Ci that all contain
the optimal θ for C0. It follows from a tail bound on the excess loss of the exponential mechanism, and using
m-strong convexity to translate this into a distance bound.
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Lemma 4.3. Let L(·; D) be an m-strongly convex function. Suppose we sample θ from the convex constraint set C
with probability proportional to exp

(
− εn

2L‖C‖2
L(θ; D)

)
. Let θ∗ = arg minθ∈C L(θ; D). Then for any t ≥ 0 and for

some sufficiently large constant c we have

Pr

[
‖θ− θ∗‖2 ≤

√
cL(p + t) ‖C‖2

mεn

]
≥ 1− 2−t.

Proof. By e.g. the proof of [BST14, Theorem III.2], we know that for some sufficiently large constant c:

Pr

[
L(θ; D)−L(θ∗; D) ≤ cL ‖C‖2

2εn
(p + t)

]
≥ 1− 2−t. (7)

We now show that the claim holds conditioned on this event. By optimality of θ∗ and convexity of C ,
we know

〈∇L(θ∗; D), θ− θ∗〉 ≥ 0. (8)

So, by m-strong convexity, we have

cL ‖C‖2

2εn
(p + t) ≥

(7)
L(θ; D)−L(θ∗; D)

≥ 〈∇L(θ∗; D), θ− θ∗〉+ m

2
‖θ − θ∗‖2

2

≥
(8)

m

2
‖θ − θ∗‖2

2 .

Rearranging gives the claim in Lemma 4.3.

Given Lemma 4.3, we can now prove Theorem 4.2.

Proof of Theorem 4.2. The privacy guarantee is immediate from the privacy guarantee of the exponential

mechanism, composition, and the fact that for this choice of ε i, k, we have ∑
k
i=1 ε i < ε.

Setting t = 3 log n in Lemma 4.3, in iteration i, letting θ∗i = arg minθ∈Ci−1
L(θ; D), we have that with

probability 1 − 2−t = 1− 1
n3 , θ∗i ∈ Ci, and thus θ∗i = θ∗i+1. Then by a union bound, we have that with

probability 1− k
n3 ≥ 1− log log(εn)

n3 , θ∗1 ∈ Ck−1 (equivalently, θ∗1 = θ∗2 = . . . = θ∗k ). When this event fails to

happen, our excess loss is at most L ‖C0‖2, and in turn the contribution of this event failing to hold to the

expected excess loss is O
(

L‖C0‖2 log log(εn)
n3

)
, which is asymptotically less than our desired excess loss bound.

So it suffices to provide the desired expected excess loss bound conditioned on this event. By the analysis
of the exponential mechanism, conditioned on this event, we have that

Eθk
[L(θk; D)]−L(θ∗1 ; D) = O

(
Lp ‖Ck−1‖2

εkn

)
= O

(
Lp ‖Ck−1‖2

εn

)
. (9)

Note thatL(θ∗1 ; D) = minθ∈C0
L(θ; D) by definition, so it now suffices to bound ‖Ck−1‖2 by O

(
L(p+log n)

mεn

)
.

To do this, we have the recurrence relation:

‖Ci‖2 ≤ 2

√
cL(p + 3 log n) ‖Ci−1‖2

mε in
.

17



Solving the recurrence relation for Ck−1, we get:

‖Ck−1‖2 ≤
(

4cL(p + 3 log n)

mn

)1−2−(k−1)

· (‖C0‖2)
2−(k−1) ·

k−1

∏
i=1

ε−2−(k−i)

i

=

(
4cL(p + 3 log n)

mεn

)1−2−(k−1)

· (‖C0‖2)
2−(k−1) ·

k−1

∏
i=1

(2(k−i+1))2−(k−i)
.

(10)

We claim the following:

‖C0‖2 ≤
2L

m
. (11)

Let θglobal be the minimizer of L(θ; D) over all of Rp. By triangle inequality, there exists a point θ in C0

which is at distance at least ‖C0‖2 /2 far from θglobal. By m-strong convexity, this implies that the gradient
at θ has ℓ2-norm at least m ‖C0‖2 /2. Now, by Lipschitzness over C0, we know that the gradient at θ has
ℓ2-norm at most L. This gives us eq. (11).

Using eq. (11), we can simplify eq. (10) to

‖Ck−1‖2 ≤
2L

m
·
(

2c(p + 3 log n)

εn

)1−2−(k−1)

·
k−1

∏
i=1

(2(k−i+1))2−(k−i)
.

We have:

log2

(
k−1

∏
i=1

(2(k−i+1))2−(k−i)

)
=

k−1

∑
i=1

(k− i + 1)2−(k−i) ≤
∞

∑
j=1

(j + 1)2−j = 3.

In other words, ∏
k−1
i=1 (2

(k−i+1))2−(k−i)
is at most 8, regardless of the value of k. Now, using the fact that

m1/ log m = O(1) is a constant, our final upper bound on ‖Ck−1‖2 is:

‖Ck−1‖2 = O

(
L

m
·
(
(p + log n)

εn

)1−2−(k−1))
= O

(
L(p + log n)

mεn

)
.

Plugging in eq. (9) gives us Theorem 4.2.

The best possible population risk bound is O(
L2 p2

ε2n2m
+ L2

mn ). In order for Algorithm 1 to achieve this
bound (up to log factors) we make a slight modification: we choose the radius of each ball defined by the
algorithm such that the population minimizer, rather than the empirical minimizer, is in Ck−1 with high
probability. Then, we can apply uniform stability of the Gibbs sampler on strongly convex losses to the
exponential mechanism run on Ck−1 to get the following DP-SCO bound:

Theorem 4.4. Let θk be the output of Algorithm 1 when flag = 0. Then θk has excess population risk

O

(
L2 p2 log n

mε2n2
+

L2

mn

)
.

We first show that the empirical minimizer is close to the population minimizer with high probability:
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Lemma 4.5. Let ℓ be a m-strongly convex function and C be a convex set such that for any d, θ,

‖∇ℓ(θ; d)−Ed∼D [∇ℓ(θ; d)]‖2 ≤ ∆,

and let θ∗ := arg minθ∈C Ed∼D [ℓ(θ; d)] and θemp := arg minθ∈C ℓ(θ; D). Then for D ∼ Dn, with probability
1− γ, we have:

‖θemp − θ∗‖2 = O

(
∆

m

√
log(1/γ)

n

)

Proof. Consider a function ℓ̃ which has gradient ∇ℓ̃(θ) = ∇ℓ(ΠC(θ)) + m(θ − ΠC(θ)). For any D, the

empirical minimizer of ℓ̃ over R
p is equal to

θ̃emp := θemp − 1

m
· ∇ℓ(θemp; D),

and the population minimizer of Ed∼D
[
ℓ̃(θ; d)

]
is

θ̃∗ := θ∗ − 1

m
·Ed∼D [∇ℓ(θ∗; d)] .

By optimality of θemp, θ∗ and convexity of C ,

〈∇ℓ(θemp; D), θ∗− θemp〉 ≥ 0 and 〈Ed∼D [∇ℓ(θ∗; D)] , θemp − θ∗〉 ≥ 0,

This implies that
∥∥∥θ̃emp − θ̃∗

∥∥∥
2
≥ ‖θemp − θ∗‖2. In addition, since projection to convex sets is a non-

expansive map, ℓ̃ is m-strongly convex if ℓ is, and for any d, θ we have

‖∇ℓ(θ; d)−Ed∼D [∇ℓ(θ; d)]‖2 =
∥∥∥∇ℓ̃(θ; d)−Ed∼D

[
∇ℓ̃(θ; d)

]∥∥∥
2
≤ ∆.

This holds for any D. Therefore, if we prove the lemma for ℓ̃ and R
p, then this would imply that the

lemma holds for ℓ and C . So it suffices to show the lemma for C = R
p.

If C = R
p then Ed∼D [∇ℓ(θ; d)] = 0. Now, by the assumptions in the lemma and a vector Azuma

inequality [Hay03], we have ‖∇ℓ(θ∗; D)‖2 = O(
∆
√

log(1/γ)√
n

) with probability 1− γ over D. Furthermore,

we know ∇ℓ(θemp; D) = 0 by strong convexity and since C = R
p. Then by strong convexity, we have

‖θ∗ − θemp‖2 ≤
‖∇ℓ(θ∗; D)−∇ℓ(θemp; D)‖2

m
=
‖∇ℓ(θ∗; D)‖2

m
= O

(
∆

m

√
log(1/γ)

n

)

with probability 1− γ as desired in the statement of Lemma 4.5.

Given Lemma 4.5, if we want to ensure the population minimizer rather than empirical minimizer re-
mains in the sets we choose in Algorithm 1, we just need to choose a slightly larger ball. From this modifi-
cation and uniform stability, we get our DP-SCO bound:

Proof of Theorem 4.4. Note that by L-Lipschitzness of ℓ in C , we have

‖∇ℓ(θ; d)−Ed∼D [∇ℓ(θ; d)]‖2 ≤ 2L.

By Lemma 4.5, Lemma 4.3, and a triangle inequality, we have that the population minimizer of ℓ in Ci is
in Ci+1 for each i with probability 1− 2/n3. Then by a union bound, we have that the population minimizer
is in Ck−1. When this event fails to hold, our excess population risk is O(L ‖C0‖2) and so the contribution
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of this event to the expected excess loss is O
(

L‖C0‖2 log log(εn)
n3

)
= O

(
L2 log log(εn)

mn3

)
, which is asymptotically

less than our desired bound. So it suffices to provide the desired expected excess loss bound conditioned
on this event. We can bound the radius of Ck−1 similarly to the proof of Theorem 4.2, by noting that:

‖Ci‖2 ≤ 2 ·max






√
cL(p + 3 log n) ‖Ci−1‖2

mε in
,

cL
√

log n

m
√

n






Then, rolling out the recursion, we have similarly to the proof of Theorem 4.2:

‖Ck−1‖2 = O

(
L(p + log n)

mεn
+

L
√

log n

m
√

n

)
.

Now, combining Theorem A.11 and the uniform stability bound of Theorem 2.5 (for ψ = 0), we get that
the expected excess population risk of θk compared to the population minimizer over Ck−1 is:

O

(
Lp ‖Ck−1‖2

εn
+

L2

mn

)
= O

(
L2

mn
·
(
(p2 + log2 n)

ε2n
+

p
√

log n

ε
√

n
+ 1

))

= O

(
L2(p2 log n + log2 n)

mε2n2
+

L2

mn

)
.

In the final equality, we use the fact that
p
ε

√
log n

n ≤ max
{

p2 log n

ε2n
, 1
}

. We conclude by noting that

conditioned on the event the population minimizer over C0 is contained in Ck−1, θk has this same excess
population risk bound compared to the population minimizer over C0, completing the proof of Theorem 4.4.

4.3 Approximate DP and Strongly Convex Losses

The results in Theorem 2.4, 2.7 and 2.6 with ψ = 0 combined immediately give that the Gibbs sampler

achieves the optimal bounds of O( L2 p log(1/δ)
ε2n2m

) and O( L2 p log(1/δ)
ε2n2m

+ L2

mn ) for excess empirical and population
risk respectively in this setting. We note that one could also use Theorem 2.3 instead of Theorem 2.7 and
obtain bounds that are within logarithmic factors of the optimal bounds, with a finite-time object.

4.4 Approximate DP and Convex Losses

Similarly to pure-DP, we can adapt our results in the strongly convex setting to the convex setting by adding

a regularizer. For a near-optimal empirical guarantee, we use the regularizer
L
√

p log(1/δ)

2‖C‖2εn
‖θ − θ0‖2

2. The

regularized and unregularized losses differ by at most O

(
L‖C‖2

√
p log(1/δ)
εn

)
everywhere in C , and the em-

pirical excess loss bound we get by plugging in the strong convexity parameter
L
√

p log(1/δ)

‖C‖2εn
into the bound

for strongly convex losses is O

(
L‖C‖2

√
p log(1/δ)
εn

)
, giving nearly the optimal bound of O

(
L‖C‖2

√
p log(1/δ)
εn

)
.

For population risk, we use the regularizer L
2‖C‖2

·max

{√
p log(1/δ)

εn , 1√
n

}
‖θ− θ0‖2

2. By a similar argu-

ment, this gives the optimal bound of O

(
L‖C‖2

√
p log(1/δ)
εn +

L‖C‖2√
n

)
.
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5 Discussion and Future Directions

In this work we demonstrated the power of Langevin diffusion (LD) by simultaneously obtaining tight
guarantees for DP-ERM, DP-SCO, and obtaining the the first private uniform sampling algorithms from
Rashomon sets. Furthermore, we demonstrated that, via SGLD, it is possible to maintain the same pri-
vacy/utility trade-offs whiling allowing the algorithm to implemented on a finite precision machine. We
believe the idea of using a LD to analyze the privacy of the mechanism that samples from the Gibbs dis-
tribution, and using a LD to analyze the uniform stability of this mechanism has wider applicability in
the DP literature. We leave it for future exploration. Furthermore, the gradient complexity of our SGLD
algorithm is inferior to that of [GLL22]. It is an important open question if it is at all possible to close this
gap while not relying on the convexity of the loss function as in our case. This would have a significant
real world implications where we aim to ensure privacy and also train learning models that are inherently
non-convex. Finally, we believe that exploring other applications of Rashomon sets would would facilitate
wider adoption of machine learning models that are differentially private.
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Notation
D = {d1, · · · , dn} data set

D data distribution
τ domain set of data

C ⊂ R
p convex set/parameter space

ℓ loss function
L empirical loss function

RiskERM excess empirical risk
RiskSCO excess population risk

m strong convexity parameter
M smoothness parameter
L Lipschitz constant

θpriv private model output
θ∗ optimal model

θemp model for ERM
β inverse temperature

Wt standard Brownian motion
Rα(·, ·) Renyi divergence of order α

T time
A � 0 A is positive semidefinite
A � B A− B is positive semidefinite

Ip p× p identity matrix
(ε, δ) Privacy parameters

γ Empirical loss slack
γ′ Population loss slack
ψ Threshold of Rashomon set
λ Sampling error wrt TVD

Table 3: Notation Table

A Notation and Preliminaries

In this section, we give a brief exposition of the concepts and results used in the rest of the paper. In Table 3
we provide a summary of the notation used in the paper.

Rényi divergence and differential privacy. Rényi divergence is the generalization of KL divergence to
higher order and satisfies many useful properties [vH14]. More formally,

Definition A.1 (Rényi Divergence). For 0 < α < ∞, α 6= 1 and distributions P, Q, such that supp(P) = supp(Q)
the α-Rényi divergence between P and Q is

Rα(P, Q) =
1

α− 1
ln

∫

supp(Q)

P(x)α

Q(x)α−1
dx =

1

α− 1
ln Ex∼Q

[
P(x)α

Q(x)α

]
.

The α-Rényi divergence for α = 1 (resp. ∞) is defined by taking the limit of Rα(P, Q) as α approaches 1 (resp. ∞)
and equals the KL divergence (resp. max divergence).

We next define differential privacy, our choice of the notion of data privacy. Central to the notion of
differential privacy is the definition of adjacent or neighboring datasets. Two datasets D and D′ are called
adjacent if they differ in exactly one data point.
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Definition A.2 (Approximate Differential privacy [DMNS06]). A randomized mechanismM : Dn → R is said
to have (ε, δ)-differential privacy , or (ε, δ)-DP for short, if for any adjacent D, D′ ∈ Dn and measurable subset
S ⊂ R, it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D) ∈ S] + δ.

When δ = 0, it is known as pure differential privacy, and we denote it by ε-DP.

Definition A.3 (Renyi Differential privacy [Mir17]). A randomized mechanismM : Dn → R is said to have
(α, ε)-Rényi differential privacy, or (α, ε)-RDP for short, if for any adjacent D, D′ ∈ Dn it holds that

Rα(M(D),M(D′)) ≤ ε.

It is easy to see that ε-DP is merely (∞, ε)-RDP. Similarly, the following fact relates (ε, δ)-DP to (α, ε)-
RDP:

Fact A.4 (Proposition 3 in [Mir17]). IfM satisfies (α, ε)-RDP, thenM is (ε +
log 1/δ

α−1 , δ)-differentially private for
any 0 < δ < 1.

Rényi divergences satisfy a number of other useful properties, which we list here.

Fact A.5 (Monotonicity [vH14, Theorem 3]). For any distributions P, Q and 0 ≤ α1 ≤ α2 we have Rα1(P, Q)
≤ Rα2 (P, Q).

Fact A.6 (Post-Processing [vH14, Theorem 9]). For any sample spaces X ,Y , distributions P, Q over X , and any
function f : X → Y we have Rα( f (P), f (Q)) ≤ Rα(P, Q).

Lemma A.7 (Gaussian dichotomy [vH14, Example 3]). Let P = P1 × P2 × · · · and Q = Q1 × Q2 × · · · ,
where Pi and Qi are unit variance Gaussian distributions with mean µi and νi, respectively. Then

Rα(Pi,Qi) =
α

2
(µi − νi)

2,

and by additivity for α > 0,

Rα(P ,Q) = α

2

∞

∑
i=1

(µi − νi)
2.

As a corollary, we have:

Rα(N(0, σ2
Ip), N(x, σ2

Ip)) ≤
α ‖x‖2

2

2σ2
.

Fact A.8 (Adaptive Composition Theorem [Mir17, Proposition 1]). Let X0, X1, . . . ,Xk be arbitrary sample
spaces. For each i ∈ [k], let fi, f ′i : ∆(Xi−1) → ∆(Xi) be maps from distributions over Xi−1 to distributions over
Xi such that for any distribution Xi−1 over Xi−1, Rα( fi(Xi−1), f ′i (Xi−1)) ≤ ε i. Then, for F, F′ : ∆(X0) → ∆(Xk)

defined as F(·) = fk( fk−1(. . . f1(·) . . .) and F′(·) = f ′k( f ′k−1(. . . f ′1(·) . . .) we have Rα(F(X0), F′(X0)) ≤ ∑
k
i=1 ε i

for any X0 ∈ ∆(X0).

Fact A.9 (Weak Triangle Inequality [Mir17, Proposition 11]). For any α > 1, q > 1 and distributions P1,P2,P3

with the same support:

Rα(P1,P3) ≤
α− 1/q

α− 1
Rqα(P1,P2) + R qα−1

q−1

(P2,P3).

We discuss two differentially private mechanisms for optimization in this paper. The first one is the
exponential mechanism. [MT07]. Given some arbitrary domain D and range R, the exponential mechanism
is defined with respect to some loss function, ℓ : D×R→ R.
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Definition A.10 (Exponential mechanism [MT07]). Given a privacy parameter ε, the range R and a loss function
ℓ : D×R→ R, the exponential mechanism samples a single element from R based on the probability distribution

πD(r) =
e−εℓ(D,r)/2∆ℓ

∑r∈R e−εℓ(D,r)/2∆ℓ

where ∆ℓ is the sensitivity of u, defined as ∆ℓ := max D∼D′,
r∈R
|u(D, r)− u(D′, r)|. If R is continuous, we instead

sample from the distribution with pdf:

pD(r) =
e−εℓ(D,r)/2∆ℓ

∫
r∈R e−εℓ(D,r)/2∆ℓdr

.

Algorithm 2 Exponential mechanism

Input: Loss function L, constraint set C , Lipschitz constant L, number of iterations k, privacy parameter ε,
data set D of n-samples.

1: Sample and output a point θpriv from the constraint set C w.p. ∝ exp
(
− εn

2L‖C‖2
· L(θ; D)

)
.

Theorem A.11. Assume each of the individual loss function in L(θ; D) is L-Lipschitz within the constraint set C ,
individual loss function ℓ(θ; ·) is convex, and the constraint set C is convex. Then, Algorithm 2 is ε-differentially
private. Furthermore, for θpriv as specified in Algorithm 2, over the randomness of the algorithm,

Eθpriv [RiskERM(θpriv )] = O

(
Lp · ‖C‖2

εn

)
.

Equivalence of Algorithm 2 and Langevin diffusion: The following lemma, which is implied by, e.g.
[Tan79, Theorem 4.1], shows that one can implement Algorithm 1 using only solutions to eq. (2); note that
this does not necessarily mean solutions to eq. (2) are efficiently sampleable.

Lemma A.12. Let L be a M-smooth function for some finite M. Then if βt = β for all t, then the stationary
distribution of (2) has pdf proportional to exp(−βL(θ; D)) · 1(θ ∈ C).

We recall that one can ensure smoothness by convolving L (appropriately extended to all of R
p) with

the Gaussian kernel of finite variance [FMTT18, Appendix C]. In particular, since we only need M to be
finite, we can take the convolution with the Gaussian kernel N (0, λ2

Ip) for arbitrarily small λ > 0, and
in turn the result of the convolution is L/λ-smooth (which is perhaps arbitrarily large but still finite) and
differs from L by an arbitrarily small amount everywhere in C .

We use the result by [SU17] for our lower bound proof. We use their equivalent result for empirical mean
(see equation (2) in [SU17]) and for privacy parameters (ε, δ) using a standard reduction [BUV18, SU15]8:

Theorem A.13. Fix n, s, k ∈ N. Set β = 1 + 1
2 log

(
s

8 max{2k,28}
)

. Let P1, · · · , Ps ∼ Beta(β, β) and let X :=

{x1, · · · , xn} be such that xi ∈ {0, 1}s for all i ∈ [n], xi,j is independent (conditioned on P) and E[xi,j] = Pj for

all i ∈ [n] and j ∈ [s]. Let M : ({0, 1}s)n → {0, 1}d be (1, 1
ns )-differentially private. Suppose ‖M(x)‖1 =

‖M(x)‖2
2 = k for all X with probability 1 and

E
M




1

n

n

∑
i=1

∑
j∈[s]

M(x)j=1

xi,j


 ≥

1

n
max
S⊂[d]
|S|=k

n

∑
i=1

∑
u∈S

xi,u−
k

20
. (12)

Then n ∈ Ω
(√

k log
(

s
k

))
.

8[SU17] present their result in the terms of population mean and privacy parameters (1, 1
ns ).
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Results from statistics and machine learning: We will sometimes use Fatou’s lemma in our proofs. The
form we will use is stated here for convenience:

Lemma A.14 (Fatou’s Lemma). Let {Xi} be a sequence of random variables such that there is some constant c such
that for all i, Pr[Xi ≥ c] = 1. Then:

E

[
lim inf

i→∞
Xi

]
≤ lim inf

i→∞
E [Xi] .

For our SCO bounds, we will use uniform stability. Uniform stability of a learning algorithm is a notion
of algorithmic stability introduced to derive high-probability bounds on the generalization error. Formally,
it is defined as follows:

Definition A.15 (Uniform stability [BE02]). A mechanismM is µ(n)-uniformly stable with respect to ℓ if for
any pair of databases D, D′ of size n differing in at most one individual:

sup
d∈τ

[
EM [ℓ(M(D), d)]−EM

[
ℓ(M(D′), d)

]]
≤ µ(n).

In this paper, we will need the following result.

Lemma A.16 ([BE02]). SupposeM is µ(n)-uniformly stable. Then:

ED∼Dn,M[RiskSCO(M(D))] ≤ ED∼Dn,M[RiskERM(M(D))] + µ(n).

We also use KL divergence and TVD, and the relation between the two.

Definition A.17. The KL divergence (equivalent to the 1-Rényi divergence) between two distributions P, Q is given

by R1(P, Q) := Ex∼P log
(

P(x)
Q(x)

)
.

Lemma A.18 (Pinsker’s inequality). Let TVD(P, Q) be the total variation distance between P and Q. Then

TVD(P, Q) ≤
√

1

2
R1(P, Q).

Next, we define the LSI constant of a distribution.

Definition A.19. A distribution P satisfies LSI with constant c if for all smooth functions g : R
p → R with

Ex∼P[g(x)2] < ∞:

Ex∼P[g(x)2 log(g(x)2)]−Ex∼P[g(x)2] ·Ex∼P[log(g(x)2)] ≤ 2

c
Ex∼P[‖∇g(x)‖2

2].

B Proofs from Section 2 and Section 3

B.1 Proof of Lemma 2.2

Proof. For ease of presentation, we will show a divergence bound between Θt, Θ′t which are the distribu-
tions of θt, θ′t, and then describe how to modify the proof to show the same bound between Θ[0,t], Θ′[0,t].

Let ΨD,m,i be a map from (distributions over) R
p to (distributions over) R

p that takes the point θ to the

distribution ΠC
(

N
(

θ−
(

βt
m dt

)
∇L(θ; D), 2 t

mI

))
, where ΠC is the ℓ2-projection into C . It is well known

(see e.g. Lemma A.7) that:
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Rα(N(0, σ2
I), N(x, σ2

I)) ≤ α ‖x‖2
2

2σ2
.

So by post-processing (Fact A.6) and the Lipschitzness assumption, Rα(ΨD,m,i(θ), ΨD′,m,i(θ)) is bounded
by

Rα

(
N

(
θ−

(
βt

m

)
∇L(θ; D),

2t

m
I

)
, N

(
θ −

(
βt

m

)
∇L(θ; D′),

2t

m
I

))

= Rα

(
N

(
0,

2t

m
I

)
, N

((
βt

m

)
(∇L(θ; D)−∇L(θ; D′)), 2

t

m
I

))

≤ α∆2

4
·

(
βt
m

)2

t/m
.

Let ΨD,m denote the composition ΨD,m,m ◦ΨD,m,m−1 ◦ . . . ◦ΨD,m,1. By Fact A.8, we have

Rα(ΨD,m(Θ0), ΨD′,m(Θ0)) ≤
m

∑
i=1

max
θ

{
Rα(ΨD,m,i(θ), ΨD′,m,i(θ))

}
.

Plugging in the bound on Rα(ΨD,m,i(θ), ΨD′,m,i(θ)), we get

Rα(ΨD,m(Θ0), ΨD′,m(Θ0)) ≤
α∆2

4
· m

t

m

∑
i=1

(
βt

m

)2

=
αβ2∆2t

4

Note that Θt = limm→∞ ΨD,m(Θ0), and Θ′t = limm→∞ ΨD′,m(Θ0). Since exp((α − 1)Rα(P ,Q)) is a
monotone function of Rα(P ,Q) and is the expectation of a positive random variable, by Fatou’s lemma we
have:

Rα(Θt, Θ′t) ≤ lim
m→∞

Rα(ΨD,m(Θ0), ΨD′,m(Θ0))

≤ αβ2∆2t

4
.

This gives the bound on Rα(Θt, Θ′t). To obtain the same bound for Rα(Θ[0,t], Θ′[0,t]), we modify ΨD,m,i

so that instead of receiving Θ(i−1)t/m and outputting Θit/m, it receives the joint distribution {Θjt/m}0≤j≤i−1

and outputs {Θjt/m}0≤j≤i by appending the (also jointly distributed) variable

Θit/m = ΠC

(
N

(
θ −

(
βt

m

)
∇L(Θ(i−1)t/m; D), 2

t

m
I

)

That is, we update ΨD,m,i so it outputs the distributions of all iterates seen so far instead of just the
distribution of the last iterate; the limiting value of the joint distribution {Θjt/m}0≤j≤i is then Θ[0,t] according
to eq. (2), and the same divergence bound holds.

B.2 Proof of Theorem 2.3

We first need the following results, which let us analyze the LSI constant of the Gibbs distribution of in-
terest easily. These results were originally stated for unconstrained domains defined over the space of real
numbers, a proof for which can also be found in [Led01] using the theory of semigroup (see Corollary 1.4,
1.6 and Lemma 1.2). For the general convex set, C , we refer the readers to Theorem 2.1 in [KM16].

Lemma B.1 (Proposition 3 and Corollaire 2 in [BE85]). Let P be the distribution with density proportional to
exp(− f (x)) · 1(x ∈ C) for convex C . If f is m-strongly convex, then P satisfies LSI with constant m.
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Lemma B.2 (Page 1184 in [HS87]). Let f , f ′ be two functions such that

sup
θ∈C
| f (θ)− f ′(θ)| ≤ ∆.

Suppose the distribution with density proportional to 1(θ ∈ C) · exp(− f ) satisfies LSI with constant c. Then the
distribution with density proportional to 1(θ ∈ C) · exp(− f ′) satisfies LSI with constant c · exp(−∆).

The following result shows convergence of (2) under LSI.

Lemma B.3 (Theorem 4 of [VW19]). Suppose Q satisfies LSI with constant c. Then let P0 be any initial distribution
over θ0, and Pt be the distribution over θt given by running (1) on − log q, where q is the density of Q, for β = 1.
Then R1(Pt, Q) ≤ exp(−2ct) · R1(P0, Q).

Using these results, we first prove an LSI constant for the Gibbs distribution.

Lemma B.4. Suppose we have non-negative ℓ(θ; d) such that ℓ is m-strongly convex wrt θ for all d, and let Q be the
distribution with density proportional to

1(θ ∈ C) · exp

(
−β max

{
ψ + min

θ∗∈C
L(θ∗; D),L(θ; D)

})
.

Then Q satisfies LSI with constant c, where

c :=

{
m
eψ for βψ > 1

βm exp(−βψ) for βψ ≤ 1
.

Proof. For a ∈ [0, 1], consider the distribution with density proportional to e− f (θ) · 1(θ ∈ C) for

f (θ) := β

(
a · L(θ; D) + (1− a) ·max

{
ψ + min

θ∈C
L(θ; D),L(θ; D)

})
. (13)

Since L is m-strongly convex, the function max{ψ + minθ∈C L(θ; D),L(θ; D)} is a convex function.
Therefore, f (θ) defined in eq. (13) is an (aβm)-strongly convex function. In other words, this distribution
satisfies LSI with constant aβm using Lemma B.1.

Now the distribution Q has density proportional to exp(− f ), where

f ′ := max{ψ + min
θ∈C
L(θ; D),L(θ; D)}.

When L(θ; D) > ψ, f = f ′. Otherwise, since ℓ is non-negative, we have that f differs from f ′ by at most
aβψ everywhere. Then by lemma B.2, Q satisfies LSI with constant aβm exp(−aβψ).

Now, we maximize this bound over a ∈ [0, 1]. If βψ ≤ 1, then this bound is maximized at a = 1 and we
get an LSI constant of βm exp(−βψ). Otherwise, this bound is maximized at a = 1/βψ and we get an LSI
constant of m

eψ . This completes the proof of Lemma B.4.

Given the LSI constant of Rashomon sampler, we can use Lemma B.3 to upper bound the time we need
to run DP-LD.

Lemma B.5. Under the assumptions of Theorem 2.3, let

L′(θ; D) := max

{
ψ + min

θ∗∈C
L(θ∗; D),L(θ; D)

}
.

Let Q be the distribution with density proportional to exp(−βL′). Let P0 be the distribution over θ0 that is uniform
over C . Let Pt be the resulting distribution over θt given by running (2) on L′. Then assuming ψ ≤ L ‖C‖2:
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• If βψ > 1, for t = eψ
2m log(

2βL‖C‖2
δ2 ), we have TVD(Pt, Q) ≤ δ/2.

• If βψ ≤ 1, for t = e
2βm log(

2βL‖C‖2

δ2 ), we have TVD(Pt, Q) ≤ δ/2.

Proof. We wish to apply Lemma B.3, which was originally stated in the unconstrained case for (1). One can
see that it applies to running (2) on L′ by the following argument: Consider extending L′ to R

p by defining
L′(θ′) = L′(ΠC(θ′)) + c ‖θ′ −L′(ΠC(θ′))‖2 for θ′ 6∈ C . As c goes to infinity, the Gibbs distribution induced
by the extended loss in the unconstrained setting approaches the Gibbs distribution induced by the loss in
the constrained setting, and (1) approaches (2).

We have:

R1(P0, Q) ≤ max
θ∈supp(P0)

log(P0(θ)/Q(θ))

≤ log




1∫
θ∈C

1 dθ
·

∫
θ∈C

exp(−β max{L(θ∗; D) + ψ,L(θ; D)}) dθ

minθ∈C exp(−β max{L(θ∗; D) + ψ,L(θ; D)})




≤ log

(
exp(−β(L(θ∗; D) + ψ)

exp(−β(L ‖C‖2 + ψ))

)

≤ 2βL ‖C‖2 .

(14)

Here, we use the fact that each ℓ has minimum 0. Recall that

L′(θ; D) := max

{
ψ + min

θ∗∈C
L(θ∗; D),L(θ; D)

}
.

Now running (2) on βL′, replacing β in (2) with 1, is equivalent to running (2) on L′. Therefore, applying
Lemma B.3 and Lemma B.4:

• If βψ > 1, for t = eψ
2m log

(
4βL‖C‖2

δ2

)
, we have:

R1(Pt, Q) ≤ R1(P0, Q) · exp

(
−2m

eψ
t

)
≤ 2βL ‖C‖2 · exp

(
−2m

eψ
t

)
= δ2/2,

where the first inequality is using Lemma B.3 and Lemma B.4 and the second inequality is due to
eq. (14). The first bullet now follows using Pinsker’s inequality (Lemma A.18).

• If βψ ≤ 1, note that βm exp(−βψ) ≥ βm/e. So for t = e
2βm log(

4βL‖C‖2
δ2 ), we have:

R1(Pt, Q) ≤ R1(P0, Q) · exp

(
−2m

eψ
t

)
≤ 2βL ‖C‖2 · exp(−2βm

e
t) = δ2/2,

where the first inequality is using Lemma B.3 and Lemma B.4 and the second inequality is due to
eq. (14). The second bullet now follows using Pinsker’s inequality (Lemma A.18).

This completes the proof of Lemma B.5.

In Lemma B.5, we used a uniform distribution on C as our initialization (i.e., P0 was uniform distribution
over C). In the case where C is unconstrained and the losses satisfy ‖∇ℓ(θ; d)−∇ℓ(θ; d′)‖2 ≤ L instead of
Lipschiztness within C , we can obtain the same bound by letting C be the convex hull of the minimizers of
all per-example loss functions ℓ(θ; d) and using a uniform distribution on C as our initial distribution.

We now complete the proof of Theorem 2.3.

Proof. Let vD(θ) = ∂θ max{L(θ; D),L(θ∗; D) + ψ} be the sub-differential of the score function used in the
Gibbs distribution. Using the Lipschitz property and the smoothness assumption on ℓ(θ; d), for any two
neighboring data data sets D and D′, we have
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‖vD(θ)− vD(θ)‖2 ≤ 3 ·max

{
L

n
,

√
Mψ

2

}
. (15)

In particular, the Lipschitzness bounds the sensitivity between the gradients of L(θ; D) and L(θ; D′) by
L/n. Using smoothness, for D, the sensitivity between the gradients of L(θ; D) and

max

{
ψ + min

θ∗∈C
L(θ∗; D),L(θ; D)

}
is bounded by

√
Mψ/2. Similarly, we have the sensitivity between the

gradients of L(θ; D′) and max

{
ψ + min

θ∗∈C
L(θ∗; D′),L(θ; D′)

}
bounded by

√
Mψ/2.

By Lemma 2.2, Fact A.4, and sensitivity bound in eq. (15), in order for {Θt′}t′∈[0,t] to satisfy (ε, δ)-DP, it
suffices if

β ≤ ε

6
√

2 ·max

{
L
n ,
√

Mψ
2

}√
t log(1/δ)

. (16)

Suppose βψ ≤ 1. Recall that, in Lemma B.5, t = e
2βm log(

4βL‖C‖2
δ2 ). Plugging in this value of t in eq. (16)

and observing that ψ ≤ L‖C‖2
2 , it suffices to ensure (ε, δ)-DP if

β = Õ

(
ε2n2m

max
{

L, n
√

Mψ/2
}2

log(L ‖C‖2 /δ2) log(1/δ)

)
. (17)

We now consider two cases (on top of the constraint that ψ ≤ L‖C‖2/2):

(i) ψ >
2L2

Mn2 , and

(ii) ψ ≤ 2L2

Mn2 .

In the case (i), in order to satisfy βψ ≤ 1 it is sufficient to set β = Θ̃
(

ε2(m/M)
log((L‖C‖2−ψ)/δ2) log(1/δ)

· 1
ψ

)
. In the

second, case it sufficient to set β = Θ̃
(

ε2n2m
L2 log((L‖C‖2−ψ)/δ2) log(1/δ)

)
.

We will not analyze the setting when βψ > 1. From Lemma B.5, it is not hard to observe that it will not
provide any better conditions on ψ and β to ensure (ε, δ)-DP.

So, we have that for the choices of ψ, β, t in Theorem 2.3, outputting {Θ′t}t′∈[0,t] satisfies (ε, δ)-DP. Fur-
thermore, by Lemma B.5, this gives the desired bound on total variation distance completing the proof of
Theorem 2.3.

B.3 Probability of Hitting the Rashomon Set

Theorem B.6. Let θpriv be the model output by a Rashomon sampler. Let Pr[L(θpriv ; D) ≤ min
θ∈C
L(θ; D) + ψ +

γ] ≥ 1− φ. Then for Rashomon set G, Pr
[
θpriv ∈ G] ≥ 1− φ− pγ

ψ .

Proof. Consider the differential conic region Ω centered at the true minimizer θ∗ = arg min
θ∈C

L(θ; D). Let

A be the cone from this region with height r, and B be the one with height (r + ∆), with r and ∆ chosen
such that θ in the boundaries of the cones A and B satisfy L(θ; D) = ψ + minθ L(θ; D) and L(θ; D) = ψ +
γ + minθ L(θ; D) respectively. By law of total probability, it suffices to show that conditioned on sampling
θ in any such cone, the desired probability bound holds. By the maximality condition on the Rashomon
sampler,

Pr
[

θpriv ∈ G|θ ∈ Ω
]
≥ 1− φ− Vol(A)

Vol(B)
= 1− φ−

(
1− ∆

r + ∆

)p

≥ 1− φ− p∆

r
.
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Note that within Ω, we have L(θ; D) = f (‖θ − θ∗‖2) where f is a convex function. By convexity, we
have:

f (r)− f (0) ≤ f ′(r) · r → f ′(r) ≥ f (r)− f (0)

r
= ψ/r.

γ = f (r + ∆)− f (r) ≥ f ′(r) · ∆ ≥ ψ∆

r
=⇒ ∆/r ≤ γ/ψ.

This completes the proof of Theorem B.6.

B.4 Proof of Theorem 3.2

We start by showing some properties of the convolved loss function:

Theorem B.7. Let L be a convex and M-smooth loss, let L′(θ) = max{L(θ),L(θ∗) + ψ} and let L̃′(θ) :=
Eξ∼N(0,λ2Ip) [L′(θ + ξ)]. Then:

1. maxθ

∣∣∣L̃′(θ)−L′(θ)
∣∣∣ ≤ 2ψ + Mpλ2.

2. L̃′(θ) is M +

√
ψM/2

λ -smooth.

Proof. Let L̃(θ) := Eξ∼N(0,λ2Ip) [L(θ + ξ)]. Then:

max
θ

∣∣∣L̃′(θ)−L′(θ)
∣∣∣ ≤ 2ψ + max

θ

∣∣∣L̃(θ)−L(θ)
∣∣∣ .

We bound the second term for all θ simultaneously as follows:

∣∣∣L̃(θ)−L(θ)
∣∣∣ =

∣∣∣Eξ∼N(0,λ2Ip) [L(θ + ξ)−L(θ)]
∣∣∣

(∗)
=
∣∣∣Eξ∼N(0,λ2Ip) [L(θ + ξ)−L(θ)− 〈∇L(θ), ξ〉]

∣∣∣
(∗∗)
≤ Eξ∼N(0,λ2Ip)

[
M ‖ξ‖2

2

]
= Mpλ2.

In equality (∗), we use the fact that ξ is mean 0, and in inequality (∗∗), we use the fact that 0 ≤ L(θ +
ξ) − L(θ) − 〈∇L(θ), ξ〉 ≤ M ‖ξ‖2

2 by convexity and M-smoothness of L. This gives the first part of the
theorem.

For the second part, fix any θ1, θ2. The smoothness parameter of L̃′ is at most the smoothness parameter

of L̃ (which is at most M, since L is M-smooth), plus the smoothness of L̃′ − L̃.

Now L̃′ − L̃ is the convolution of the Gaussian kernel with the function L′ − L, which is 0 outside of
Rashomon set, G and equal to L(θ∗) +ψ−L(θ) inside the Rashomon set, G. By M-smoothness of L, L′−L
is globally

√
ψM

2 -Lipschitz. Then, by Theorem 33 of [FMTT18], L̃′− L̃ is 1
λ

√
ψM

2 -smooth, giving the second

part of the theorem.
This completes the proof of Theorem B.7.

Similarly to Lemma B.4 we have the following:

Lemma B.8. Let L̃′ be defined as in Theorem B.7, for some λ ≥ 0. Then the distribution with density proportional

to exp(−β · L̃′) satisfies LSI with constant c for

c := βm exp(−β(3ψ + Mpλ2)).
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Recall the SGLD equation:

θt+1 = θt − ηβ∇L(θt; D) + ξt, ξt ∼ N (0, 2ηIp). (18)

We can now apply the following result of [CEL+21]:

Theorem B.9 (Theorem 4 of [CEL+21]). For any T and η, let ΘT be the distribution of θTη given by the solution
to (1), and let Θ′T be the distribution of θT given by (18). Suppose L is M-smooth and satisfies LSI (Definition A.19)
with constant c. Then for any κ > 0, α ≥ 2,

η = O

(
cκ

pαM2
·min

{
1

log(α)
,

p

ακ

})
, and T = Ω

(
pα2M2

c2κ
r ·max

{
log(α),

ακ

p

})
,

we have Rα(Θ′T , Θ∞) ≤ κ.

We can now prove a general result in terms of Rényi divergence:

Theorem B.10. Suppose ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆, and that each individual loss function ℓ is m-strongly

convex and M-smooth. Let 0 ≤ λ ≤
√

ψ
Mp and let

L̃ := Eξ∼N(0,λ2Ip)

[
min{L(θ + ξ; D), min

θ∗∈C
L(θ∗; D) + ψ}

]
.

Let Q be the (unconstrained) Gibbs distribution of β · L̃. Let Θ′T be the solution to (18) starting from the distribution

Θ′0, run on the loss L̃. Fix any r > 0. Then for

β = O

(
ε2m

max{∆2, Mψ}α log(Rα(Θ′0, Q)/κ) log(1/δ)

)
,

T = Ω

(
pα4 log3(Rα(Θ′0, Q)/κ)(M2 + Mψ

λ2 )max
{

∆4, M2ψ2
}

log2(1/δ)

ε4m4κ
·max

{
log(α),

ακ

p

})

and an appropriate choice of η, outputting a sample from Θ′T is (ε, δ)-DP. Furthermore,

Rα(Θ
′
T, Q) ≤ κ.

Proof. In Theorem B.9 we need:

Tη = Θ

(
α

c
log

(
Rα(Θ′0, Q)

κ

))

Plugging in Lemmas 3.1 and B.8 for outputting Θ′T from (18) to be (ε, δ)-DP it suffices if:

β = O

(
ε2m exp(−β(3ψ + Mpλ2))

max{∆2, Mψ}α log(Rα(Θ′0, Q)/κ) log(1/δ)

)
.

If we assume λ ≤
√

ψ
Mp , for ε ≤ 1 this condition implies β = O( 1

ψ+Mpλ2 ). So this can be simplified to:

β = O

(
ε2m

max{∆2, Mψ}α log(Rα(Θ′0, Q)/κ) log(1/δ)

)
.

Now we can plug in this value of β, the smoothness bound from Theorem B.7, Lemma B.8, and our
assumption on λ into the number of iterations T to get an iteration complexity requirement of:

T = Ω

(
pα4(M2 + Mψ

λ2 )max{∆4, M2ψ2} log2(1/δ)

ε4m4κ
log3(Rα(Θ

′
0, Q)/κ)max{log(α),

ακ

p
}
)

.

This completes the proof of Theorem B.10.
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In order to bound the initial divergence, we use Θ′0 that is a normal distribution centered at a point in
the convex hull of minimizers of ℓ, i.e. the convex hull of {arg minθ ℓ(θ; d) : d ∈ τ}.
Lemma B.11. Suppose ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆, and let θ0 be an arbitrary point in the convex hull of

{arg minθ ℓ(θ; d)|d ∈ τ}. Let P be the Gibbs distribution on β · L̃′ as defined in Theorem B.7. Then for α ≥ 2:

Rα

(
N

(
θ0,

1

βM
Ip

)
, P

)
= O

(
α∆β2 M2

m2
+ p ln

(
M

m

)
+ βψ

)
.

Proof. By e.g. Lemma 16 in [GT20], if θ∗ is the true minimizer of L and P1 is the Gibbs distribution on β · L,
for all α ≥ 1:

Rα

(
N

(
θ∗,

1

βM
Ip

)
, P1

)
≤

p ln
(

M
m

)

2
.

By Theorem B.7, β · L and β · L̃′ differ by at most 4βψ everywhere if λ ≤
√

ψ
Mp . Then:

R∞(P1, P) ≤ 8βψ.

So by the approximate triangle inequality for Rényi divergences (Fact A.9):

Rα

(
N(θ∗,

1

βM
Ip), P

)
≤

p ln
(

M
m

)

2
+ 8βψ

Finally, by the assumption on ∇L, all points in {arg minθ ℓ(θ; d)|d ∈ τ} are distance at most ∆/m apart
by strong convexity. Then by Lemma A.7:

Rα

(
N

(
θ0,

1

βM
Ip

)
, N

(
θ∗,

1

βM
Ip

))
≤ α∆β2 M2

2m2

Applying Fact A.9 again gives Lemma B.11.

Now by Pinsker’s inequality and monotonicity of Rényi divergences, we can use Lemma B.11, α = 2,
and κ =

√
δ/2 to get a total variation distance bound of δ to the stationary distribution in Theorem B.10,

proving Theorem 3.2.

C Lower Bound on DP-ERM for Non-Convex Losses

In this section, we show the following lower bound on the excess empirical risk for 1-Lipschitz non-convex
loss functions. The lower bound implies that that there is no advantage, in terms of the dependence on
dimensions (p), to move from ε-DP to (ε, δ)-DP.

Theorem C.1. Let ε ≤ 1, 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), and B(0, 1) be a unit Euclidean ball centered at origin. Then
there exists 1-Lipschitz non-convex function L : B(0, 1)×X → R and a dataset 9 D = {d1, · · · , dn} such that for
every p ∈ N, there is no (ε, δ)-differentially private algorithmA that outputs θpriv such that

E

[
L(θpriv; D)− min

θ∈Bp(1)
L(θ; D)

]
= o

(
p log (1/δ)

nε

)
, (19)

9The dataset, D = {d1, · · · , dn} is such that di ∈ {0, 1}s for all i ∈ [n], di,j is independent (conditioned on P) and E[di,j] = P j for all
i ∈ [n] and j ∈ [s]. Here P is the distribution that is defined in Theorem A.13.
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Proof. We first perform two translations of Theorem A.13: first from (1, 1
ns ) to (ε, δ) from [SU15] and then

from sample complexity to a result stated in the terms of accuracy bound. A direct corollary of Theo-
rem A.13 with k = 1 is as follows: for every s ∈ N, no (ε, δ)-differentially private algorithm on input X
satisfying the premise of Theorem A.13 outputs an index j ∈ [s] such that

E
M

[
1

n

n

∑
i=1

xi,j

]
−max

u∈[s]
1

n

n

∑
i=1

xi,u = o

(
1

nε
log(s) log (1/δ)

)
, (20)

where ε ≤ 1 and 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1).
Using this lower bound on top-selection, we give our lower bound by defining an appropriate non-

convex loss function. In particular, we define a packing over the p-dimensional Euclidean ball such that
there is an bijective mapping between the centers of the packing and [s]. Then the function attains the
minimum at the center of packing which corresponds to the coordinate j ∈ [s] with maximum frequency.
Since the size of the α-net is≈ 1/αp and there is a bijective mapping, this gives a lower bound using eq. (20).

Let B(0, 1) be the p-dimensional Euclidean ball centered at origin and let α ∈ (0, 1/2) be a constant.
Consider an α-packing with centers C = {c1, c2, · · · ,}. It is known that the size of such packing, N(α) is(

1
α

)p
≤ N(α) ≤ ( 3

α

)p
. Let s = N(α). Further, let f : B(0, 1) → {1, · · · , s} be an injective function defined

as follows:

f (θ) =

{
j : cj = arg min

c∈C

‖θ − c‖2

}
.

In particular, f is the function that maps a point on the unit ball to its closest point in C.
We now define our loss function as follows:

L(θ; D) :=
1

n ∑
di∈D

ℓ(θ; di) where ℓ(θ; di) = min
cj∈C

(∥∥θ − cj

∥∥
α

− 1

)
di,j. (21)

For Lipschitz property, note that each loss function is 1/α-Lipschitz because the gradient when it is

defined is just
θ−cj

α‖θ−cj‖2

. We prove it formally.

Consider any θ, θ′ in B(0, 1) and a data point di ∈ D. We wish to show |ℓ(θ; di)− ℓ(θ′; di)| ≤ 1
α ‖θ− θ′‖2.

We can split the line segment from θ to θ′ into a sequence of line segments

(θ0, θ1), (θ1, θ2), . . . , (θk−1, θk),

where θ0 = θ, θk = θ′, such that for any line segment (θm, θm+1), θm and θm+1 share a minimizer in C of(‖θ−cj‖2
α

)
di,j.

10

It now suffices to show |ℓ(θm; di)− ℓ(θm+1; di)| ≤ 1
α ‖θm − θm+1‖2 for each m, since we then have:

|ℓ(θ; di)− ℓ(θ′; di)| ≤
k−1

∑
m=0

|ℓ(θm; di)− ℓ(θm+1; di)| ≤
1

α

k−1

∑
m=0

‖θm − θm+1‖2 =
1

α

∥∥θ− θ′
∥∥

2
.

Let cj be a shared minimizer of

(‖θ−cj‖2
α

)
di,j for θm and θm+1. If di,j = 0, then trivially |ℓ(θm; di) −

ℓ(θm+1; di)| ≤ 1
α ‖θm − θm+1‖2. Otherwise di,j = 1 and by triangle inequality, we have:

10In particular, for each cj let Bj be the set of points in B(0, 1) such that cj is a minimizer of

( ‖θ−cj‖2
α

)
di,j. We can split the line

segment from θ to θ′ at each point where it enters or leaves some Bj to get this sequence of line segments, and by this construction
each line segment’s endpoints are both in Bj for some j.
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|ℓ(θm; di)− ℓ(θm+1; di)| =
∣∣∣∣∣

∥∥θm − cj

∥∥
2

α
−
∥∥θm+1 − cj

∥∥
2

α

∣∣∣∣∣ ≤
1

α
‖θm − θm+1‖2 .

Now let us suppose there is an (ε, δ)-differentially private algorithm A that on input a non-convex
function L and n data points {d1, · · · , dn}, outputs a θpriv such that

E
A

[
L(θpriv; D)

]
− min

θ∈B(1)
L(θ; D) = o

(
p log (1/δ)

nε

)
, (22)

where D = {d1, · · · , dn}.
We will construct an algorithm that uses A as subroutine and solve top-selection problem with an error

o(log(s)), contracting the lower bound of Theorem A.13.
Algorithm B:
• On input X = {x1, · · · , xn}, invokes A on the function defined by eq. (21) and data points X to get

θpriv as output.
• Output f (θpriv).
Since the last step is post-processing, B is (ε, δ)-differentially private. We now show that if A outputs a

θpriv satisfying eq. (22), then j := f (θpriv) satisfies eq. (20) leading to a contradiction.
First note that, for any c ∈ C and all θ ∈ Bp(c, α) such that ‖θ − c‖2 ≤ α

2 ,

L(c; D) = − 1

n

n

∑
i=1

xi, f (c) ≤ L(θ; D).

Therefore,

L(θ∗; X) := min
c∈C
L(c, X) = min

c∈C

(
− 1

n

n

∑
i=1

xi, f (c)

)

This implies that

f (θ∗) = arg max
1≤j≤s

1

n

n

∑
i=1

xi,j,

which is exactly the top-selection problem. Therefore, eq. (22) implies eq. (20) because p log
(

1
α

)
≤ log(s) ≤

p log
(

3
α

)
and α ∈ (0, 1/2) is a constant.
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