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BI-PPT CHANNELS ARE ENTANGLEMENT BREAKING

ALEXANDER MÜLLER-HERMES2 AND SATVIK SINGH1,2

Abstract. In [HL22], Hirche and Leditzky introduced the notion of bi-PPT channels which are
quantum channels that stay completely positive under composition with a transposition and such
that the same property holds for one of their complementary channels. They asked whether there are
examples of such channels that are not antidegradable. We show that this is not the case, since bi-
PPT channels are always entanglement breaking. We also show that degradable quantum channels
staying completely positive under composition with a transposition are entanglement breaking.

We denote by Md the set of d× d matrices with complex entries and by M+
d ⊂ Md the cone of

positive semidefinite matrices. A linear map Φ : MdA → MdB is called positive if Φ(M+
dA

) ⊆ M+
dB

and completely positive (CP) if idn⊗Φ is a positive map for every n ∈ N, where idn denotes the
identity map on Mn. Moreover, Φ is called completely copositive (coCP) if ϑn ⊗ Φ is positive for
every n ∈ N, where ϑn denotes the matrix transpose on Mn in some fixed basis. We will call Φ PPT
if it is both CP and coCP. Finally, Φ is called entanglement breaking if for all X ∈ (Mn ⊗MdA)

+

and n ∈ N, (idn⊗Φ)(X) is separable, i.e., it lies in the convex hull of Y ⊗ Z, Y ∈ M+
n , Z ∈ M+

dB
.

The Choi matrix of a linear map Φ : MdA → MdB is defined as

J(Φ) :=

dA∑

i,j=1

|i〉〈j| ⊗ Φ(|i〉〈j|) ∈ MdA ⊗MdB . (1)

It is known that a linear map Φ is PPT if and only if its Choi matrix J(Φ) is positive and has
positive partial transpose (PPT). Similarly, Φ is entanglement breaking if and only if J(Φ) is
separable. When studying the quantum capacity of quantum channels (i.e. CP trace preserving
linear maps), PPT channels appear naturally as one of the classes of zero-capacity channels [SS12].
Another notion motivated by the capacity problem is that of a complementary pair of quantum
channels [DS05, Hol07, KMNR07]. We will use a slightly more general form of this notion below.

Definition 1. Two CP linear maps Φ : MdA → MdB and Ψ : MdA → MdC are said to be
complementary to each other if there exists a linear operator L : CdA → CdB ⊗ CdC such that

∀X ∈ MdA : Φ(X) = TrC(LXL†) and Ψ(X) = TrB(LXL†),

where TrB and TrC denote the partial traces over the subsystems with the indicated labels.

Let (Φ, Ψ) be a complementary pair of CP maps. We call Φ antidegradable [CRS08] (and Ψ
degradable [DS05]) if there exists a CP map Ω such that such that Φ = Ω ◦ Ψ. Antidegradable
quantum channels form the second known class of channels with no quantum capacity. The classes
of PPT and antidegradable channels are incomparable in general, since there are known examples
of channels that lie in either one of the classes but not the other. Entanglement breaking channels
are known to be both PPT and antidegradable. The following question was asked in [HL22]:

Question 2. Are there any pairs of complementary quantum channels Φ and Ψ such that both Φ
and Ψ are PPT, but that at least one of them is not antidegradable?

Hirche and Leditzky [HL22] argue that such examples of channels could be used to exhibit
superactivation of the private capacity of quantum channels, since they would have vanishing
private capacity. Unfortunately, we can prove that no such example exists. Our proof exploits
the following two facts about the entanglement properties of low rank quantum states. Recall
that a positive matrix X ∈ (MdA ⊗MdB )

+ is called undistillable if no pure entanglement can be
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asymptotically extracted from any number of copies of X by local operations and 2-way classical
communication (2-LOCC) [HHH98].

Lemma 3. [HSTT03] Let X ∈ (MdA ⊗MdB )
+ be a positive matrix such that

rankX < max{rankTrAX, rankTrB X}.

Then, X is distillable. In particular, X cannot be PPT whenever this is the case.

Lemma 4. Let X ∈ (MdA ⊗MdB )
+ be a positive matrix such that

rankX ≤ max{rankTrAX, rankTrB X}.

Then, X is separable if and only if it is PPT if and only if it is undistillable.

Proof. The equivalence of PPT and separability is established in [HLVC00]. Moreover, if X is
PPT, then it is clearly undistillable. Conversely, if X is undistillable, then Lemma 3 shows that
rankX = max{rankTrA X, rankTrB X} and [CD̄11, Theorem 10] implies that X must be PPT. �

We can now state and prove our main results.

Theorem 5. Let Φ : MdA → MdB be a PPT linear map. Then, for any CP linear map Ψ :
MdA → MdC that is complementary to Φ, the following are equivalent:

• Ψ is PPT.
• Ψ is entanglement breaking.
• J(Ψ) is undistillable.

Moreover, if Φ is PPT but not entanglement breaking, then J(Ψ) is distillable 1.

Proof. By definition, J(Φ) and J(Ψ) admit a common purification |L〉 ∈ CdA ⊗ CdB ⊗ CdC , i.e.,
J(Φ) = LAB = TrC |L〉〈L| and J(Ψ) = LAC = TrB |L〉〈L|. Now, since Φ is PPT, Lemma 3 implies
that rankLAB ≥ rankLB, where LB = TrA(LAB). Hence, by exploiting some elementary properties
of purifications, we see that

rankLC = rankLAB ≥ rankLB = rankLAC , (2)

where LC = TrA(LAC). Applying Lemma 4 on J(Ψ) = LAC then establishes the desired equiv-
alences. Finally, if Φ is not entanglement breaking, then Lemma 4 shows that the above rank
inequality becomes strict, i.e.,

rankLC = rankLAB > rankLB = rankLAC , (3)

in which case applying Lemma 3 on J(Ψ) = LAC shows that J(Ψ) is distillable. �

Corollary 6. If two PPT linear maps Φ : MdA → MdB and Ψ : MdA → MdC are complementary
to each other, then they must both be entanglement breaking.

Proof. The corollary trivially follows from Theorem 5. �

A simple application of our results suffices to prove that all degradable PPT linear maps must
be entanglement breaking. This generalizes the well-known fact that Schur multiplier maps are
entanglement breaking whenever they are PPT (see, e.g., [KMP18] or [SN21, Example 7.3]).

Corollary 7. Let (Φ, Ψ) be a complementary pair of CP linear maps such that Φ = Ω ◦ Ψ for
some CP linear map Ω. Then, if Ψ is PPT, both Φ and Ψ must be entanglement breaking.

Proof. Clearly, since Ψ is assumed to be PPT, Φ = Ω ◦Ψ must be PPT as well. Corollary 6 then
implies that both Φ and Ψ are entanglement breaking. �

1After this paper was posted online, we were made aware of an earlier result [HC11, Theorem 2] which establishes
the same equivalences as in Theorem 5 (with identical assumption on Φ) but is formulated in the language of quantum
states. More recently, the results of [SD22] show that the conclusion of Theorem 5 remains valid under a much weaker
assumption on Φ, namely that Φ has zero (1-way) quantum capacity.
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The above corollary can be used to construct some examples of pairs of complementary PPT
linear maps (Φ,Ψ) such that both Φ and Ψ are entanglement breaking. One simply needs to choose
Ψ to be PPT and degradable. A canonical choice is to define Ψ : Md → Md as

∀X ∈ Md : Ψ(X) = T ⊙X, (4)

where T ∈ M+
d is a diagonal matrix with non-negative entries and ⊙ denotes the entrywise matrix

product. It is then easy to check that Ψ is a PPT Schur multiplier map. Moreover, since Schur
multiplier maps are degradable [DS05], Corollary 7 informs us that both Ψ and any CP linear map
Φ that is complementary to Ψ must be entanglement breaking.
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We would like to thank all the Reviewers for the time and effort that they invested in reading our

manuscript. We are grateful to them for their valuable feedback. Our response to their suggestions is

included below.

1 Reviewer 1

Comment: The only potential criticism I see is that the proof of the final part of Theorem 5 could have

been described more clearly as it doesn’t seem to follow directly from the statement of Lemma 4 as claimed

but requires additional ingredients.

Response: We have added a couple more lines in the proof of Theorem 5 to make the exposition more clear.

1

http://arxiv.org/abs/2204.01685v2

	References
	1 Reviewer 1

