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Abstract

We study computational aspects of repulsive Gibbs point processes, which are probabilistic models
of interacting particles in a finite-volume region of space. We introduce an approach for reducing a
Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of
such a point process, our reduction generates a random graph drawn from a natural geometric model.
We show that the partition function of a hard-core model on graphs generated by the geometric model
concentrates around the partition function of the Gibbs point process. Our reduction allows us to use
a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process
and approximate its partition function. This is, to the extend of our knowledge, the first approach that
deals with pair potentials of unbounded range. We compare the resulting algorithms with recently
established results and study further properties of the random geometric graphs with respect to the
hard-core model.

1 Introduction

Gibbs point processes are a tool for modelling a variety of phenomena that can be described as distributions
of random spatial events [6, 36]. Such phenomena include the location of stars in the universe, a sample
of cells under the microscope, or the location of pores and cracks in the ground (see [37, 45] for more on
applications of Gibbs point processes). In statistical physics, such point processes are frequently used as
stochastic models for gases or liquids of interacting particles [39].

A Gibbs point process on a finite-volume regionV is parameterized by a fugacity _ and a pair potential
q expressing the interactions between pairs of points. Every point configuration in the region is assigned
a weight according to the pair interactions q between all pairs of points in the configuration. One can
then think of a Gibbs point process as a Poisson point process of intensity _, where the density of each
configuration is scaled proportionally to its weight. The density is normalized by the partition function,
which is the integral of the weights over the configuration space (see Section 1.1 for a formal definition
of the model). The most famous example of such a process is the hard-sphere model, a model of a random
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packing of equal-sized spheres with radius A . The pair potential in the hard-sphere model defines hard-core
interactions, i.e., configurations where two points closer than some distance 2A have weight zero, while all
other configurations have weight one. In this article, we consider Gibbs point processes with repulsive

potentials, that is, pair potentials in which adding a point to a configuration does not increase its weight.
The hard-sphere model, for example, does have a repulsive pair potential, however, we do not restrict
ourselves to hard-core potentials and allow for soft-core interactions.

The two most fundamental algorithmic tasks considered on Gibbs point processes are to sample from the
model and to compute its partition function, which are closely related. Understanding for which potentials
and fugacities these two tasks are tractable is an ambitious endeavour. Towards this goal, there has been
a plethora of algorithmic results on Gibbs point processes spanning several decades. Notably, the Markov
chain Monte Carlo method was developed for sampling an instance of the hard-sphere model with 224
particles [32]. Since then, a variety of exact and approximate sampling algorithms for such point processes
have been proposed in the literature, and their efficiency has been studied extensively both without [19, 22]
and with rigorous running time guarantees [35, 24, 21, 34, 1]. The key objective of rigorous works is to
identify a parameter regime for their respective model for which a randomized algorithm for sampling
and approximating the partition function exists with running time polynomial in the volume of the region.
In addition, deterministic algorithms for approximating the partition function have also appeared in the
literature [17, 26] with running time quasi-polynomial in the volume of the region.

This recent flurry of algorithmic results on Gibbs point processes can be attributed to progress in under-
standing the computational properties of discrete spin systems, such as the hard-core model. Within these
works, two main approaches can be identified for transferring insights from discrete spin systems to Gibbs
point processes. The first one, which includes results such as [23, 34, 1], considers properties proven to
hold in discrete spin systems and translates them to the continuous setting of Gibbs point processes. More
precisely, these works consider the notion of strong spatial mixing, which has been strongly connected
to algorithmic properties of discrete spin systems [47, 40, 16], and translate it to an analogous notion for
Gibbs point processes to obtain algorithmic results. A common pattern in these works is that once the
parameter regime for which strong spatial mixing holds is established, one needs to prove from scratch
that this implies efficient algorithms in Gibbs point processes. In addition, the definition of strong spatial
mixing for Gibbs points processes assumes that the pair interactions of two particles is always of bounded
range, i.e., if two particles are placed at distance greater than some constant A ∈ R≥0, they do not interact
with each other.

The second approach, used in [18, 17], is to discretize the model, i.e., reduce it to an instance of the
hard-core model and then solve the respective algorithmic problem for the hard-core model. In this case,
the algorithmic arsenal developed over the years for the hard-core model is now readily available for the
instances resulting from this reduction. The main downside of these approaches is that they only apply to
the hard-sphere model, a special case of bounded-range repulsive interactions.

Our contributions. We introduce a natural approach for reducing repulsive point processes to the hard-
core model. Given an instance (V, _, q) of such a point process, we generate a random graph by sampling
= ∈ Θ

(
V2

)
point-vertices independently and uniformly at random in V and by connecting each pair of

points with an edge drawn with an appropriate probability, which depends on q . We show that compu-
tational properties of the hard-core model on graphs generated by this model and with an appropriately
scaled fugacity transfer to the originating Gibbs point process.

We first show that the partition function of the hard-core model on these graphs concentrates around
the partition function of the Gibbs point process. Using existing algorithms for the hard-core model as a
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black box, our result immediately yields randomized approximation algorithms for the partition function of
the point process in running time polynomial in the volume ofV. Furthermore, we show that sampling an
independent set from the generated hard-core model and returning the positions of its vertices inV results
in an approximate sampler from the distribution of the Gibbs point process. Our approach, in contrast to
all previous algorithmic work in the literature, does not require the pair potential q of the point process to
be of bounded range. This includes various models of interest in statistical physics, such as the (hard-core)
Yukawa model [15, 38], the Gaussian overlap model [7], the generalized exponential model [5], and the
Yoshida–Kamakura model [48].

Finally, we identify the parameter regime (in terms of _ andq ) for which the generated hard-core instance
exhibits strong spatial mixing. This parameter regime is identical to the best known regime for which
repulsive point processes with bounded-range potentials have strong spatial mixing [34].

1.1 Gibbs point processes

We now formally define the notion of a Gibbs point process. As usual in the theory of point processes,
we assume the underlying space to be a complete, separable metric space (X, 3) equipped with the Borel
algebra B = B(X) and a reference measure a on (X,B) that assigns finite volume to bounded measurable

sets. In this work, we study Gibbs point processes % (_,q )
V

on bounded measurable regions V ⊆ X that are
parameterized by a fugacity parameter _ ∈ R≥0 and a repulsive (i.e., non-negative), symmetric, measurable

potential function q : X2 → R≥0 ∪ {∞}. Such a process % (_,q )
V

is defined by a density with respect to a

Poisson point process&_ with intensity _ onX. For every finite point configuration x = (G1, . . . , G: ) ∈ V: ,
this density is proportional to e−� (G1,...,G: ) , where � is the Hamiltonian

� (G1 . . . , G: ) =
∑

{8, 9 }∈ ( [: ]2 )
q
(
G8 , G 9

)
.

More precisely, the density can be expressed explicitly as

d% (_,q )
V

d&_
(G1, . . . , G: ) =

1∀8∈[: ] : G8 ∈V · e−� (G1,...,G: )e_a (V)

MV (_, q) ,

where the normalizing constant MV (_, q) is the partition function

MV (_, q) = 1 +
∑

:∈N≥1

_:

:!

∫
V:

e−� (G1,...,G: )a: (dx) .

1.2 Randomized reduction to the hard-core model

Our approach is to reduce the problem of sampling from a repulsive Gibbs point process and approximating
its partition function to the analogous problems for a discrete hard-core model, which we briefly introduce.
For an undirected graph � = (+, �), let I(�) ⊆ 2+ denote the set of independent sets of � . For a vertex

activity W ∈ R≥0, the hard-core model on � is a probability distribution `
(W )
�

on I(�) that assigns each
independent set � ∈ I(�) a probability proportional to W |� | . The normalizing constant of this distribution,
/� (W) =

∑
� ∈I(� ) W

|� | , is called the hard-core partition function on� .

The goal is to reduce the problem of approximate sampling from %
(_,q )
V

to approximate sampling from

`
(W )
�

and, similarly, to reduce the problem of approximatingMV (_, q) to approximating/� (W) for a suitably
chosen graph � and vertex activity W . The advantage of this approach is that sampling from a hard-core
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model as well as approximating hard-core partition functions are well studied problems. Specifically, a

sequence of recent papers [3, 4, 10, 11, 12] established approximate sampling from `
(W )
�

in Õ( |+ |) running
time and randomized approximation of /� (W) in Õ

(
|+ |2

)
running time for graphs� with maximum degree

3 for all W strictly below the tree threshold Wc(3) ≔ (3−1)3−1

(3−2)3 .

Our reduction is inspired by the discretization schemes in [17, 18]. These approaches are limited to the
hard-sphere model (and similar models with hard-core interactions) in specific regions of Euclidean space.
In this setting, the utilized graph� is essentially a unit-disk graph inV. This procedure comes with twoma-
jor disadvantages. Firstly, the analysis heavily depends geometric arguments and is therefore restricted to
regions in Euclidean space that satisfy various requirements. Secondly, it is not obvious how this technique
extends to general repulsive potentials q and especially how to account for soft-core interactions.

We circumvent the above problems by investigating hard-core models on a suitably chosen family of
random graphs. For a bounded measurable region V ⊆ X, let DV denote the uniform distribution on V.
That is, for G ∼ DV, we have Pr[G ∈ �] =

a (�)
a (V) for every measurable � ⊆ V, and Pr[G ∉ V] = 0. For a

repulsive potential q and a positive integer = ∈ N≥1, we consider a random-graph model Z (=)
V,q

on the set of

undirected graphs with vertex set [=], where Z (=)
V,q

is defined by the following natural procedure to generate

a graph:

1. For each 8 ∈ [=], draw a uniform random point G8 ∼ DV independently.

2. For all 8, 9 ∈ [=] with 8 ≠ 9 , connect 8 and 9 with an edge with probability 1−e−q (G8 ,G 9 ) independently.

Readers familiar with graphons might notice that this random-graph model can be expressed as a graphon-
based random graph (, -random graph) for a suitably chosen graphon , . We discuss this perspective
later in the introduction. Moreover, we would like to mentioned that a similar graph construction based
on points from a Poisson point process was used in [8] to prove uniqueness of the infinite-volume Gibbs
measure for _ <

1
�q

via percolation.

The key property of the graphs from Z
(=)
V,q

is that, for a suitably chosen vertex activity W , their hard-core

partition functions concentrate around MV (_, q). This property is at the core of our reduction.

◮ Theorem 1.1. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra,
and let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let
_ ∈ R≥0, and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. For all Y ∈ (0, 1], X ∈ (0, 1] and
= ≥ 4Y−2X−1max

{
e6_2a (V)2, ln

(
4Y−1

)2}, it holds that, for� ∼ Z
(=)
V,q

,

Pr

[����/�

(
_a (V)

=

)
−MV (_, q)

���� ≥ YMV (_, q)
]
≤ X. ◭

Informally, Theorem 1.1 says that, for = ∈ Θ
(
a (V)2

)
and � ∼ Z

(=)
V,q

, the hard-core partition function

/� (W (=)) with W (=) = _a (V)
= is strongly concentrated around the partition function of the repulsive Gibbs

point processMV (_, q). In [17, Proposition 5.8], it was argued that the partition function of an unrestricted
Poisson point process in a bounded measurable regionV of Euclidean space cannot be approximated by the
hard-core partition function /� (W (=)) for any graph � on = vertices if = ∈ o

(
a (V)2

)
. As the unrestricted

Poisson point process is a special case of a repulsive Gibbs point process with constant zero potential, this
implies that our concentration result in Theorem 1.1 is tight in terms of its asymptotic dependency on the
volume a (V).
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A remarkable aspect of Theorem 1.1 is the generality in which it holds with respect to the underlying
space X. In particular, we do not need any additional assumptions regarding its geometry. We achieve
this by deriving Theorem 1.1 from a corollary of the Efron–Stein inequality [14]. This corollary gives a
convenient-to-use way for proving concentration of functions of independent random inputs, given that
changing one input of the function only leads to small relative changes of its output. Using this corollary,
we prove Theorem 1.1 by bounding changes in the hard-core partition function of a graph that are caused
by small alternations of the graph structure. We proceed by discussing this approach in detail.

Proving concentration

We prove Theorem 1.1 in two steps. First, we show that, for � ∼ Z
(=)
V,q

and W (=) =
_a (V)

= , the expected

hard-core partition function E[/� (W (=))] converges rapidly to the partition function of the point process
MV (_, q) as = grows. We prove this by fixing = ∈ Θ

(
a (V)2

)
sufficiently large and rewriting E[/� (W (=))]

as a sum of expectations. We then relate each of the first< < = terms in that sum with the corresponding
term in MV (_, q), which requires comparing the expected number of independent sets of size : ≤ < in a

graph � ∼ Z
(=)
V,q

with =:

:!a (V):
∫
V: e

−� (x )dx. Finally, we argue that all terms of order higher than< can be

discarded.
Once convergence of the expectation is established, it remains to prove that the distribution of the parti-

tion functions /� (W (=)) for � ∼ Z
(=)
V,q

concentrates around this expectation. To prove the latter, we derive

Corollary 3.3 from the Efron–Stein inequality [14]. This corollary roughly states that the output of a func-
tion 5 on a product of probability spaces concentrates around its expectation if 5 exhibits sufficiently small
relative changes when any component of its input is changed. Similar methods for proving concentration
usually require the output of the function 5 to exhibit small absolute changes (i.e., 5 to be Lipschitz, see
[30, 31]), which does not hold in our setting.

To apply this concentration bound, we need to express the partition function of a graph drawn from Z
(=)
V,q

as a function of independent random inputs. To this end, we model a random graph � ∼ Z
(=)
V,q

based

on = points x = (G8 )8∈[=] , each independently drawn from DV, and
= (=−1)

2 independent random variables
~ = (~8, 9 )1≤8< 9≤= , each uniformly distributed on the real interval [0, 1]. Given the random vectors x and ~,

we construct a graph by connecting vertices 8 < 9 by an edge if and only if ~8, 9 ≤ 1 − e−q (G8 ,G 9 ) . Note that
the resulting graph is distributed according to Z (=)

V,q
. Thus, we express the hard-core partition function on

the random-graph model Z (=)
V,q

as a function 5 (x,~) for x and ~ as described above. The effect of changing

a component of ~ is bounded by the relative change of the hard-core partition function when adding or
removing an edge. On the other hand, the effect of changing a component of x, say G8 , is bounded by con-
sidering the change of the hard-core partition function when altering the neighborhood of a single vertex 8.
Bounding both effects and applying Corollary 3.3 yields the desired concentration result (Theorem 1.1).

In fact, a similar argument as above applies to a broad class of antiferromagnetic spin systems on graphon-
based random graphs that contains our application as a special case. We discuss his more general setting
after demonstrating the sampling and approximation results for Gibbs point processes that can be obtained
from Theorem 1.1.

1.3 Algorithmic implications

We proceed by showcasing some algorithmic results for repulsive Gibbs point processes that follow from
Theorem 1.1. More specifically, we focus on Y-approximate sampling from the point process and obtaining
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a randomized Y-approximation of the partition function. Formally, the problem of Y-approximate sampling

from %
(_,q )
V

is defined as producing a random point configuration with a distribution that has a total vari-

ation distance of at most Y to %
(_,q )
V

. Analogously, the problem of Y-approximating MV (_, q) is defined as
computing some value G ∈ R such that (1 − Y)MV (_, q) ≤ G ≤ (1 + Y)MV (_, q). Moreover, an algorithm is
called a randomized Y-approximation if it outputs an Y-approximation of MV (_, q) with probability at least
2
3 . The choice of the constant

2
3 is rather arbitrary here, as the error probability can be made smaller than

every X ∈ R>0 by taking the median of O
(
log

(
X−1

) )
independent runs, as long as the error probability of

each run is some constant smaller than 1
2 . Furthermore, we consider an Y-approximate sampler and a (ran-

domized) Y-approximation algorithm as efficient if their running time is polynomial in the volume a (V)
and in Y−1.

Recent rigorous results establish bounds on the fugacity regime of different models for which these
algorithmic problems can be solved efficiently. Often, these bounds are stated in terms of the temperedness

constant �q , which is defined as

�q = sup
G1∈X

∫
X

���1 − e−q (G1,G2)
���a (dG2).

This value can be seen as measure for the strength of interactions between points.
Given our concentration result (Theorem 1.1), a straightforward idea for approximating MV (_, q) is to

sample a graph� ∼ Z
(=)
V,q

and try to approximate its hard-core partition function. A refined version of this

procedure leads to the following theorem.

◮ Theorem 1.2. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra, and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0,

and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Assume there is a sampler for Z (=)
V,q

with

running time CV,q (=).
If _ <

e
�q

, then, for all Y ∈ (0, 1], there is a randomized Y-approximation algorithm for MV (_, q) with

running time in Õ
(
a (V)4Y−6

)
+ CV,q

(
Õ

(
a (V)2Y−2

) )
. ◭

With respect to sampling from %
(_,q )
V

, it is less obvious how Theorem 1.1 can be utilized. However, under
mild assumptions, we obtain an approximate sampler, based on Theorem 1.1, by the following procedure:

Sample an independent set � ∈ I(�) (approximately) from `
(W (=) )
�

and output the point configuration

{G8 }8∈� . Given that % (_,q )
V

is simple, which means that drawing a point configuration that contains the same
point multiple times has probability zero, a refined version of the approach sketched above leads to the
following result.

◮ Theorem 1.3. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra, and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0,
and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Assume we can sample from the uniform
distribution DV in time CV and, for every G, ~ ∈ V, we can evaluate q (G, ~) in time Cq .

If the Gibbs point process % (_,q )
V

is simple and _ <
e
�q

, then, for every Y ∈ R>0 , there exists an Y-

approximate sampling algorithm for % (_,q )
V

with running time in Õ
(
a (V)2Y−4 + a (V)2Y−3CV + a (V)4Y−6Cq

)
.
◭

There are two main differences in the assumptions of the approximation result (Theorem 1.2) and the
sampling result (Theorem 1.3). First, the sampling result requires the point process to be simple. The
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reason is that, in order to bound the total variation distance between the output of our sampler and % (_,q )
V

,
we derive a density of that output with respect to a Poisson point process. This task is greatly simplified by

assuming that % (_,q )
V

is simple, as it allows for an easier characterization of the output distribution of our
sampling, based on a theorem by Rényi–Mönch (see [13, Theorem 9.2.XII]). However, assuming the point
process to be simple is only a minor restriction, as it is satisfied for most applications of point processes.
For example, it is trivially satisfied if the reference volume measure a is not-atomic (i.e., assigns volume 0 to
single points). This includes the most frequently studied case of Gibbs point processes in Euclidean space
but also a variety of other spaces, such as Gibbs point processes in hyperbolic spaces or in Riemannian
manifolds.

Second, our sampling result requires efficient sampling from the uniform distributionDV and an efficient
way to compute the potential q . In contrast to that, Theorem 1.2 only assumes an efficient way to sample

a graph from Z
(=)
V,q

. We state the theorems in this way to emphasize that, for approximating MV (_, q), we
only need to sample from the random-graph model Z (=)

V,q
. Our sampling procedure additionally requires the

position G8 ∈ V for each vertex 8 ∈ [=] along with the graph to output the point configuration, associated
to a random independent set drawn from the hard-core model.

Last, we briefly discuss the origin of the fugacity bound e
�q

in our algorithmic results. WriteW (=) = _a (V)
=

for every = ∈ N≥1. Note that our algorithms rely on either an efficient approximation of the hard-core

partition function /� (W (=)) or an efficient approximate sampler for an independent set from `
(W (=) )
�

for a

random graph� ∼ Z
(=)
V,q

. As discussed earlier, such computational results are known for general graphs of

maximum degree 3 as long as the parameter W is below the corresponding tree threshold Wc(3). Observe
that Wc(3) ≈ e

3 for large 3 . Thus, roughly speaking, we can perform the necessary computational tasks as

long as W (=) =
_a (V)

= <
e
3�

, where 3� is the maximum degree of the graph � that was drawn from Z
(=)
V,q

.

Equivalently, this is _ <
e=

3� a (V) . The main observation is now that, for � ∼ Z
(=)
V,q

, the expected degree of

an arbitrary vertex of� is upper-bounded by
=�q

a (V) . By proving that, with sufficiently high probability, the
maximum degree 3� is not much larger than this value, we obtain the desired bound of e

�q
.

1.4 Strong spatial mixing, connective constants, and improved bounds

A property closely tied to the existence of efficient algorithms for the hard-core model is strong spatial
mixing. Strong spatial mixing describes a particular way how dependencies between distant vertices in a
graph� decay. The definition is easiest stated in terms of the occupation probability of a vertex { ∈ +� (i.e.,
the probability that { is in the independent set, drawn from a hard-core model on�) conditioned on certain
vertices being occupied or unoccupied. Given two such conditions that differ at some vertex set ( ⊂ +� ,
strong spatial mixing requires that the resulting difference in the occupation probability of every vertex {
is exponentially small in the graph distance between { and (1 (see Definition 6.1 and remark Remark 6.2
for more details).

In a seminal paper, Weitz [47] proved that, for a graph � of maximum degree 3� and vertex { ∈ +� , we
can construct a tree with root { such that the occupation probability of { in the tree is the same as in � .
This continues to hold when conditioning on the state of other vertices by translating the condition to the
tree appropriately. It follows that if this tree exhibits strong spatial mixing with respect to the root, then
this property also holds for � . Moreover, in this case, a recursive computation on this tree can be used

1 Often it is more convenient to work with the occupation ratio, which is the occupation probability divided by the probability
of the vertex to be unoccupied. However, the resulting strong spatial mixing definitions are equivalent.
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to approximate the occupation probability of {, which results in a sampling and approximation algorithm
with running time |+� |O(log(3� ) ) , for the hard-core model at vertex activity up to Wc (3� ) on� .

Subsequently, this result was improved by a more refined analysis [42, 40]. We elaborate further. The
tree used by Weitz, which we refer to as theWeitz tree, is a truncated version of a self-avoiding walk tree2

(see Section 6.3 for a formal definition). This truncation accounts for the effect of cycles on the hard-core
distribution in the original graph. In [42, 40], it was shown that strong spatial mixing results can be derived
by bounding the connective constant J, which describes the growth of the Weitz tree (see Definition 6.4).
In particular, it was shown that strong spatial mixing applies up to a vertex activity of W < Wc(J), which
improves bounds derived from the maximum degree. Consequentially, this implies sampling and approxi-
mation algorithm for the hard-core model for this parameter regime with running time |+� |O(log(J) ) .

Inspired by these results on the hard-core model, Michelen and Perkins [33] recently introduced the
potential-weighted connective constant Jq for repulsive Gibbs point processes (see Section 6.1 for a formal
definition). It can be seen as an alternative to �q that is more sensitive to the structure of the underlying
space X. In particular, for any non-trivial potential, Jq is strictly smaller than the temperedness constant.
Moreover, it was shown in [34] that repulsive Gibbs point processes with bounded-range potentials exhibit
a notion of strong spatial mixing up to a fugacity of _ < e/Jq (see [34, Definition 1]). This result was used
to derive a polynomial-time approximate sampling algorithm and a randomized approximation algorithm
for the partition function of bounded-range repulsive Gibbs point processes in the same fugacity regime.

Given a repulsive Gibbs point process with fugacity _ < e/Jq , we show in Section 6 that the hard-
core model that is obtained from our reduction exhibits strong spatial mixing with high probability. In
particular our result holds without bounded-range assumptions. We prove this by using the results in
[42, 40]. Towards this, we establish a rigorous connection between the potential-weighted connective

constant of a repulsive Gibbs point process and the connective constant of a graph from Z
(=)
V,q

. More precisely,

we show that, for any n > 0 and = ≥ Θ(a (V)), the connective constant of a graph from Z
(=)
V,q

is bounded by

en =
a (V)Jq with probability at least 1 − 1

= (see Theorem 6.7 for the formal statement). To obtain this result,
we make use of the fact that the construction of the Weitz tree leaves some degree of freedom. That is, for
the same graph� and root vertex { ∈ +� , different Weitz trees can be constructed, which differ in how the
self-avoiding walk tree is truncated. In our setting, we carefully need to choose the truncation based on the
underlying location of vertices in V. In particular, it is important for us to define the connective constant
in terms of the Weitz tree and not the full self-avoiding walk tree. The latter would only yield a bound of

=
a (V)�q , which would be no improvement over the maximum degree of� ∼ Z

(=)
V,q

.

Given the above graphical interpretation of Jq , we immediately obtain that, for all _ < e/Jq , a hard-core

model with vertex activityW (=) = a (V)
= _ exhibits strong spatial mixing on� ∼ Z

(=)
V,q

with probability at least

1 − 1
= (see Corollary 6.10 for the formal statement). This result holds for any repulsive potential, without

bounded-range assumption. However, it should be noted that the strong spatial mixing is with respect to
the graph distance and not the distance metric of the underlying spaceX.

This strong spatial mixing result for � ∼ Z
(=)
V,q

gives our reduction further algorithmic consequences.

Using the deterministic algorithm for approximating that partition function of a hard-core model proposed
by Weitz [47] (see also [42, 40]) and Theorem 1.1, our strong spatial mixing result yields a randomized
approximation for the partition function of repulsive Gibbs point processes with arbitrary range potentials
for _ < e/Jq with quasi-polynomial running time a (V)O(ln(a (V) ) ) . A similar result can be derived in the
setting of approximate sampling.

2 In [47] the tree is actually not truncated but certain vertices in the tree are fixed to be always occupied or unoccupied. However,
this is equivalent to truncating the tree.
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1.5 A more general concentration result: antiferromagnetic partition functions on
graphon-based random graphs

So far, we discussed how concentration of hard-core partition functions /�

(
_a (V)

=

)
for random graphs

� ∼ Z
(=)
V,q

, stated in Theorem 1.1 is obtained from Corollary 3.3. However, as hinted earlier, a more gen-

eral concentration result can be obtained for a large class of antiferromagnetic two-state spin systems on
graphon-based random graph models. As such spin systems have been studied extensively [28, 41, 43], we
believe this result to be of independent interest. In what follows, we outline thismore general concentration
result and show how Theorem 1.1 follows as a special case of it.

We start by introducing the class of spin systems to which it applies. For an undirected graph� = (+, �)
with vertices + and edges � ⊆

(+
2

)
, we denote by O� the set of all functions f : + → {0, 1}. To simplify

notation, we assume + = [=] for some = ∈ N. A two-state spin system with parameters W, V0, V1 ∈ R≥0 on

� is a probability distribution `
(W,V0,V1 )
�

on O� with

`
(W,V0,V1 )
�

(f) =
W |f |1V

<
(0)
�

(f )
0 V

<
(1)
�

(f )
1

/� (W, V0, V1)
,

where |f |1 =
��f−1 (1)

�� counts the number of vertices that are assigned to 1,< (0)
� (f) = ∑

{8, 9 }∈� 1f (8 )=f ( 9 )=0
counts the number of edges with both endpoints assigned to 0 ∈ {0, 1}, and the normalizing constant
/� (W, V0, V1) is the partition function

/� (W, V0, V1) =
∑

f∈O�
W |f |1V

<
(0)
�

(f )
0 V

<
(1)
�

(f )
1 .

A two-state spin system is antiferromagnetic if V0V1 ≤ 1. Our concentration result applies to antiferromag-
netic two-state spin systems with V0 = 1. In this case, we omit V0 completely, write V = V1 ∈ [0, 1], and
denote the partition function by /� (W, V).

Our concentration result for partition functions /� (W, V) applies to all graphon-based random-graph
models. Here, we refer to graphons in the most general sense, as defined in [29, Chapter 13]. That is, for a
probability spaceX = (-,A, b), a graphon is a symmetric function, : - 2 → [0, 1] that is measurable with
respect to the product algebra A2

= A ⊗ A. Note that, even though we call the function, the graphon,
we mean implicitly that a graphon is a tuple of an underlying probability space and a suitable function, .
One useful aspect of a graphon, is that it naturally defines a family of random-graph models, sometimes
called, -random graphs (see [29, Chapter 11]). For every = ∈ N≥1, we denote by G, ,= a distribution on
undirected graphs with vertex set [=] that is induced by the following procedure for generating a random
graph:

1. Draw a tuple (G1, . . . G=) ∈ -= according to the product distribution b= .

2. For all 8, 9 ∈ [=], 8 ≠ 9 , add the edge {8, 9} independently with probability,
(
G8 , G 9

)
.

Observe thatG,,= encompasses classical random-graph models, such as Erdős–Rényi random graphs and
geometric random graphs.

Applying Corollary 3.3 and using essentially the same arguments as in our proof sketch for Theorem 1.1
yields the following result.
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◮ Theorem 1.4. Let, be a graphon on the probability spaceX = (-,A, b). LetW : N≥1 → R≥0 such that

W (=) ≤ W0=
− 1+U

2 for some W0 ∈ R≥0 and U ∈ R>0. For all V ∈ [0, 1], Y ∈ (0, 1], X ∈ (0, 1], = ≥
(
2W20Y

−2X−1
) 1
U ,

and� ∼ G,,= , it holds that

Pr
[
|/� (W (=), V) − E[/� (W (=), V)] | ≥ YE[/� (W (=), V)]

]
≤ X. ◭

◮ Remark 1.5. In fact, Theorem 1.4 can easily be extended to an even more general setting, where we
consider a sequence of probability spaces (X=)=∈N and an associated sequence of graphons (,=)=∈N (i.e.,
each,= is a graphon on X=). This makes the result for example applicable to popular models studied in
network theory, such as hyperbolic random graphs [27] and geometric inhomogeneous random graphs [9].

◭

A surprising aspect of Theorem 1.4 is that, even though E[/� (W (=), V)] ≥ 1 + =W (=) diverges for W (=) ∈
l (=−1) as = increases, Theorem 1.4 still ensures that the distribution of the partition functions gets more
and more concentrated as long as W (=) ∈ o

(
=− 1

2
)
.

We derive Theorem 1.1 as a special case of Theorem 1.4. To see how this works, first observe that, for
V = 0, it holds that /� (W (=), V) is the hard-core partition function of a graph � with parameter W ∈ R≥0.
Moreover, by setting X = (V,B, DV), considering a graphon,q (G1, G2) = 1 − e−q (G1,G2 ) , G1, G2 ∈ V, on X,

we obtain Z
(=)
V,q

= G,q ,= . This way of expressing Z
(=)
V,q

establishes a connection between repulsive Gibbs

point processes and hard-core models on graphon-based random graphs. Lastly, setting W0 = _a (V) and
W (=) = W0=

−1 and applying Theorem 1.4 yields the desired concentration result for hard-core partition

functions on Z
(=)
V,q

.

1.6 Organization of the technical details

The technical details in the appendix are organized as follows. In Section 2, we formally introduce the
notion of antiferromagnetic spin systems and Gibbs point processes. Note that for the latter one, we base
our definition on the notion of random counting measures. This is common in the theory of point processes
but slightly differs from the definition given in the introduction. In Section 3, we prove our concentration
result for partition functions of antiferromagnetic spin systems on graphon-based random graphs. We
continue by showing in Section 4 how to efficiently approximate the partition functions of a Gibbs point
process with arbitrary repulsive potentials via hard-core partition functions of random graphs based on
a suitably constructed graphon. In Section 5, we show how a similar approach can be used to obtain an
approximate sampler for repulsive Gibbs point processes. Finally, in Section 6 we give a high-probability
bound on the connective constant of the graphs obtained from our reduction and derive corresponding
strong spatial mixing results.

2 Preliminaries

We formally introduce the discrete antiferromagnetic spin systems we investigate, as well as Gibbs point
processes.

2.1 Antiferromagnetic spin systems

For an undirected graph � = (+, �) with vertices + and edges � ⊆
(+
2

)
, we denote by O� the set of all

functions f : + → {0, 1}. Without loss of generality, we are going to assume the canonical vertex set

10



+ = [=] for some = ∈ N. A two-state spin system with parameters W, V0, V1 ∈ R≥0 on � is a probability

distribution `
(W,V0,V1)
�

on O� with

`
(W,V0,V1 )
�

(f) =
W |f |1V

<
(0)
�

(f )
0 V

<
(1)
�

(f )
1

/� (W, V0, V1)
,

where |f |1 =
��f−1 (1)

�� counts the number of vertices assigned that are to 1,< (0)
�

(f) = ∑
{8, 9 }∈� 1f (8 )=f ( 9 )=0

counts the number of edges with both endpoints assigned to 0 ∈ {0, 1} and /� (W, V0, V1) is the normalizing
constant

/� (W, V0, V1) =
∑
f∈O�

W |f |1V
<

(0)
�

(f )
0 V

<
(1)
�

(f )
1 .

Note that we implicitly assume V0 ≠ 0 or V1 ≠ 0, as ` (W,V0,V1)
�

may not be defined otherwise.

Usually, ` (W,V0,V1)
�

is referred to as theGibbs distribution of themodel and/� is called the partition function.
Further, a two-state spin system is antiferromagnetic if V0V1 ≤ 1. For our concentration result, we focus
on the setting where V0 = 1. In this case, we omit V0 completely and write V = V1 ∈ [0, 1] and denote
the partition function by /� (W, V). Of special interest within this class of antiferromagnetic two-state spin
systems in the hard-core model, which results from setting V = 0. In this case, we might just omit the edge

interactions V completely and write ` (W )
�

and /� (W). Note that this implies that only configurations f ∈ O�

for which f−1 (1) is an independent set in� can have non-zero probability. For us, this model is especially
relevant, as we show that concentration of hard-core partition functions on random graphs can be used to
derive randomized approximations for the partition function of repulsive Gibbs point processes, which are
introduced in the next section.

2.2 Gibbs point processes

We introduce the notion of Gibbs point processes that is used throughout this paper. For a formal treatment,
it is common to model point processes as random counting measures. Note that this is different from the
simplified definition that we gave in the introduction. For a more detailed overview on the theory of point
processes and specifically Gibbs point processes, see [25].

Let (X, 3) be a complete, separable metric space and let B = B(X) be the Borel algebra of that space.
Let a be a locally finite reference measure on (X,B) such that all bounded measurable sets have finite
measure. Denote by N the set of all locally finite counting measures on (X,B). Formally, this is the set
of all measures [ on (X,B) with values in N ∪ {∞} such that a (�) < ∞ implies [ (�) < ∞ for all � ∈ B.
For each � ∈ B, define a map #� : N → N ∪ {∞} with [ ↦→ [ (�) and let R be the sigma algebra on N
that is generated by the set of those maps {#� | � ∈ B}. A point process on X is now a measurable map
from some probability space to the measurable space (N ,R). With some abuse of terminology, we call any
probability distribution on (N ,R) a point process, as we can only use the identity as measurable mapping
from [ to itself. Moreover, a point process is call simple if #G ([) ≤ 1 with probability 1, where we write #G

for #{G } .
Note that every counting measure [ ∈ N is associated with a multiset of points inX. To see this, define

-[ = {G ∈ X | #G ([) > 0}. Then [ can be expressed as a weighted sum of Dirac measures

[ =

∑
G∈-[

#G ([)XG .

11



In this sense, [ is associated with a multiset of points G ∈ -[ , each occurring with finite multiplicity #G ([).
We may use such a point configuration interchangeably with its corresponding counting measure.

An important example for point processes are Poisson point processes. A Poisson point process with
intensity ^ ∈ R≥0 on (X, 3) is uniquely defined by the following properties

• for all bounded measurable � ⊆ X it holds that #� is Poisson distributed with intensity ^a (�) and

• for all< ∈ N≥2 and disjoint measurable �1, . . . , �< ⊆ X it holds that #�1, . . . , #�<
are independent.

Generally speaking, a Gibbs point process is a point process that is absolutely continuous with respect to
a Poisson point process. For a bounded measurableV ⊆ X letNV denote the set of locally finite counting
measures [ ∈ N that satisfy #� ([) = 0 for all measurable � ⊆ X \ V. In this work we are interested in

Gibbs point processes % (_,q )
V

on bounded measurable regions V ⊆ X that are parameterized by a fugacity
parameter _ ∈ R≥0 and non-negative, symmetric, measurable potential function q : X2 → R≥0 ∪ {∞}.
Formally, such a process % (_,q )

V
is defined by having a density with respect to a Poisson point process with

intensity _ of the form

d% (_,q )
V

d&_
([) =

1[∈NV
e−� ([ )e_a (V)

MV (_, q)
where � : N → R≥0 ∪ {∞} is the Hamiltonian defined by

� ([) =
∑

{G,~}∈ (-[
2 )

#G ([)#~ ([)q (G, ~) +
∑
G∈-[

#G ([) (#G ([) − 1)
2

q (G, G) .

The normalizing constant MV (_, q) is usually called the (grand-canonical) partition function and can be
written explicitly as

MV (_, q) = 1 +
∑

:∈N≥1

_:

:!

∫
V:

e−� (XG1+·· ·+XG: )a: (dx)

= 1 +
∑

:∈N≥1

_:

:!

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx).

3 Concentration of partition functions of antiferromagnetic spin

systems on graphon-based random graphs

The main tool we will use to derive our concentration bounds is the Efron–Stein inequality. For # ∈ N≥1
let {(S8, F8, `8)}8∈[# ] be a collection of probability spaces and let 5 : S → R be a measurable function on

the product space (S,F , `) =
⊗

8∈[# ] (S8, F8, `8). For each 8 ∈ [# ] define a function J (5 )
8 : S ×S8 → R≥0,

where, for every x = (G1, . . . , G# ) ∈ S and ~8 ∈ S8 , the value J
(5 )
8 (x, ~8 ) is defined as the squared difference

in 5 that is caused by replacing G8 in x with ~8 . Formally, this is J (5 )
8 (x, ~8 ) = ( 5 (x) − 5 (~))2 where

~ = (G1, . . . , G8−1, ~8 , G8+1, . . . , G# ). The Efron–Stein inequality bounds the variance of 5 under ` based on

the local squared deviations J (5 )
8 (x, ~8 ).
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◮ Theorem 3.1 (Efron–Stein inequality [14]). Let {(S8, F8 , `8 )}8∈[# ] be probability spaces with product
space (S,F , `) =

⊗
8∈[# ] (S8,F8 , `8 ). For every F -measurable function 5 : S → R it holds that

Var` [5 ] ≤
1

2

∑
8∈[# ]

E`×`8

[
J

(5 )
8

]
. ◭

◮ Remark 3.2. The Efron–Stein inequality is usually stated for functions of independent real-valued ran-
dom variables. However, it extends to functions on products of arbitrary probability spaces. ◭

Theorem 3.1 immediately gives a concentration result for 5 whenever 1
2

∑
8∈[# ] E`×`8

[
J

(5 )
8

]
is of order

of magnitude E` [ 5 ]2 by using Chebyshev’s inequality. However, obtaining such a bound might turn out
difficult, especially if E` [ 5 ] is hard to compute explicitly. For our setting, we derive the following corollary
of Theorem 3.1.

◮ Corollary 3.3. [Corollary of the Efron–Stein inequality] Let {(S8 ,F8 , `8 )}8∈[# ] be probability spaces
with product space (S,F , `) =

⊗
8∈[# ] (S8,F8 , `8 ), and let 5 : S → R be an F -measurable function. As-

sume that there are 28 ∈ R≥0 for 8 ∈ [# ] such that � ≔
∑

8∈[# ] 2
2
8 < 2 and, for all x = (G 9 ) 9 ∈[# ] ∈ S and

~ = (~ 9 ) 9 ∈[# ] ∈ S that disagree only at position 8, it holds that

| 5 (x) − 5 (~) | ≤ 28 ·min{| 5 (x) |, |5 (~) |}.

Then, for all Y ∈ R>0, it holds that

Pr
[��5 − E` [ 5 ]

�� ≥ YE` [ 5 ]
]
≤

(
2

2 −�
− 1

)
1

Y2
. ◭

Proof. First, we observe that |5 (x) − 5 (~) | ≤ 28 min{| 5 (x) |, |5 (~) |} ≤ 28 |5 (x) | implies E`×`8

[
J

(5 )
8

]
≤

228 E`
[
5 2

]
for all 8 ∈ [# ]. Thus, by Theorem 3.1, we have Var` [5 ] ≤ �

2 E`
[
5 2

]
. Now, recall that by definition

Var` [ 5 ] = E`
[
5 2

]
−E` [5 ]2, which implies E`

[
5 2

]
−E` [ 5 ]2 ≤ �

2 E`
[
5 2

]
. Rearranging for E`

[
5 2

]
and using

the fact that �
2 < 1 yields E`

[
5 2

]
≤ 2

2−�E` [5 ]
2. Substituting this back into the definition of the variance,

we obtain

Var` [5 ] ≤
(

2

2 −�
− 1

)
E` [5 ]2.

The claim follows immediately by applying Chebyshev’s inequality. �

◮Remark 3.4. Usually, wewant to characterizeconcentration asymptotically in# . In this setting, Corollary 3.3

tells us that, if 28 ∈ O
(
# − 1+U

2

)
for all 8 ∈ [# ] and some U > 0, then, for all Y ∈ R>0 and X ∈ (0, 1] such that

Y2X < 1, it is sufficient to choose # ∈ Θ

(
X−

1
U Y−

2
U

)
to ensure

Pr
[��5 − E` [ 5 ]

�� ≥ YE` [ 5 ]
]
≤ X. ◭

We are now ready to use Corollary 3.3 and derive a concentration result for the partition functions of
antiferromagnetic two-state spin systems for graphon-based random graph model.

Let us recall the definition of graphons and graphon-based random graphs that we are using (see [29,
Chapter 10 & 13]). Let X = (-,A, b) be a probability space. A graphon on X is a symmetric function
, : - 2 → [0, 1] that is measurable with respect to the product algebra A2

= A ⊗ A. For = ∈ N≥1 we
denote by G= the set of all graphs on the canonical vertex set [=] = {1, . . . , =}. Note that each graph in G=
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is fully characterized by its edge set �. For every = ∈ N≥1 the random graph model induced by a graphon
, on a probability space (-,A, b) is described by generating a random graph� = ([=], �) by

• drawing a tuple (G1, . . . G=) ∈ -= according to the product distribution b= and

• adding the edge {8, 9} for all 8, 9 ∈ [=], 8 ≠ 9 independently with probability,
(
G8 , G 9

)
.

Formally, this gives a probability distributionG, ,= on G= with

G,,= (�) =
∫
-=

©­
«

∏
{8, 9 }∈�

,
(
G8 , G 9

)ª®
¬
·
©­­«

∏
{8, 9 }∈ ( [=]

2 )\�

(
1 −,

(
G8 , G 9

) )ª®®¬
b= (dx)

for all� ∈ G= , where x = (G8)8∈[=] inside the integral.
To apply Corollary 3.3 to partition functions on random graphs from G,,= , we will need to bound how

much the partition function changes when applying small modifications to the structure of a graph. More
specifically, we want to get a bound on the relative change of the partition function, given that we

• add or remove a single edge, or

• add or remove a set of edges that are all incident to the same vertex.

The following two lemmas provide such bounds.

◮ Lemma 3.5. Let � = (+, �) be an undirected graph and, for any 4 ∈ � let � ′
= (+, � \ {4}). For all

W ∈ R≥0 and V ∈ [0, 1] it holds that

0 ≤ /� ′ (W, V) − /� (W, V) ≤ W2/� (W, V)

and especially
|/� ′ (W, V) − /� (W, V) | ≤ W2 min{/� (W, V), /� ′ (W, V)}. ◭

Proof. Without loss of generality, assume + = [=] for some = ∈ N≥2 and let 4 = {8, 9} for 8, 9 ∈ [=].
Note that O� = O� ′ , as their vertex sets are identical. Further, observe that, for all f ∈ O� , it holds that

<
(1)
�

(f) ≥<
(1)
� ′ (f). Thus, we have V<

(1)
�

(f ) ≤ V<
(1)
�′ (f ) and /� (W, V) ≤ /� ′ (W, V), which proves

0 ≤ /� ′ (W, V) − /� (W, V).

We proceed by rewriting the partition function of� ′ as

/� ′ (W, V) =
∑

f∈O�′ :
f (8 )=0 or f ( 9 )=0

W |f |1V<
(1)
�′ (f ) +

∑
f∈O�′ :

f (8 )=f ( 9 )=1

W |f |1V<
(1)
�′ (f ) .

Observe that ∑
f∈O�′ :

f (8 )=0 or f ( 9 )=0

W |f |1V<
(1)
�′ (f ) =

∑
f∈O� :

f (8 )=0 or f ( 9 )=0

W |f |1V<
(1)
�

(f ) ≤ /� (W, V) .

For every : ∈ [=], let #� ′ (:) denote the neighbors of vertex : in� ′. We have

∑
f∈O�′ :

f (8 )=f ( 9 )=1

W |f |1V<
(1)
�′ (f ) =

∑
f∈O�′ :

f (8 )=f ( 9 )=0

W |f |1+2V<
(1)
�′ (f )V

∑
:∈#�′ (8 ) f (: )V

∑
:∈#�′ ( 9 ) f (: )
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≤ W2
∑

f∈O�′ :
f (8 )=f ( 9 )=0

W |f |1V<
(1)
�′ (f )

= W2
∑

f∈O� :
f (8 )=f ( 9 )=0

W |f |1V<
(1)
�

(f )

≤ W2/� (W, V).

We conclude that /� ′ (W, V) ≤
(
1 + W2

)
/� (W, V) and thus

/� ′ (W, V) − /� (W, V) ≤ W2/� (W, V).

The upper bound on |/� ′ (W, V) − /� (W, V) | follows immediately. �

◮ Lemma 3.6. Let � = (+, �) be an undirected graph and without loss of generality assume + = [=] for
= ∈ N. Let �� , �� ′ ⊆ {{= + 1, 8} | 8 ∈ [=]}, and set � = ([= + 1], � ∪ �� ) and � ′

= ([= + 1], � ∪ �� ′). For
all W ∈ R≥0 and V ∈ [0, 1] it holds that

|/� (W, V) − /� ′ (W, V) | ≤ W/� (W, V) ≤ W min{/� (W, V), /� ′ (W, V)}. ◭

Proof. By Lemma 3.5, we know that removing an edge from a graph doesn’t decrease the partition function.
Thus, /� (W, V) is maximized by choosing �� = ∅ and minimized by choosing �� = {{= + 1, 8} | 8 ∈ [=]}.
Consequently, we have

/� (W, V) ≤ (1 + W)/� (W, V)

and
/� (W, V) ≥ /� (W, V) + W ≥ /� (W, V).

As the same holds for � ′, we obtain

|/� (W, V) − /� ′ (W, V) | ≤ W/� (W, V)

and the claim follows by noting that /� (W, V) ≤ min{/� (W, V), /� ′ (W, V)}. �

Based on Lemmas 3.5 and 3.6, we use Corollary 3.3 to prove the following statement.

◮ Theorem 3.7. Let, be a graphon on the probability space X = (-,A, b). Let W : N≥1 → R≥0 such

that W (=) ≤ W0=
− 1+U

2 for some W0 ∈ R≥0 and U ∈ R>0. For all V ∈ [0, 1], Y ∈ R>0, = > W
2
U

0 and � ∼ G,,= it
holds that

Pr
[
|/� (W (=), V) − E[/� (W (=), V)] | ≥ YE[/� (W (=), V)]

]
≤

W20(
=U − W20

)
Y2
. ◭

Proof. We aim for applying Corollary 3.3 to prove our claim. To this end, for each= ∈ N≥1 we need to write
the partition function/� (W (=), V) for� ∼ G, ,= as a function on a product of f-finite probability spaces. At
first, an obvious choice seems to be X= together with

(=
2

)
additional binary random variables, one for each

potential edge {8, 9} ∈
([=]
2

)
. However, note that the edges might not necessarily be independent, meaning

that the resulting product distribution would not resemble G,,= . Instead, let Y = ([0, 1],B([0, 1]), D),
where B([0, 1]) is the Borel algebra restricted to [0, 1] and D is the uniform distribution on that interval.

We consider the probability space X= ⊗ Y(=2) .
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For x ∈ -= and~ ∈ [0, 1] (=2) let x◦~ ∈ -=×[0, 1] (=2) denote the concatenation of x and~. We construct a

measurable function6 : -=×[0, 1] (=2) → G= bymapping every z = x◦~ ∈ -=×[0, 1] (=2) with x = (G8 )8∈[=] ∈
-= and ~ = (~8, 9 )1≤8< 9≤= ∈ [0, 1] (=2) to 6(z) = ([=], �) such that, for all 8 < 9 , it holds that {8, 9} ∈ � if and

only if,
(
G8 , G 9

)
≥ ~8, 9 . Simple calculations show that, for z ∼ b= × D (=2) , it holds that 6(I) ∼ G,,=. Now,

let 5 : -= × [0, 1] (=2) → R with z ↦→ /6 (I) (W (=), V). In order to apply Corollary 3.3, we need to bound
the relative change of 5 (z) if we change one component of z. Let x′ = (G1, · · · , G8−1, G ′8 , G8+1, . . . , G=) ∈ -=

for any 8 ∈ [=]. Then 6(x′ ◦ ~) can only differ from 6(z) on edges that are incident to vertex 8. Thus, by
Lemma 3.6, it holds that

|5 (z) − 5 (x′ ◦~) | ≤ W (=)min{5 (z), 5 (x′ ◦ ~)}.

Now, let ~′
= (~′8, 9 )1≤8< 9≤= ∈ [0, 1] (=2) such that ~′8, 9 = ~8, 9 except for one pair 1 ≤ 8 < 9 ≤ =. Note that 6(z)

and 6(x ◦ ~′) differ by at most one edge. By Lemma 3.5, we have

| 5 (z) − 5 (x ◦~′) | ≤ W (=)2min{5 (z), 5 (x ◦ ~′)}.

Furthermore, note that for W (=) ≤ W0=
− 1+U

2 and = > W
2
U

0 it holds that

� = =W (=)2 +
(
=

2

)
W (=)4 ≤ W20=

−U + W40=−2U ≤ 2W20=
−U

< 2.

Thus, by Corollary 3.3 we obtain

Pr
[
|/� (W (=), V) − E[/� (W (=), V)] | ≥ YE[/� (W (=), V)]

]
≤

(
2

2 −�
− 1

)
1

Y2

≤
(

1

1 − W20=
−U − 1

)
1

Y2

=
W20(

=U − W20
)
Y2
,

which concludes the proof. �

Theorem 1.4 follows immediately from Theorem 3.7.

◮ Theorem 1.4. Let, be a graphon on the probability spaceX = (-,A, b). LetW : N≥1 → R≥0 such that

W (=) ≤ W0=
− 1+U

2 for some W0 ∈ R≥0 and U ∈ R>0. For all V ∈ [0, 1], Y ∈ (0, 1], X ∈ (0, 1], = ≥
(
2W20Y

−2X−1
) 1
U ,

and� ∼ G,,= , it holds that

Pr
[
|/� (W (=), V) − E[/� (W (=), V)] | ≥ YE[/� (W (=), V)]

]
≤ X. ◭

Proof. For Y ≤ 1 and X ≤ 1 it holds that = ≥
(
2W20Y

−2X−1
) 1
U
> W

2
U

0 . Applying Theorem 3.7 yields

Pr
[
|/� (W (=), V) − E[/� (W (=), V)] | ≥ YE[/� (W (=), V)]

]
≤ 1

(2Y−2X−1 − 1)Y2

=
Y2X

(2 − Y2X)Y2

=
X

2 − Y2X
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≤ X. �

4 Application to repulsive Gibbs point processes

We use our concentration results for antiferromagnetic spin systems to relate repulsive Gibbs point pro-
cesses to a hard-core model on carefully constructed classes of random graphs. To this end, let (X, 3)
be a complete, separable metric space, let B = B(X) be the Borel algebra and let a be a locally finite
reference measure on (X,B). For every bounded and measurable V ⊆ X we define a probability space
XV = (V,BV, DV), where BV denotes the restriction of B to V and DV is the probability measure on
(V,BV) that is defined via the constant density 1

a (V) with respect to a restricted to V. For every sym-

metric, repulsive and measurable pair potential function q : X2 → R≥0 ∪ {∞} and all = ∈ N≥1. Define
,q : V2 → [0, 1] with,q (G, ~) = 1 − e−q (G,~) and observe that,q is a graphon on XV. We proceed by

considering the random graph model Z (=)
V,q

= G,q ,= .

The following lemma relates the expected hard-core partition function on Z (=)
V,q

with the partition function

of the continuous Gibbs point process MV (_, q).

◮ Lemma 4.1. Let (X, 3) be a complete separable metric space, let B = B(X) be the Borel algebra
and let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let
_ ∈ R≥0 and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. For all Y ∈ R>0 and

= ≥ 2Y−1max
{
e6_2a (V)2, ln

(
2Y−1

)2} it holds that
(1 − Y)MV (_, q) ≤ E

�∼Z (=)
V,q

[
/�

(
_a (V)

=

)]
≤ MV (_, q). ◭

Proof. We start by rewriting the hard-core partition function as

/�

(
_a (V)

=

)
= 1 +

=∑
:=1

_:
a (V):

=:

∑
(∈ ( [=]

: )

∏
{8, 9 }∈ ((2)

1{8, 9 }∉� .

Thus, by linearity of expectation we have

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
= 1 +

=∑
:=1

_:
a (V):

=:

∑
(∈ ( [=]

: )
E
�∼Z (=)

V,q


∏

{8, 9 }∈ ((2)
1{8, 9 }∉�


= 1 +

=∑
:=1

_:
a (V):

=:

∑
(∈ ( [=]

: )
Pr


∧

{8, 9 }∈ ((2)
{8, 9} ∉ �


.

Next, observe that for all ( ∈
([=]
:

)
with |( | = :

Pr


∧

{8, 9 }∈ ((2)
{8, 9} ∉ �


=

∫
V=

∏
{8, 9 }∈ ((2)

(
1 −,q

(
G8 , G 9

) )
D=
V
(dx)
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=

∫
V=

∏
{8, 9 }∈ ((2)

e−q (G8 ,G 9 )D=
V
(dx)

=
1

a (V)=
∫
V=

∏
{8, 9 }∈ ((2)

e−q (G8 ,G 9 )a= (dx)

=
a (V)=−:
a (V)=

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx)

=
1

a (V):

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx) .

This yields

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
= 1 +

=∑
:=1

_:
1

=:

∑
(∈ ( [=]

: )

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx)

= 1 +
=∑

:=1

_:
(=
:

)
=:

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx)

= 1 +
=∑

:=1

_:

:!

:−1∏
8=0

(
1 − 8

=

) ∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx),

from which the upper bound

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
≤ MV (_, q)

follows immediately.
For the lower bound set

(< = 1 +
<∑
:=1

_:

:!

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx)

for any 1 ≤< ≤ =. Observe that

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
≥

(
1 − <

=

)<
(< .

Thus, for = ≥ 2Y−1<2 Bernoulli’s inequality yields

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
≥

(
1 − <2

=

)
(< ≥

(
1 − Y

2

)
(< .

Furthermore, note that

MV (_, q) − (< =

∞∑
:=<+1

_:

:!

∫
V:

∏
{8, 9 }∈ ( [: ]2 )

e−q (G8 ,G 9 )a: (dx)
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≤
∞∑

:=<+1

_:a (V):
:!

,

where the last inequality comes from the fact that q is non-negative. Next, observe that this is equal to the
error of the Taylor expansion of e_a (V) around 0, truncated after< terms. Thus, by Lagrange’s remainder
formula, we obtain

MV (_, q) − (< ≤ e_a (V)

(< + 1)! (_a (V))<+1 .

Choosing< ≥ max
{
e3_a (V), ln

(
2Y−1

)}
and using the fact that (< + 1)! >

(
<+1
e

)<+1
yields

MV (_, q) − (< ≤
(
e2_a (V)
< + 1

)<+1
≤ e−(<+1) ≤ Y

2
.

As MV (_, q) ≥ 1, we get

(< ≥ MV (_, q) − Y

2
≥

(
1 − Y

2

)
MV (_, q).

For = ≥ 2Y−1<2
= 2Y−1max

{
e6_2a (V)2, ln

(
2Y−1

)2}
we obtain

E
�∼Z (=)

V,q

[
/�

(
_a (V)

=

)]
≥

(
1 − <

=

)<
(< ≥

(
1 − Y

2

)2
MV (_, q) ≥ (1 − Y)MV (_, q),

which proves the claim. �

◮ Theorem 1.1. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra,
and let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let
_ ∈ R≥0, and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. For all Y ∈ (0, 1], X ∈ (0, 1] and
= ≥ 4Y−2X−1max

{
e6_2a (V)2, ln

(
4Y−1

)2}
, it holds that, for� ∼ Z

(=)
V,q

,

Pr

[����/�

(
_a (V)

=

)
−MV (_, q)

���� ≥ YMV (_, q)
]
≤ X. ◭

Proof. By setting U = 1 and W0 = _a (V) and using the fact that

= ≥ 4Y−2X−1max
{
e6_2a (V)2, ln

(
4Y−1

)2} ≥
(
2W20

( Y
2

)−2
X−1

) 1
U

Theorem 1.4 yields

Pr

[����/�

(
_a (V)

=

)
− E

[
/�

(
_a (V)

=

)]���� ≥ Y

2
E

[
/�

(
_a (V)

=

)] ]
≤ X.

Furthermore, by Lemma 4.1 we know that for

= ≥ 4Y−2X−1max
{
e6_2a (V)2, ln

(
4Y−1

)2} ≥ 2
( Y
2

)−1
max

{
e6_2a (V)2, ln

(
2
( Y
2

)−1)2}
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it holds that (
1 − Y

2

)
MV (_, q) ≤ E

�∼Z (=)
V,q

[
/�

(
_a (V)

=

)]
≤ MV (_, q).

Thus, we have (
1 + Y

2

)
E

[
/�

(
_a (V)

=

)]
≤

(
1 + Y

2

)
MV (_, q) ≤ (1 + Y)MV (_, q)

and similarly (
1 − Y

2

)
E

[
/�

(
_a (V)

=

)]
≥

(
1 − Y

2

)2
MV (_, q) ≥ (1 − Y)MV (_, q).

We obtain

Pr

[����/�

(
_a (V)

=

)
−MV (_, q)

���� ≥ YMV (_, q)
]
≤ X,

which proves the claim. �

4.1 Approximating the partition function

One of the main applications of Theorem 1.1 is that it yields a rather simple randomized procedure for
approximatingMV (_, q). The rough idea is as follows:

1. For = ∈ N sufficiently large, sample a graph� from Z
(=)
V,q

.

2. Approximate /�

(
_a (V)

=

)
and use the result as an approximation for MV (_, q).

We are especially interested in obtaining an algorithm that is asymptotically efficient in the volume a (V), as
this gives a natural way to parameterize the algorithmic problem. More specifically, wewant to characterize
the regime of the fugacity _ in terms of the potential q for which we can get a randomized Y-approximation
of MV (_, q) in time polynomial in a (V) and 1

Y . We characterize this fugacity regime in terms of the tem-
peredness constant

�q = ess sup
G1∈X

∫
X

���1 − e−q (G1,G2 )
���a (dG2),

where ess sup denotes the essential supremum (i.e., an upper bound that holds almost everywhere).
In order to ensure that the approximation algorithm runs efficiently in a (V), two ingredients are impor-

tant. First, we need to bound how large = needs to be chosen to ensure that /�

(
_a (V)

=

)
is close toMV (_, q)

with high probability. Second, we need to ensure that /�

(
_a (V)

=

)
can be approximated in time polynomial

in a (V). Obviously, both requirements are satisfied if = ∈ poly(a (V)) is sufficient and if /�

(
_a (V)

=

)
can be

approximated in time poly(=). To tackle the first part, Theorem 1.1 gives a useful tool. For the second part,
we will use some well known results on approximating the hard-core partition function.

◮ Theorem 4.2 ([44, Corollary 8.4] and [3, Theorem 1]). Let � = (+, �) be an undirected graph with
maximum vertex degree bounded by 3� ∈ N≥2 and let W ∈ R≥0 with

W < Wc(3� ) =
(3� − 1)3�−1

(3� − 2)3�
.
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Then, for all Y ∈ (0, 1], there is a randomized Y-approximation algorithm for the hard-core partition function
/� (W) with running time Õ

(
|+ |2Y−2

)
. ◭

◮ Remark 4.3. In [44] the result above is only stated forW <
2
3�

as an older mixing time result for Glauber
dynamics from [46] is used. Combining their approach with the more recent mixing time bound in [3] gives
the desired bound of W < Wc (3� ). ◭

Thus, arguing that /� for � ∼ Z
(=)
V,q

can be approximated in time poly(=) boils down to obtaining a

probabilistic upper bound on 3� . We use the following simple lemma.

◮ Lemma 4.4. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0
and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Assume �q > 0. For U ∈ R>0, @ ∈ (0, 1],
= ≥ 3max

{
U−1, U−2} ln(

@−1
)
�−1
q
a (V) + 1 and� ∼ Z

(=)
V,q

it holds that

Pr

[
3� ≥ (1 + U)= − 1

a (V)�q

]
≤ @=. ◭

Proof. By union bound, it is sufficient to argue that, for each 8 ∈ [=] it holds that

Pr

[
3� (8) ≥ (1 + U)= − 1

a (V)�q

]
≤ @,

where 3� (8) denotes the degree of vertex 8 ∈ [=] in � . Now, observe that the random variables 3� (8) for
8 ∈ [=] are identically distributed. Thus, we can focus on 3� (=) for ease of notation. By definition, it holds
for : ∈ [= − 1] ∪ {0} that

Pr[3� (=) = :]

=

∑
(∈ ( [=−1]: )

∫
V

=

(∏
8∈(

,q (G=, G8 )
)
· ©­
«

∏
8∈[=−1]\(

(1 −,q (G=, G8 ))ª®¬
D=
V
(dx)

=

∫
V

∑
(∈ ( [=−1]: )

(∏
8∈(

∫
V

,q (G=, G8 ) DV (dG8 )
)
· ©­«

∏
8∈[=−1]\(

∫
V

1 −,q (G=, G8 ) DV (dG8 )ª®¬
DV (dG=)

=

∫
V

(
= − 1

:

) (∫
V

,q (G1, G2) DV (dG2)
): (

1 −
∫
V

,q (G1, G2) DV (dG2)
)=−1−:

DV (dG1).

For every G1 ∈ V, let �G1 be a binomial random variable with = − 1 trials and with success probability∫
V
,q (G1, G2) DV (dG2). We obtain

Pr[3� (=) = :] =
∫
V

Pr
[
�G1 = :

]
DV (dG1),

which implies for all 0 ∈ [0, = − 1]

Pr[3� (=) ≥ 0] =
=−1∑
:=⌈0⌉

∫
V

Pr
[
�G1 = :

]
DV (dG1)
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=

∫
V

=−1∑
:=⌈0⌉

Pr
[
�G1 = :

]
DV (dG1)

=

∫
V

Pr
[
�G1 ≥ 0

]
DV (dG1).

Next, let � be a binomial random variable with = − 1 trials and success probability
�q

a (V) . Observe that, by

the definition of�q , it holds for a-almost all G1 ∈ V that
∫
V
,q (G1, G2) DV (dG2) ≤

�q

a (V) . Thus, we have that
� stochastically dominates �G1 for DV-almost all G1 ∈ V. Consequently, we obtain

Pr[3� (=) ≥ 0] ≤
∫
V

Pr[� ≥ 0] DV (dG1) = Pr[� ≥ 0] .

Observing that E[�] = =−1
a (V)�q and applying Chernoff bound yields

Pr

[
3� (=) ≥ (1 + U)= − 1

a (V)�q

]
≤ e−

min{U,U2}�q (=−1)
3a (V) .

Setting = ≥ 3max
{
U−1, U−2} ln(

@−1
)
�−1
q
a (V) + 1 we have Pr

[
3� (=) ≥ (1 + U) =−1

a (V)�q

]
≤ @, which proves

the claim. �

Combining Theorem 1.1, Lemma 4.4, and Theorem 4.2, we obtain the following algorithmic result.

◮ Theorem 1.2. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra, and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0,

and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Assume there is a sampler for Z (=)
V,q

with

running time CV,q (=).
If _ <

e
�q

, then, for all Y ∈ (0, 1], there is a randomized Y-approximation algorithm for MV (_, q) with

running time in Õ
(
a (V)4Y−6

)
+ CV,q

(
Õ

(
a (V)2Y−2

) )
. ◭

Proof. We start by giving a more precise outline of the algorithmic idea. To this end, we define

# = max




324Y−2 max
{
e6_2a (V)2, ln(4Y−1)2

}
,

24max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V) ln

(
24max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V)

)2


.

We now use the following procedure to approximateMV (_, q):

1. Choose some integer = ≥ # .

2. Draw a graph� from Z
(=)
V,q

.

3. If 3� ≥ e=
_a (V) , return an arbitrary value.

4. Else, use the algorithm from Theorem 4.2 to Y
3 -approximate /�

(
_a (V)

=

)
with an error probability of

at most 1
9 and return the result.
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We proceed by arguing that this procedure yields an Y-approximation ofMV (_, q) in time poly
(
a (V)Y−1

)
.

We start by bounding the probability that the computed value is not an Y-approximation.
First, we assume that, whenever3� ≥ e=

_a (V) , the algorithm returns no Y-approximation in step 3. Let� be

the event that this happens. Second, let � denote the event that the hard-core partition function/�

(
_a (V)

=

)
the graph � that we drew in step 2 is not an Y

3 -approximation of MV (_, q). Finally, let � denote the event

we do not manage to compute an Y
3-approximation of /�

(
_a (V)

=

)
in step 4. Note that the probability that

the above procedure does not output an Y-approximation for MV (_, q) is upper bounded by

Pr
[
� ∪ (� ∩�) ∪ (� ∩ � ∩�)

]
≤ Pr[�] + Pr[�] + Pr[�] .

We proceed with bounding each of these probabilities separately.

To bound Pr[�], let I = 24max

{
1

e−_�q
,

_�q

(e−_�q )2
}
_a (V). As we are interested in asymptotic behavior

in terms of a (V), we may assume that a (V) is sufficiently large to ensure I ≥ 5. Note that for this, we
have to exclude the case _ = 0, which trivially yields MV (_, q) = 1. Now, observe that for I ≥ 5 it holds
that I ln(I)2 ≥ I ln

(
I ln(I)2

)
. Next, observe that = ≥ I ln(I)2. Thus, we have = ≥ I ln(=). Furthermore, by

= ≥ 5 ln(5)2 ≥ e ≥ 2, we have

= − 1 ≥ =

2

≥ 12max

{
1

e − _�q
,

_�q(
e − _�q

)2
}
_a (V) ln(=)

≥ 3(ln(9) + 1)max

{
1

e − _�q

,
_�q(

e − _�q

)2
}
_a (V) ln(=)

= 3(ln(9) ln(=) + ln(=))max

{
1

e − _�q
,

_�q(
e − _�q

)2
}
_a (V)

≥ 3 ln(9=)max

{
1

e − _�q
,

_�q(
e − _�q

)2
}
_a (V).

Thus, we obtain

= ≥ 3max

{
_�q

e − _�q
,

(
_�q

e − _�q

)2}
ln(9=)�−1

q a (V) + 1

and by Lemma 4.4

Pr

[
3� ≥ e=

_a (V)

]
≤ Pr

[
3� ≥

(
1 +

e − _�q

_�q

)
= − 1

a (V)�q

]
≤ 1

9
.

To bound Pr[�], note that for = ≥ 324Y−2max
{
e6_2a (V)2, ln

(
4Y−1

)2}
Theorem 1.1 yields

Pr[�] = Pr

[����/�

(
_a (V)

=

)
−MV (_, q)

���� ≥ Y

3
MV (_, q)

]
≤ 1

9
.

Finally, note that, by Theorem 4.2, we can obtain an Y
3-approximation of/�

(
_a (V)

=

)
with error probability
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at most Pr[�] ≤ 1
9 in time Õ

(
=2Y−2

)
as long as _a (V)

= < Wc (3� ). As we only run the approximation for graphs
� with 3� <

e=
_a (V) it holds that

_a (V)
=

<

e

3�
< Wc(3� ),

proving that the requirement is satisfied.
We obtain that the error probability is bounded by 1

3 . To finish the proof, we need to argue that our
algorithm has the desired running time. To this end, note that # ∈ O

(
a (V)2Y−2

)
. Thus, we can also

choose = ∈ O
(
a (V)2Y−2

)
. By assumption, step 2 can be computed in time CV,q (=) = CV,q

(
O

(
a (V)2Y−2

) )
.

Furthermore, step 3 can be computed in time Õ
(
=2a (V)−1

)
= Õ

(
a (V)3Y−4

)
and, by Theorem 4.2, step 4

runs in time Õ
(
=2Y−2

)
= Õ

(
a (V)4Y−6

)
for _a (V)

=
< Wc (3� ). Consequently, the overall running time is in

Õ
(
a (V)4Y−6

)
+ CV,q

(
O

(
a (V)2Y−2

) )
. �

5 Sampling from repulsive Gibbs point processes

In this section, we propose an approximate sampling algorithm for the Gibbs measure of a repulsive Gibbs
point process, based in random hard-core models. More precisely, we investigate the sampling procedure
given by Algorithm 1

Algorithm 1: Approximate sampling algorithm for a repulsive point process (V, _, q).
Data: Instance of a repulsive Gibbs point process (V, _, q), error bound Y ∈ (0, 1]
Result: multiset of points inV

1 set = =


max




8 182 ·12
Y3

max{e6_2a (V)2,ln( 4·18Y )},

6 ln( 4e
Y )max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V) ln

(
3 ln( 4e

Y )max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V)

)2



;

2 for each 8 ∈ [=] draw -8 ∼ DV independently;

3 draw � ⊆
([=]
2

)
s.t. {8, 9} ∈ � with probability,q

(
-8 , - 9

)
= 1 − e−q (-8 ,- 9 ) independently;

4 set� = ([=], �);
5 if maximum degree 3� ≥ e=

_a (V) then

6 set - = ∅;
7 else

8 sample f ∈ O�
Y
4 -approximately from the hard-core distribution `

(W (=) )
� where W (=) = _a (V)

= ;
9 set - = {-8 | 8 ∈ [=] s.t. f (8) = 1} (possibly multiset);

10 end

11 return - ;

Our main theorem in this section is as follows.

◮ Theorem 5.1. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0
and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Assume we can sample from the uniform
distribution DV in time CV and, for every G, ~ ∈ V, evaluate q (G, ~) in time Cq . If the Gibbs point process

%
(_,q )
V

is simple and _ <
e
�q

then, for every Y ∈ R>0, Algorithm 1 samples Y-approximately from %
(_,q )
V

and

has running time in Õ
(
a (V)2Y−4 + a (V)2Y−3CV + a (V)4Y−6Cq

)
. ◭
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Theorem 1.3 follows immediately from the theorem above. To prove Theorem 5.1, we start by analyzing
a simplified algorithm, given in Algorithm 2.

Algorithm 2:Modified sampling process

Data: Instance of a repulsive Gibbs point process (V, _, q), error bound Y ∈ (0, 1]
Result: multiset of points inV

1 set = =


max




8 182 ·12
Y3

max{e6_2a (V)2,ln( 4·18Y )},

6 ln( 4e
Y )max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V) ln

(
3 ln( 4e

Y )max

{
1

e−_�q
,

_�q

(e−_�q)2
}
_a (V)

)2



;

2 for each 8 ∈ [=] draw -8 ∼ DV independently;

3 draw � ⊆
([=]
2

)
s.t. {8, 9} ∈ � with probability,q

(
-8 , - 9

)
= 1 − e−q (-8 ,- 9 ) independently;

4 set� = ([=], �);
5 sample g ∈ O� exactly from the hard-core distribution `

(W (=) )
� where W (=) = _a (V)

= ;
6 set . = {-8 | 8 ∈ [=] s.t. g (8) = 1} (possibly multiset);
7 return . ;

The main difference between Algorithm 1 and Algorithm 2 is that the latter one does not check if the
maximum degree of the sampled graph � is bounded and that is assumes access to a perfect sampler for

`
(W (=) )
�

. It is not clear if such a perfect sampler for the hard-core Gibbs distribution can be realized in poly-
nomial time, especially for arbitrary vertex degrees. Therefore, Algorithm 2 is not suitable for algorithmic
applications. However, the main purpose of Algorithm 2 is that the distribution of point multisets that it
outputs are much easier to analyze. We use this, together with a coupling argument, to bound the total

variation distance between the output of Algorithm 1 and % (_,q )
V

. Once this is done, it remains to show that
Algorithm 1 satisfies the running time requirements, given in Theorem 5.1.

To analyze the output distribution of Algorithm 2, we start by considering the resulting distribution of
multisets of points (or counting measures respectively) when conditioning on the event that the hard-core
partition function/� (W (=)) of the drawn graph� is close to the partition function of the continuous process

MV (_, q). More specifically, for any given = and U ∈ R≥0, let �
(=)
U = {� ∈ G= | |/� (W (=)) −MV (_, q) | ≤

UMV (_, q)}. We derive an explicit density for the output of Algorithm 2 with respect to a Poisson point

process under the condition that� ∈ �
(=)
U for some sufficiently small U . To this end, we use the following

characterization of simple point processes via so called void probabilities.

◮ Theorem 5.2 (Rényi–Mönch, see [13, Theorem 9.2.XII]). Let (X, 3) be a complete, separable metric
space, let B = B(X) be the associated Borel algebra. Let % and& be simple point process on (X, 3). If, for
[% ∼ % and [& ∼ & and for all bounded � ∈ B, it holds that

Pr[[% (�) = 0] = Pr
[
[& (�) = 0

]
,

then % = & . ◭

Theorem 5.2 greatly simplifies proving that a given candidate function actually is a valid density for the
point process in question, as it implies that it is sufficient to check if it yields the correct void probabilities.

Before we proceed, we introduce some additional notation that is useful for stating and proving our next
lemmas. For a given graph � = (+, �), we denote by I(� ) ⊆ 2+ the set of all independent sets in � .
Moreover, for every spin configuration f ∈ O� , we denote by (f the set of all vertices { ∈ + with f ({) = 1.
Note that, for a hard-core model on � with W > 0, this construction gives a one-to-one correspondence
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betweenI(� ) and the set of spin configurations f ∈ O� with ` (W )
�

(f) > 0. Therefore, it is often convenient
to argue about elements in I(� ) instead of using spin configurations.

◮ Lemma 5.3. Let (X, 3) be a complete, separable metric space, letB = B(X) be the Borel algebra and let
a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0 and
let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. Furthermore, for any given Y ∈ (0, 1], let %̂Y
be the point process produced by Algorithm 2 conditioned on� ∈ �

(=)
Y
12

, and let &_ denote a Poisson point

process with intensity _. If the Gibbs point process % (_,q )
V

is simple, then %̂Y has a density with respect to&
of the form

6Y ([) = 1[∈NV
Pr

[
� ∈ �

(=)
Y
12

]−1 ([ (V)−1∏
8=0

1 − 8

=

)
1[ (V) ≤=

·
©­­«

∏
{G,~}∈ (-[

2 )
e−#G ([ )#~ ([ )q (G,~)ª®®¬

©­
«
∏
G∈-[

e−
#G ([ ) (#G ([ )−1)

2 q (G,G )ª®
¬
R

([ (V) )
= (i ([))e_a (V),

where i maps every finite counting measure [ to an arbitrary but fixed tuple (G1, . . . , G[ (X) ) such that

[ =
∑[ (X)

8=1 XG8 and

R
(: )
= (x) =

∑
� ∈� (=)

Y
12

:

[: ]∈I (� )

1

/� (W (=))

∫
V

=−:

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
{8, 9+: }∈��

1 − e−q (G8 ,~ 9 )
ª®®®¬
©­­­«

∏
(8, 9 ) ∈ [: ]×[=−: ]:

{8, 9+: }∉��

e−q (G8 ,~ 9 )
ª®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ):
{8+:,9+: }∉��

e−q (~8 ,~ 9 )
ª®®®®¬
D=−:
V

(d~)

for all x = (G1, . . . , G: ) ∈ V: . ◭

Proof. First, observe that � ∼ Z
(=)
V,q

. As = ≥ 4 12
3

Y3
max

{
e6_2a (V)2, ln

(
4 12
Y

)2}
, Theorem 1.1 implies that

Pr
[
� ∈ �

(=)
Y
12

]
≥ 1 − Y

12 > 0. Therefore, conditioning on the event � ∈ �
(=)
Y
12

is well defined.

Next, note that, for all G ∈ V it holds that

Pr[[ ({G}) ≥ 2] ≥ e−q (G,G )_2a ({G})2
MV (_, q) ≥ e−q (G,G )_2a ({G})2

e_a (V)

for [ ∼ %
(_,q )
V

. Thus, if % (_,q )
V

is simple (i.e., Pr[[ ({G}) ≥ 2] for all G ∈ V), it holds that _ = 0 or, for all G ∈ V,
a ({G}) = 0 or q (G, G) = ∞. This implies that the output of Algorithm 2 is simple as well, and consequently
%̂Y is a simple point process.

Knowing that %̂Y is simple, Theorem 5.2 implies that, in order to verify that 6Y is indeed a density for %̂Y ,
it suffices to prove that it yields the correct void probabilities. Formally, this means showing that for all
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bounded � ∈ B it holds that

Pr
[
. ∩ � = ∅

���� ∈ �
(=)
Y
12

]
=

∫
N
1[ (�)=06Y ([)&_ (d[)

for . and� as in Algorithm 2.
To prove this, we first write∫

N
1[ (�)=06Y ([)&_ (d[) =

∫
NV

1[ (�)=06Y ([)&_ (d[)

= e−_a (V) · ©­«
6Y (0) +

∑
:∈N≥1

_:

:!

∫
V:

1∀8∈[: ]:G8∉�6Y
©­«
∑
8∈[: ]

XG8
ª®¬
a: (dx)ª®¬

,

where 0 denotes the constant 0 measure onX. Note that

e−_a (V)6Y (0)

= Pr
[
� ∈ �

(=)
Y
12

]−1
·

∑
� ∈� (=)

Y
12

1

/� (W (=))

∫
V

=

©­­­­
«

∏
{8, 9 }∈ ( [=]

2 ) :
{8, 9 }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®
¬

©­­­­
«

∏
{8, 9 }∈ ( [=]

2 ) :
{8, 9 }∉��

e−q (~8 ,~ 9 )
ª®®®®
¬
D=
V
(d~)

= Pr
[
� ∈ �

(=)
Y
12

]−1
·

∑
� ∈� (=)

Y
12

Pr[(g = ∅ | � = � ]Pr[� = � ]

=

Pr
[
(g = ∅ ∧� ∈ �

(=)
Y
12

]
Pr

[
� ∈ �

(=)
Y
12

]
= Pr

[
(g = ∅

���� ∈ �
(=)
Y
12

]

for g as in Algorithm 2. We proceed by a case distinction based on : . For every : > = and (G1, . . . , G: ) ∈ V:

we have 6Y
(∑

8∈[: ] XG:
)
= 0. Therefore, we get

∫
V:

1∀8∈[: ]:G8∉�6Y
©­
«
∑
8∈[: ]

XG8
ª®
¬
a: (dx) = 0

for all : > =. Now, consider : ∈ [=] and observe that for all x = (G1, . . . , G: ) ∈ V: we have

R
(: )
=

©­
«
i
©­
«
∑
8∈[: ]

XG8
ª®
¬
ª®
¬
=R

(: )
= (x)
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by symmetry. Moreover, it holds that

_:

:!

(
:−1∏
8=0

1 − 8

=

)
=

(
=

:

)
W (=):

a (V):
.

Therefore, we have

e−_a (V) _
:

:!

∫
V:

1∀8∈[: ]:G8∉�6Y
©­«
∑
8∈[: ]

XG8
ª®¬
a: (dx)

= Pr
[
� ∈ �

(=)
Y
12

]−1 (=
:

)
W (=):

∫
V

:

1∀8∈[: ]:G8∉�
©­­«

∏
8, 9 ∈ ( [: ]2 )

e−q (G8 ,G 9 )ª®®¬
R

(: )
= (x)D:

V
(dx) .

Next, note that

W (=):
∫

V
:

1∀8∈[: ]:G8∉�
©­­«

∏
8, 9 ∈ ( [: ]2 )

e−q (G8 ,G 9 )ª®®¬
R

(: )
= (x)D:

V
(dx)

=

∑
� ∈� (=)

Y
12

1[: ]∈I (� )
W (=):

/� (W (=))

∫
V

=

1∀8∈[: ]:G8∉�

©­­­­«
∏

{8, 9 }∈ ( [=]
2 ) :

{8, 9 }∈��

1 − e−q (G8 ,G 9 )
ª®®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=]
2 ) :

{8, 9 }∉��

e−q (G8 ,G 9 )
ª®®®®¬
D=
V
(dx)

=

∑
� ∈� (=)

Y
12

Pr[(g = [:] | � = � ]Pr[� = � ∧ ∀8 ∈ [:] : -8 ∉ �]

for -1, . . . , -= as in Algorithm 2. Furthermore, because the event (g = [:] is independent of -1, . . . , -=

given � , it holds that ∑
� ∈� (=)

Y
12

Pr[(g = [:] | � = � ]Pr[� = � ∧ ∀8 ∈ [:] : -8 ∉ �]

=

∑
� ∈� (=)

Y
12

Pr[(g = [:] ∧� = � ∧ ∀8 ∈ [:] : -8 ∉ �]

= Pr
[
(g = [:] ∧� ∈ �

(=)
Y
12

∧ ∀8 ∈ [:] : -8 ∉ �
]

and

e−_a (V) _
:

:!

∫
V:

1∀8∈[: ]:G8∉�6Y
©­«
∑
8∈[: ]

XG8
ª®¬
a: (dx) =

(
=

:

) Pr[(g = [:] ∧� ∈ �
(=)
Y
12

∧ ∀8 ∈ [:] : -8 ∉ �
]

Pr
[
� ∈ �

(=)
Y
12

]
=

(
=

:

)
Pr

[
(g = [:] ∧ ∀8 ∈ [:] : -8 ∉ �

���� ∈ �
(=)
Y
12

]
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=

∑
+ ′∈ ( [=]

: )
Pr

[
(g = + ′ ∧ ∀8 ∈ + ′ : -8 ∉ �

���� ∈ �
(=)
Y
12

]
,

where the last equality is due to symmetry. Combining everything yields

∫
N
1[ (�)=06Y ([)&_ (d[) = Pr

[
(g = ∅

���� ∈ �
(=)
Y
12

]
+

=∑
:=1

∑
+ ′∈ ( [=]

: )
Pr

[
(g = + ′ ∧ ∀8 ∈ + ′ : -8 ∉ �

���� ∈ �
(=)
Y
12

]

=

∑
+ ′∈2 [=]

Pr
[
(g = + ′ ∧ ∀8 ∈ + ′ : -8 ∉ �

���� ∈ �
(=)
Y
12

]

= Pr
[
∀8 ∈ (g : -8 ∉ �

���� ∈ �
(=)
Y
12

]
= Pr

[
. ∩ � = ∅

���� ∈ �
(=)
Y
12

]
,

which concludes the proof. �

We proceed by upper and lower bounding the density 6Y ([) in terms of the density of % (_,q )
V

. To this end,
we use the following basic facts about the partition function of the hard-core model.

◮ Observation 5.4 (see [17]). For every undirected graph� = (+, �) the following holds:

1. For all W1, W2 ∈ R≥0
/� (W1) ≤ /� (W1 + W2) ≤ eW2 |+ |/� (W1).

2. For all W ∈ R≥0 and ( ⊆ +

/�−( (W) ≤ /� (W) ≤ eW |( |/�−( (W),

where� − ( denotes the subgraph of� that is induced by+ \ ( . ◭

Using Observation 5.4 we derive the following bounds.

◮ Lemma 5.5. Consider the setting of Lemma 5.3 and let 5 denote the density of % (_,q )
V

with respect to&_ .

For = as in Algorithm 2 and all [ ∈ N with [ (V) ≤ min
{√

Y=
12 ,

Y
40_a (V)+Y=

}
it holds that

(
1 − Y

4

)
5 ([) ≤ 6Y ([) ≤

(
1 + Y

4

)
5 ([). ◭

Proof. First, recall that, when %
(_,q )
V

is simple, its density with respect to&_ can be expressed as

5 ([) = 1

MV (_, q)1[∈NV

©­­«
∏

{G,~}∈ (-[
2 )

e−#G ([ )#~ ([ )q (G,~)ª®®¬
©­«
∏
G∈-[

e−
#G ([ ) (#G ([ )−1)

2 q (G,G )ª®¬
e_a (V)

for every [ ∈ N . Therefore, we have

6Y ([) = Pr
[
� ∈ �

(=)
Y
12

]−1 ([ (V)−1∏
8=0

1 − 8

=

)
1[ (V) ≤=R

([ (V) )
= (i ([))MV (_, q) 5 ([).
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As we focus on [ with [ (V) ≤
√

Y=
12 ≤ =, we omit the indicator 1[ (V) ≤= from now on.

We proceed by deriving an upper bound on 6Y ([) for [ ∈ N with [ (V) ≤ min
{√

Y=
12 ,

Y
40_a (V)+Y=

}
. To this

end, note that (
[ (V)−1∏

8=0

1 − 8

=

)
≤ 1.

Moreover, for� ∼ Z
(=)
V,q

and = ≥ 4 12
3

Y3
max

{
e6_2a (V)2, ln

(
4 12

Y

)2}
Theorem 1.1 yields Pr

[
� ∈ �

(=)
Y
12

]
≥ 1 − Y

12 .

Finally, observe that for all x ∈ V: for : ≤ = we have

R
(: )
= (x) ≤ 1(

1 − Y
12

)
M
V

(_, q)
∑

� ∈� (=)
Y
12

:

[: ]∈I (� )

∫
V

=−:

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
{8, 9+: }∈��

1 − e−q (G8 ,~ 9 )
ª®®®¬
©­­­«

∏
(8, 9 ) ∈ [: ]×[=−: ]:

{8, 9+: }∉��

e−q (G8 ,~ 9 )
ª®®®¬

·
©­­­­
«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®
¬

©­­­­
«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∉��

e−q (~8 ,~ 9 )
ª®®®®
¬
D=−:
V

(d~)

=
1(

1 − Y
12

)
M
V

(_, q)

∫
V

=−:

∑
� ∈� (=)

Y
12

:

[: ]∈I (� )

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
{8, 9+: }∈��

1 − e−q (G8 ,~ 9 )
ª®®®¬
©­­­«

∏
(8, 9 ) ∈ [: ]×[=−: ]:

{8, 9+: }∉��

e−q (G8 ,~ 9 )
ª®®®¬

·
©­­­­
«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®
¬

©­­­­
«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∉��

e−q (~8 ,~ 9 )
ª®®®®
¬
D=−:
V

(d~)

≤ 1(
1 − Y

12

)
MV (_, q)

∫
V=−:

1D=−:
V

(d~)

≤ 1(
1 − Y

12

)
MV (_, q)

.

Given that Y ≤ 1 we get

6Y ([) ≤
(
1 − Y

12

)−2
5 ([) ≤

(
1 + Y

11

)2
5 ([) ≤

(
1 + Y

4

)
5 ([),

which proves the upper bound.
For the lower bound, note that

Pr
[
� ∈ �

(=)
Y
12

]−1
≥ 1
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and for [ (V) ≤
√

Y=
12 (

[ (V)−1∏
8=0

1 − 8

=

)
≥

(
1 − [ (V)

=

)[ (V)
≥ 1 − [ (V)2

=
≥ 1 − Y

12
.

We proceed by lower boundingR (: )
= (x). First, observe that

R
(: )
= (x) ≥ 1(

1 + Y
12

)
M
V

(_, q)
∑

� ∈� (=)
Y
12

:

[: ]∈I (� )

∫
V

=−:

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
{8, 9+: }∈��

1 − e−q (G8 ,~ 9 )
ª®®®¬
©­­­«

∏
(8, 9 ) ∈ [: ]×[=−: ]:

{8, 9+: }∉��

e−q (G8 ,~ 9 )
ª®®®¬

·
©­­­­«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∉��

e−q (~8 ,~ 9 )
ª®®®®¬
D=−:
V

(d~)

=
1(

1 + Y
12

)
M
V

(_, q)
∑

� ∈G=:
[: ]∈I (� )

1
� ∈� (=)

Y
12

∫
V

=−:

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
{8, 9+: }∈��

1 − e−q (G8 ,~ 9 )
ª®®®¬
©­­­«

∏
(8, 9 ) ∈ [: ]×[=−: ]:

{8, 9+: }∉��

e−q (G8 ,~ 9 )
ª®®®¬

·
©­­­­«

∏
{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∈��

1 − e−q (~8 ,~ 9 )
ª®®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ) :
{8+:,9+: }∉��

e−q (~8 ,~ 9 )
ª®®®®¬
D=−:
V

(d~).

Next, for each graph � ∈ G= , let � ′
= ([= − :], �′) denote the subgraph that results from � − [:] after

relabeling each vertex in 8 ∈ [=] \ [:] to 8 − : ∈ [= − :] (note that this relabeling is formally required for
� ′ ∈ G=−: ). By Observation 5.4 and the fact that W (=) ≤ W (= − :) and /� ′ (W) = /�−[: ] (W) for all W ∈ R≥0
we have

/� (W (=)) ≤ eW (=):/� ′ (W (=)) ≤ e
:
= _a (V)/� ′ (W (= − :)).

On the other hand, note that

W (= − :) = _a (V)
= − :

=
=

=(= − :) _a (V) =
(

= − :

=(= − :) +
:

=(= − :)

)
_a (V)

=

(
1

=
+ :

=(= − :)

)
_a (V) = W (=) + :

=(= − :) _a (V).

Therefore, Observation 5.4 yields

/� (W (= − :)) ≤ e
:

=−: _a (V)/� (W (=))

and
/� (W (=)) ≥ e−

:
=−: _a (V)/� (W (= − :)) ≥ e−

:
=−: _a (V)/� ′ (W (= − :)).
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Thus, for : ≤ Y
40_a (V)+Y= we have

e−
Y
40/� ′ (W (= − :)) ≤ /� (W (=)) ≤ e

Y
40/� ′ (W (= − :)).

As e−
Y
40
(
1 − Y

18

)
≥

(
1 − Y

12

)
and e

Y
40
(
1 + Y

18

)
≤

(
1 + Y

12

)
for all Y ∈ [0, 1], this means that � ′ ∈ �

(=−: )
Y
18

is a

sufficient condition for � ∈ �
(=)
Y
12

and

∑
� ∈G=:

[: ]∈I (� )

1
� ∈� (=)

Y
12

∫
V

=−:

©­­­«
∏

(8, 9 ) ∈ [: ]×[=−: ]:
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V
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≥
∑
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1
� ′∈� (=−: )

Y
18

∫
V

=−:

©­­­­«
∏
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ª®®®®¬

©­­­­«
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©­­­«

∏
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e−q (G8 ,~ 9 )
ª®®®¬
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(d~)

=

∑
� ′∈G=−:

1
� ′∈� (=−: )

Y
18

∫
V

=−:

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ) :
{8, 9 }∈�� ′

1 − e−q (~8 ,~ 9 )
ª®®®®¬

©­­­­«
∏

{8, 9 }∈ ( [=−: ]2 ):
{8, 9 }∉�� ′

e−q (~8 ,~ 9 )
ª®®®®¬
D=−:
V

(d~)

= Pr
[
� ′ ∈ �

(=−: )
Y
18

]

for� ′ ∼ Z
(=−: )
V,q

. Next, observe that = ≥ 1 we have : ≤ min
{√

Y=
12 ,

Y
40_a (V)+Y=

}
≤ =

2 and =−: ≥ =
2 . Therefore,

for = ≥ 8 18
2 ·12
Y3

max
{
e6_2a (V)2, ln

( 4·18
Y

)2}
Theorem 1.1 yields Pr

[
� ′ ∈ �

(=−: )
Y
18

]
≥ 1 − Y

12 for � ′ ∼ Z
(=−: )
V,q

.

Consequently, we have

R
(: )
= (x) ≥

1 − Y
12

1 + Y
12

· 1

MV (_, q)
and

6Y ([) ≥
(
1 − Y

12

)2 (
1 + Y

12

)−1
5 ([) ≥

(
1 − Y

12

)3
5 ([) ≥

(
1 − Y

4

)
5 ([),

which concludes the proof. �

We proceed by using Lemmas 5.3 and 5.5 to bound the total variation distance between %
(_,q )
V

and the
output distribution of Algorithm 2. However, as Lemma 5.5 only provides information for point sets that
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are sufficiently small compared to =, we need a different way to deal with large point configurations. To this
end, the following two results are useful. The first lemma is a domination result for the size of independent
sets, drawn from a hard-core model.

◮ Lemma 5.6. Let� ∈ G= for some = ∈ N and let W ∈ R≥0. For f ∼ `
(W )
�

it holds that |(f | is stochastically
dominated by a binomial random variable with = trials and success probability W

1+W . ◭

Proof. We use a coupling argument to prove this statement. Consider the following procedure for sampling
a set (= ⊆ [=]:

1. Start with (0 = ∅.

2. For each 8 ∈ [=], set (8 = (8−1 ∪ {8} with probability Pr
[
f (8) = 1

�� ∧
9 ∈[8−1] f ( 9) = 19 ∈(8−1

]
for f ∼

`
(W )
�

.

Note that the resulting set (= follows the same distribution as (f for f ∼ `
(W )
�

. Due to the definition of this
process, it suffices to consider sequences ((8)8∈[=]∪{0} such that the event {∧ 9 ∈[8−1] f ( 9) = 19 ∈(8−1} has
non-zero probability. Further, note that

Pr


f (8) = 1

������
∧

9 ∈[8−1]
f ( 9) = 19 ∈(8−1


≤ W

1 + W

for all 8 ∈ [=]. Now, we consider a modified process (( ′8 )8∈[=]∪{0} with ( ′0 = ∅ and ( ′8 = ( ′8−1 ∪ {8} with
probability W

1+W . Observe that ((8)8∈[=]∪{0} and (( ′8 )8∈[=]∪{0} can be coupled in such a way that (8 ⊆ ( ′8
whenever (8−1 ⊆ ( ′8−1 for all 8 ∈ [=]. As initially (0 = ( ′0, the same coupling yields (= ⊆ ( ′= . Finally,
observing that

��( ′= �� follows a binomial distribution with = trials and success probability W

1+W concludes the
proof. �

The second lemma is the analog of Lemma 5.6 for repulsive point processes. However, proving it is
slightly more technically involved. We start by introducing some additional notation and terminology. For
two counting measures [1, [2 ∈ N , we write [1 ≤ [2 if [1 (�) ≤ [2 (�) for every � ∈ B. A measurable
function ℎ : N → R is called increasing if ℎ([1) ≤ ℎ([2) for all [1 ≤ [2. Moreover, for some ^ ∈ R≥0, let
&^ denote the Poisson point process with intensity ^ and let % be a point process that has a density 5% with
respect to&^ . A function Z : N ×X → R≥0 is called a Papangelou intensity for % (w.r.t. &^ ) if, for all [ ∈ N
and G ∈ X, it holds that

5% ([ + XG ) = Z ([, G) 5% ([).

The domination lemma we are aiming for is implied by the following result.

◮ Theorem 5.7 ([20, Theorem 1.1]). Let&^ be a Poisson point process of intensity ^ ∈ R≥0 and let %1, %2
be point processes that are absolutely continuous with respect to &^ . Assume %1 and %2 have Papangelou
intensities Z1 and Z2. If, for all G ∈ X and [1, [2 ∈ N with [1 ≤ [2, Z1 ([1, G) ≤ Z2 ([2, G), then, for all
increasing ℎ : N → R, it holds that ∫

N
ℎ([)%1(d[) ≤

∫
N
ℎ([)%2(d[). ◭

With that, we show the following simple domination result.
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◮ Lemma 5.8. Let (X, 3) be a complete, separable metric space, letB = B(X) be the Borel algebra and let
a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0 and

let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. For [ ∼ %
(_,q )
V

it holds that [ (V) is dominated
by a Poisson random variable with parameter _a (V). ◭

Proof. Let &_ denote a Poisson point process with intensity _. Note that a density of

51([) =
1

MV (_, q)1[∈NV

©­­«
∏

{G,~}∈ (-[
2 )

e−#G ([ )#~ ([ )q (G,~)ª®®¬
©­«
∏
G∈-[

e−
#G ([ ) (#G ([ )−1)

2 q (G,G )ª®¬
e_a (V)

is a density for % (_,q )
V

with respect to&_ . Therefore,

Z1 ([, G) = 1G∈V
∏
~∈-[

e−#~ ([ )q (G,~)

is a Papangelou intensity for % (_,q )
V

. Moreover, let % denote the point process defined by the density 52([) =
1[∈NV

and observe that Z2 ([, G) = 1G∈V is a Papangelou intensity for % .
For all : ∈ N, let ℎ: ([) = 1[ (V)≥: and observe that ℎ: is increasing. Further, note that, for all G ∈ X and

[1, [2 ∈ N , it holds that

Z1 ([1, G) = 1G∈V
∏

~∈-[1

e−#~ ([1 )q (G,~) ≤ 1G∈V = Z2 ([2, G).

By Theorem 5.7, this implies that for all : ∈ N∫
N
ℎ: ([)% (_,q )

V
(d[) ≤

∫
N
ℎ: ([)% (d[).

Consequently, for [ ∼ %
(_,q )
V

and b ∼ % and for all : ∈ N, it holds that

Pr[[ (V) ≥ :] ≤ Pr[b (V) ≥ :]

and observing that b (V) follows a Poisson distribution with parameter _a (V) concludes the proof. �

We now bound the total variation distance between the output of Algorithm 2 and % (_,q )
V

.

◮ Lemma 5.9. Let (X, 3) be a complete, separable metric space, let B = B(X) be the Borel algebra and
let a be a locally finite reference measure on (X,B). Let V ⊆ X be bounded and measurable, let _ ∈ R≥0
and let q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential. For every given Y ∈ (0, 1], Algorithm 2 is

an Y
2 -approximate sampler from %

(_,q )
V

. ◭

Proof. We start by bounding the total variation distance between3tv
(
%
(_,q )
V

, %̂Y

)
for %̂Y as in Lemma 5.3. The

statement then follows from a coupling argument. Let &_ denote a Poisson point process of intensity _.

Let 6Y be the density of %̂Y with respect to &_ as given in Lemma 5.3 and let 5 denote the density of % (_,q )
V

with respect to & . Moreover, set< = min
{√

Y=
12 ,

Y
40_a (V)+Y=

}
. Note that the total variation distance can be
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expressed as

3tv

(
%
(_,q )
V

, %̂Y

)
=

∫
N
|5 ([) − 6Y ([) |&_ (d[)

=

∫
N
1[ (V) ≤< |5 ([) − 6Y ([) |&_ (d[) +

∫
N
1[ (V)>< | 5 ([) − 6Y ([) |&_ (d[).

By Lemma 5.5, we get∫
N
1[ (V) ≤< |5 ([) − 6Y ([) |&_ (d[) ≤

Y

4

∫
N
1[ (V) ≤< 5 ([)&_ (d[) ≤

Y

4
.

Further, it holds that∫
N
1[ (V)>< | 5 ([) − 6Y ([) |&_ (d[) ≤

∫
N
1[ (V)>< 5 ([)&_ (d[) +

∫
N
1[ (V)><6Y ([)&_ (d[)

= Pr[b (V) ><] + Pr
[
|. | ><

���� ∈ �
(=)
Y
12

]

for b ∼ %
(_,q )
V

, and� and . as in Algorithm 2.
We proceed by bounding each of these probability separately. Note that, by our choice of = it holds

that < ≥ 12
Y _a (V). By Lemma 5.8, we have E

b∼% (_,q )
V

[b (V)] ≤ _a (V). Thus, Markov’s inequality yields

Pr[b (V) ><] ≤ Y
12 . Moreover, note that |. | = |(g | for g as in Algorithm 2. As g ∼ `

(W (=) )
�

for some

� ∈ �
(=)
Y
12

⊆ G= and Lemma 5.6 applies to all such graphs, we get

E
[
|. |

���� ∈ �
(=)
Y
12

]
≤ W (=)

1 + W (=)= ≤ W (=)= = _a (V).

Again, applying Markov’s inequality gives Pr
[
|. | ><

���� ∈ �
(=)
Y
12

]
≤ Y

12 . Consequently, we have

3tv

(
%
(_,q )
V

, %̂Y

)
≤ Y

4
+ Y

6
=

5

12
Y.

To finish the proof, we now relate the output of Algorithm 2 with %̂Y by using a coupling argument. To
this end, note that Algorithm 2 can be used to sample from %̂Y by simply restarting the sampler whenever

� ∉ �
(=)
Y
12

. For our choice of = we know that with a probability of Pr
[
� ∈ �

(=)
Y
12

]
≥ 1− Y

12 only a single run of

Algorithm 2 is required. By this coupling, the total variation distance between the output of Algorithm 2
and %̂Y is at most Y

12 . Finally, applying triangle inequality shows that the total variation distance between

the output of Algorithm 2 and % (_,q )
V

is bounded by 5
12Y +

Y
12 =

Y
2 , which concludes the proof. �

Using Lemma 5.9, we are able to prove that Algorithm 1 is an Y-approximate sampler for % (_,q )
V

. In order
to argue that Algorithm 1 also satisfies the running time requirements, given in Theorem 5.1, we require

an efficient approximate sampler from the hard-core distribution `
(W (=) )
�

. To this end, we use the following
known result.

◮ Theorem 5.10 ([3, Theorem 5]). Let� = (+, �) be an undirected graph with maximum vertex degree
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bounded by 3� ∈ N≥2 and let W ∈ R≥0 with

W < Wc(3� ) =
(3� − 1)3�−1

(3� − 2)3�
.

Then, for all Y ∈ (0, 1], there is an Y-approximate sampler for the hard-core Gibbs distribution `
(W )
�

with an

expected running time of O
(
|+ | ln

(
|+ |
Y

))
. ◭

Proof of Theorem 5.1. We start by arguing that Algorithm 1 is an Y-approximate sampler for % (_,q )
V

. To
this end, we show that the total variation distance between the output distributions of Algorithm 1 and
Algorithm 2 is bounded by Y

2 . Using the triangle inequality and Lemma 5.9 then yields the desired result.
To bound the total variation distance between the Algorithm 1 and Algorithm 2 by Y

2 , it suffices to construct
a coupling of both algorithms such that their output coincides with a probability of at least 1 − Y

2 . This is,
we want to find a coupling of both algorithms such that - ≠ . with probability at most Y

2 , where - and .
are as in Algorithm 1 and Algorithm 2.
To construct such a coupling, we start by letting both algorithms draw the same points -1, . . . , -= and

construct the same graph � . If 3� ≥ e=
_a (V) , then we may just assume - ≠ . . Otherwise, if 3� <

e=
_a (V) ,

then f = g is a sufficient condition for - = . . As g is drawn from `
(W (=) )
�

and f is drawn from an Y
4

approximation of that distribution, they can be coupled in such a way that Pr[g ≠ f] ≤ Y
4 . Using this

coupling of Algorithm 1 and Algorithm 2, we have

Pr[- ≠ . ] ≤ Pr

[
3� ≥ e=

_a (V)

]
+ Y

4
· Pr

[
3� <

e=

_a (V)

]
≤ Pr

[
3� ≥ e=

_a (V)

]
+ Y

4
.

Therefore, it remains to prove that 3� ≥ e=
_a (V) with probability at most Y

4 , where � ∼ Z
(=)
V,q

. We fol-

low a similar arguments as in the proof of Theorem 1.2. Note that, for our choice of =, there exists

I ≥ 3 ln
( 4e
Y

)
max

{
1

e−_�q
,

_�q

(e−_�q )2
}
_a (V) such that = = 2I ln(I)2. Moreover, we have = ≥ e ≥ 2 and,

for a (V) (consequently I) sufficiently large, it holds that 2I ln(I)2 ≥ 2I ln
(
2I ln(I)2

)
= 2I ln(=). Therefore,

we have

= − 1 ≥ =

2

≥ 3 ln

(
4e

Y

)
max

{
1

e − _�q
,

_�q(
e − _�q

)2
}
_a (V) ln(=)

≥ 3 ln

(
4=

Y

)
max

{
1

e − _�q

,
_�q(

e − _�q

)2
}
_a (V)

and by Lemma 4.4

Pr

[
3� ≥ e=

_a (V)

]
≤ Pr

[
3� ≥

(
1 +

e − _�q

_�q

)
= − 1

a (V)�q

]
≤ Y

4
.

To prove Theorem 5.1, it remains to show that Algorithm 1 satisfies the given running time requirements.
To this end, note that, for all _ <

e
�q

, it holds that = ∈ Õ
(
a (V)2Y−3

)
. Therefore, sampling -1, . . . , -=

requires a running time of Õ(=CV) = Õ
(
a (V)2Y−3CV

)
. Moreover, the graph can be constructed in time

Õ
(
=2Cq

)
= Õ

(
a (V)4Y−6Cq

)
and3� ≥ e=

_a (V) can be checked in O(1) if we keep track of3� while constructing
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the graph. Finally, for 3� <
e=

_a (V) it holds that

W (=) ≤ _a (V)
=

<

e

3�
< Wc (3� ).

Thus, Theorem 5.10 guarantees the existence of an Y
8 -approximate sampler from `

(W (=) )
�

with an expected

running time in O
(
= ln

(
=
Y

) )
= O

(
a (V)2Y−3 ln

(
a (V)
Y

))
. Note that, by Markov’s inequality, the probability

that this sampler takes more than 8
Y times its expected running time is bounded by Y

8 . Therefore, if we run
the sampler from Theorem 5.10 with an error bound of Y

8 and, whenever the algorithm takes more than
8
Y
times its expected running time, stop it and return an arbitrary spin configuration, this results in an Y

4 -

approximate sampler with a guaranteed running time in Õ
(
a (V)2Y−4

)
. Consequently, Algorithm 1 runs in

time Õ
(
a (V)2Y−4 + a (V)2Y−3CV + a (V)4Y−6Cq

)
, which concludes the proof. �

6 Potential-weighted connective constant and strong spatial mixing

Throughout this section, we consider the setting introduced in Section 4. In this section, we relate the
potential-weighted connective constant Jq of a repulsive potential with a high-probability bound on a

modified version of the connective constant of a graph � ∼ Z
(=)
V,q

. This modified connective constant

represents the growth rate of a truncated version of the self-avoiding walk tree as used by Weitz [47].
Besides giving a graphical interpretation for the potential-weighted connective constant, an immediate
consequence of the result is that the hard-core models studied in Section 4 with high probability exhibit
strong spatial mixing for W <

e
Jq

.

6.1 Potential-weighted connective constant

The potential-weighted connective constant was introduced in [33] to measure the strength of interaction
induced by a potential q in a way that is, compared to the temperedness constant�q , more sensitive to the
particular geometry of the underlying spaceX. To this end, we set+q (0) = 1 and, for : ∈ N≥1,

+q (:) = sup
G0∈X

∫
X:

:∏
9=1

(
exp

(
−

9−2∑
8=0

13 (G8 ,G 9 )<3 (G8 ,G8+1)q
(
G8 , G 9

) )
·
(
1 − e−q (G 9−1,G 9 )

))
a: (dx),

where x = (G1, . . . , G: ). The potential-weighted connective constant is now defined as

Jq = lim
:→∞

+q (:)1/: = inf
:→∞

+q (:)1/:,

where existence if the limit and the second equality are implied by the fact that we assume q to be repulsive,
which implies that+q (:) is sub-multiplicative. Note that for all: ∈ N it holds that+q (:) ≤ �:

q
and therefore

Jq ≤ �q .

6.2 Strong spatial mixing

Strong spatial mixing is a frequently used notion of correlation decay in discrete spin systems. In this
section, we focus on strong spatial mixing for the hard-core model. Recall that for a graph� = (+� , �� ) and
a parameter W ∈ R≥0 we write `

(W )
�

for the hard-core distribution on� at weight W , which is a distribution
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on O� the set of all functions O� = {f : + → {0, 1}}. We extend this notation to conditional distributions.
To this end, let ( ⊆ +� and let g : ( → {0, 1}. Write f( = g for the event that f ∼ `

(W )
�

coincides with g on

( . We call g feasible if ` (W )
�

(f( = g) > 0. In that case, we write

`
(W )
�

( · | f( = g) =
`
(W )
�

(·)
`
(W )
�

(f( = g)

for the distribution of f ∼ `
(W )
�

conditioned on f( = g . Often, strong spatial mixing is phrased in terms of
the so-called occupation ratios. For � and W as above and { ∈ +� we write

'
(W )
�

({) =
`
(W )
�

(f ({) = 1)
`
(W )
�

(f ({) = 0)
.

Further, for ( ⊂ +� with { ∉ ( and feasible g : ( → {0, 1} we define ' (W )
�

({ | g) analogously using the

distribution `
(W )
�

( · | f( = g) instead. Based on that, we now state the definition of strong spatial mixing
as given in [40].

◮ Definition 6.1 ([40]). The hard-core model with vertex activity W ∈ R≥0 is set to satisfy strong spatial
mixing on a family of graphs F if there exists a constant X ∈ [0, 1) such that for all� ∈ F , vertices { ∈ +� ,
( ⊆ +� \ {{}, and feasible g, g ′ : ( → {0, 1} it holds that���' (W )

� ({ | g) − '
(W )
� ({ | g ′)

��� ≤ O(XB),

where B is the graph distance between { and the vertices onwhich g and g ′ differ (i.e., {D ∈ ( | g (D) ≠ g ′ (D)}).
We call X the decay rate. ◭

◮ Remark 6.2. Note that this definition is actually weaker than the definition of (exponential) strong
spatial mixing that is usually used in the literature (cf. [47] Definition 2.2 and the remark following it).
Usually, this definition requires the existence of constants U ≥ 0, V > 0 (independent of�, {, g1 and g2) such
that ���' (W )

�
({ | g) − '

(W )
�

({ | g ′)
��� ≤ Ue−VB .

In contrast, Definition 6.1 only requires such a decay if the distance B ≥ B0 is sufficiently large, where
the required lower bound B0 might depend on |+� |. In fact, this is the case for the strong spatial mixing
result for families of finite graphs in [40], which requires B ≥ B0 ∈ Θ(ln( |+� |)). Such a bound on B0 still
allows for applying Weitz’s algorithm to obtain an efficient deterministic approximation algorithm for the
partition function of the hard-core model. However, it is not sufficient for other applications that require
the exponential decay to also hold at constant distances, such as recent exact sampling algorithms [2, 16]
or the rapid mixing result for Glauber dynamics in [47]. ◭

6.3 Self-avoiding walk tree and Weitz tree

Due to [47], it is well known that strong spatial mixing on a given graph can be studied in terms of a tree
construction that is closely related to the self-avoiding walk tree. We refer to this construction as theWeitz

tree. Moreover, it was shown by [40] that bounding the growth-rate of Weitz trees for a family of graphs
can be used to find a vertex activity regime in which the graph family exhibits strong spatial mixing. In the
following paragraphs, we briefly introduce both trees.
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Self-avoiding walk tree Given an undirected graph � = (+� , �� ) and a vertex A ∈ +� , we denote by
)A,� = (+) , �) ) the self-avoiding walk tree with root A . It is constructed as follow:

1. Let PA,� denote the set of all simple paths ? = A, {1, . . . , {: (identified by their vertex sequence) in �
starting at A , where we call : the length of ?. +) contains exactly one vertex |? for every such path
? ∈ PA,� . In particular, there is a unique vertex that corresponds to the path ? = A of length 0, which
is denoted by |A and considered the root of )A,� .

2. For two paths ?, ?′ ∈ PA,� we say that |? ∈ +) is a child of |?′ ∈ +) (and connect them by an edge
in �) ) if and only if ? is obtained from ?′ by adding one vertex. That is, if ?′ = A, {1, . . . {: , then
? = A, {1, . . . {: , {:+1 for some vertex {:+1 ∉ +� \ {A, {1, . . . {: } adjacent to {: .

Weitz tree For our purpose, it is crucial to differentiate between the self-avoiding walk tree and a trun-
cated version that we call the Weitz tree. Its construction is analogous to the self-avoiding walk tree above
but with an additional restriction on the set of paths involved. This restriction on the paths allows for some
degrees of freedom, as it depends on assigning an ordering to the neighbors #� ({) of each vertex { ∈ +� .
Formally, we call a family of functions � = ( 5{){∈+� a neighborhood ordering for � if, for every { ∈ +� , it
holds that 5{ is a bijection #� ({) → [|#� ({) |]. For a vertex A ∈ +� we now write P�

A,� for the set of simple
paths ? = {0, {1, . . . , {: in� with the following properties

1. It holds that {0 = A .

2. For every 2 ≤ 8 ≤ : and all 0 ≤ 9 ≤ 8 − 2 it holds that, if {8 ∈ #�

(
{ 9

)
, then 5{9 ({8) > 5{9

(
{ 9+1

)
.

Obviously it holds that P�
A,� ⊆ PA,� . The Weitz tree ) �

A,� with root A is now defined analogously to the

self-avoiding walk tree)A,� but restricted to paths in P�
A,� . It is not hard to see that)

�
A,� is in fact a subtree

of )A,� . Since we are going to study a notion of growth rate of ) �
A,� , it is useful to denote by !�A,� (:) the

number of vertices at layer : ∈ N of ) �
A,�

. This is equal to the number of paths ? = A, {1, . . . , {: ∈ P�
A,�

of
length : .

◮ Remark 6.3. Note that this construction of the Weitz tree is not exactly as described in [47]. The goal
of constructing those trees is to study hard-core models on them. In the original construction, paths where
allowed to close cycles. Whenever this happens, the spin of the vertex that closes the cycle was fixed to
either 0 or 1, depending on the chosen neighborhood ordering. For the hard-core model, this corresponds
to either removing the vertex (for spin 0), or the vertex and all its neighbors (for spin 1). This procedure
leads to our notion of the Weitz tree. ◭

6.4 Connective constant and strong spatial mixing

With the definition of strong spatial mixing and the construction of the Weitz tree given, we now get to
the definition of the connective constant and its implications for strong spatial mixing. Our definition of
connective constant is inspired by [40]. However, there are two things that should be noted. Firstly, we
emphasize that our definition of connective constant refers to theWeitz tree instead of the full self-avoiding

walk. Secondly, for our application to random graphs from Z
(=)
V,q

, it is important which neighborhood order-

ing is used for constructing the tree. To reflect this, we use the following definition.
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◮ Definition 6.4. We say a family of graphs F has a connective constant bounded by J if there are
constants 0, 2 ≥ 0 such that for all � ∈ F the following holds: there is a neighborhood ordering � for �
such that for all< ≥ 0 ln( |+� |) and all A ∈ +� we have

<∑
:=0

!�A,� (:) ≤ 2J< . ◭

In [40], it was proven that a bound on the connective constant of a graph family immediately translates to
a regime of strong spatial mixing. For our purposes, we will actually need some more detailed information
about the rate of decay. The following statement can be extracted from the proof of the main theorem in
[40].

◮ Theorem 6.5 ([40]). Suppose F is a family of graphs with connective constant bounded by J as in
Definition 6.4 for constants 0 and 2. For all Y > 0, W ≤ e−YWc (J), and graphs� ∈ F the following holds: For
all { ∈ +� , all ( ⊆ +� \ {{}, and all feasible g, g ′ : ( → {0, 1} that only differ at distance B ≥ 0 ln( |+� |) from
{, it holds that ���' (W )

�
({ | g) − '

(W )
�

({ | g ′)
��� ≤ 21/@

"

!
e−YB/@,

where 1 < @ ≤ 2, " = sinh−1 (√W ) and ! =
1

2
√
W · (W+1)

. ◭

◮ Remark 6.6. Theorem 6.5 follows immediately from tracking the constants in the proof of the main
theorem of [41]. Note further that in the proof in [41] the bound from Theorem 6.5 is stated with !

"
instead

of "
!
. However, closely inspecting the proof and the lemmas used therein reveals that this is attributed to

a typo. ◭

6.5 Connective constant and spatial mixing for random discretizations of Gibbs point
processes

Our first main result of this section is the following bound on the connective constant for random graphs

from Z
(=)
V,q

.

◮ Theorem 6.7. Let V ⊆ X be a bounded and measurable region with volume a (V) > 0. Let q : X2 →
R≥0 ∪ {∞} be a symmetric repulsive potential with�q < ∞ and Jq > 0. For every Y > 0 there exists some
=0 ∈ Θ(a (V)) such that for all = ≥ =0 the following holds: There exists a family of graphs F ⊆ G= with
connective constant bounded by eY =

a (V)Jq such that the constants 0, 2 from Definition 6.4 are independent

of V and =, and for� ∼ Z
(=)
V,q

it holds that

Pr[� ∈ F ] ≥ 1 − 1

=
. ◭

Proof. Fix some Y > 0. By the definition of Jq and the fact that Jq > 0, we know that there is some
:0 such that +q (:) ≤ e:Y/2J:

q
for all : ≥ :0. We set 0 = 4Y−1, 2 = (1 − e−Y/2) ·

(
(�q/Jq):0 + 2

)
, and

=0 = max
{

2
Jq

a (V), e0−1:0
}
.

Next, fix any = ≥ =0. Our goal is to show that, for � ∼ Z
(=)
V,q

, we can find some neighborhood ordering

for � such that, with probability at least 1 − 1/=, the requirements of Definition 6.4 are satisfied for 0, 2 as
above and J = eY =

a (V)Jq .
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We start by constructing the class of neighborhood orderings we consider. Let� ∈ G= be a graph on [=].
For every x = (G1, . . . , G=) ∈ V= we construct a neighborhood ordering �G,� = ( 58)8∈[=] on� such that, for
every vertex 8 ∈ [=] and neighbors 91, 92 ∈ #� (8), it holds that 3

(
G8 , G 91

)
< 3

(
G8 , G 92

)
implies 58 ( 91) < 58 ( 92).

That is, we order the neighbors of each vertex increasingly by distance, breaking ties arbitrarily (e.g., by

vertex IDs). It now suffices to show that, for � ∼ Z
(=)
V,q

, the following event has probability at least 1 − 1/=:
there is a sequence of points x ∈ V= such that for all< ≥ 0 ln(=) and all A ∈ [=]

<∑
:=0

!
�x,�
A,�

(:) ≤ 2

(
eY

=

a (V)Jq

)<
.

We denote this event by �, so that the desired statement is simply expressed as Z (=)
V,q

(�) ≥ 1 − 1/=.
To prove this, we study a distribution ^ on the space V= × G= , equipped with the product sigma field

B=
V
⊗ 2G= . Consider the following procedure:

1. For each 8 ∈ [=], draw a uniform random point-8 ∼ DV independently. We call the resulting random
vector - = (-8 )8∈[=]

2. Construct a graph � on vertex set [=] as follows. For all 8, 9 ∈ [=] with 8 ≠ 9 , connect vertices 8 and

9 with an edge with probability 1 − e−q (-8 ,- 9 ) independently.

We take^ to be the distribution of (-,�) generated as above. We further write ^- and ^� for the respective

marginals and note that ^- = D=
V
and ^� = Z

(=)
V,q

. Further, let � denote the following event: for all< ≥
0 ln(=) and all A ∈ [=] it holds that

<∑
:=0

!
�-,�

A,�
(:) ≤ 2

(
eY

=

a (V)Jq

)<
.

Note that the main difference between the events � and � is that � asks for the existence of a point se-
quence x for a given random graph � , whereas � is a statement about a random pair (-,�). In particular,
it holds that � ⊆ V= ×� and consequently

Z
(=)
V,q

(�) = ^� (�) = ^ (V= ×�) ≥ ^ (�).

Thus, the theorem is proven by showing that ^ (�) ≥ 1 − 1/=.
We prove this by first bounding the expectation of !

�-,�

A,�
(:) with respect to ^ for every fixed A ∈ [=]. To

this end, definek : X:+1 → [0, 1] by

k (~0, ~1, . . . , ~: ) =
:∏
9=1

(
exp

(
−

9−2∑
8=0

13 (~8 ,~ 9 )<3 (~8 ,~8+1)q
(
~8 , ~ 9

) )
·
(
1 − e−q (~ 9−1,~ 9 )

))
.

For every sequence of distinct vertices 81, . . . , 8: ∈ [=] \ {A } it now holds that

E

[
1
A,81,...,8: ∈P

�-,�
A,�

���� -
]
≤ k (-A , -81 , . . . , -8: ).

Applying linearity of expectation to sum over all such sequences of distinct vertices 81, . . . , 8: ∈ [=] \ {A }
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and applying law of total expectation then yields that

E
[
!
�-,�

A,�
(:)

]
≤ a (V)−=

∫
V=

∑
81,...,8:

k (GA , G81 , . . . , G8: )a= (dx)

≤ a (V)−: (= − 1)!
(= − 1 − :)! supI0∈V

∫
V:

k (I0, I1, . . . , I: )a: (dz)

≤
(

=

a (V)

):
+q (:),

where x = (G1, . . . , G=) and z = (I1, . . . , I: ).
Next, we aim to obtain a tail bound for

∑<
:=0 !

�-,�

A,�
(:) for every< ≥ 0 ln(=). To this end, we first bound

the expectation, starting with splitting up the sum as

E

[
<∑
:=0

!
�-,�

A,�
(:)

]
≤

<∑
:=0

(
=

a (V)

):
+q (:) =

:0−1∑
:=0

(
=

a (V)

):
+q (:) +

<∑
:=:0

(
=

a (V)

):
+q (:).

We proceed by bounding each of the sums separately. For the first sum, note that it trivially holds that
+q (:) ≤ �:

q
and, in particular, Jq ≤ �q . Moreover, for our choice of =0, we

=
a (V)�q ≥ 2. Combining both

observations yields

:0−1∑
:=0

(
=

a (V)

):
+q (:) ≤

:0−1∑
:=0

(
=

a (V)�q

):
=

(
=

a (V)�q

):0
− 1

=
a (V)�q − 1

≤
(

=

a (V)�q

):0
.

For the second sum, recall that+q (:) ≤ e:Y/2J:
q
for all : ≥ :0. Therefore, we have

<∑
:=:0

(
=

a (V)

):
+q (:) ≤

<∑
:=:0

(
eY/2

=

a (V)Jq

):
≤

(
eY/2 =

a (V)Jq

)<+1

eY/2 =
a (V)Jq − 1

.

Combining both bounds yields

E

[
<∑
:=0

!
�-,�

A,�
(:)

]
≤

©­­
«

(
=

a (V)�q

):0
(
eY/2 =

a (V)Jq

)< +
eY/2 =

a (V)Jq

eY/2 =
a (V)Jq − 1

ª®®
¬
·
(
eY/2

=

a (V)Jq

)<
.

Since eY/2 =
a (V)Jq ≥ 2 for = ≥ =0, we further bound

E

[
<∑
:=0

!
�-,�

A,�
(:)

]
≤ ©­«

(
=

a (V)�q

eY/2 =
a (V)Jq

):0
+ 2

ª®¬
·
(
eY/2

=

a (V)Jq

)<

≤
((
�q

Jq

):0
+ 2

)
·
(
eY/2

=

a (V)Jq

)<
.
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Using this upper bound for the expectation and Markov’s inequality, we have for (-,�) ∼ ^ that

Pr

[
<∑
:=0

!
�-,�

A,�
(:) ≥ 2

(
eY

=

a (V)Jq

)<]
≤ (1 − e−Y/2) · e−<Y/2.

Applying the union bound over< ≥ <0 = 0 ln(=) we have

Pr

[
∃< ≥ <0 :

<∑
:=0

!
�-,�

A,�
(:) ≥ 2

(
eY

=

a (V)Jq

)<]
≤ (1 − e−Y/2) ·

∞∑
<=<0

e−<Y/2 ≤ =−2,

where the last inequality is obtained by factoring out e−<0Y/2 and using the fact that <0 = 0 ln(=) ≥
4Y−1 ln(=). Finally, applying the union bound over the choice of root vertices A shows that ^ (�2) ≤ 1/= and
consequently ^ (�) ≥ 1 − 1/=, proving the theorem. �

We proceed by studying which notion of strong spatial mixing for graphs from Z
(=)
V,q

we can obtain from

Theorem 6.7. To this end, we apply Theorem 6.5, which yields the following result.

◮ Theorem 6.8. Suppose V ⊆ X is a bounded and measurable region with volume a (V) > 0. Let
q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential with �q < ∞ and Jq > 0, and let _ <

e
Jq

. There

exists some =0 ∈ Θ(a (V)) such that for all = ≥ =0 there is a family of graphs F ⊆ G= with the following
properties:

1. For� ∼ Z
(=)
V,q

it holds that

Pr[� ∈ F ] ≥ 1 − 1

=
.

2. Set W = _ · a (V)
=

. There are constants U ≥ 0, V > 0, 0 ≥ 0 independent = and V such that for every
� ∈ F , all { ∈ +� , ( ⊆ +� \ {{} and feasible g, g ′ : ( → {0, 1} that only differ at distance B ≥ 0 ln(=)
from { it holds that ���' (W )

�
({ | g) − '

(W )
�

({ | g ′)
��� ≤ Ue−VB . ◭

Proof. First, note that for _ <
e
Jq

we can choose Y > 0 such that _ ≤ e1−Y

Jq
. By Theorem 6.7 we know that

for =0 ∈ Θ(a (V)) sufficiently large it holds that for all = ≥ =0 that there is a graph family F ⊆ G= with

connective constant bounded by J = eY/2 =
a (V)Jq such that� ∼ Z

(=)
V,q

is in F with probability at least 1 − 1
=
.

Thus, F satisfies the first requirement of our theorem.
We proceed by establishing the second part of the theorem. To this end, let F and J be as above. Further,

let 0, 2 be the constants given by Theorem 6.7 and recall that they are independent of = and a (V). Observe
that

W = _ · a (V)
=

≤ e1−Y

Jq

· a (V)
=

≤ e1−Y/2

J
.

Thus, applying Theorem 6.5 proves our claim as soon as we show that "
! for " = sinh−1

(√
W
)
and ! =

1

2
√
W · (W+1)

is uniformly bounded in = and a (V). Recalling that W = _ · a (V)
= , we see that "

! is decreasing in

= and bounded by a constant independent of a (V) as soon as =0 ≥ _ · a (V). �

◮ Remark 6.9. Note that from the proof of Theorem 6.8 it actually even follows that the parameter U goes
to 0 as = increases. This is to be expected, since the occupation ratios go to zero as W (=) decreases. ◭

43



We obtain the following corollary.

◮ Corollary 6.10. Suppose V ⊆ X is a bounded and measurable region with volume a (V) > 0. Let
q : X2 → R≥0 ∪ {∞} be a symmetric repulsive potential with �q < ∞ and Jq > 0, and let _ <

e
Jq

. There

exists some =0 ∈ Θ(a (V)) such that for all = ≥ =0 there is a family of graphs F ⊆ G= with the following
properties:

1. For� ∼ Z
(=)
V,q

it holds that

Pr[� ∈ F ] ≥ 1 − 1

=
.

2. The hard-coremodelwith activityW = _· a (V)
=

exhibits strong spatialmixing in the sense of Definition 6.1
on F with decay rate independent of = and V. ◭

We finish this section with discussing some algorithmic consequences of the results above. However, we
keep the discussion informal since the results can be obtained from standard techniques. We start with the
observation that Theorem 6.5 does in fact not only imply strong spatial mixing on each graph in the family
F , but it also implies a notion of strong spatial mixing in the Weitz trees that were used for bounding the
connective constant of F . More precisely, each of the trees exhibits strong spatial mixing in term of the
occupation ratio of the root, given boundary conditions sufficiently far down the tree (see [40]). This can
be turned into a deterministic approximation algorithm for the partition function of the hard-core model
as argued in [47, 40] with running time |+� |O(log(J) ) for every graph in � ∈ F . Using Theorem 1.1, we
may use this to obtain a randomized algorithm with running time a (V)O(log(a (V) ) ) (i.e., quasi-polynomial
in a (V)) for approximating MV (_, q) for _ <

e
Jq

via the following procedure: We first draw a random

graph � ∼ Z
(=)
V,q

together with its (random) vertex locations - = -1, . . . , -= ∈ V= for = sufficiently large

to satisfy Theorem 1.1 and Theorem 6.8. We then use the algorithm given in [47] together with the Weitz
trees based on the neighborhood ordering �-,� (see proof of Theorem 6.7) to approximate the hard-core

partition function on � at vertex activity _
a (V)
= . An analogous procedure can be used to approximately

sample from %
(_,q )
V

with similar running time.
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