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Stewart’s Theorem revisited: suppressing the

norm ±1 hypothesis
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Abstract

Let γ be an algebraic number of degree 2 and not a root of unity.
In this note we show that there exists a prime ideal p of Q(γ) satisfying
νp(γ

n

− 1) ≥ 1, such that the rational prime p underlying p grows quicker
than n.
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1 Introduction

Let P (m) denote the largest prime factor of integer m, with the convention
P (0) = P (±1) = 1. For any integer n, we denote the n-th cyclotomic polynomial
in x by Φn(x) as usual.

Schinzel [8] asked if there exists any integers a, b with ab 6= ±2c2,±ch(h ≥ 2)
such that P (an− bn) > 2n for all sufficiently large n. Erdős [4] conjectured that
P (2n − 1) grows quicker than n.

Let un be the nth term of a Lucas sequence. In 2013, Stewart [10] gave a
lower bound of the largest prime factor of un, which is of the form
n exp(log n/104 log logn). What Stewart actually proved is the following, see [1,
Theorem 1.1].

Theorem 1.1. Let γ be a non-zero algebraic number, not a root of unity. De-

note ω(γ) the number of primes p of the field K = Q(γ) with the property

νp(γ) 6= 0. Let P be the biggest element of the set

{p: p is a rational prime lying below a prime p of K, with νp(Φn(γ)) ≥ 1}.
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If γ satisfies one of the following conditions:

• γ ∈ Q,

• [Q(γ) : Q] = 2 and Nγ = ±1.

There exists a n0, which is effectively computable in terms of ω(γ) and the

discriminant of K, such that, for all n > n0,

P > n exp (logn/104 log logn) .

Using this result, Stewart answered questions of Schinzel and Erdős in a
wider context, see [10] for more historical details.

A totally explicit expression of n0 in the above theorem was given in [1],
which also showd that n0 depends only on the field K = Q(γ) but not on ω(γ).

Let q and a be integers such that q ≥ 2 and |a| < 2
√
q. Assume α and ᾱ are

the roots of x2 − ax+ q. In [2], the authors concentrate on big prime factors of
#E(Fq) = q−a+1 = (α−1)(ᾱ−1), the order of group of Fq-points on a certain
elliptic curve E. A Stewart-type result was proved for recurrent sequences of
order 4 rather than Lucas sequence.

This article is motivated by [1] and [2], we prove the following theorem.

Theorem 1.2. Suppose γ is an algebraic number of degree 2 and not a root

of unity. Set n0 = exp exp(max{1010, 3|DK |}). Let n be a positive integer

satisfying n ≥ n0. There exists a prime ideal p of K = Q(γ) such that νp(γ
n −

1) ≥ 1 and the underlying rational prime p of p satisfies

p ≥ n exp

(

0.0001
logn

log logn

)

.

Note that this theorem suppresses the assumption Nγ = ±1 when [Q(γ) :
Q] = 2 in Theorem 1.1, and it can also be seen as a generalization of Schinzel’s
question and Erdős’ conjecture. The proof uses ingredients from [1] and [2], all
of which rely heavily on lower bound for p-adic logarithmic form.

2 Preliminary results

2.1 Notation

Denote by log+ = max{log, 0}, log− = min{log, 0}, log∗= max{log, 1}.
Let K be a number field of degree d. We denote by DK the discriminant of

K.
Suppose γ ∈ K, h(γ) denotes the usual absolute logarithmic height of γ:

h(γ) = [K : Q]−1
∑

v∈MK

dv log
+ |γ|v,

where dv denotes the local degree. The places v ∈ MK are normalized to extend
standard places of Q.
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Let σ : K →֒ C be an arbitrary complex embedding of K, p be a prime ideal
of the ring of integers OK . The following formulas are immediate consequences
of the above definition:

h(γ) =
1

d

(

∑

σ:K →֒C

log+ |γσ|+
∑

p

max{0,−νp(γ)} logNp

)

. (2.1)

h(γ) =
1

d

(

∑

σ:K →֒C

− log− |γσ|+
∑

p

max{0, νp(γ)} logNp

)

. (2.2)

2.2 Uniform explicit version of Stewart’s theorem

The following two theorems go back to Stewart, see [10, Lemma 4.3], but in
present form they are Theorem 1.4 and Theorem 1.5 of [1].

Theorem 2.1. Let γ be a non-zero algebraic number of degree d, not a root

of unity. Set p0 = exp(80000d(log∗d)2). Then for every prime p of the field

K = Q(γ) whose absolute norm Np satisfies Np ≥ p0, and every positive inte-

ger n we have

νp(γ
n − 1) ≤ Np exp

(

−0.002d−1 logNp

log logNp

)

h(γ) log∗n.

Theorem 2.2. Let γ be a non-zero algebraic number of degree 2, not a root of

unity. Assume that Nγ = ±1. Set p0 = exp exp(max{108, 2|DK |}), where DK

is the discriminant of the quadratic field K = Q(γ). Then for every prime p

of K with underlying rational prime p ≥ p0, and every positive integer n we

have

νp(γ
n − 1) ≤ p exp

(

−0.001
log p

log log p

)

h(γ) log∗n. (2.3)

2.3 Cyclotomic polynomials and primitive divisors

The following proposition, which is about eatimates of cyclotomic polynomials,
goes back to Schinzel [9], but in the present form, item 1 is [3, Theorem 3.1]
and item 2 is proved in [1, Proposition 8.1].

Proposition 2.3. 1. Let γ be an algebraic number. Then

h(Φn(γ)) = ϕ(n)h(γ) +O1(2
ω(n) log(πn)),

where A = O1(B) means |A| ≤ B.

2. Let γ be a complex algebraic number of degree d, non-zero and not a root

of unity. Then

log |Φn(γ)| ≥ −1014d5h(γ) · 2ω(n) log∗n. (2.4)
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Let K be a number field of degree d and γ ∈ K× not a root of unity. We
consider the sequence un = γn − 1. Let p be a prime ideal of OK , We call p
primitive divisor of un if

νp(un) ≥ 1, νp(uk) = 0 (k = 1, . . . n− 1).

Let us recall some basic properties of primitive divisors. Items 1 of the following
proposition are well-known and easy, and item 2 is Lemma 4 of Schinzel [9]; see
also [3, Lemma 4.5].

Proposition 2.4. 1. Let p be a primitive divisor of un. Then νp(Φn(γ)) ≥ 1
and Np ≡ 1 mod n; in particular, Np ≥ n+ 1.

2. Assume that n ≥ 2d+1. Let p be not a primitive divisor of un. Then

νp(Φn(γ)) ≤ νp(n).

2.4 Estimates for the arimetical functions

Denote by ϕ(n), ω(n), τ(n) the Euler’s totient function, the number of distnct
prime factors of n, the number of divisors of n, respectively.

We will use the following bounds for these arithmetic functions:

ϕ(n) ≥ 0.5
n

log logn
(n ≥ 1020), (2.5)

ω(n) ≤ 1.4
logn

log logn
(n ≥ 3), (2.6)

τ(n) ≤ exp

(

1.1
logn

log logn

)

(n ≥ 3). (2.7)

See [7, Theorem 15], [6, Théorème 11], [5, Theorem 1].

3 Proof of Theorem 1.2

Let P be the biggest element of the set

{p: p is a rational prime lying below a prime p of K, with νp(Φn(γ)) ≥ 1}.

It is sufficient to show that

P > n exp

(

0.0001
logn

log logn

)

(3.1)

One may assume P ≤ n2, since otherwise there is nothing to prove.
By (2.2),

2h(Φn(γ)) = − log− |Φn(γ)| − log− |Φn(γ
σ)|+

∑

p

max{0, νp(Φn(γ))} logNp,

(3.2)
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where σ is the generator of Gal(K/Q).
We use item 2 of Proposition 2.3,

− log− |Φn(γ)| − log− |Φn(γ
σ)| ≤ 26 · 1014h(γ) · 2ω(n) logn. (3.3)

We split the sum in (3.2):

∑

p

max{0, νp(Φn(γ))} logNp =
∑

p primi-

tive

+
∑

p non-

primitive

= Σp +Σnp,

where p primitive, p non-primitive means those prime ideals p which are prim-
itive, non-primitive divisors of γn − 1, respectively. By item 2 of Proposition
2.4,

Σnp ≤
∑

p

νp(n) logNp ≤ 2 logn. (3.4)

Thus
h(Φn(γ)) ≤ 1016h(γ) · 2ω(n) logn+Σp/2 + logn. (3.5)

On the other hand, by item 1 of Proposition 2.3,

h(Φn(γ)) ≥ ϕ(n)h(γ) − 2ω(n) log(πn). (3.6)

Combining (3.5) and (3.6), we have

Σp/2 ≥ ϕ(n)h(γ)− 2ω(n) log(πn)− 1016h(γ)2ω(n) logn− logn. (3.7)

Inequalities (2.5), (2.6) and our assumption n ≥ n0 ≥ 1010 imply that the
right-hand side of (3.7) is bounded from below by 0.4ϕ(n)h(γ). Thus we get
the lower bound of Σp

Σp ≥ 0.8ϕ(n)h(γ). (3.8)

Now primes may have residue degree 1 or 2. Denote by

Σp1 :=
∑

p primitive
fp=1

max{0, νp(Φn(γ))} logNp

and
Σp2 :=

∑

p primitive
fp=2

max{0, νp(Φn(γ))} logNp.

We have either
Σp1 ≥ 0.4ϕ(n)h(γ), (3.9)

or
Σp2 ≥ 0.4ϕ(n)h(γ). (3.10)
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3.1 Case (3.9)

By item 1 of Proposition 2.4, we have Np = p ≡ 1 mod n. Since n ≥ n0

and n0 = exp exp(max{1010, 3|DK |}) is bigger than p0 in Theorem 2.1, the
underlying prime p is bigger than p0. So Theorem 2.1 applies,

νp(Φn(γ)) = νp(γ
n − 1) ≤ p exp

(

−0.001
log p

log log p

)

h(γ) logn.

We obtain

Σp1 ≤
∑

p≡1 mod n
p≤P

max{0, νp(Φn(γ))} log p

≤ π(P ;n, 1)P exp

(

−0.001
logn

log logn

)

h(γ) logn logP,

(3.11)

where π(P ;m, a) counts primes p ≤ x satisfying p ≡ a mod m. We estimate
trivially π(P ;n, 1) ≤ P/n. Thus

Σp1 ≤ 2P 2 exp

(

−0.001
logn

log logn

)

h(γ)
(log n)2

n
. (3.12)

Combining this with (3.9) and use (2.5), we have

P 2 ≥ 0.1
n2

(log n)2 log logn
exp(0.001

log n

log logn
).

This implies (3.1) for n ≥ n0.

3.2 Case (3.10)

In this case, since fp = 2, we write p instead of p. Suppose σ is the generator
of Gal(K/Q). For such p we have νp(γ

n − 1) = νp((γ
σ)n − 1). Let β = γσ/γ,

we obtain the following inequalities:

νp(β
n − 1) ≥ νp((γ

σ)n − 1− (γn − 1)) ≥ νp(γ
n − 1) ≥ νp(Φn(γ)).

Hence (3.10) implies
∑

p∈P

νp(β
n − 1) log p ≥ 0.2ϕ(n)h(γ). (3.13)

where
P = {p : p is inert in K and νp(γ

n − 1) > 0}.
Denote vn = βn− 1. If νp(vn) > 0 then there exists a unique divisor d of n such
that p is primitive for vn/d. We denote it by dp. Since βn − 1 =

∏

d|n

Φd(β),

νp(vn) ≤ νp(vn/dp
) +

∑

m|n
m 6=n/dp

νp(Φm(β)).
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By item 2 of Proposition 2.4,

∑

m|n
m 6=n/dp

νp(Φm(β)) ≤
∑

m|n

νp(m) +

7
∑

m=1

νp(Φm(β)).

It follows that

∑

p∈P

νp(β
n − 1) log p ≤ νp(vn/dp

) log p+
∑

m|n

logm+

7
∑

m=1

∑

p∈P

νp(Φm(β)) log p.

(3.14)
Trivially

∑

m|n

logm ≤ τ(n) log n. (3.15)

Notice that

νp(Φm(β)) ≤ νp(vm) ≤ 1

2
νp((γ

m − (γσ)m)2)

and (γm − (γσ)m)2 is a rational integer of absolute value not exceeding
4(max{|γ|, |γσ|})2m, we have

∑

p

νp(vm) log p ≤ log 2 +m log+(max{|γ|, |γσ|}) ≤ log 2 + 2mh(γ). (3.16)

Hence
7
∑

m=1

∑

p∈P

νp(Φm(β)) log p ≤ 7 log 2 + 56h(γ). (3.17)

Combining (3.13)(3.14)(3.15)(3.17), we obtain

∑

p∈P

νp(vn/dp
) log p ≥ 0.2ϕ(n)h(γ)− τ(n) log n− 56h(γ)− 7 log 2.

3.2.1 Big dp

Using (3.16),

∑

dp≥τ(n) logn

∑

p∈P

νp(vn/dp
) log p ≤ 2nh(γ)

∑

d|n
d≥τ(n) log n

1

d
+ τ(n) log 2.

The sum on the right is trivially bounded by

τ(n)

τ(n) log n
=

1

logn
.

Hence
∑

dp≥τ(n) logn

νp(vn/dp
) log p ≤ 2nh(γ)

log n
+ τ(n) log 2.
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Denote by P ′ the subset of P consisting of p with dp < τ(n) log n:

P ′ = {p ∈ P : dp < τ(n) log n}.

So we have
∑

p∈P′

νp(vn/dp
) log p ≥0.2ϕ(n)h(γ)− τ(n) log n− 56h(γ)− 7 log 2

− 2nh(γ)

logn
− τ(n) log 2.

Using (2.5)(2.7), since n ≥ exp exp(1010), we obtain

∑

p∈P′

νp(vn/dp
) log p ≥ 0.1ϕ(n)h(γ). (3.18)

3.2.2 Small dp : dp < τ(n) log n

In subsections 3.2.2 and 3.2.3 of [2], the authors use estimates of counting func-
tion for S-units to bound #{d | n : d < τ(n) log n} and then give a upper bound
for #P ′. One can verify that these bounds are still effective in our case, as
following:

#{d | n : d < τ(n) log n} ≤ exp

(

70
logn log log logn

(log logn)2

)

. (3.19)

#P ′ ≤
(

P

n
+ 1

)

exp

(

80
logn log log logn

(log logn)2

)

. (3.20)

3.2.3 Using Theorem 2.2

By item 1 of Proposition 2.4, for p ∈ P ′, we have n | p2 − 1. Hence p > n1/2 ≥
n
1/2
0 . Since n

1/2
0 ≥ p0 = exp exp(max{108, 2|DK |}), Theorem 2.2 applies:

νp(β
n − 1) ≤ p exp

(

−0.001
log p

log log p

)

h(β) log n

≤ 2P exp

(

−0.0005
logn

log logn

)

h(γ) logn.

(3.21)

The last inequality holds because

p ≤ P,
log p

log log p
≥ 1

2

logn

log logn
, h(β) ≤ 2h(γ).

Since νp(vn/dp
) ≤ νp(β

n − 1), we obtain,

∑

p∈P′

νp(vn/dp
) log p ≤ 2P exp

(

−0.0005
logn

log logn

)

h(γ) logP logn#P ′. (3.22)
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Combining (3.18)(3.22),

0.1ϕ(n)h(γ) ≤ 2P exp

(

−0.0005
logn

log logn

)

h(γ) logP logn#P ′.

Using (3.20) and (2.5), we obtain, for n ≥ exp exp(1010),

40P (P + n) logP ≥ n2

logn log logn
exp

(

logn(log logn− 160000 log log logn)

2000(log logn)2

)

≥ n2 exp

(

0.0004
logn

log logn

)

.

Obviously P ≥ n, so we have

80P 2 logP ≥ n2 exp

(

0.0004
logn

log logn

)

,

which implies (3.1) and we are done.

Acknowledgments The author thanks Yuri Bilu for checking the proof, pol-
ishing the exposition and helpful discussions. The author also acknowledges
support of China Scholarship Council grant CSC202008310189.

References

[1] Yuri Bilu, Haojie Hong, and Sanoli Gun, Uniform explicit Stewart’s theorem on prime

factors of linear recurrences, arXiv:2108.09857 (2021).

[2] Yuri Bilu, Haojie Hong, and Florian Luca, Big prime factors in orders of elliptic curves

over finite fields, arXiv:2112.07046 (2021).

[3] Yuri Bilu and Florian Luca, Binary polynomial power sums vanishing at roots of unity,
Acta Arith. 198 (2021), no. 2, 195–217. MR 4228301
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