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Abstract. Let (M, g) be a smooth, compact, Riemannian manifold and {φh} a sequence of L2-normalized

Laplace eigenfunctions on M . For a smooth submanifold H ⊂ M , we consider the growth of the restricted

eigenfunctions φh|H by testing them against a sequence of functions {ψh} on H whose wavefront set avoids
S∗H. That is, we study what we call the generalized Fourier coefficients: 〈φh, ψh〉L2(H). We give an explicit

bound on these coefficients depending on how the defect measures for the two collections of functions φh
and ψh relate. This allows us to get a little−o improvement whenever the collection of recurrent directions

over the wavefront set of ψh is small. To obtain our estimates, we utilize geodesic beam techniques.

1. Introduction and Main Results

On a smooth, compact, n-dimensional Riemannian manifold (M, g), we consider a sequence of L2-
normalized Laplace eigenfunctions {φh} satisfying

(−h2∆g − 1)φh = 0 and ‖φh‖L2(M) = 1. (1)

From a quantum mechanics perspective, we can think of φh(x) as the wave function for a free quantum
particle with fixed energy h−2. Thus |φh(x)|2 gives the probability density for finding the quantum particle
at x ∈ M . Understanding how these high-energy particles behave, corresponding to sending h → 0+, is
a well-studied problem in mathematical physics. We are particularly interested in exploring how φh, on
average, concentrates and grows on our manifold.

In this article, we study the generalized Fourier coefficients of φh restricted to a smooth, closed submanifold
H. The Fourier expansion allows one to express φh|H in terms of any complete orthonormal basis of L2(H).
It is well known Laplace eigenfunctions on H can be used to build such a basis of L2(H). Particularly, there
exists such an orthonormal basis consisting of eigenfunctions on H, {ψhj}j∈N, which satisfy

−h2
j∆g

H
ψhj = E(hj)ψhj

where g
H

is the Riemannian metric on H induced by g. Thus we can express

φh|H =
∑
j∈N
〈φh|H , ψhj 〉L2(H)ψhj =

∑
j∈N

(∫
H

φhψhjdσH

)
ψhj (2)

where dσH is the volume measure on H induced by the metric g
H

. We study the Fourier coefficients in (2),
〈φh, ψhj 〉L2(H) to gain an understanding of the restricted eigenfunctions φh|H . To extract more information
we instead study the growth of |〈φh, ψh〉L2(H)| where {ψh} is any collection of functions on H. We will call
these the generalized Fourier coefficients.

1.1. Summary of Existing Results. The growth of averages and weighted averages of eigenfunctions over
a submanifold H has been widely studied. Much work has been done in the case where H is a smooth, closed
curve, γ, and (M, g) is a surface. Good [Goo83] and Hejhal [Hej82] showed for γ a periodic geodesic and
(M, g) a hyperbolic surface that there is a C > 0 such that as h→ 0+∣∣∣∣∫

γ

φhdσγ

∣∣∣∣ ≤ C. (3)

The integral in (3) is typically called a period integral. Further, for γ a unit length geodesic, Chen and

Sogge [CS15] showed that
∣∣∣∫γ φhdσγ∣∣∣ ≤ C‖φh‖L2(M). Without needing to make any global assumptions on
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the surface M or curve γ, Xi [Xi17] proved for 0 ≤ αh < c < 1 that∣∣∣∣∫
γ

φh(γ(t))e−iαtdt

∣∣∣∣ ≤ C|γ| (4)

where |γ| is the length of γ
More generally, for M an n-dimensional manifold and H a submanifold of codimension k, Zelditch [Zel92]

proved the sharp bound ∣∣∣∣∫
H

φhdσH

∣∣∣∣ = O(h
1−k

2 ) (5)

which generalizes (3). This bound has since been improved under various assumptions on M and H by
Canzani, Galkowski, Sogge, Toth, Wyman, Xi, and Zhang [CGT18, CG19a, CG19b, CG21, SXZ17, Wym17,
Wym20b, Wym20a, Wym19, Xi17]. Particularly in [CG19b], Canzani and Galkowski show for a weight
w ∈ C∞(H) that

lim sup
h→0+

h
k−1

2

∣∣∣∣∫
H

φhw dσH

∣∣∣∣ ≤ Cn,k ∫
SN∗H

|w|
√
f |HpRH |−1dσSN∗H ,

where SN∗H is the unit conormal bundle of H, HpRH is a function measuring how fast geodesics flow out
of the submanifold, and f is related to the defect measure of φh. They actually prove a stronger result
for {φh} quasimodes of a wide class of semiclassical operators. To obtain their estimates, they develop a
new technique that involves localizing φh near a family of geodesics emanating from points in H. Using
this framework, they improve many existing results without needing global geometric conditions on their
manifold.

Under various assumptions the standard restriction bound (5) has been logarithmically improved. In
[SXZ17], Sogge, Xi, and Zhang study weighted period integrals on geodesics and show that there is a C > 0
such that ∣∣∣∣∫

γ

φh w dσγ

∣∣∣∣ ≤ C(log(1/h))−1/2, h� 1,

for M a hyperbolic surface, γ a geodesic, and w ∈ C∞0 . Wyman extends this to the case where M is a
surface with nonpositive curvature in [Wym20a] and further extends this to k−codimensional submanifolds
in [Wym20b]. There he shows for manifolds with negative sectional curvature that∣∣∣∣∫

H

φhdσH

∣∣∣∣ = O

(
h

1−k
2√

log(1/h)

)
. (6)

In [CG19a], Canzani and Galkowski give conditions on (H,M) for which (6) holds.
In this work, we allow the “weight” w to be h-dependent. We will utilize Canzani and Galkowski’s

technique to obtain our results.

1.2. Statement of Results. Let H ⊂ M be a closed, embedded submanifold of codimension k. Let {ψh}
be a collection of L2-normalized functions on H,

‖ψh‖L2(H) = 1, (7)

and let A = WFh(ψh) ⊂ T ∗H (see [Zwo12, pg. 188] for definition of the semiclassical wavefront set, denoted
WFh). We will use the coordinates (x′, ξ′) in T ∗H.

We assume {ψh} has defect measure ν (see [Zwo12, pg. 100] for definition of a defect measure). Note
that supp ν ⊂ A. Further, assume

WFh(ψh) = A b B∗H (8)

where B∗H denotes the coball bundle in T ∗H. Using the coordinates on T ∗H we can also write this as
A b {(x′, ξ′) : |ξ′|g

H
< 1} where g

H
is the metric induced by g on H. We define

ΣA := {ρ ∈ S∗HM : π
T∗Hρ ∈ A} ⊆ T

∗M (9)

where S∗HM denotes the cosphere bundle with footprints in H and π
T∗H is the projection from T ∗M onto

T ∗H.
We use the defect measure ν to define a measure νA on ΣA. Essentially νA is an extension of the defect

measure ν to ΣA. We later define νA more explicitly in (15)
2



In what follows we denote the recurrent set of ΣA by RA (see Section 5 for explicit definition). Roughly,
the recurrent set of ΣA is the collection of points ρ ∈ ΣA which, under the geodesic flow, return to ΣA

infinitely often and eventually get arbitrarily close to the initial point ρ.

Theorem 1.1. Let {φh} be a sequence of Laplace eigenfunctions on M satisfying (1). Let H ⊂M be a closed,
embedded, smooth submanifold of codimention k, and let {ψh} ⊂ L2(H) be a sequence of L2−normalized
functions on H with defect measure ν, satisfying WFh(ψh) =: A b B∗H. If νA(RA) = 0, where νA is
defined in (15), then

|〈φh, ψh〉L2(H)| = o(h
1−k

2 ), h→ 0+. (10)

To the best of our knowledge, the Fourier coefficients of restricted eigenfunctions have not been studied
under dynamic assumptions before. The most comparable result, [CG19b, Theorem 2] due to Canzani and

Galkowski, gives conditions on the recurrent set of SN∗H for which the period integral
∫
H
φhdσH is o(h

1−k
2 )

as h→ 0+. If we take the collection ψh ≡ 1 we recover their result (see Example 1.8). In Examples 1.4 and
1.5 we demonstrate how Theorem 1.1 can be used in two different ways: to study the generalized Fourier
coefficients and to understand the size of the recurrent set.

Next, instead of taking {φh} to be exact Laplace eigenfunctions, we further generalize by considering
quasimodes of the form

(−h2∆g − 1)φh = oL2(M)(h) as h→ 0+ and ‖φh‖L2(M) = 1. (11)

We also assume φh is compactly microlocalized. That is, there exists a cutoff χ ∈ C∞c (T ∗M) such that

(1−Oph(χ))φh = OC∞(h∞).

Further, let µ be a defect measure for φh. We note that µ is supported in S∗M . Similar to [CGT18, Lemma
6 & Remark 3] we use µ to define a measure on ΣA, µA, by

µA(Ω) := lim
T→0+

1

2T
µ

 ⋃
|t|≤T

ϕt(Ω)

 for Ω ⊆ ΣA Borel. (12)

The following theorem gives our main estimate for controlling generalized Fourier coefficients of quasimodes.
Theorem 1.1 then follows as a corollary.

Theorem 1.2. Let {φh} be a sequence of compactly microlocalized quasimodes on M satisfying (11) with
defect measure µ. Let H ⊂M be a closed, embedded, smooth submanifold of codimention k, and let {ψh} ⊂
L2(H) be a sequence of L2−normalized functions on H with defect measure ν, satisfying WFh(ψh) =: A b
B∗H. Further, suppose we have a Radon-Nikodym decomposition of the form

µA = fνA + λA

where νA ⊥ λA and f ∈ L1(ΣA, νA). Then there exists a constant Cn,k > 0 depending only on n and k such
that

lim sup
h→0+

h
k−1

2

∣∣〈φh, ψh〉L2(H)

∣∣ ≤ Cn,k (∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 fdνA
)1/2

. (13)

This gives much more explicit control on the constant in the standard restriction bound (5) which gives
us more insight into when (5) can be improved upon. For example, if f = 0 in (13) then we see that we have
a little-o improvement. Showing that f = 0 under the assumptions of Theorem 1.1 is exactly how we obtain
(10). In the special case where νA is a volume measure on ΣA, we can refine the proof of the theorem to get
a finer bound as follows.

Theorem 1.3. Let {φh} and {ψh} satisfy the hypothesis of Theorem 1.2. Suppose ΣA ⊆ N ⊆ T ∗M where
N is a smooth submanifold of dimension d ∈ N. Further, let m be the volume measure on N induced from
the Liouville measure on T ∗M . Moreover, suppose we have

µA = fνA + λA and νA = um
3



where νA ⊥ λA, f ∈ L1(ΣA, νA) and u ∈ C(ΣA;R). Then there exists a constant Cn,k,d > 0 depending only
on n, k, and d such that

lim sup
h→0+

h
k−1

2

∣∣〈φh, ψh〉L2(H)

∣∣ ≤ Cn,k,d ∫
ΣA

√
(1− |ξ′|2g

H
(x′))

k−2
2 f |u| dm. (14)

When we take {ψh} to be an orthonormal collection of eigenfunctions on H the estimate in Theorem 1.2
allows us to study the growth of the generalized Fourier coefficients of restricted eigenfunctions. We note
that the theorem holds in more generality than this, as the collection {ψh} does not necessarily consist of
eigenfunctions. To the best of our knowledge, the only existing results in this direction are due to Wyman,
Xi, and Zelditch [WXZ20, WXZ21], where the authors obtain asymptotics for sums of the norm-squares of
the generalized Fourier coefficients over the joint spectrum. If we take our collection {ψh} independent of
h, we recover the weighted averages result in [CG19b, Theorem 6], which we demonstrate in Example 1.8.
We also show in Examples 1.6, 1.7 that we are able to recover the results of [Xi17, Theorem 1.3] and [Xi17,
Theorem 1.4]. A similar argument to [CG19b, Remark 1] could be used to show that we can use (14) with
H a single point to recover L∞ bounds of the generalized Fourier coefficients. Using such L∞ bounds, if in
addition we take ψ ≡ 1, we could also recover the main result of [STZ11].

1.3. Examples. We next consider some examples to illustrate the use of Theorems 1.1,1.2, and 1.3. In the
first two examples, we make use of Theorem 1.1 in two different ways. In the first, we show that the recurrent
set has measure zero with respect to νA, and hence we obtain a little-o improvement. In the second example,
we pick specific collections of φh and ψh and explicitly compute the generalized Fourier coefficients. Then
we use Theorem 1.1 to obtain information on the size of the recurrent set. In the later three examples we
use Theorems 1.2 and 1.3 to obtain bounds on the generalized Fourier coefficients in a few different settings.
First, we take an explicit collection of ψh, second, we assume the collection of φh’s are themselves restricted
eigenfunctions, and third, when the collection of φh does not depend on the semiclassical parameter h.

We will use the coordinates (x′, x̄) with respect to H such that H = {x̄ = 0} and work with dual
coordinates (ξ′, ξ̄). In these coordinates we can write

ΣA = {(x′, x̄, ξ′, ξ̄) : |x̄| = 0, (x′, ξ′) ∈ A, |ξ|g = 1}.

Note that ΣA is parametrized by (x′, ξ′, ξ̄) and that once (x′, ξ′) are fixed, the remaining coordinate lives on

the k − 1 dimensional sphere of radius
√

1− |ξ′|2g
H

. We define the measure νA by∫
(x′,0,ξ′,ξ̄)∈ΣA

f(x′, ξ′, ξ̄)dνA(x′, ξ′, ξ̄) :=

∫
(x′,ξ′)∈A

∫
π−1(x′,ξ′)

f(x′, ξ′, ξ̄)

ck
(
1− |ξ′|2g

H
(x′)

) k−1
2

d volSk−1√
1−|ξ′|2g

H

(ξ̄)dν(x′, ξ′)

(15)
where ck is such that νA(ΣA) = ν(A) = 1, π is the projection of ΣA onto A, and f is any integrable function
on ΣA.

Example 1.4 (Extracting information from the dynamics). Consider the torus T = {(x, y) ∈ R2 : (x, y) ∼
(x + 1, y) ∼ (x, y + 1)} and a collection of L2-normalized eigenfunctions {φh} on T. Furthermore, let
H = {y = 0} and consider the collection of coherent states

ψh = C(h) exp

(
i

2h

(
x− 1

2

))
exp

(
− 1

2h

∣∣∣x− 1

2

∣∣∣2)
on H where C(h) is such that ‖ψh‖L2(H) = 1. The wavefront set for {ψh} is A = {(x, ξ) : x = 1/2, ξ = 1/2},
and the defect measure is ν = δ{x=1/2,ξ=1/2}. Therefore

ΣA = {(x, y, ξ, η) : x = 1/2, y = 0, ξ = 1/2, η = ±
√

3/2}

and νA is a point mass at both (1/2, 0, 1/2,
√

3/2) and (1/2, 0, 1/2,−
√

3/2) with mass 1/2. Geodesics
emanating from ΣA never return back to ΣA since their directions have irrational slopes. Therefore the
recurrent set of ΣA is empty and hence νA(RA) = 0. Thus, Theorem 1.1 implies

|〈φh, ψh〉L2(H)| = o(1) as h→ 0+.
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Example 1.5 (Obtaining information on the recurrent set). Consider the torus T and the collection of

eigenfunctions on T, φh = e
i
h (
√

2
2 x+

√
2

2 y) where h =
√

2
4πn and n ∈ N. Furthermore, let H = {y = 0} and

consider the collection of functions on H, ψh = e
i
√

2
2h x. Then observe

|〈φh, ψh〉L2(H)| =
∫ 1

0

φh
∣∣
{y=0}ψh dx =

∫ 1

0

e
i
√

2
2h xe−

i
√

2
2h xdx = 1. (16)

One can check that A = WFh{ψh} = {(x, ξ) : ξ =
√

2/2}, ν = δ{ξ=
√

2/2}dx,

ΣA = {(x, y, ξ, η) : y = 0, ξ =
√

2/2, η = ±
√

2/2},

and νA = dx, where we use (ξ, η) to denote the dual coordinates to (x, y). It is clear from (16) that
|〈φh, ψh〉L2(H)| 6= o(1) as h→ 0+ and thus Theorem 1.1 implies νA(RA) > 0.

For this example we can actually compute the recurrent set since the geometry is quite simple. Note that
geodesics emanating from ΣA return to their starting point after time n

√
2, where n ∈ Z. Therefore every

point of ΣA is recurrent and so νA(RA) = νA(ΣA) = 1.

Example 1.6 (Reproducing [Xi17, Theorem 1.4]). Consider the simple case where we have a surface con-
taining a smooth closed curve γ parametrized by t. We consider

lim sup
h→0+

∣∣∣∣∫
γ

φh(γ(t))e−iα(h)tdt

∣∣∣∣
for φh eigenfunctions, and some function α satisfying 0 ≤ α(h)h < c < 1 and limh→0+ α(h)h = α0. We note
that this is a semiclassical version of [Xi17, Theorem 1.4]. To apply our estimate, we need to normalize the
exponential, thus we instead consider

|γ|1/2 lim sup
h→0+

∣∣∣∣∫
γ

φh(γ(t))
e−iα(h)t

|γ|1/2
dt

∣∣∣∣ =: |γ|1/2 lim sup
h→0+

|〈φh, ψh〉L2(γ)|

We note that the collection {ψh} = {eiα(h)t|γ|−1/2} has a defect measure ν = |γ|−1δ{τ=α0}dt where τ is dual
to t and dt denotes the Lebesgue measure on γ. Furthermore, the wavefront set A = WFh(ψh) = {τ = α0}.
Now, using s to denote the coordinate on M normal to γ and σ dual to s, we have

ΣA = {(t, s, τ, σ) : s = 0, τ = α0, σ = ±
√

1− α2
0}

which is one dimensional. Furthermore we compute νA = |γ|−1dt where dt is Lebesgue on ΣA.
Thus, applying Theorem 1.3, we have that there is a C > 0 such that

|γ|1/2 lim sup
h→0+

∣∣∣〈φh, ψh〉L2(γ)

∣∣∣ ≤ C|γ|1/2 ∫
ΣA

√
f(1− |τ |2)−1/2|γ|−1dt.

Next, using Hölder’s inequality and that ‖f‖L1(ΣA,νA) ≤ µA(ΣA) ≤ 1 we obtain

|γ|1/2 lim sup
h→0+

∣∣∣〈φh, ψh〉L2(γ)

∣∣∣ ≤ C|γ|1/2(∫
ΣA
|f ||γ|−1dt

)1/2(∫
ΣA

(1− α2
0)−1/2|γ|−1dt

)1/2

= C|γ|1/2‖f‖1/2
L1(ΣA,νA)

(1− α2
0)−1/4 ≤ C|γ|1/2

(1− α2
0)1/4

.

Finally since α0 ≤ c < 1 we have

lim sup
h→0+

∣∣∣∣∫
γ

φh(γ(t))e−iα(h)tdt

∣∣∣∣ ≤ C|γ|1/2

(1− α2
0)1/4

≤ C|γ|1/2

(1− c2)1/4
. (17)

We see from (17) that we are able to bound the Fourier coefficients by C|γ|1/2 which differs from Xi’s bound
of C|γ| stated in (4). This discrepancy is because our method uses L2 norms, while Xi uses L1 norms. We
also note that this example is a more general version of what Xi considered in [Xi17, Theorem 1.4], as we
allow the weight e−iα(h)t to depend on h.
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Example 1.7 (Reproducing [Xi17, Theorem 1.3]). As in [Xi17, Theorem 1.3] we consider the case where
φh are eigenfunctions on M and ψh are the restrictions of a eigenfunctions on M to a hypersurface H. Let

ψh =
Ψh|H

‖Ψh‖L2(H)
where Ψh satisfies (−h2∆g − α(h)2)Ψh = 0 on M.

We also assume that 0 ≤ α(h) < c < 1 as in [Xi17, Theorem 1.3] and suppose α(h) → α0, taking a
subsequence if necessary. Since WFh(Ψh) = {|ξ|g = α0} one can see that WFh(ψh) ⊆ {|ξ′|gH ≤ α0} where
we use coordinates x = (x′, x̄) on M such that H = {x̄ = 0}, and dual coordinates ξ = (ξ′, ξ̄). Applying
Theorem 1.2 we have

lim sup
h→0+

∣∣〈φh, ψh〉L2(H)

∣∣ ≤ Cn,1(∫
ΣA

f(1− |ξ′|2g
H

(x′))
−1/2dνA

)1/2

.

Furthermore, since |ξ′|gH ≤ α0 on ΣA, ‖f‖L1(ΣA,νA) ≤ 1, and α0 ≤ c < 1, we obtain

lim sup
h→0+

∣∣〈φh, ψh〉L2(H)

∣∣ ≤ Cn,1‖f‖1/2L1(ΣA,νA)
(1− α2

0)−1/4 ≤ Cn,1
(1− c2)1/4

.

Thus, we find that for h small

|〈φh,Ψh〉L2(H)| ≤
Cn,1‖Ψh‖L2(H)

(1− c2)1/4
≤
C
(

1 + α(h)
h

)1/4

(1− c2)1/4

where we use [BGT07, Theorem 3] to bound ‖Ψh‖L2(H). In this case we recover the bound in [Xi17, Theorem
1.3 (1.23)].

Example 1.8 (Reproducing [CG19b, Theorem 6]). We study the case where our collection {ψh} does not
depend on h. We consider

lim sup
h→0+

h
k−1

2 |〈φh, w〉L2(H)|

where φh are compactly microlocalized quasimodes, and w ∈ C∞(H) is independent of h. We must normalize
w to apply the theorem. We instead consider w = w‖w‖−1

L2(H). A short calculation shows that ν =

‖w‖−2
L2(H)|w(x′)|2δ{ξ′=0}dx

′ is the defect measure for w where we use coordinates x = (x′, x̄) on M such

that H = {x̄ = 0}, and dual coordinates ξ = (ξ′, ξ̄). Furthermore we observe that A = WFh(w) = N∗H.
Therefore ΣA = SN∗H, which is n− 1 dimensional. Next we note

νA = ‖w‖−2
L2(H)|w(x′)|2dσSN∗H

where σSN∗H is the measure on SN∗H induced by the Sasaki metric on T ∗M . Applying Theorem 1.3 we
have

lim sup
h→0+

h
k−1

2 |〈φh,w〉L2(H)| ≤
Cn,k,n−1

‖w‖2L2(H)

∫
SN∗H

√
f(1− |ξ′|2g

H
(x′))

k−2
2 |w|2dσSN∗H

=
Cn,k

‖w‖2L2(H)

∫
SN∗H

√
f |w|2dσSN∗H

since ξ′ = 0 on SN∗H. Note that in the notation of Theorem 1.3 we have u = ‖w‖2L2(H)|w|
2. In addition,

since the dimension of ΣA is n− 1 we just have that our constant depends on n and k. Thus, for the inner
product with w, we have

lim sup
h→0+

h
k−1

2 |〈φh, w〉L2(H)| ≤
Cn,k

‖w‖L2(H)

∫
SN∗H

√
f |w|2dσSN∗H = Cn,k

∫
SN∗H

√
f‖w‖−2

L2(H)|w|2|w|dσSN∗H .

The last equality matches with the bound in [CG19b, Theorem 6], since under the square root is the Radon-
Nikodym derivative of µA with respect to σSN∗H , which in this case is fu = f‖w‖−2

L2(H)|w|
2.

6



1.4. Organization of the paper. The remaining sections of our paper are organized as follows: Section 2
contains the proofs of Theorems 1.2 and 1.3 assuming a key quantitative estimate given in Proposition 2.1.
Section 3 contains a few of the more technical lemmas, which focus on localizing to ΣA, needed to prove
Proposition 2.1. Section 3 can be omitted on a first read. Section 4 is dedicated to the proof of Proposition
2.1 in which the key idea is to first localize the generalized Fourier coefficients to geodesic tubes emanating
from ΣA. In Section 5 we define the recurrent set of ΣA and use Theorem 1.2 to prove Theorem 1.1.

2. Proof of Theorem 1.2 and Theorem 1.3

In this section we present the proofs of Theorems 1.2 and 1.3. We first introduce notation that will be
used throughout the paper. Then we state the main estimate, Proposition 2.1, which is central to the proof
of Theorem 1.2, but we save its proof for Section 4. Assuming the proposition, we prove Theorem 1.2 and
then modify its proof to obtain Theorem 1.3.

Throughout this section we assume {φh} is a compactly microlocalized collection of quasimodes on M
satisfying (11) with defect measure µ. We also assume that the sequence of functions {ψh} on H have defect
measure ν and satisfy (7) and (8).

Acknowledgements. The author would like to thank Yaiza Canzani and Jeffrey Galkowski for many
insightful conversations throughout the course of this project and for their feedback on multiple drafts of
the article. The author would also like to thank Blake Keeler for the many helpful discussions, especially at
the early stages of this project. The author is grateful to the National Science Foundation for their support
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2.1. Preliminaries. We let P (h) := −h2∆g − 1 with principal symbol p(x, ξ) = |ξ|2g − 1. Then we can
rewrite the quasimode equation for φh as, P (h)φh = oL2(M)(h). Using properties of defect measures, we
know that

suppµ ⊆ {p = 0} = {|ξ|2g = 1} = S∗M ⊆ T ∗M,

so {φh} is localized near S∗M . Also, since A = WFh(ψh), we note that ΣA, defined in (9), can be thought of
points where φh are concentrated which project onto where ψh are concentrated. Therefore, it is reasonable
to expect contributions from |〈φh, ψh〉L2(H)| to be small away from ΣA. We prove this in Lemma 3.2.

We use Hp to denote the Hamilton vector field associated to p and ϕt := exp(tHp) to denote the geodesic
flow. Let L ⊂ T ∗M be a smooth, embedded hypersurface containing ΣA which is transversal to the flow, so

Hp 6∈ TL and ΣA ⊂ L

as depicted in Figure 2.1. For ρ ∈ L and R > 0 define

BL (ρ,R) := B(ρ,R) ∩L .

We use the geodesic flow to form tubes in T ∗M by flowing out of L . For time T > 0 and U ⊂ L we define
the tube

T T (U) :=
⋃
|t|≤T

ϕt(U). (18)

Sometimes when U is a ball, we will write T Tρ0
(R) := T T (BL (ρ0, R)). For U ⊆ ΣA and ε > 0 we define

U(ε) :=
⋃
ρ∈U

BL (ρ, ε) ⊆ L (19)

which is a version of U that has been thickened by ε into L . We denote the “flowout” of ΣA

ΛT (ε) := T T (ΣA(ε))

where ΣA(ε) denotes the fattened version of ΣA defined in (19). Finally, define ΓH : C∞(M) → C∞(H)
which restricts functions on M to H.

To prove Theorem 1.2 we begin by using a cutoff χ to localize to the respective supports of our mutually
singular measures, νA and λA. Thus we seek to understand how terms like

∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣ grow as

h→ 0+. We control such terms in the following proposition.
7



Figure 2.1.

Proposition 2.1. There exist T0, R0 > 0 such that for all 0 < T ≤ T0, 0 < ε ≤ R0, and χ ∈ C∞c (T ∗M)
with Hpχ ≡ 0 on Λ2T (ε), there exists a constant Cn,k > 0 depending only on n and k such that

lim sup
h→0+

h
k−1

2

∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣ ≤ Cn,k (νA(suppχ|
ΣA

)

∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |χ|2dµA
)1/2

.

To use Proposition 2.1, we need to work with cutoff functions χ ∈ C∞c (T ∗M) in which are flow invariant,
meaning Hpχ ≡ 0 on Λ2T (ε). In the following lemma, we show that a cutoff χ̃ ∈ C∞c (ΣA(ε)) can be extended
to T ∗M in this way.

Lemma 2.2. For ε > 0 and χ̃ ∈ C∞c (ΣA(ε); [0, 1]) there exists an extension χ ∈ C∞c (T ∗M, [0, 1]) such that
suppχ ⊆ Λ3T (ε) and Hpχ ≡ 0 on Λ2T (ε).

Proof. Since ΣA(ε) ⊆ L is transverse to the flow, for T small enough, we can use the map X : (−4T, 4T )×
L → T ∗M defined by

X(t, ρ) = ϕt(ρ)

as coordinates. Let f ∈ C∞c (R) with supp f ⊂ (−3T, 3T ) and f ≡ 1 on [−2T, 2T ]. Then take χ =
(X−1)∗(f(t)χ̃). �

We first prove Theorem 1.2 assuming the proposition holds. The proof of Proposition 2.1 is saved for
Section 4.

2.2. Proof of Theorem 1.2. Fix, δ > 0. Since νA and λA are mutually singular Radon measures on ΣA

there exists Kδ ⊆ ΣA compact and Uδ ⊆ ΣA open and containing Kδ such that

νA(Uδ) ≤ δ and λA(ΣA \Kδ) ≤ δ.

Let κ̃δ ∈ C∞c (ΣA; [0, 1]) such that

κ̃δ ≡ 1 on Kδ and supp κ̃δ ⊆ Uδ.

Furthermore, let κδ ∈ C∞c (T ∗M ; [0, 1]) be a flow invariant extension of κ̃δ as defined in Lemma 2.2. We split
the inner product

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉| ≤ lim sup
h→0+

h
k−1

2

( ∣∣〈Oph(κδ)φh, ψh〉L2(H)

∣∣+
∣∣〈Oph(1− κδ)φh, ψh〉L2(H)

∣∣ ). (20)

Next, we use Proposition 2.1 with χ = κδ on the first term to obtain

lim sup
h→0+

h
k−1

2

∣∣〈Oph(κδ)φh, ψh〉L2(H)

∣∣ ≤ Cn,k (νA(suppκδ|ΣA )

∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |κδ|2dµA
)1/2

≤ Cδ1/2.

(21)
The last inequality follows from the fact that νA(suppκδ|ΣA ) = νA(supp κ̃δ) ≤ νA(Uδ) ≤ δ.
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Next, to bound the second term in (20), we use Proposition 2.1 with χ = 1− κδ and the Radon-Nikodym
decomposition of our measures, µA = fνA + λA. We have

lim sup
h→0+

h
k−1

2

∣∣〈Oph(1− κδ)φh, ψh〉L2(H)

∣∣
≤ Cn,kνA(supp(1− κδ)

∣∣
ΣA

)1/2

(∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |1− κδ|2
(
fdνA + dλA

))1/2

≤ Cn,kνA(ΣA)1/2

(∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 fdνA + Cδ

)1/2

, (22)

where, in the last line, we used that κ̃δ ≡ 1 on Kδ and so (1− κδ)
∣∣
ΣA

is supported on ΣA \Kδ. Thus, since

λA(ΣA \ Kδ) ≤ δ, the dλA integral is bounded by Cδ. Since νA(ΣA) = 1, and (21) and (22) hold for all
δ > 0, combining the above we have

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉| ≤ Cn,k
(∫

ΣA
(1− |ξ′|2g

H
(x′))

k−2
2 fdνA

)1/2

giving the bound in (13) as desired. �

2.3. Proof of Theorem 1.3. Let Kδ, Uδ, and κδ be as in the proof of Theorem 1.2. We similarly split the
inner product:

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉| ≤ lim sup
h→0+

h
k−1

2

( ∣∣〈Oph(κδ)φh, ψh〉L2(H)

∣∣+
∣∣〈Oph(1− κδ)φh, ψh〉L2(H)

∣∣ ) =: I + II.

Then applying Proposition 2.1 to I, we have

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉| ≤ Cδ1/2 + II.

By the Besicovitch-Federer Covering Lemma, there exists a constant cd > 0 depending only on d, the
dimension of ΣA and R so that for all 0 < r < R, there exist a cover of open balls {B(ρ1, r), . . . , B(ρn(r), r)} =

{B1, . . . , Bn(r)} ⊆ ΣA of radius r centered at {ρ1, . . . , ρn(r)} with

n(r) ≤ cdr−d and m(Bj) ≤ cdrd

where m is Lebesgue on N ⊇ ΣA. Furthermore ΣA ⊆
⋃n(r)
j=1 Bj and each point in ΣA lies in at most cd balls.

Then we let θ̃j be a partition of unity associated to Bj(ε) and θj the flowed extensions into T ∗M such that

suppHpθj ⊆ T 3T (Bj(ε)) \ T 2T (Bj(ε)) and
∑n(r)
j=1 θj ≡ 1 on Λ2T (ε). Define Θ :=

∑n(r)
j=1 θj . Next we split II:

lim sup
h→0+

h
k−1

2 |〈Oph(1− κδ)φh, ψh〉L2(H)|

≤ lim sup
h→0+

h
k−1

2

( ∣∣〈Oph(Θ(1− κδ))φh, ψh〉L2(H)

∣∣+
∣∣〈Oph((1−Θ)(1− κδ))φh, ψh〉L2(H)

∣∣ )
≤ lim sup

h→0+

n(r)∑
j=1

h
k−1

2

∣∣〈Oph(θj(1− κδ))φh, ψh〉L2(H)

∣∣
+ lim sup

h→0+

h
k−1

2

∣∣〈Oph((1−Θ)(1− κδ))φh, ψh〉L2(H)

∣∣ . (23)
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Taking h→ 0+ we can apply Proposition 2.1 to both terms. Using the support properties of Θ, we find that
the second term in (23) goes to 0. For the first term in (23), we have

lim sup
h→0+

n(r)∑
j=1

h
k−1

2

∣∣〈Oph(θj(1− κδ))φh, ψh〉L2(H)

∣∣
≤ Cn,k

n(r)∑
j=1

νA(supp(θj(1− κδ))|ΣA )1/2

(∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |θj(1− κδ)|2dµA
)1/2

≤ Cn,k
n(r)∑
j=1

(∫
Bj

u dm

)1/2(∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |θj(1− κδ)|2(fu dm+ dλA)

)1/2

, (24)

where we used that supp θj |ΣA ⊆ Bj and νA = um. As in the proof of Theorem 1.2, the dλA integral can

be bounded by Cδ, and we thus focus on the dm integral. Since u is uniformly continuous on ΣA, we can
find an R > 0 such that if ρ ∈ B(ρj , R) then |u(ρ)− u(ρj)| ≤ δ. Therefore,∫

Bj

u dm ≤
∫
Bj

(u(ρj) + δ) dm = (u(ρj) + δ)m(Bj) ≤ cdrd(u(ρj) + δ).

For each Bj provided r < R is small enough. Thus we can bound (24) by

Cn,k,d r
d/2

n(r)∑
j=1

(∫
ΣA

(u(ρj) + δ)(1− |ξ′|2g
H

(x′))
k−2

2 |θj(1− κδ)|2fu dm
)1/2

+ Cδ1/2.

Since supp θj |ΣA ⊆ Bj we can use the bound u(ρj) + δ ≤ u(ρ) + 2δ. Continuing, we find

Cn,k,d r
d/2

n(r)∑
j=1

(∫
ΣA

(u(ρj) + δ)(1− |ξ′|2g
H

(x′))
k−2

2 |θj(1− κδ)|2fu dm
)1/2

≤ Cn,k,d
n(r)∑
j=1

m(Bj)
1/2

(∫
ΣA

(1− |ξ′|2g
H

(x′))
k−2

2 |θj |2fu2 dm

)1/2

+ Cn,k,d r
d/2n(r)1/2

(∫
ΣA

δfu dm

)1/2

≤ Cn,k,d
∫

ΣA

n(r)∑
j=1

(
1

m(Bj)

∫
Bj

(1− |ξ′|2g
H

(x′))
k−2

2 fu2 dm

)1/2

1Bj dm+ Cδ1/2.

Therefore, combining the above steps we have

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉L2(H)| ≤ Cδ1/2 + Cn,k,d

∫
ΣA

n(r)∑
j=1

(
1

m(Bj)

∫
Bj

(1− |ξ′|2g
H

(x′))
k−2

2 fu2 dm

)1/2

1Bj dm,

(25)

and since the left side does not depend on r, we may bound lim suph→0+ h
k−1

2 |〈φh, ψh〉L2(H)| by the limit of
the right side of (25) as r → 0. We will use the Dominated Convergence Theorem to bring the limit inside
the integral. To simplify our computations, we will write

F (ρ) := (1− |ξ′|2g
H

(x′))
k−2

2 fu2.

First we calculate the limit of the integrand in (25). Using the Lebesgue Differentiation Theorem [Fol99,
Theorem 3.21] and that each point in ΣA lies in finitely many balls of the cover, we see that

lim sup
r→0

n(r)∑
j=1

(
1

m(Bj)

∫
Bj

F dm

)1/2

1Bj ≤ Cn,k,d
√
F = Cn,k,d|u|

√
(1− |ξ′|2g

H
(x′))

k−2
2 f m− a.e.
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Lastly, to justify the use of the Dominated Convergence Theorem we need to show that the integrand in
(25) is dominated by an L1 function. We note that

n(r)∑
j=1

(
1

m(Bj)

∫
Bj

F dm

)1/2

1Bj ≤
n(r)∑
j=1

√
HF (ρj)1Bj ≤ C

√
HF (ρ) m− a.e.

where H denotes the Hardy-Littlewood Maximal Functional. Furthermore, by the Maximal Theorem [Fol99,
Theorem 3.17] there exists a constant C so that for all t > 0

m
({
ρ ∈ ΣA : HF (ρ) ≥ t

})
≤ C

t

which implies that
√
HF ∈ L1(ΣA,m). To see this we compute∫

ΣA

√
HF (ρ) dm =

∫
ΣA

∫ √HF (ρ)

0

dt dm =

∫
ΣA

∫
1{0≤t≤1} dt dm+

∫
ΣA

∫
1{1≤t≤

√
HF (ρ)} dt dm

≤ m(ΣA) +

∫ ∞
1

∫
ΣA

1{
√
HF (ρ)≥t} dmdt

= C +

∫ ∞
1

m(ρ ∈ ΣA : {
√
HF (ρ) ≥ t}) dt

≤ C +

∫ ∞
1

C

t2
dt <∞,

where we use the Fubini-Tonelli Theorem to change the order of integration in the second line. Therefore,
we are justified in applying the Dominated Convergence Theorem and we conclude that

lim sup
h→0+

h
k−1

2 |〈φh, ψh〉| ≤ Cδ1/2 + Cn,k,d

∫
ΣA
|u|
√

(1− |ξ′|2g
H

(x′))
k−2

2 f dm

which holds for all δ > 0 and hence we obtain (14). �

3. Localizing to ΣA

We first present two technical results which will be needed in the proof of Proposition 2.1. First, Lemma
3.1 tells us how to construct a cutoff χ̃ ∈ C∞c (T ∗H) such that Oph(χ̃)ΓH Oph(χ)φh is O(h∞). Next, Lemma
3.2 shows that the contributions of the inner product are negligible away from ΣA. This section can be
omitted on a first read. Once again, throughout this section we assume {φh} is a compactly microlocalized
collection of quasimodes on M satisfying (11) with defect measure µ. We also assume that the sequence of
functions {ψh} on H have defect measure ν and satisfy (7) and (8).

The following lemma gives a condition for which the composition Oph(χ̃)ΓH Oph(χ)φh is O(h∞) where
χ̃ ∈ C∞c (T ∗H).

Lemma 3.1. Let χ̃ ∈ C∞(T ∗H; [0, 1]) and χ ∈ C∞c (T ∗M ; [0, 1]). Then

Oph(χ̃)ΓH Oph(χ)φh = OL∞(H)(h
∞)

provided {ρ ∈ T ∗HM : ρ ∈ suppχ, π
T∗Hρ ∈ supp χ̃} = ∅.

Proof. We write Oph(χ̃)ΓH Oph(χ)φh in coordinates:

Oph(χ̃)ΓH Oph(χ)φh

= (2πh)k−2n

∫∫∫
e
i
h 〈x
′,η′〉e−

i
h 〈y,ξ〉φh(y)

(∫
e
i
h 〈z
′,ξ′−η′〉χ̃(z′, η′)χ(z′, 0, ξ′, ξ̄)dz′

)
dy dξ dη′.

Consider the operator

L :=
h〈ξ′ − η′, Dz′〉
|ξ′ − η′|2

which satisfies

L e ih 〈z
′,ξ′−η′〉 = e

i
h 〈z
′,ξ′−η′〉.
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We use L to repeatedly integrate by parts in the inner most integral. This is only possible provided ξ′ 6= η′

on the support of χ̃χ
∣∣
x̄=0

. However, we assumed that there are no points such that (z′, 0, ξ′, ξ̄) ∈ suppχ and

(z′, ξ′) ∈ supp χ̃. Thus integrating by parts N times using L in the dz′ integral we have∣∣∣ ∫ e
i
h 〈z
′,ξ′−η′〉χ̃(z′, η′)χ(z′, 0, ξ′, ξ̄)dz′

∣∣∣
=

∣∣∣∣∫ LNe ih 〈z′,ξ′−η′〉χ̃(z′, η′)χ(z′, 0, ξ′, ξ̄)dz′
∣∣∣∣

=

(
h

|ξ′ − η′|2

)N ∣∣∣∣∣∣
∫
e
i
h 〈z
′,ξ′−η′〉

∑
i1,...,iN

(ξ′i1 − η
′
i1) . . . (ξ′iN − η

′
iN )Dz′i1

,...,z′iN
(χ̃χ)dz′

∣∣∣∣∣∣
≤
(

h

|ξ′ − η′|2

)N ∫
CN |ξ′ − η′|N

∣∣DN
z′ (χ̃χ)

∣∣dz′ = CN

(
h

|ξ′ − η′|

)N ∫ ∣∣DN
z′ (χ̃χ)

∣∣dz′.
Furthermore we have∣∣∣Oph(χ̃)ΓH Oph(χ)φh

∣∣∣
≤ CNhN+k−2n

∫∫∫
|φh(y)|
|ξ′ − η′|N

(∫ ∣∣DN
z′ (χ̃(z′, η′)χ(z′, 0, ξ′, ξ̄))

∣∣dz′) dy dξ dη′
= CNh

N+k−2n‖φh‖L1(M)

∫∫
fN (ξ, η′)|ξ′ − η′|−Ndξ dη′

where fN =
∫ ∣∣DN

z′ (χ̃(z′, η′)χ(z′, 0, ξ′, ξ̄))
∣∣dz′ is smooth and compactly supported in ξ since χ ∈ C∞c (T ∗M).

Furthermore, since χ̃χ is supported away from ξ′ = η′ so is fN . Also, since χ̃χ is smooth and compactly
supported in z′, we know the dz′ integral is finite. Moreover, for N large enough |ξ′−η′|−N is highly localized
in {|ξ′ − η′| ≤ 1}. The compactness in ξ and this localization is enough to see that the last integral is finite
and hence we have ∣∣∣Oph(χ̃)ΓH Oph(χ)φh

∣∣∣ ≤ CN,MhN+k−2n

and hence Oph(χ̃)ΓH Oph(χ)φh = O(h∞) as desired. �

Next, we show that away from ΣA the contributions from the generalized Fourier coefficients are negligible.

Lemma 3.2. Let χ
S∗M ∈ C∞c (T ∗M) such that χ

S∗M ≡ 1 on a neighborhood of S∗M and supported in a
neighborhood of S∗M . Similarly let χ

A
∈ C∞c (T ∗H) such that χ

A
≡ 1 on a neighborhood of A and supported

in a neighborhood of A. Then

h
k−1

2 〈φh, ψh〉L2(H) = h
k−1

2 〈ΓH Oph(χ
S∗M )φh,Oph(χ

A
)ψh〉L2(H) + o(1) as h→ 0+. (26)

Proof. First we use Oph(χ
S∗M ),Oph(1− χ

S∗M ),Oph(χ
A

) and Oph(1− χ
A

) to split up the inner product:

h
k−1

2 〈φh,ψh〉L2(H)

= h
k−1

2 〈ΓH Oph(χ
S∗M )φh, ψh〉L2(H) + h

k−1
2 〈ΓH Oph(1− χ

S∗M )φh, ψh〉L2(H)

= h
k−1

2 〈ΓH Oph(χ
S∗M )φh,Oph(χ

A
)ψh〉L2(H) + h

k−1
2 〈ΓH Oph(χ

S∗M )φh,Oph(1− χ
A

)ψh〉L2(H)

+ h
k−1

2 〈ΓH Oph(1− χ
S∗M )φh, ψh〉L2(H)

=: I + II + III. (27)

We just need to show that both II and III are o(1) as h → 0+. We begin with III. First, since φh is
compactly microlocalized, there exists a cutoff χ ∈ C∞c (T ∗M) such that Oph(1− χ)φh = OC∞(h∞). Using
χ, we split III once more,

III = h
k−1

2 〈ΓH Oph(1− χ
S∗M ) Oph(χ)φh, ψh〉L2(H) + h

k−1
2 〈ΓH Oph(1− χ

S∗M ) Oph(1− χ)φh, ψh〉L2(H)

≤ h
k−1

2 ‖ΓH Oph(1− χ
S∗M ) Oph(χ)φh‖L2(H) + h

k−1
2 ‖ΓH Oph(1− χ

S∗M ) Oph(1− χ)φh‖L2(H),
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where we also used that ‖ψh‖L2(H) = 1. Using that φh is compactly microlocalized, we observe that the
term with Oph(1− χ)φh is O(h∞). Next, for the other term, we use an elliptic parametrix to rewrite

Oph(1− χ
S∗M ) = R(h)P (h) +O(h∞)Ψ−∞ .

To do this, we need verify that WFh(1 − χ
S∗M ) ⊆ ellh(P (h)). Since 1 − χ

S∗M does not depend on h,
WFh(1− χ

S∗M ) = ess-supp(1− χ
S∗M ) ⊆ (S∗M)c. Moreover ellh(P (h)) = {p 6= 0} = (S∗M)c, and hence we

have the inclusion necessary to use an elliptic parametrix. Therefore, we can write

h
k−1

2 ‖ΓH Oph(1− χ
S∗M ) Oph(χ)φh‖L2(H)

= h
k−1

2 ‖ΓHR(h)P (h) Oph(χ)φh‖L2(H) +O(h∞)

≤ h
k−1

2 ‖ΓHR(h) Oph(χ)P (h)φh‖L2(H) + h
k−1

2 ‖ΓHR(h)
(
hOph(Hpχ) +O(h2)

)
φh‖L2(H) +O(h∞)

≤ Ckh−1/2‖P (h)φh‖L2(M) + Ckh
1/2‖φh‖L2(M) +O(h∞)

where in the last line we used the standard restriction bound

‖ΓH Oph(κ)u‖L2(H) ≤ Cγh−k/2‖Oph(κ)u‖Hγh (M) ≤ Ckh−k/2‖u‖L2(M) (28)

for γ > k/2, and κ ∈ C∞c (T ∗M). By (11) we know h−1‖P (h)φh‖L2(M) → 0 as h→ 0+ and ‖φh‖2L(M) = 1,
and thus we obtain

h
k−1

2 ‖ΓH Oph(1− χ
S∗M ) Oph(χ)φh‖L2(H) = o(1) as h→ 0+

as desired.
Next we show II is O(h∞). To do so we first claim that there exists χ̃ ∈ C∞c (T ∗H; [0, 1]) such that

ΓH Oph(χ
S∗M )φh = Oph(χ̃)ΓH Oph(χ

S∗M )φh +O(h∞). (29)

Using Lemma 3.1 we find that we get (29) if we take χ̃(z′, ξ′) ≡ 1 on a small neighborhood, U , of {|ξ′|g
H
≤ 1}

and supported in a small neighborhood of U . Using (29) we show II is O(h∞). We rewrite

II = 〈Oph(χ̃)ΓH Oph(χ
S∗M )φh,Oph(1− χ

A
)ψh〉L2(H) +O(h∞) (30)

Next observe

|〈Oph(χ̃)ΓH Oph(χ
S∗M )φh,Oph(1− χ

A
)ψh〉L2(H)|

≤ ‖ΓH Oph(χ
S∗M )φh‖L2(H)‖Oph(χ̃)∗Oph(1− χ

A
)ψh‖L2(H)

≤ Ckh−
k
2 ‖Oph(χ̃)∗Oph(1− χ

A
)ψh‖L2(H)

where the last inequality follows from the standard restriction bound (28). Recall A = WFh(ψh) and χ̃(x′, ξ′)
is compactly supported in a neighborhood of {|ξ′|g

H
≤ 1}. Let K denote the support of χ̃. There exists

ρj ∈ Ac ∩K for j = 1, . . . N and θj ∈ C∞c (T ∗H; [0, 1]) supported sufficiently close to ρj such that

‖Oph(θj)ψh‖L2(H) = O(h∞),

and moreover

Θ :=

N∑
j=1

θj ≡ 1 on Ac ∩K.

We use an elliptic parametrix to rewrite

Oph(χ̃)∗Oph(1− χ
A

) = R(h) Oph(Θ) +O(h∞)Ψ−∞

which we are allowed to do since WFh(Oph(χ̃)∗Oph(1 − χ
A

)) ⊆ ellh(Θ). To see this, note by properties of
wavefront sets

WFh(Oph(χ̃)∗Oph(1− χ
A

)) = WFh(Oph(χ̃)) ∩WFh(Oph(1− χ
A

)) ⊆ K ∩Ac.
13



Furthermore, ellh(Θ) ⊇ Ac ∩K, and hence we have the inclusion needed to use the elliptic parametrix.
Lastly, we have

‖Oph(χ̃)∗Oph(1− χ
A

)ψh‖L2(H) = ‖R(h) Oph(Θ)ψh‖L2(H) +O(h∞)

≤ ‖R(h)‖L2→L2

N∑
j=1

‖Oph(θj)ψh‖L2(H) +O(h∞) = O(h∞).

�

4. Localization to Geodesic Tubes: Proof of Proposition 2.1

In this section we finally present the proof of Proposition 2.1. Once again, throughout this section we
assume {φh} is a compactly microlocalized collection of quasimodes on M satisfying (11) with defect measure
µ. We also assume that the sequence of functions {ψh} on H have defect measure ν and satisfy (7) and
(8). In the following we use coordinates x = (x′, x̄) such that H = {x̄ = 0}. Furthermore we write
x̄ = (x̄1, x̄2, . . . , x̄k) = (x̄1, x̃).

We will need a few lemmas before proving the Proposition.

4.1. A Technical Lemma.

Lemma 4.1. Fix ρ0 ∈ ΣA and let q ∈ C∞c (Rx̄1
×Rk−1

ξ̃
). There exists T0, R0 > 0 such that for all 0 < T < T0

and 0 < R < R0, if χ ∈ C∞c (T ∗M) is such that suppχ ⊆ T 3T (U) and suppHpχ ⊂ T 3T (U) \ T 2T (U), where
U ⊆ BL (ρ0, R), then we have,

‖Oph(q) Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃
≤ C

 1√
T |∂ξ̄1p(ρ0)|

+
√

2T

 ‖Oph(χ) Oph(q)φh‖L2
x

+
C
√

2T

h

(
‖Pφh‖L2

x
+ ‖Oph(χ)[P,Oph(q)]φh‖L2

x

)
+ CTh

1/2‖φh‖L2
x
.

The proof of Lemma 4.1 is very similar to [CG19b, Lemma 13], but we include it for completeness.

Proof. Fix ρ0 ∈ ΣA. Then, as before, we have ∂ξ̄1p(ρ0) > 0. Let O be an open neighborhood of ρ0 such that

∂ξ̄1p > 0 on O. Furthermore, let T 3T (U) be a tube contained in O. Then we can write

p(x, ξ) = e(x, ξ)
(
ξ̄1 − a(x, ξ′, ξ̃)

)
for (x, ξ) ∈ O

where e is elliptic on O. Thus for χ̃ ≡ 1 on T 3T (U) and supported in O we have

p(x, ξ)χ̃(x, ξ) = e(x, ξ)
(
ξ̄1 − a(x, ξ′, ξ̃)

)
χ̃(x, ξ).

Using the notation P = Oph(p), observe

P Oph(χ) = P Oph(χ̃) Oph(χ) +O(h∞)

= (Oph(pχ̃) + hOph(r1)) Oph(χ) +O(h∞)

=
(

Oph(e) Oph((ξ̄1 − a(x, ξ′, ξ̃))χ̃) + hOph(r2) + hOph(r1)
)

Oph(χ) +O(h∞)

= Oph(e)
(
hDx̄1 −Oph

(
a(x, ξ′, ξ̃)

))
Oph(χ) + hOph(r) Oph(χ) +O(h∞).

Thus(
hDx̄1 −Oph

(
a(x, ξ′, ξ̃)

))
Oph(χ) Oph(q)φh = Oph(e)−1

(
P Oph(χ) Oph(q)− hOph(r) Oph(χ) Oph(q)

)
φh

where Oph(e)−1 denotes a microlocal parametrix for Oph(e) near suppχ. Since a is a real symbol, we know

that Oph

(
a(x, ξ′, ξ̃)

)
is an error of order h away from being self adjoint. Therefore we can replace Oph(a)

with Ã+ hR̃ where Ã is self adjoint. Therefore we have(
hDx̄1

−Ã
)

Oph(χ) Oph(q)φh = Oph(e)−1
(
P Oph(χ) Oph(q)−hOph(r) Oph(χ) Oph(q)

)
φh+hR̃Oph(χ) Oph(q)φh
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We set

u := Oph(χ) Oph(q)φh

f := Oph(e)−1
(
P Oph(χ) Oph(q)− h

(
Oph(r)−Oph(e)R̃

)
Oph(χ) Oph(q)

)
φh.

To later utilize the fact that Pφh = oL2(M)(h) we rewrite f as

f = Oph(e)−1
(

Oph(χ) Oph(q)P + [P,Oph(χ)] Oph(q) + Oph(χ)[P,Oph(q)]

− h
(

Oph(r)−Oph(e)R̃
)

Oph(χ) Oph(q)
)
φh

Thus we have a differential equation for u: (
∂x̄1 −

i

h
Ã
)
u =

i

h
f

To simplify notation, we write x̂ to denote both x′ and x̃ and similarly ξ̂ for ξ′, ξ̃. First we define

A(t, s, x̂) :=

∫ s

t

Ã(x̄1, x̂, ξ̂)dx̄1

We obtain

u(s, x̂) = e
i
hA(t,s,x̂)u(t, x̂) +

i

h

∫ s

t

e−
i
hA(s,τ,x̂)f(τ, x̂)dτ. (31)

Next, define δ := T |∂ξ̄1p(ρ0)| and note for T > 0

0 < δ = T |∂ξ̄p(ρ0)| = 2T
√

1− |ξ′0|2g
H

(x′0) < 2T where ρ0 = (x′0, 0, ξ
′
0, ξ̄0) ∈ ΣA.

Further, let Φ(t) ∈ C∞c (R; [0, 2δ−1]) with supp Φ ⊆ [0, δ] and ‖Φ‖L1
t

= 1. Multiplying (31) through by Φ(t)
and integrating in t we have

u(s, x̂) =

∫
R

Φ(t)u(s, x̂)dt

=

∫
R

Φ(t)e
i
hA(t,s,x̂)u(t, x̂)dt+

i

h

∫
R

Φ(t)

∫ s

t

e−
i
hA(s,τ,x̂)f(τ, x̂)dτ dt.

Next, taking the L2
x̂ norm

‖u(s, x̂)‖L2
x̂
≤
∫
R

Φ(t)
∥∥∥e ihA(t,s,x̂)u(t, x̂)

∥∥∥
L2
x̂

dt+
1

h

∫
R

Φ(t)

∫ s

t

∥∥∥e− i
hA(s,τ,x̂)f(τ, x̂)

∥∥∥
L2
x̂

dτ dt

=

∫
R

Φ(t) ‖u(t, x̂)‖L2
x̂
dt+

1

h

∫
R

Φ(t)

∫ s

t

‖f(τ, x̂)‖L2
x̂
dτ dt =: I + II

where the last line follows from

∂s

∥∥∥e ihA(t,s,x̂)u(t, x̂)
∥∥∥2

L2
x̂

= 2 Re

〈
i

h
Ãe

i
hA(t,s,x̂)u(t, x̂), e

i
hA(t,s,x̂)u(t, x̂)

〉
L2
x̂

= 0

since Ã is self adjoint. So ‖e ihA(t,s,x̂)‖L2
x̂

= ‖e ihA(t,t,x̂)‖L2
x̂

= 1. Using Hölder’s inequality and properties of Φ

we bound I:

I ≤ ‖Φ‖L2
t
‖u(t, x̂)‖L2

x̂,t
≤ 4√

δ
‖u(t, x̂)‖L2

x̂,t
.

To find a bound for II, we first take the L∞ norm in s and apply Hölder’s inequality to get

II ≤ 1

h

∫ ∥∥1[0,δ](t)1[s,t](τ)
∥∥
L∞t,s
‖f(τ, x̂)‖L2

x̂
dτ. (32)

Splitting f up into its components in (32) we see that the first term is

1

h

∫ ∥∥1[0,δ](t)1[s,t](τ)
∥∥
L∞t,s
‖Oph(e)−1 Oph(χ) Oph(q)Pφh(τ, x̂)‖L2

x̂
dτ
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which is bounded by C
√
δh−1‖Pφh‖L2

x
. We also have τ ≤ t ≤ δ < 2T , and recall that suppHpχ ≡ 0 on

{|x̄1| ≤ 2T}. Thus we can bound the second term by,

‖Oph(e)−1[P,Oph(χ)] Oph(q)φh(τ, x̂)‖L2(τ∈[−2T,2T ],x̂) ≤ CTh2‖φh‖L2
x̂
.

Continuing we obtain

II ≤ C
√
δ

h

(
‖Pφh‖L2

x
+ CTh

2‖φh‖L2
x̂

+ ‖Oph(e)−1 Oph(χ)[P,Oph(q)]φh‖L2
x

+ h‖Oph(e)−1
(

Oph(r)−Oph(e)R̃
)

Oph(χ) Oph(q)φh‖L2
x

)
≤ C
√
δ

h
‖Pφh‖L2

x
+ Cδ

√
δh1/2‖φh‖L2

x
+
C
√
δ

h
‖Oph(χ)[P,Oph(q)]φh‖L2

x
+ C
√
δ‖Oph(χ) Oph(q)φh‖L2

x

where we used the standard estimate ‖φh‖L2
x̂
≤ Ch−1/2‖φh‖L2

x
in the last line. So finally, combining the

bounds for I and II and rewriting u as Oph(χ) Oph(q)φh we have

‖Oph(χ) Oph(q)φh(x′, 0, x̃)‖L2
x′,x̃
≤ C

 1√
T |∂ξ̄1p(ρ0)|

+
√

2T

 ‖Oph(χ) Oph(q)φh‖L2
x

+
C
√

2T

h

(
‖Pφh‖L2

x
+ ‖Oph(χ)[P,Oph(q)]φh‖L2

x

)
+ CTh

1/2‖φh‖L2
x
.

(33)

Therefore, using a commutator and the bound in (33) we have

‖Oph(q) Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃
≤ ‖Oph(χ) Oph(q)φh(x′, 0, x̃)‖L2

x′,x̃
+ ‖[Oph(q),Oph(χ)]φh(x′, 0, x̃)‖L2

x′,x̃

≤ C

 1√
T |∂ξ̄1p(ρ0)|

+
√

2T

 ‖Oph(χ) Oph(q)φh‖L2
x

+
C
√

2T

h

(
‖Pφh‖L2

x
+ ‖Oph(χ)[P,Oph(q)]φh‖L2

x

)
+ CTh

1/2‖φh‖L2
x
,

where the estimate on the commutator term comes from the Sobolev embedding estimate:

‖[Oph(q),Oph(χ)]φh(x′, 0, x̃)‖L2
x′,x̃
≤ h‖Oph(Hqχ)φh(x′, 0, x̃)‖L2

x′,x̃
+O(h2)‖φh(x′, 0, x̃)‖L2

x′,x̃

≤ Ch‖φh(x′, 0, x̃)‖L2
x′,x̃
≤ Ch1/2‖φh‖L2

x

which we regroup with the existing O(h1/2) term. �

4.2. Further localizing to Tubes. The proof of Proposition 2.1 relies on decomposing suppχ|
ΣA

into
many small “rectangles.” Using the geodesic flow, we then extend the rectangles to create a collection of
geodesic tubes covering suppχ|

ΣA
. We get a much finer estimate on these tubes, which is given in the lemma

below.

Lemma 4.2. Fix ρ0 = (x0, 0, ξ
′
0, ξ̄0) ∈ ΣA. There exist T0, R0 > 0 such that for all 0 < T < T0 and

0 < R < R0, if U ⊆ L is a neighborhood of ρ0 contained in BL (ρ0, R), and χ ∈ C∞c (T ∗M) is such that
suppχ ⊆ T 3T (U) and suppHpχ ⊂ T 3T (U) \ T 2T (U), then there exists a constant Ck depending only on k
for which

lim sup
h→0+

hk−1‖Oph(χ)φh‖2L2(H) ≤
CkR

k−1

2T
√

1− |ξ′0|2g
H

(x′0)

∫
T∗M

|χ|2dµ.

To prove Lemma 4.2 we will strategically pick the q’s from Lemma 4.1 to be functions which vanish to
order k − 1 on the geodesic emanating from ρ0. This will allow us to get a much better estimate on the
geodesic tubes.
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Figure 4.1.

Proof. We choose local Fermi coordinates near ρ0 ∈ ΣA with respect to H, (x′, x̄) such that H = {x̄ = 0}
and

|ξ|2g = |ξ̄|2 + f(x′, x̄)|ξ′|2.

Thus note for ρ0 we have |∂ξ̄p(ρ0)| = 2|ξ̄|(ρ0) > 0 since ξ̄ ∈ Sk−1√
1−|ξ′|2g

H

. We note the importance of the

assumption that A b {(x′, ξ′) : |ξ′| < 1} since otherwise we cannot assume |ξ̄| > 0 on ΣA. Next, since
|∂ξ̄p(ρ0)| > 0 there exists a neighborhood O of ρ0 such that |∂ξ̄p| > 0 on O. Without loss of generality we

assume that ∂ξ̄1p(ρ0) = |∂ξ̄p(ρ0)| > 0 where ξ̄ = (ξ̄1, ξ̄2 . . . , ξ̄k) = (ξ̄1, ξ̃). Furthermore, in these coordinates
we have ‖u‖L2

x
≤ 2‖u‖L2(M).

Let T0, R0 > 0 be such that T 3T0
ρ0

(R0) ⊂ O, where the tube T is as defined in (18). Note that for all

0 < R < R0 we still have T 3T0
ρ0

(R) ⊆ O. Therefore, the “flowout” time T0 is independent of the tube width
R, for R < R0 small enough. Let γρ0

(t) = (X(t),Ξ(t)) denote a geodesic through ρ0. From Hamilton’s
equations, we know the geodesic flow must satisfy

˙̄x1 = pξ̄1 =⇒ d

dt
x̄1(t) = ∂ξ̄1p(X(t),Ξ(t)) = ∂ξ̄1p(γρ0

(t)) > 0 for |t| < 3T0

as ∂ξ̄1p(ρ) > 0 in O. Thus for all |t| ≤ 3T0 we have d
dt x̄1(t) > 0. By the Inverse Function Theorem we can

locally write t = t(x̄1) and further we have

x̄1

(
γρo(t(s))

)
= s.

We define

X ′(x̄1) := x′
(
γρo(t(x̄1))

)
, X̄1(x̄1) := x̄1

(
γρo(t(x̄1))

)
= x̄1

X̃(x̄1) := x̃
(
γρo(t(x̄1))

)
, Ξ(x̄1) := ξ

(
γρo(t(x̄1))

)
.

Therefore the geodesic through ρ0 is parametrized by

x̄1 7→ (X ′(x̄1), x̄1, X̃(x̄1),Ξ(x̄1)) = (x′
(
γρo(t(x̄1))

)
, x̄1, x̃

(
γρo(t(x̄1))

)
, ξ
(
γρo(t(x̄1))

)
).
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Moreover, we note that on the geodesic ξ = ξ
(
γρ0(t(x̄1))

)
=: ξ0(x̄1). This will be crucial in getting the

improved estimate on the tubes.
In what follows, we write x̃ to denote the normal coordinates toH which are not x̄1, so x̄ = (x̄1, x̄2, . . . x̄k) =

(x̄1, x̃). We first use a version of the Sobolev Embedding Theorem (see [Gal19a, Lemma 6.1] or[Gal19b,
Corollary 8]):

‖Oph(χ)φh(x′, x̄1, x̃)‖L∞x̃

≤ Ckh
1−k

2 ‖Oph(χ)φh(x′, x̄1, x̃)‖1/2
L2
x̃

(
k∑
i=2

‖(hDx̄i − ξ̄0i(x̄1))k−1 Oph(χ)φh(x′, x̄1, x̃)‖2L2
x̃

)1/4

.

Squaring both sides, integrating with respect to x′ and applying Hölder’s Inequality we have

‖Oph(χ)φh(x′, x̄1, x̃)‖2L2
x′
≤
∫
‖Oph(χ)φh(x′, x̄1, x̃)‖2L∞x̃ dx

′

≤ Ckh1−k‖Oph(χ)φh(x′, x̄1, x̃)‖L2
x′,x̃

(
k∑
i=2

‖(hDx̄i − ξ̄0i(x̄1))k−1 Oph(χ)φh(x′, x̄1, x̃)‖2L2
x′,x̃

)1/2

.

Setting x̄1 = 0 and x̃ = 0 on the left we have

hk−1‖Oph(χ)φh‖2L2(H)

≤ Ck‖Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃

(
k∑
i=2

‖(hDx̄i − ξ̄0i(x̄1))k−1 Oph(χ)φh(x′, 0, x̃)‖2L2
x′,x̃

)1/2

. (34)

Next, we will use Lemma 4.1 to bound the L2 norms on the right side of (34). We denote Tρ0
:= T |∂ξ̄1p(ρ0)| =

2T
√

1− |ξ′0|2g
H

(x′0). For q ∈ C∞c (Rx̄1
× Rk−1

ξ̃
) and 0 < T < T0 we have

‖q(x̄1, hDx̃) Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃
≤ C

(
1√
Tρ0

+
√
T

)
‖Oph(χ)q(x̄1, hDx̃)φh‖L2(M)

+
C
√
T

h

(
‖Pφh‖L2(M) + ‖Oph(χ)[P, q(x̄1, hDx̃)]φh‖L2(M)

)
+ CTh

1/2‖φh‖L2(M)

where we have used that in our coordinates ‖u‖L2
x
≤ 2‖u‖L2(M). Next, since Pφh = oL2(M)(h) we know

h−1‖Pφh‖L2(M) → 0 as h → 0+. We also have that CTh
1/2‖φh‖L2(M) → 0 as h → 0+ since ‖φ‖L2(M) = 1.

We regroup these two terms in a o(1) error. Further, reordering the operators, we add an O(h) error which
we regroup with the o(1) term to get

‖q(x̄1, hDx̃) Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃
≤ C

(
1√
Tρ0

+
√
T

)
‖q(x̄1, hDx̃) Oph(χ)φh‖L2(M)

+
C
√
T

h
‖[P, q(x̄1, hDx̃)] Oph(χ)φh‖L2(M) + o(1) (35)

First, taking q = 1 in (35) we get

‖Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃
≤ C

(
1√
Tρ0

+
√
T

)
‖Oph(χ)φh‖L2(M) + o(1). (36)

Next, define Qi := (hDx̄i − ξ̄0i(x̄1))k−1 = Oph(qi) where qi = (ξ̄i − ξ̄0i(x̄1))k−1 +O(h). Then, using this qi
in (35) we have

‖(hDx̄i − ξ̄0i(x̄1))k−1 Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃

≤ C

(
1√
Tρ0

+
√
T

)
‖Qi Oph(χ)φh‖L2(M) +

C
√
T

h
‖[P,Qi] Oph(χ)φh‖L2(M) + o(1). (37)
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Next define χ̃ ∈ C∞c (T ∗M) such that supp χ̃ ⊆ T 3T (U) and χ̃ ≡ 1 on suppχ. We rewrite

Qi Oph(χ)φh = Qi Oph(χ̃) Oph(χ)φh +O(h∞).

Recall that on the geodesic γρ0 we have ξ = ξ0(x̄1). Therefore, the principal symbol of Qi, σ(Qi), vanishes
to order k−1 on the geodesic. Furthermore, since χ̃ is supported in the tube T 3T (U) where U ⊆ BL (ρ0, R),
the distance between any point in supp χ̃ and the geodesic is approximately at most R. Thus we have

sup |σ(Qi Oph(χ̃))| ≤ 2Rk−1.

This implies that ‖Qi Oph(χ̃)‖L2→L2(M) ≤ 2Rk−1 +O(h) and in particular that

‖Qi Oph(χ)φh‖L2(M) = ‖Qi Oph(χ̃) Oph(χ)φh‖L2(M) +O(h∞)‖φh‖L2(M)

≤ (2Rk−1 +O(h))‖Oph(χ)φh‖L2(M) +O(h∞)‖φh‖L2(M).

We also have that Hp(σ(Qi)) = Hp((ξ̄i − ξ̄0i(x̄1))k−1) = (k− 1)(ξ̄i − ξ̄0i(x̄1))k−2Hp(ξ̄i − ξ̄0i(x̄1)) vanishes to

order k − 1 on the geodesic γρ0
. Since σ([P,Qi]) = h

iHp((ξ̄i − ξ̄0i(x̄1))k−1), we similarly have

‖[P,Qi] Oph(χ)φh‖L2(M) ≤ h(CpR
k−1 +O(h))‖Oph(χ)φh‖L2(M) +O(h∞)‖φh‖L2(M)

where Cp is a constant which depends on p. Using these estimates in (37) we have

‖(hDx̄i − ξ̄0i(x̄1))k−1 Oph(χ)φh(x′, 0, x̃)‖L2
x′,x̃

≤ C

(
1√
Tρ0

+
√
T

)
(2Rk−1 +O(h))‖Oph(χ)φh‖L2(M) +C

√
T (CpR

k−1 +O(h))‖Oph(χ)φh‖L2(M) +o(1).

(38)

Finally, using (36) and (38) in (34) and taking h to zero, we have

lim sup
h→0+

hk−1‖Oph(χ)φh‖2L2(H) ≤ lim sup
h→0+

CkR
k−1

(
1√
Tρ0

+
√
T

)(
2√
Tρ0

+ Cp
√
T

)
‖Oph(χ)φh‖2L2(M).

Using the defect measure µ associated to {φh} and that T � 1 we obtain the desired bound:

lim sup
h→0+

hk−1‖Oph(χ)φh‖2L2(H) ≤ Ck
Rk−1

Tρ0

∫
T∗M

|χ|2dµ.

�

4.3. Key Quantitative Estimate: Proof of Proposition 2.1. The main estimate used in the proof of
Theorem 1.2 lets us control terms of the form |〈Oph(χ)φh, ψh〉L2(H)|. To prove it we first cover suppχ|

ΣA
with

tubes and apply Lemma 4.2. After localizing to the tubes, we will need to estimate 〈Oph(χjχ)φh, ψh〉L2(H)

where χj is a cutoff localizing to a tube as in Lemma 4.2. If we use Cauchy-Schwarz to bound this by the
L2 norms,

|〈Oph(χjχ)φh, ψh〉L2(H)| ≤ ‖Oph(χjχ)φh‖L2(H)‖ψh‖L2(H) = ‖Oph(χjχ)φh‖L2(H)

we lose all the information from ψh since they are L2-normalized on H. Thus we need to maintain the
localization information of ψh too. To do this, we will use χjχ ∈ C∞c (T ∗M) and Lemma 3.1 to find a new
cutoff θj ∈ C∞c (T ∗H) such that

ΓH Oph(χjχ)φh = Oph(θj)ΓH Oph(χjχ)φh +O(h∞)

and thus

〈Oph(χjχ)φh, ψh〉L2(H) = 〈Oph(χjχ)φh,Oph(θj)
∗ψh〉L2(H) +O(h∞)

≤ ‖Oph(χjχ)φh‖L2(H)‖Oph(θj)
∗ψh‖L2(H).

Then we will be able to apply Lemma 4.2 to the first term and use the defect measure for ν in the second.
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Proof of Proposition 2.1. Let χ ∈ C∞c (T ∗M) with Hpχ ≡ 0 on Λ2T (ε). Consider sets of the form:

Uj := {(x′, 0, ξ′, ξ̄) ∈ ΣA : (x′, ξ′) ∈ BA(ρ′j , Rj), (x
′, 0, ξ′, ξ̄) ∈ BΣA(σj(x

′, ξ′), Rj)}

where Rj > 0, ρ′j = (x′j , ξ
′
j) ∈ A and σj is a smooth section, that is σj : A→ ΣA and π(σj(ρ

′)) = ρ′. These

are essentially “rectangles” in ΣA constructed by crossing a ball in A with balls in the spheres Sk−1. We
note that the νA measure of these rectangles satisfy

νA(Uj) ≥ Cn,k
∫

(x′,ξ′)∈A

1BA(ρ′j ,Rj)(
1− |ξ′|2g

H
(x′)

) k−1
2

Rk−1
j dν(x′, ξ′)

provided Rj is small compared to
√

1− |ξ′|g
H

(x′). Furthermore by uniform continuity of log(1 − |ξ′|2g
H

(x′))

on {|ξ′|2g
H

(x′) < c < 1}, there exists an R > 0 independent of ρ′j such that if (x′, ξ′) ∈ BA(ρ′j , R) then

1− k
2

log(1− |ξ′j |2g
H

(x′j)
)− log(2) ≤ 1− k

2
log(1− |ξ′|2g

H
(x′)) ≤

1− k
2

log(1− |ξ′j |2g
H

(x′j)
) + log(2).

Thus for Rj < R, we have

νA(Uj) ≥
Cn,k ν(BA(ρ′j , Rj))R

k−1
j

2(1− |ξ′j |2g
H

(x′j)
)
k−1

2

.

Fix δ > 0. By outer regularity of νA there exist {Uj}N(δ)
j=1 covering suppχ|

ΣA
such that

νA(suppχ|
ΣA

) + δ ≥
N(δ)∑
j=1

νA(Uj) ≥ Cn,k
N(δ)∑
j=1

ν(BA(ρ′j , Rj))R
k−1
j

2(1− |ξ′j |2g
H

(x′j)
)
k−1

2

. (39)

To construct the cover of tubes, we first “thicken” the Uj ’s into Uj(ε) ⊆ L as defined in (19). Finally, we
flow Uεj ’s to form the collection of tubes {T 3T (Uj(ε))} where

T ≤ min
j
{T0j} =: T0 and 3Rj ≤ min

j
(R0j ) =: R0 (40)

where the T0j ’s are the “T0’s” in the proof of lemma 4.2 and the R0j ’s are the “R0’s” in the proof of lemma 4.2.
We note that Uj(ε) ⊆ BL (ρj , 3Rj) where ρj = σj(ρ

′
j). By lemma 2.2 (or [Gal19b, Lemma 3.5]), for each j,

we can take χj ∈ C∞c (T ∗M ; [0, 1]) supported in T 3T (Uj(ε)) such that suppHpχj ⊆ T 3T (Uj(ε))\T 2T (Uj(ε))
and furthermore that

N(δ)∑
j=1

χj ≡ 1 on
⋃
|t|≤2T

ϕt((suppχ|
ΣA

)(ε/2)).

Next we split the inner product into pieces localized to these tubes. We have

h
k−1

2

∣∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣∣ ≤ h k−1
2

∣∣∣〈Oph

(N(δ)∑
j=1

χjχ
)
φh, ψh

〉
L2(H)

∣∣∣+ h
k−1

2

∣∣∣〈Oph

((
1−

N(δ)∑
j=1

χj

)
χ
)
φh, ψh

〉
L2(H)

∣∣∣
=: I + II.

We claim II = o(1) as h→ 0+. We leave the proof of this to Lemma 4.3 at the end of this section. The rest
of this proof is dedicated to controlling I. By Lemma 3.1 there exits θj ∈ C∞c (T ∗H) such that

ΓH Oph(χjχ)φh = Oph(θj)ΓH Oph(χjχ)φh +O(h∞). (41)

Particularly, we need to take θj equal to 1 on BT∗H(ρ′j , Rj + ε) and supp θj ⊆ BT∗H(ρ′j , Rj + 2ε). Thus we
have

I ≤ h
k−1

2

N(δ)∑
j=1

∣∣∣〈Oph (χjχ)φh, ψh〉L2(H)

∣∣∣ ≤ h k−1
2

N(δ)∑
j=1

∣∣∣〈Oph(θj)ΓH Oph (χjχ)φh, ψh〉L2(H)

∣∣∣+O(h∞)

≤ h
k−1

2

N(δ)∑
j=1

‖Oph (χjχ)φh‖L2(H)‖Oph(θj)
∗ψh‖L2(H) +O(h∞). (42)
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We are now in position to apply Lemma 4.2 for “χ”= χjχ.

lim sup
h→0+

h
k−1

2

∣∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣∣ = lim sup
h→0+

h
k−1

2 (I + II)

≤ lim sup
h→0+

h
k−1

2

N(δ)∑
j=1

‖Oph (χjχ)φh‖L2(H)‖Oph(θj)
∗ψh‖L2(H)

≤
N(δ)∑
j=1

 CkR
k−1
j

2T
√

1− |ξ′j |2g
H

(x′j)

∫
T∗M

|χjχ|2dµ

1/2(∫
T∗H

|θj |2dν
)1/2

(43)

where we used that ν is a defect measure associated to {ψh}. Next, to get νA(suppχ|
ΣA

) to appear, we

work to make the second term in (43) look like the right side of (39). Moving the Rk−1
j over, multiplying

and dividing by 2(1− |ξ′j |2g
H

(x′j)
)
k−1

2 and applying Cauchy-Schwarz we find that (43) is bounded by

Ck

 1

T

∫
T∗M

N(δ)∑
j=1

2(1− |ξ′j |2g
H

(x′j)
)
k−1

2 |χjχ|2

2
√

1− |ξ′j |2g
H

(x′j)

dµ

1/2N(δ)∑
j=1

Rk−1
j

2(1− |ξ′j |2g
H

(x′j)
)
k−1

2

∫
T∗H

1BT∗H(ρ′j ,Rj+2ε)dν

1/2

.

Next, since the χj ’s are supported in the tubes, the first integral can be rewritten as an integral over Λ3T (ε).
Further, since the left side does not depend on ε we can take the limit as ε→ 0 on the right side. Using the
dominated convergence theorem to bring the limit inside we have

lim sup
h→0+

h
k−1

2

∣∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣∣
≤ Ck

 1

T

∫
Λ3T

|χ|2
N(δ)∑
j=1

(1− |ξ′j |2g
H

(x′j)
)
k−2

2 |χj |2 dµ

1/2N(δ)∑
j=1

Rk−1
j ν

(
BA(ρ′j , Rj)

)
2(1− |ξ′j |2g

H
(x′j)

)
k−1

2

1/2

where Λ3T denotes T 3T (ΣA). Next, since the second term is what we had in (39), we can replace it with(
νA(suppχ|

ΣA
) + δ

)1/2
. Noticing that the left side does not depend on T , we take the limit as T → 0 and

use the definition of µA from (12) to get

lim sup
h→0+

h
k−1

2

∣∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣∣
≤ Cn,k

∫
ΣA
|χ|2

N(δ)∑
j=1

(1− |ξ′j |2g
H

(x′j)
)
k−2

2 |χj |2 dµA
1/2 (

νA(suppχ|
ΣA

) + δ
)1/2

.

Finally, since {χj |ΣA } formed a partition of unity for suppχ|
ΣA

, |χj | ≤ 1, (1 − |ξ′|2g
H

(x′))
k−1

2 is continuous,

and since δ > 0 was arbitrary, we have

lim sup
h→0+

h
k−1

2

∣∣∣〈Oph(χ)φh, ψh〉L2(H)

∣∣∣ ≤ Cn,k (∫
ΣA
|χ|2(1− |ξ′|2g

H
(x′))

k−2
2 dµA

)1/2 (
νA(suppχ|

ΣA
)
)1/2

as desired. �

Finally, we show that term II = h
k−1

2

∣∣∣〈Oph

((
1 −

∑
j χj

)
χ
)
φh, ψh

〉
L2(H)

∣∣∣ in the proof of proposition

2.1 is o(1) as h→ 0+ as claimed above.

Lemma 4.3. For χ, χj defined in the proof of proposition 2.1 we have

h
k−1

2

∣∣∣〈Oph

((
1−

∑
j

χj

)
χ
)
φh, ψh

〉
L2(H)

∣∣∣→ 0, as h→ 0+
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Proof. First, using Lemma 3.2 we obtain

h
k−1

2

∣∣∣〈Oph

((
1−

∑
j

χj

)
χ
)
φh, ψh

〉
L2(H)

∣∣∣
≤ h

k−1
2

∣∣∣〈Oph

((
1−

N(δ)∑
j=1

χj

)
χ
)

Oph(χ
S∗M )φh,Oph(χ

A
)ψh

〉∣∣∣+ o(1)

≤ h
k−1

2

∥∥∥∥∥∥Oph(χ
A

)∗ΓH Oph

((
1−

N(δ)∑
j=1

χj

)
χ
)

Oph(χ
S∗M )φh

∥∥∥∥∥∥
L2(H)

‖ψh‖L2(H) + o(1)

where χ
S∗M and χ

A
are defined in the statement of Lemma 3.2. We show that

Oph(χ
A

)∗ΓH Oph

((
1−

N(δ)∑
j=1

χj

)
χ
)

Oph(χ
S∗M )φh = O(h∞). (44)

To do so, we employ Lemma 3.1. We just need to verify the hypothesis of the lemma. For contradiction,

suppose there is a point (z′0, ξ
′
0) ∈ suppχ

A
and also (z′0, 0, ξ

′
0, ξ̄0) ∈ supp

((
1−
∑
j χj

)
χχ

S∗M

)
. First, we note

that (z0, 0, ξ
′
0, ξ̄0) 6∈ (suppχ

∣∣
ΣA

)(ε/2). However, since also (z′0, 0, ξ
′
0, ξ̄0) ∈ suppχ

S∗M and (z′0, ξ
′
0) ∈ suppχ

A

we know that (z′0, 0, ξ
′
0, ξ̄0) ∈ ΣA(α) =

⋃
ρ∈ΣA BL (ρ, α) where α > 0 is small and depends on how tightly

χ
S∗M and χ

A
are localized. Furthermore (z′0, 0, ξ

′
0, ξ̄0) ∈ suppχ and so we have

(z′0, 0, ξ
′
0, ξ̄0) 6∈ (suppχ

∣∣
ΣA

)(ε/2) and (z′0, 0, ξ
′
0, ξ̄0) ∈ suppχ

∣∣
ΣA(α)

(45)

but by taking χ
A

and χ
S∗M supported sufficiently close to A and S∗M , we can find α such that suppχ

∣∣
ΣA(α)

⊆

(suppχ
∣∣
ΣA

)(ε/2) which contradicts (45). Thus use of Lemma 3.1 is justified and we have (44).

�

5. Recurrence: Proof of Theorem 1.1

In this section we prove Theorem 1.1 which gives the behavior of |〈φh, ψh〉L2(H)| as h → 0+ when the

recurrent set of ΣA is νA-measure zero. First, we define the recurrent set and introduce some notation.
Although the following can be defined more generally, we stick to defining loop set, recurrent set, etc., for
ΣA only. First for each point ρ ∈ ΣA we define the first return time TA : ΣA → R ∪ {∞} by

TA(ρ) = inf{t > 0 : γρ(t) ∈ ΣA}

where γρ(t) is the geodesic emanating from ρ. This gives us the first time in which the geodesic γρ(t) returns
to ΣA. If the geodesic never returns to ΣA, the return time will be infinite. We will primarily be interested
in the points which return to ΣA in finite time. We call the collection of such points the loop set, denoted

LA = {ρ ∈ ΣA : TA(ρ) <∞}.

Since points in the loop set return to ΣA in finite time, we denote the point in which ρ ∈ LA returns to by
η(ρ) defined by η : LA → ΣA,

η(ρ) = γρ(TA(ρ)).

Next, define the infinite loop sets

L+∞
A =

⋂
k≥0

η−k(LA) and L−∞A =
⋂
k≥0

ηk(LA)

which are essentially the loop set points that return to ΣA infinitely often forward and backward in time,
respectively. Finally, the recurrent set RA := R+

A ∩R
−
A where

R±A :=

ρ ∈ L±∞A : ρ ∈
⋂
N>0

⋃
k≥N

η±k(ρ)

 ,
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which is essentially the collection of points ρ ∈ ΣA which return infinitely often and eventually get arbitrarily
close to ρ.

Proof of Theorem 1.1. Suppose for contradiction that there is a sequence hj → 0 such that

|〈φhj , ψhj 〉| ≥ Ch
1−k

2
j . (46)

Taking a subsequence if necessary, there exists defect measure µ for {φhj}. Further note that ν is still a

defect measure for {ψhj}. Defining µA as in (12) we decompose µA = fνA + λA. Then applying Theorem
1.2 we have

lim
j→∞

h
k−1

2
j |〈φhj , ψhj 〉| ≤ Cn,k

(∫
ΣA

f(1− |ξ′|2)
k−2

2 dνA
)1/2

= Cn,k

(∫
ΣA∩RA

f(1− |ξ′|2)
k−2

2 dνA +

∫
ΣA\RA

f(1− |ξ′|2)
k−2

2 dνA

)1/2

= Cn,k

(∫
ΣA\RA

f(1− |ξ′|2)
k−2

2 dνA

)1/2

where the last line follows from the fact that νA(RA) = 0. Next, since νA and λA are mutually singular
there exists V and W such that νA(V ) = λA(W ) = 0 and ΣA = V tW . Therefore we have

lim
j→∞

h
k−1

2
j |〈φhj , ψhj 〉| ≤ Cn,k

(∫
ΣA∩RcA

f(1− |ξ′|2)
k−2

2 dνA

)1/2

= Cn,k

(∫
(ΣA\RA)∩V

f(1− |ξ′|2)
k−2

2 dνA +

∫
(ΣA\RA)∩W

f(1− |ξ′|2)
k−2

2 dνA

)1/2

= Cn,k

(∫
(ΣA\RA)∩W

(1− |ξ′|2)
k−2

2 dµA

)1/2

≤ CµA(ΣA \ RA)1/2

since νA(V ) = 0 and since λA(W ) = 0 on W , so we can rewrite µA = fνA on W . Next, we use that Lemma
5.1 below gives µA(ΣA \ RA) = 0. Thus

lim
j→∞

h
k−1

2
j |〈φhj , ψhj 〉| = 0

which contradicts (46). �

Finally, we show that ΣA \ RA is µA-measure zero, which will complete the proof of Theorem 1.1.

Lemma 5.1. Let H ⊆ M and suppose that {φh} is a sequence of eigenfunctions with defect measure µ.
Then

µA(RA) = µA(ΣA).

Proof. Let B ⊆ ΣA be an open set. For δ > 0 sufficiently small, define

Bδ =
⋃
|t|<3δ

ϕt(B).

Since (S∗M,µ, ϕt) forms a measure preserving system, the Poincaré Recurrence Theorem implies that for
µ-a.e. ρ ∈ Bδ there exists t±n → ±∞ such that ϕt±n (ρ) ∈ Bδ. Moreover by definition of Bδ there exists s±n
such that |s±n − t±n | < 2δ and ϕs±n (ρ) ∈ B ⊆ ΣA. Therefore, for µ-a.e. ρ ∈ Bδ we have⋂

T>0

⋃
t≥T

ϕt(ρ) ∩B 6= ∅ and
⋂
T>0

⋃
t≥T

ϕ−t(ρ) ∩B 6= ∅ (47)

since the sets,
⋃
t≥T ϕ±t(ρ) ∩B are non-empty, compact, and nested as T increases.
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Next, we show that (47) also holds for µA-a.e. point in B ⊆ ΣA. For contradiction, suppose that there is
a set B′ ⊆ B with µA(B′) > 0 and for each ρ ∈ B′, there exists a T > 0 such that⋃

t≥T

ϕt(ρ) ∩B = ∅ or
⋃
t≥T

ϕ−t(ρ) ∩B = ∅.

Similarly to [CGT18, Lemma 6], we have µ|
Bδ

= µAdt. Therefore, extending B′ to B′δ/3 =
⋃
|t|≤δ ϕt(B

′) we

have that

µ(B′δ/3) = 2δ · µA(B′) > 0.

However, this implies (47) does not hold on B′δ/3 ⊆ Bδ which is a set of positive µ measure, which is a

contradiction.
Finally, let {Bk} be a countable basis for topology on ΣA. For all k there exists a B′k ⊆ Bk of full

µA measure such that for all ρ ∈ B′k (47) holds (with B replaced with Bk). Let Xk := B′k ∪ (ΣA \ Bk).
Following the same argument as in [CG19b, Lemma 15] we find that

⋂
kXk ⊆ RA. However, we note

µA(Xk) = µA(B′k) + µA(ΣA \ Bk) = µA(Bk) + µA(ΣA \ Bk) = µA(ΣA). So each Xk has full measure and
thus

⋂
kXk has full measure too. Therefore RA has full measure too, and we have

µA(RA) = µA(ΣA)

as desired. �
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[Zel92] Steven Zelditch. Kuznecov sum formulae and szegö limit formulae on manifolds. Communications in partial differ-

ential equations, 17(1-2):221–260, 1992.
[Zwo12] Maciej Zworski. Semiclassical Analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2012.

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
Email address: madelyne@live.unc.edu

25


	1. Introduction and Main Results
	1.1. Summary of Existing Results 
	1.2. Statement of Results
	1.3. Examples
	1.4. Organization of the paper

	2. Proof of Theorem 1.2 and Theorem 1.3
	Acknowledgements
	2.1. Preliminaries
	2.2. Proof of Theorem 1.2
	2.3. Proof of Theorem 1.3

	3. Localizing to A
	4. Localization to Geodesic Tubes: Proof of Proposition 2.1 
	4.1. A Technical Lemma
	4.2. Further localizing to Tubes
	4.3. Key Quantitative Estimate: Proof of Proposition 2.1

	5. Recurrence: Proof of Theorem 1.1
	References

