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LOCALITY OF VORTEX STRETCHING FOR THE 3D EULER

EQUATIONS

YUUKI SHIMIZU AND TSUYOSHI YONEDA

Abstract. We consider the 3D incompressible Euler equations under the
following situation: small-scale vortex blob being stretched by a prescribed
large-scale stationary flow. More precisely, we clarify what kind of large-scale
stationary flows really stretch small-scale vortex blobs in alignment with the
straining direction. The key idea is constructing a Lagrangian coordinate so
that the Lie bracket is identically zero (c.f. the Frobenius theorem), and in-
vestigate the locality of the pressure term by using it.

1. Introduction

The most important features of the Navier-Stokes turbulence is that turbulence
is not random but composed of vortex stretching behavior. More precisely, recent
DNS [2, 3, 12, 13] of the Navier-Stokes turbulence at sufficiently high Reynolds
numbers have reported that there exists a hierarchy of vortex stretching motions. In
particular, Goto-Saito-Kawahara [3] clearly observed that turbulence at sufficiently
high Reynolds numbers in a periodic cube is composed of a self-similar hierarchy
of antiparallel pairs of vortex tubes, and it is sustained by creation of smaller-scale
vortices due to stretching in larger-scale strain fields. This observation is further
investigated by Y-Goto-Tsuruhashi [15] (see also [14]). Thus we could conclude
physically that local-scale energy transfer is mainly induced by vortex stretching
(see also [5, 6, 7] for the related mathematical results). Therefore as the sequence
of these studies, our next study will be clarifying the vortex stretching dynamics
precisely.

In this paper we mathematically consider the locality of small-scale vortex dy-
namics in the 3D incompressible Euler equations. More precisely, we consider the
inviscid flow under the following situation: small-scale vortex blob being stretched
by a prescribed large-scale stationary flow, and we clarify what kind of large-scale
stationary flows really stretch smaller-scale vortex blobs in alignment with the
straining direction. Now let us describe the incompressible Euler equations (in-
viscid flow) as follows:

∂tu+ (u · ∇)u = (∂t(u ◦ Φ)) ◦ Φ−1 = ∂2
tΦ ◦ Φ−1 = −∇p, ∇ · u = 0 in R

3,(1)

u|t=0 = u0,

where Φ is the associated Lagrangian flow given by

∂tΦ(t, x) = u(t,Φ(t, x)) =: u ◦ Φ with Φ(0, x) = x ∈ R
3.
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Let uS : (−ǫ, ǫ)×R
3 → R

3 be the flow of a small-scale vortex blob and uL : R3 → R
3

be a prescribed large-scale stationary flow. Then the associated Lagrangian flows
ηL and ηS satisfying Φ(t, x) = ηL(t, ηS(t, x)) = ηL ◦ ηS are given by

∂tη
L(t, x) = uL(ηL(t, x)) =: uL ◦ ηL with ηL(0, x) = x ∈ R

3,

∂tη
S(t, x) = uS(t, ηS(t, x)) =: uS ◦ ηS with ηS(0, x) = x ∈ R

3.

Let us assume ηS(t, x0) = ηS(0, x0) = x0 ∈ ℓ, where

(2) ℓ :=
⋃

t∈(−ǫ,ǫ)

ηL(t, x∗) for some x∗ ∈ R
3.

ℓ represents the rotating axis of the small-scale vortex blob which aligns with the
large-scale straining flow. Based on DNS of homogeneous isotropic turbulence,
Hamlington-Schumacher-Dahm [4] showed vorticity tends to align with the stretch-
ing direction of the background strain. Note that, in their study, the background
strain means the strain rate induced by the vorticity beyond radius ∼ 12η (η is
the Kolmogorov scale). See also [3]. With the aid of this physical observation, we
constructed the mathematical model (2).

In general, ηS is strongly affected by the large-scale straining flow ηL when
Φ = ηL ◦ ηS comes from an Euler flow, thus, in this study, we need to clarify the
nonlinear interaction even partially.

Remark 1. For readers’ convenience, in this remark, we state a typical vortex
stretching as an example. Let x0 ∈ {x1 = x2 = 0} = ℓ, and let (r, θ, x3) be the
cylindrical coordinate such that (x1, x2) = (r cos θ, r sin θ) with

er :=
(x1, x2, 0)
√

x2
1 + x2

2

, eθ :=
(−x2, x1, 0)
√

x2
1 + x2

2

and ex3
:= (0, 0, 1).

First we give the typical straining flow (uL
r , u

L
θ , u

L
x3
) as follows:

uL
r := uL · er = −r, uL

x3
:= uL · ex3

= 2x3 and uL
θ := uL · eθ = 0.

In this case the corresponding Lagrangian flow is

(ηLr , η
L
θ , η

L
x3
) = (e−tr0, θ0, e

2tx3,0),

where (r0, θ0, x3,0) represents the initial position. For ω := ∇×u, let ωS := ∇×uS

be axisymmetric vorticity depending only on r variable, such that

ωS
θ (t, r) := ωS · eθ, ωS

x3
:= ωS · ex3

= 0 and ωS
r := ωS · er = 0.

Then we have the following explicit solution (vorticity) to the Euler equations:

(3) ωS
θ (t, η

L
r (t)) = etωS

0,θ(e
−tr0) and ωS

0,θ = ωS
θ (t)|t=0.

With the aid of the typical stretching motion in Remark 1, we rigorously define
the meaning of “stably stretching” as follows.

Definition 1. (Stably stretching.) ηL is said to be stably stretching along the
rotating axis ℓ ⊂ R

3, if the following two conditions hold.

• The rotation axis ℓ is stretched along ∂tη
L direction, that is

(4) ∂t|∂tηL(t, x0)| > 0 for each x0 ∈ ℓ.
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• Let

x⊥
0 := {x ∈ R

3 : (x0 − x) · ∂tηL(0, x0) = 0, |x0 − x| < δ} for each x0 ∈ ℓ.

The time evolution of the surface x⊥
0 (accompanied by the fluid particles)

is always perpendicular to the stretching direction at ηL(t, x0) (t > 0), that
is,

(5) ∂tη
L(t, x0) ⊥ Φ(t, x⊥

0 ) for each x0 ∈ ℓ.

Remark 2. (3) satisfies (4) and (5).

To state our theorem, we need to prepare “curvature”. First let us choose a
point x0 ∈ ℓ (reference point) and fix it. Identifying d

dz with ∂z , we define t(z) as

(6) ∂zt > 0, |∂zηL| := |∂zηL(t(z), x0)| = 1 and t(0) = 0.

In this case we immediately have ∂zt = |∂tηL|−1 and its inverse is ∂tz = |∂tηL|
(with the variables omitted). Then define the unit tangent vector τ as

τ(z) = ∂zη
L(t(z), x0),

the unit curvature vector n as κn = ∂zτ with a curvature function κ(z) > 0, the
unit torsion vector b as : b(z) := τ(z) × n(z), where × is the exterior product.
Without loss of generality, we can assume the torsion function T (z) is positive by
choosing the orientation of the torsion vector b(z). Then we now state our main
theorem.

Theorem 1. Let (∂tΦ) ◦Φ−1 = ∂t(η
L ◦ ηS) ◦ (ηL ◦ ηS)−1 be a solution to the Euler

equations. If ηL is stably stretching along ℓ ⊂ R
3, then we have

(7) ∂z(κ|∂tηL|2) = 0 for each x0 ∈ ℓ,

in particular, we do not need any information of ηS ,

Remark 3. Since ∂t|∂tηL| > 0, we obtain a necessary condition ∂zκ(z) ≤ 0.

Finally, we examine a typical straining flow (−x1, x2, 0) whether or not it satisfies
the formula (7). Note that we could also examine the straining flow (−x1,−x2, 2x3)
which is already appeared in Remark 1, but in this case the formula becomes much
more complicated, thus we leave it as a reader’s exercise.

Corollary 2. If uL is a straining flow such that uL = (−x1, x2, 0), then we have

∂z(κ|∂tηL|2) = − tanh 2t

cosh 2t
with t =

1

2
log

(

x1

x2

)

.

This means that, if ℓ 6⊂ {x1 = 0} and is in the stretching region: ℓ ⊂ {x : |x2| >
|x1|}, then the pair of ηL and Φ = ηL ◦ ηS does not satisfy (5), which implies that

ηL is “unstably” stretching along ℓ.

2. Proof of Theorem 1

First we rephrase the initial flat plane x⊥
0 such that

(8) x⊥
0 = {x0 + r1n(0) + r2b(0) :

√

r21 + r22 < δ}.
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For any initial particle on the plane x = x0 + r1n(0) + r2b(0) ∈ x⊥
0 , Φ(t, x) is

uniquely expressed as (we omit the change of variables)

Φ(t, x) =: Φ(z, r1, r2)

= ηL(t(z), x0) + Z(z, r1, r2)τ(z) +R1(z, r1, r2)n(z) +R2(z, r1, r2)b(z),
(9)

for sufficiently small r1 and r2, with Z(z, 0, 0) = 0, Z(0, r1, r2) = 0, R1(0, r1, r2) =
r1 and R2(0, r1, r2) = r2.

Remark 4. We can rephrase (5) as follows:

∂r1Z|r1=r2=0 = ∂r2Z|r1=r2=0 = 0 for z > 0.(10)

This is due to the fact that

Φ(t, x⊥
0 ) =

⋃

√
r2
1
+r2

2
<δ

Φ(z(t), r1, r2)

by (8) and (9), and

∂tη
L(t, x0) · ∂r1Φ(z(t), r1, r2)|r1=r2 = ∂tη

L(t, x0) · ∂r2Φ(z(t), r1, r2)|r1=r2 = 0.

Since the corresponding Jacobian ∂(R1,R2)
∂(r1,r2)

is clearly nonzero for sufficiently small

z > 0, so, by the inverse function theorem (for each z > 0), we can rewrite the equal-
ity (9) as follows: LetR1 and R2 be variables, and r1 and r2 be the corresponding in-
verse functions. For any particle x = x0+r1(z,R1, R2)n(0)+r2(z,R1, R2)b(0) ∈ x⊥

0 ,

Φ(t, x) =: Φ(z,R1, R2)

= ηL(t(z), x0) + Z(z, r1(z,R1, R2), r2(z,R1, R2))τ(z) +R1n(z) +R2b(z)

(11)

for sufficiently small |R1|, |R2|, z > 0. Let us recall the Frenet-Serret formulas:

d

dz





τ
n
b



 =





0 κ 0
−κ 0 T
0 −T 0









τ
n
b



 .

By combining the Frenet-Serret formulas, (10) and (11), we have

(12)











∂zΦ = τ +R1(Tb− κτ)−R2Tn+O(R2
1, R

2
2),

∂R1
Φ = n+O(R1, R2),

∂R2
Φ = b+O(R1, R2),

where O is Landau’s notation. A direct calculation yields

∂2
zΦ =κn−R1(T

2 + κ2)n+R1((∂zT )b− (∂zκ)τ)

−R2T (−κτ + Tb)−R2(∂zT )n+O(R2
1, R

2
2)

and then

∂R1
∂zΦ|R1=R2=0 = Tb− κτ,

∂R1
∂2
zΦ|R1=R2=0 = −(T 2 + κ2)n+ ((∂zT )b− (∂zκ)τ),

∂R2
∂zΦ|R1=R2=0 = −Tn,

∂R2
∂2
zΦ|R1=R2=0 = −T (−κτ + Tb)− (∂zT )n.

Thus

(∂R1
∂2
zΦ) · τ |R1,R2=0 = −∂zκ and (∂R1

∂zΦ) · τ |R1,R2=0 = −κ.
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On the other hand, by the Leibniz rule, we see

∂2
tΦ = ∂2

zΦ(∂tz)
2 + ∂zΦ∂

2
t z with the variables omitted.

Combining the facts ∂2
t z = ∂t|∂tηL| and ∂tz = |∂tηL|, we have

−∂R1
(∇p · τ) = ∂R1

(∂2
tΦ · τ) = (∂R1

∂2
tΦ) · τ = −κ∂t|∂tηL| − ∂zκ|∂tηL|2,(13)

−∂R2
(∇p · τ) = ∂R2

(∂2
tΦ · τ) = (∂R2

∂2
tΦ) · τ = +Tκ|∂tηL|2(14)

for R1 = R2 = 0. Next we derive other formulae by using the Euler equations. By
the Leibniz rule, we see

κn = ∂2
zη

L(t(z), x0) = ∂z(∂tη
L∂zt) = ∂2

t η
L(∂zt)

2 + ∂tη
L∂2

z t.

Combining ∂2
z t = ∂z |∂tηL|−1 = −|∂tηL|−2∂z|∂tηL| = −|∂tηL|−3∂t|∂tηL|, we have

∂2
t η

L = |∂tηL|2κn+ ∂t|∂tηL|τ.

By using the Euler equations, we have

−∇p · τ = ∂2
tΦ · τ = ∂t|∂tηL|,

−∇p · n = ∂2
tΦ · n = κ|∂tηL|2,

−∂z(∇p · n) = ∂zκ|∂tηL|2 + 2κ∂t|∂tηL|,
−∇p · b = 0

for R1 = R2 = 0 with the change of variables ◦ηL omitted again. On the other
hand, from (12), we have the following inverse matrix:





τ
n
b



 =





(1− κR1)
−1 R2T (1− κR1)

−1 −R1T (1− κR1)
−1

0 1 0
0 0 1









∂zΦ
∂R1

Φ
∂R2

Φ





with the higher order terms omitted since we finally take R1, R2 → 0. Then we see

∇p · τ =(1 − κR1)
−1(∇p · ∂zΦ)

+R2T (1− κR1)
−1(∇p · ∂R1

Φ)−R1T (1− κR1)
−1(∇p · ∂R2

Φ)

=(1 − κR1)
−1∂z(p ◦ Φ)

+R2T (1− κR1)
−1∂R1

(p ◦ Φ)−R1T (1− κR1)
−1∂R2

(p ◦ Φ).

and then (omit the variable ◦Φ)

−∂R1
(∇p · τ)|R1=R2=0 = (−κ∂zp− ∂R1

∂zp− T∂R2
p) |R1=R2=0

(commute ∂R1
and ∂z) = (−κ(∇p · τ)− ∂z(∇p · n)− T (∇p · b)) |R1=R2=0

= 3κ∂t|∂tηL|+ ∂zκ|∂tηL|2.

Combining (13), we have the desired formula.

Remark 5. We can rephrase the commutativity of ∂R1
and ∂z as

[∂z , ∂R1
] = ∂z∂R1

− ∂R1
∂z = 0,

where [·, ·] is the Lie braket (c.f. the Frobenius theorem, see Chapter 19 in [8]
for example). For the previous studies using this property, see Chan-Czubak-Y [1,
Section 2.5] and Lichtenfelz-Y [9], more originally, see Ma-Wang [10, (3.7)].
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Remark 6. Since ∇p · b = ∂R2
p ≡ 0, then

−∂R2
(∇p · τ) = −∂R2

∂zp− T∂R1
p

(commute ∂R2
and ∂z) = −T (∇p · n) = Tκ|∂tηL|2

for R1 = R2 = 0. However this formula is useless, since it coincides with (14).

3. Proof of Corollary 2

For any x ∈ {x : |x2| > |x1|} ∩ {x1 6= 0}, let us set

ηL(t, x) =





ret+t0

re−(t+t0)

x3



 ,

where r :=
√
x1x2 and t0 = 1

2 log(x1/x2). In this case we see

∂zt := |∂tηL|−1 =
1

r(e2t + e−2t)1/2
=

1

r
√
2(cosh 2t)1/2

and

∂2
z t = − (sinh 2t)∂zt

r
√
2(cosh 2t)3/2

= − sinh 2t

2r2(cosh 2t)2
= − tanh 2t

2r2 cosh 2t
.

On the other hand,

κn = ∂2
t η

L(∂zt)
2 + ∂tη

L∂2
z t

=
1

2r2 cosh 2t





ret

re−t

0



− tanh 2t

2r2 cosh 2t





ret

−re−t

0



 .

Thus

κ2 =
1

2r2 cosh 2t
− (tanh 2t)2

r2 cosh 2t
+

(tanh 2t)2

2r2 cosh 2t
=

1

2r2(cosh 2t)3

and then

κ =
1√

2r(cosh 2t)3/2
, ∂zκ = − 3 tanh 2t

2r2(cosh 2t)2
,

|∂tηL|2 = 2r2 cosh 2t and ∂t|∂tηL| =
√
2r(tanh 2t)1/2(sinh 2t)1/2.

Combining the above calculations, we have the following desired formula:

∂z(κ|∂tηL|2) = 2κ∂t|∂tηL|+ ∂zκ|∂tηL|2 = − tanh 2t

cosh 2t
.
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