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ON NEAR-MARTINGALES AND A CLASS OF ANTICIPATING LINEAR

SDES

HUI-HSIUNG KUO, PUJAN SHRESTHA*, SUDIP SINHA, AND PADMANABHAN SUNDAR

Abstract. The primary goal of this paper is to prove a near-martingale optional stop-
ping theorem and establish solvability and large deviations for a class of anticipating linear
stochastic differential equations. We prove the existence and uniqueness of solutions us-
ing two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a novel
braiding technique by interpreting the integral in the Skorokhod sense. We establish a
Freidlin–Wentzell type large deviations result for solution of such equations.

1. Introduction

Anticipating stochastic calculus has been an active and important research area for several
years, and lies at the intersection of probability theory and infinite-dimensional analysis.
Enlargement of filtration, Malliavin calculus, and white noise theory provide three distinct
methodologies to incorporate anticipation (of future) into classical Itô theory of stochastic
integration and differential equations.

It is to the credit of Itô who constructed an anticipating stochastic integral in 1976[6],
and laid the foundation for the idea of enlargement of the underlying filtration. Ever since,
the method was embraced by several researchers that led to many important works (see
articles in [7]). The advent of an integral invented by Skorokhod resulted in an impressive
edifice built by Malliavin on stochastic calculus of variations in order to prove Hörmander’s
hypoellipticity result by stochastic analysis. Malliavin calculus provided a natural basis
for the development and study of anticipative stochastic analysis and differential equations.
Around the same time, a systematic study of Hida distributions gave rise to white noise
theory and a general framework for stochastic calculus.

Malliavin calculus and white noise theory have vast applicability to the theory of stochastic
differential equations with anticipation. However, the results obtained by these theories are
primarily abstract though general. A more tractable theory was envisaged by Kuo based on
a concrete stochastic integral known as the Ayed–Kuo integral[1]. Under less generality, the
latter allows one to obtain results under easily understood, verifiable hypotheses.

In this article, we prove some results about stopped near-martingales, which are general-
izations of martingales. We then study existence, uniqueness and large deviation principle for
linear stochastic differential equations with anticipating initial conditions and drifts. While
we rely mostly on the Ayed–Kuo formalism, other theories are minimally used either out of
necessity, or to compare and contrast the conclusions of certain results.
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The structure of the paper is as follows. In section 2, we introduce the Ayed–Kuo in-
tegral. In section 3, study near-martingales. We show that Ayed–Kuo integrals are near-
martingales. We also show that stopped near-martingales are near-martingales, and prove
an optional stopping theorem for near-submartingales. In section 4, we study methods for
solving anticipating linear stochastic differential equations by interpreting the anticipating
stochastic integral from two perspectives. For the Ayed–Kuo formulation, we use the differ-
ential formula and an ansatz to derive the solution. For the Skorokhod interpretation, we
introduce a novel braiding technique inspired by Trotter’s product formula[12]. We show
that the solutions coincide when the assumptions are identical. Finally, in section 5, we
derive large deviation principles for the solutions of the class of anticipating linear stochastic
differential equations studied in section 4. In this paper, we assume t ∈ [0, 1], unless specified
otherwise.

2. The Ayed–Kuo anticipating stochastic calculus

Before we define the Ayed–Kuo integral, we need to define instantly independent processes.
A stochastic process φ(t) is called instantly independent with respect to {Ft} if for each
t ∈ [0, 1], the random variable φ(t) and the σ-field Ft are independent. Instantly independent
processes are the counterpart of adapted processes in this theory.

We refer to [4, section 2] for a detailed definition of the anticipating stochastic integral.
In what follows, we highlight the crucial steps in the definition in a concise manner.

Definition 2.1 ([4, definition 2.3]). The anticipating integral is defined in following three
steps:

(1) Suppose f(t) is an Ft-adapted continuous stochastic process and φ(t) is a continuous
stochastic processes that is instantly independent with respect to {Ft}. Then the
stochastic integral of Φ(t) = f(t)φ(t) is defined by

∫ 1

0

f(t)φ(t) dWt = lim
‖∆n‖→0

n
∑

j=1

f(tj−1) φ(tj) (Wtj −Wtj−1
),

provided that the limit exists in probability.
(2) For any stochastic process of the form Φ(t) =

∑n

i=1 fi(t)φi(t), where fi(t) and φi(t)
are given as in step (1), the stochastic integral is defined by

∫ 1

0

Φ(t) dWt =

n
∑

i=1

∫ 1

0

fi(t) φi(t) dWt.

(3) Let Φ(t) be a stochastic process such that there is a sequence (Φn(t))
∞
n=1 of stochastic

processes of the form in step (2) satisfying

(a)
∫ 1

0
|Φn(t)− Φ(t)|2 dt→ 0 almost surely as n→ ∞, and

(b)
∫ 1

0
Φn(t) dWt converges in probability as n→ ∞.

Then the stochastic integral of Φ(t) is defined by
∫ 1

0

Φ(t) dWt = lim
n→∞

∫ 1

0

Φn(t) dWt in probability.

This integral is well defined, as demonstrated in [4, lemma 2.1]. In order to use the
definition of the integral, we first need to decompose the integrand into a sum of products of

2



adapted and instantly independent parts. The main idea is to then use the left-endpoints of
subintervals to evaluate the adapted parts and the right-endpoints of subintervals to evaluate
the instantly independent parts.

3. Near-martingales

3.1. Near-martingale property of the Ayed–Kuo integral. Martingales are an ex-
tremely important class of processes that are used to model fair games, and hence find
applications not only in probability theory, but also in mathematical finance and numerous
other fields. Itô’s integrals are essentially continuous martingale transforms, and therefore
retain the martingale nature of the integrator. Since the Ayed–Kuo integral is an extension
of the Itô integral, it is natural to ask if Ayed–Kuo integrals are martingale. Unfortunately,
they are not. However, we have a very similar property, which gives rise to the idea of
near-martingales.

Definition 3.1. An integrable stochastic process Nt is called a near-submartingale with
respect to the filtration {Ft} if for any s ≤ t, we have E(Nt −Ns | Fs) ≥ 0 almost surely. It
is called a near-martingale if E(Nt −Ns | Fs) = 0 almost surely.

The following result links martingales and near-martingales. In particular, it says that
conditioned near-martingales are martingales.

Theorem 3.2 ([5, theorem 2.11]). Let Nt be an integrable stochastic process and let Mt =
E(Nt | Ft). Then Nt is a near-martingale if and only if Mt is a martingale.

Ayed–Kuo integrals are near-martingales, as stated by this theorem.

Theorem 3.3. Let Θ(x, y) be a function that is continuous in both variables such that the
stochastic integral,

Nt =

∫ t

a

Θ(Ws,Wb −Ws) dWs, a ≤ t ≤ b,

exists and E|Nt | < ∞ for each t in [0, 1]. Furthermore, assume that the family of partial
sums

n
∑

i=1

Θ(Wti ,W1 −Wti−1
)
(

Wti −Wti−1

)

are uniformly integrable. Then Nt, a ≤ t ≤ b, is a near-martingale with respect to the
filtration generated by Brownian motion given by {Ft}

Proof. Let s ≤ t and consider a partition, ∆n, of [s, t] with t0 = s and tn = t. The definition
of the Ayed–Kuo stochastic integral in conjunction with the uniform integrability condition

3



on the partial sums implies

E [Nt −Ns | Fs] =E

[
∫ t

s

Θ(Wv,Wb −Wv) dWv | Fs

]

=E

[

lim
n→∞

n
∑

k=1

Θ(Wk−1,Wb −Wk)∆Wk | Fs

]

= lim
n→∞

n
∑

k=1

E [Θ(Wk−1,Wb −Wk)∆Wk | Fs] . (3.1)

Consider, H(b)
a = σ(Fa ∪ G(b)). Then Fs ⊆ Fk−1 ⊆ H(k)

k−1. Using this fact alongside

the continuity of Θ in both variables, we have that Θ(Wk−1,Wb −Wk) is H(k)
k−1-measurable.

Furthermore, via the independence of the Brownian increments, ∆Wk is independent of

H(k)
k−1. Thus,

E [Θ(Wk−1,Wb −Wk)∆Wk | Fs]

= E

[

E

[

Θ(Wk−1,Wb −Wk)∆Wk | H(k)
k−1

]

| Fs

]

= E [Θ(Wk−1,Wb −Wk)E [∆Wk] | Fs]

= 0.

Using this result for each k in equation (3.1), we have E [Nt −Ns | Fs] = 0, and so Nt is a
near-martingale.

H(tk)
tk−1

Fs

0 s tk−1 tk t 1

Btk−1
B1 − Btk

Btk −Btk−1

Figure 1. A t-dependence plot of the disjoint increments of W . The shaded
regions represents the forward and separation σ-field.

�

3.2. Stopped near-martingales. In this section, we show that stopped near-martingales
are near-martingales. We also generalize Doob’s optional stopping theorem for near-martingales.

Definition 3.4. Let (An)
∞
n=0 be an adapted process and (Xn)

∞
n=0 a discrete time near-

submartingale. Then the processes (Yn)
∞
n=0, where Y0 = 0 and

Yn = (A •X)n =

n
∑

i=1

An−1(Xn −Xn−1)

is called the near-martingale transform of X by A.
4



Near-martingale transforms retain the near-martingale property, as is shown in the fol-
lowing result.

Proposition 3.5. (1) If X is a near-submartingale and A is a bounded non-negative
adapted process, then (A •X) is a near-submartingale.

(2) If X is a near-martingale and A is a bounded adapted process, then (A • X) is a
near-martingale.

(3) If X and A are both square integrable, then we do not require the boundedness con-
dition in items 1 and 2.

Proof. We only prove item 1 because the rest follow the same process. Let X be a near-
submartingale and Y = (A • X). Suppose n is an arbitrary time. Note that Yn − Yn−1 =
An−1(Xn −Xn−1), which is integrable since A is bounded. Using the adaptedness of A, we
get

E(Yn − Yn−1 | Fn−1) = E(An−1(Xn −Xn−1) | Fn−1) = An−1 E(Xn −Xn−1 | Fn−1) ≥ 0,

where the last inequality holds since A is non-negative. �

We now show that stopped near-submartingales are near-submartingales.

Theorem 3.6. Suppose X is a discrete time near-submartingale and τ a stopping time.
Then the stopped process Xτ defined by Xτ

n = Xτ∧n is a (discrete time ) near-submartingale.

Proof. Let An = 1{n≤τ}, so the process A is bounded, non-negative, and adapted. Now, note
that Xτ

n −X0 = Xτ∧n −X0 = (A •X)n. Therefore, by proposition 3.5, we get that Xτ is a
near-submartingale. �

Now, we show the equivalent result of Doob’s optional stopping theorem for discrete time
near-submartingales.

Theorem 3.7. Let X be a discrete time near-submartingale. Suppose σ and τ are two
bounded stopping times with σ ≤ τ . Then Xσ and Xτ are integrable, and E(Xτ −Xσ | Fσ) ≥
0 almost surely.

Proof. Since σ and τ are bounded, there exists N <∞ such that σ ≤ τ ≤ N . Let Y be any
near-submartingale. Clearly, Yσ is integrable. Suppose B ∈ Fσ. Then for any n ≤ N , we
have B ∩ {σ = n} ∈ Fn, and so

∫

B∩{σ=n}

(YN − Yσ) dP =

∫

B∩{σ=n}

(YN − Yn) dP ≥ 0.

Summing over n, we get
∫

B
(YN − Yσ) dP ≥ 0, and so E(YN − Yσ | Fσ) ≥ 0. Finally, let

Yn = Xτ
n to get

E(Xτ
N −Xτ

σ | Fσ) = E(Xτ −Xσ | Fσ) ≥ 0.

�

We need the following definition and lemma to prove the result in continuous time.

Definition 3.8. Let (Fn)
∞
n=1 be a decreasing sequence of σ-algebras, and let X = (Xn)

∞
n=1

be a stochastic process. Then the pair (Xn,Fn)
∞
n=1 is called a backward near-submartingale

if for every n,

(1) Xn is integrable and Fn-measurable, and
5



(2) E(Xn −Xn+1 | Fn+1) ≥ 0.

Lemma 3.9. Let (Xn,Fn)
∞
n=1 be a backward near-submartingale with limn→∞ E(Xn) > −∞.

If X is non-negative for every n, then X is uniformly integrable.

Proof. As n ր ∞, we have E(Xn) ց limn→∞ E(Xn) = infn E(Xn) > −∞. Fix ǫ > 0.
By the definition of infimum, there exists a K > 0 such that for any n ≥ K, we have
E(XK)− limn→∞ E(Xn) < ǫ.

For any k ≥ n and δ > 0, we have

E
(

|Xk|1{|Xk|>δ}

)

= E
(

Xk1{Xk>δ}

)

+ E
(

Xk1{Xk≥−δ}

)

− E(Xk) .

Moreover, sinceX is a backward near-submartingale, E
(

Xk1{Xk≥δ}

)

≤ E
(

Xn1{Xk≥δ}

)

. There-
fore,

E
(

|Xk| 1{|Xk|>δ}

)

≤ E
(

Xn1{Xk>δ}

)

+ E
(

Xn1{Xk≥−δ}

)

− (E(Xn)− ǫ)

≤ E
(

|Xn|1{|Xk|>δ}

)

+ ǫ.

By Markov’s inequality and the non-negativity of X ,

P{|Xk| > δ} ≤ 1

δ
E|Xk| =

1

δ
E(Xk) ≤

1

δ
E(X1) → 0

as δ → ∞. This concludes the proof. �

We are now ready to prove the near-martingale optional stopping theorem in continuous
time.

Theorem 3.10. Let N be a near-submartingale with right-continuous sample paths. Suppose
σ and τ are two bounded stopping times with σ ≤ τ . If N is either non-negative or uniformly
integrable, then Nσ and Nτ are integrable, and

E(Nτ −Nσ | Fσ) ≥ 0 almost surely.

Proof. We use a discretization argument to prove the result. Let T > 0 be a bound for τ .
For every n ∈ N, define the discretization function

fn : [0,∞) →
{

k

n
: k = 0, . . . , n

}

: x 7→ ⌊2nx⌋ + 1

2n
∧ T, (3.2)

and let σn = fn(σ) and τn = fn(τ).
Now, for any n and t,

{τn ≤ t} = {fn(τ) ∈ [0, t]} =
{

τ ∈ f−1
n [0, t]

}

=

{

τ ∈ f−1
n

[

0,
⌊2nt⌋
2n

]}

∈ F ⌊2nt⌋
2n

⊆ Ft,

so τn is a stopping time. Similarly, σn is a stopping time. Moreover, it can be easily seen
that σn ≤ τn for every n, and σn ց σ and τn ց τ as nր ∞. Therefore, by theorem 3.7, we
get Nσn

and Nτn are integrable, and E(Nτn −Nσn
| Fσn

) ≥ 0 almost surely. Furthermore,
it is easy to see that Fσ =

⋂∞
n=1Fσn

⊆ Fσn
for any n. Therefore, E(Nτn −Nσn

| Fσ) ≥ 0
almost surely for any n.

IfN is non-negative, by construction, (Nσn
,Fσn

)∞n=1 is a backward near-submartingale such
that Nσn

≥ 0 for every n. Therefore, E(Nσn
) ց E(Nσ) > −∞ as nր ∞. Using lemma 3.9,

(Nσn
)∞n=1 is uniformly integrable. Similarly, (Nτn)

∞
n=1 is also uniformly integrable. On the

other hand, if N is uniformly integrable, this is trivial.
6



Using the right continuity of N and the boundedness assumption of σ and τ , we get
limn→∞Nσn

= Nσ and limn→∞Nτn = Nτ almost surely. Furthermore, the uniform integra-
bility of (Nσn

)∞n=1 and (Nτn)
∞
n=1 allows us to conclude that Nσ and Nτ are integrable and

that the convergence is also in L1, giving us E(Nτ −Nσ | Fσ) ≥ 0 almost surely. �

We highlight the special case of theorem 3.10.

Corollary 3.11. Let N be a non-negative near-martingale with right-continuous sample
paths and τ a bounded stopping time. Then Nτ is integrable, and E(Nτ ) = E(N0) almost
surely.

4. Anticipating linear stochastic differential equations

In our previous works [9, 8], we studied linear stochastic differential equations with antic-
ipating initial conditions, where the stochastic integral is in the Ayed–Kuo sense. In [3], the
authors gave examples of linear stochastic differential equations with anticipating diffusion
coefficient. In this paper, we focus on anticipating drift.

In particular, we shall be concerned about the solution of a class of anticipating linear
stochastic differential equations of the form







dXt = σtXt dWt + f
(

∫ 1

0

γt dWt

)

Xtdt, t ∈ [0, 1],

X0 = ξ,

(4.1)

where Wt is a Brownian motion, f : R → R is bounded function, ξ a random variable, and
σt is an bounded adapted process such that all integrability conditions are satisfied. We
choose this class because we want to study linear stochastic differential equations where the
anticipation comes from the drift coefficient being Brownian functionals.

4.1. The Ayed–Kuo sense. We look at an extension of Itô’s formula that can account for
instantly independent processes. Let Xt and Y

(t) be stochastic processes of the form

Xt = Xa +

∫ t

a

g(s) dB(s) +

∫ t

a

h(s) ds, (4.2)

Y (t) = Y (b) +

∫ b

t

ξ(s) dB(s) +

∫ b

t

η(s) ds, (4.3)

where g(t), h(t) are adapted (so Xt is an Itô process), and ξ(t), η(t) are instantly independent
such that Y (t) is also instantly independent.

Theorem 4.1 ([4, theorem 3.2]). Suppose {X(i)
t }ni=1 and {Y (t)

j }mj=1 are stochastic processes of
the form given by equations (4.2) and (4.3), respectively. Suppose θ(t, x1, . . . , xn, y1, . . . , ym)
is a real-valued function that is C1 in t and C2 in other variables. Then the stochastic

7



differential of θ(t, X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y

(t)
m ) is given by

dθ(t, X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y (t)

m )

= θt dt+

n
∑

i=1

θxi
dX

(i)
t +

m
∑

j=1

θyjdY
(t)
j

+
1

2

n
∑

i,k=1

θxixk
dX

(i)
t dX

(k)
t − 1

2

m
∑

j,l=1

θyjyldY
(t)
j dY

(t)
l .

The above differential formula allows us to calculate the solutions of anticipating stochastic
differential equations. We shall see two instances of its application in section 4.1.

We apply the differential formula to derive a general result for existence of linear stochastic
differential equations with anticipating coefficients.

Theorem 4.2. Suppose σ ∈ L2
ad
([0, 1] × Ω), γ ∈ L2[0, 1], and ξ be a random variable

independent of the Wiener process W . Moreover, suppose f ∈ C2(R) along with f, f ′, f ′′ ∈
L1(R). Then the solution of equation (4.1) in the Ayed–Kuo theory is given by

Zt = ξ exp

[
∫ t

0

σs dWs −
1

2

∫ t

0

σ2
s ds+

∫ t

0

f

(
∫ 1

0

γu dWu −
∫ t

s

γu σu du

)

ds

]

. (4.4)

Proof. We show that equation (4.4) solves equation (4.1). The initial condition is trivially
verified.

Note that equation (4.4) can be written as

Zt =ξ exp

[
∫ t

0

σs dWs −
1

2

∫ t

0

σ2
s ds

+

∫ t

0

f

(
∫ t

0

γu dWu +

∫ 1

t

γu dWu −
∫ t

s

γu σu du

)

ds

]

.

Motivated by this, we define

θ(t, x1, x2, y) = ξ exp

[

x1 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

f

(

x2 + y −
∫ t

s

γu σu du

)

ds

]

.

Moreover, let

X
(1)
t =

∫ t

0

σs dWs (so dX
(1)
t = σt dWt),

X
(2)
t =

∫ t

0

γs dWs (so dX
(2)
t = γt dWt),

and Y (t) =

∫ 1

t

γs dWs (so dY (t) = −γt dWt).

Then we can write Zt = θ
(

t, X
(1)
t , X

(2)
t , Y (t)

)

.

For conciseness, we denote F = f
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

, and similarly the derivatives

F ′ = f ′
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

and F ′′ = f ′′
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

. Note that for the
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derivatives of θ, we have

θx1
= θx1x1

= θ,

θx2
= θx1x2

= θy = θ ·
∫ t

0

F ′ ds,

θx2x2
= θyy = θ ·

(
∫ t

0

F ′ ds

)2

+ θ ·
∫ t

0

F ′′ ds, and

θt = −1

2
θσ2

t + θf(x2 + y)− γtσtθy,

where we used the Leibniz integral rule and the second line for the last identity.
Since ξ is independent of the Wiener process, by theorem 4.1, we get

dθ = θt dt + θx1
dX

(1)
t + θx2

dX
(2)
t + θy dY

(t)

+
1

2
θx1x1

(

dX
(1)
t

)2

+
1

2
θx2x2

(

dX
(2)
t

)2

+ θx1x2
dX

(1)
t dX

(2)
t − 1

2
θyy( dY

(t))2.

Using the relationships between the derivatives of θ and its differential form, we have

dθ = θt dt+ θσt dWt +
❳❳❳❳❳θyγt dWt −❳❳❳❳❳θγt dWt

+
1

2
θσ2

t dt+
✟✟✟✟✟1

2
θyyγ

2
t dt+ θyγtσt dt−

✟✟✟✟✟1

2
θyyγ

2
t dt

=

(

θt +
1

2
θσ2

t + θyγtσt

)

dt+ θσt dWt.

Now,

θt +
1

2
θσ2

t + θyγtσt =

(

−❅
❅
❅

1

2
θσ2

t + θf(x2 + y)−✘✘✘✘θyγtσt

)

+
❅
❅
❅

1

2
θσ2

t +✘✘✘✘θyγtσt = θf(x2 + y),

and so
dθ = f(x2 + y)θ dt+ σtθ dWt.

Since Zt = θ
(

t, X
(1)
t , X

(2)
t , Y (t)

)

, we get

dZt = f

(
∫ 1

0

γs dWs

)

Zt dt+ σt Zt dWt,

which is exactly equation (4.1). �

Theorem 4.1 is an indispensable tool for analyzing anticipating processes. We show another
example by finding the stochastic differential equation corresponding to the square of the
above solution.

Theorem 4.3. Under the condition of theorem 4.2, the stochastic differential equation


















dVt =

[

σ2
t + f

(
∫ 1

0

γs dWs

)

+ 2γt σt

∫ t

0

f ′

(
∫ 1

0

γu dWu −
∫ t

s

γu σu du

)

ds

]

Vt dt

+ 2σt Vt dWt,

V0 = ξ2

is solved by Z2
t , where Z is given by equation (4.4).

9



Remark 4.4. An interesting feature is that the derivative of f appears in the stochastic
differential equation.

Proof. We follow the exact same strategy as the proof of theorem 4.2. The initial condition
is trivially true. Let Vt = Z2

t .
Taking the square of both sides of equation (4.4), we get

Vt = ξ2 exp

[
∫ t

0

2σs dWs −
∫ t

0

σ2
s ds+

∫ t

0

2f

(
∫ 1

0

γu dWu −
∫ t

s

γu σu du

)

ds

]

We have Vt = θ
(

t, X
(1)
t , X

(2)
t , Y (t)

)

, where

θ(t, x1, x2, y) = ξ2 exp

[

x1 −
∫ t

0

σ2
s ds+

∫ t

0

2f

(

x2 + y −
∫ t

s

γu σu du

)

ds

]

,

and

X
(1)
t =

∫ t

0

2σs dWs (so dX
(1)
t = 2σt dWt),

X
(2)
t =

∫ t

0

γs dWs (so dX
(2)
t = γt dWt),

and Y (t) =

∫ 1

t

γs dWs (so dY (t) = −γt dWt).

As before, writing F = f
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

, F ′ = f ′
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

, and

F ′′ = f ′′
(

∫ 1

0
γt dWt −

∫ t

s
γu σu du

)

, we get

θx1
= θx1x1

= θ,

θx2
= θx1x2

= θy = 2θ ·
∫ t

0

F ′ ds,

θx2x2
= θyy = θ ·

(
∫ t

0

F ′ ds

)2

+ θ ·
∫ t

0

F ′′ ds, and

θt = −θσ2
t + 2θf(x2 + y)− γtσtθy.

Using the general Itô formula (theorem 4.1), we get

dθ =θt dt+ θx1
dX

(1)
t + θx2

dX
(2)
t + θy dY

(t)

+
1

2
θx1x1

(

dX
(1)
t

)2

+
1

2
θx2x2

(

dX
(2)
t

)2

+ θx1x2
dX

(1)
t dX

(2)
t − 1

2
θyy( dY

(t))2

=θt dt+ 2θσt dWt +
❳❳❳❳❳θx2

γt dWt −❳❳❳❳❳θγt dWt

+ 2θσ2
t dt+

✟✟✟✟✟✟1

2
θx2x2

γ2t dt+ 2θyγtσt dt−
✟✟✟✟✟1

2
θyyγ

2
t dt

=
(

θt + 2θσ2
t + 2θyγtσt

)

dt+ 2θσt dWt

=

[

θσt + 2θf(x2 + y) + 2γtσtθ

∫ t

0

F ′ ds

]

dt+ 2θσt dWt.

10



Finally, using Vt = θ
(

t, X
(1)
t , X

(2)
t , Y (t)

)

, we get the stochastic differential equation. �

4.2. A novel braiding technique for the Skorokhod sense. In the prior section, we
showed the existence of the solution via the Ayed–Kuo differential formula. However, the
procedure started with intelligently guessing an ansatz for the solution and applying the
differential formula to it. Can a solution be found without this “guessing”? In this section, we
use elementary ideas from Malliavin calculus to interpret the stochastic differential equation
in the Skorokhod sense. We introduce an iterative “braiding” technique in the spirit of
Trotter’s product formula[12] that allows us to construct the solution without needing to
know the form of the solution. Note that we expect to arrive at the same solution as in
section 4.1 since under the definition of the Ayed–Kuo integral using L2(Ω) convergence,
the Hitsuda–Skorokhod integral and the Ayed–Kuo integrals are equivalent, as shown in [11,
theorem 2.3]. In what follows, we briefly introduce some ideas of Malliavin calculus and
Skorokhod integral so that we can introduce our braiding technique.

A well known extension of the Itô integral is Hitsuda–Skorokhod integral. For this text,
we shall introduce the Hitsuda–Skorokhod integral as the adjoint of the Gross–Malliavin
derivative. Let us first set up the spaces to operate on. Consider the probability space
(Ω,F , P ) where F is the σ-field generated by the Brownian motion. Let H = L2[0, 1] be the
space of square integrable functions defined on the positive reals. For any h ∈ H, consider
the Wiener integral

W (h) =

∫ 1

0

h(t) dWt.

In particular, if h = 1[0, 1
2
] ∈ H then

W
(

1[0, 1
2
]

)

=

∫ 1

0

1[0, 1
2
](t) dWt = W 1

2

.

This Hilbert space H plays an important role in the definition of the derivative. Let S be
the class of smooth random variables such that F ∈ S has the form

F = f (W (h1),W (h2) . . . ,W (hn)) , hi ∈ H, i ∈ {1, 2, . . . , n},
where f is a real valued n-dimensional smooth function whose derivatives have at most
polynomial growth.

Definition 4.5 ([10, definition 1.2.1]). The Gross–Malliavin derivative of a smooth random
variable F ∈ S is the real valued random variable given by

DtF =

n
∑

i=1

∂if (W (h1),W (h2) . . . ,W (hn))hi(t),

where di is the derivative with respect to the ith variable.

We denote D
1,2 as the closure of the derivative operator D from L2(Ω) to L2(Ω;H). In

other words, D1,2 is the completion of the class of smooth Brownian functionals with respect
to the inner product

〈F,G〉1,2 = E (FG) + E (〈DF,DG〉
H
) .

We now introduce the Skorokhod integral operator δ.
11



Definition 4.6 ([10, definition 1.3.1]). We denote by δ the adjoint of the operator D. That
is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that:

(1) The domain of δ is the set of H-valued square integrable random variables u ∈
L2(Ω;H) such that for any F ∈ D

1,2, where c is some constant depending on u.

E(〈DF, u〉
H
) ≤ c ‖F‖2 .

(2) If u belongs to the domain of δ, then δ(u) is the element of L2(Ω) characterized by

E(Fδu) = E(〈DF, u〉
H
) .

for any F ∈ D
1,2.

It is natural to ask about the nature of relationship of these two stochastic integral. While
that is an open question, we refer to the following result.

Theorem 4.7 ([11, theorem 2.3]). Let f be an adapted L2-continuous stochastic process and
φ be an instantly independent L2-continuous stochastic process such that the sequence

n
∑

i=1

f(ti−1)φ(ti)
(

Wti −Wti−1

)

,

converges strongly in L2(Ω) as ‖∆n‖ → 0. Then the limit I(fψ) equals the Hitsuda–
Skorokhod integral δ(fψ) in Dom(δ).

Now, we move on to finding the solution of the linear stochastic differential equation when
the anticipating integral is taken in the sense of Skorokhod. First, fix the family of translation
on the space of continuous functions starting at the origin in the Cameron–Martin direction
given by

(At(ω))s = ωs −
∫ t∧s

0

σ(u) du and (Tt(ω))s = ωs +

∫ t∧s

0

σ(u) du.

We look at an existence result for stochastic differential equations in the Skorokhod sense.

Lemma 4.8. Suppose σ ∈ L2[0, 1] and ξ ∈ Lp(Ω) for some p > 2. Then the stochastic
differential equation

{

dZt = σ(t) Zt dWt

Z0 = ξ,
(4.5)

has the unique solution given by

Zt = (ξ ◦ At) Et. (4.6)

Proof. It is clear that the family {(ξ ◦ At)Et | t ∈ [0, 1]} is Lr(Ω)-bounded for all r < p by
Girsanov’s theorem and Hölder’s inequality. Let G be any smooth random variable. Multiply

12



both sides of equation (4.5) by G. With the process X given by (4.6),

E

(

G

∫ t

0

σ(s) Zs dWs

)

= E

(
∫ t

0

σ(s) Zs DsGds

)

= E

(

ξ

∫ t

0

σ(s) (DsG)(Ts) ds

)

(using Girsanov theorem)

= E

(

ξ

∫ t

0

d

ds
G(Ts) ds

)

= E(ξ(G(Tt)−G))

= E(ξ(At) Et G)− E(ξ G) (again by Girsanov theorem)

= E(Zt G)− E(ξ G) .

Thus, a solution of the stochastic equation equation (4.5) is explicitly given by (4.6).
Uniqueness follows since the solution of equation (4.5) started at ξ ≡ 0 is identically zero

at all times. �

Now we introduce the braiding technique to solve equation (4.1), where γ ∈ L2[0, 1] and
f : R → R. To simplify notation, define

Iγ =

∫ 1

0

γs dWs,

Av
u(ω·) = ω· −

∫ (·∧v)∨u

u

σ(s) ds,

Ev
u = exp

[
∫ v

u

σ(s) dWs −
1

2

∫ v

u

σ(s)2 ds

]

, and

gvu = exp [f(Iγ) (v − u)] .

Directly from the definitions above, for any u < v < w, we get the compositions

Aw
v ◦ Av

u = Aw
u ,

Ev
u ◦ Aw

v = Ev
u,

gvu ◦ Aw
v = exp [f(Iγ ◦ Aw

v ) (v − u)] ,

and the products

Ev
u · Ew

v = Ew
u , and

gvu · gwv = gwu .

We suppress the dependence on ω for notational convenience.
Fix t ∈ [0, 1], and consider a sequence of partitions ∆n = {0 = t0 < t1 < · · · < tn = t} of

[0, t] such that ‖∆n‖ = sup {ti − ti−1 | i ∈ [n]} → 0. On each subinterval, we

(1) solve the equation having only the diffusion with the initial condition as the solution
of the previous step, and

(2) use the solution obtained in step 1 as the initial condition and solve the equation
having only the drift.

13



tt0 = 0 t1 t2 tn−1 tn = t 1

Y (1)
ξ

X(1)

Y (2)

X(2)

Y (n)

X(n)

Z
· · ·

Figure 2. A graphical representation of the braiding technique.

For the first subinterval, the initial condition of step 1 is taken to be ξ. For a visual repre-
sentation of the idea, see figure 2.

We explicitly demonstrate the process for the first two subintervals. An index (i) in the
superscript refers to the ith subinterval.
First subinterval.

(1) The stochastic differential equation that we want to solve is
{

dY (1)
u = σ(u)Y (1)

u dWu, u ∈ [0, t1],

Y
(1)
0 = ξ.

Lemma 4.8 gave us the almost sure unique solution Y
(1)
u = (ξ ◦ Au

0) E
u
0 , so

Y
(1)
t1

= (ξ ◦ At1
0 ) E

t1
0

on a set Ω1, where P(Ω1) = 1.
(2) For each ω ∈ Ω1, we want to solve the ordinary differential equation

{

dX(1)
u = f(Iγ) X

(1)
u du, u ∈ [0, t1],

X
(1)
0 = Y

(1)
t1
.

By the existence and uniqueness theorem of ordinary differential equations, the

unique solution is given by X
(1)
u = Y

(1)
t1

gu0 = (ξ ◦ At1
0 ) E

t1
0 gu0 , and so

X
(1)
t1

= (ξ ◦ At1
0 ) E

t1
0 gt10 .

Second subinterval.

(1) The stochastic differential equation that we want to solve is
{

dY (2)
u = σ(u) Y (2)

u dWu, u ∈ [t1, t2],

Y
(2)
t1

= X
(1)
t1
.

Lemma 4.8 gives us the almost sure unique solution Y
(2)
u = (X

(1)
t1

◦ Au
t1
) Eu

t1
. Now,

Y (2)
u =

[(

(ξ ◦ At1
0 ) E

t1
0 gt10

)

◦ Au
t1

]

Eu
t1

= (ξ ◦ At1
0 ◦ Au

t1
) Et1

0 Eu
t1
(gt10 ◦ Au

t1
)

= (ξ ◦ Au
0) E

u
0 (gt10 ◦ Au

t1
),
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where we used the fact that Et1
0 is invariant under Au

t1
. This is because, by definition,

Au
t1
(ω·) = ω· −

∫ (·∧u)∨t1

t1

σ(s) ds.

Now, for Et1
0 , we have t ∈ [0, t1]. Therefore,

Au
t1
(ωt) = ωt −

∫ t1

t1

σ(s) ds = ωt,

showing the invariance. This gives the motivation behind why we define A as such,
and is a key trick in the method.
Continuing, we get

Y
(2)
t2

= (ξ ◦ At2
0 ) E

t2
0 (gt10 ◦ At2

t1
)

on a set Ω2 ⊆ Ω1, where P(Ω2) = 1.
(2) For each ω ∈ Ω2, we have the ordinary differential equation

{

dX(2)
u = f(Iγ) X

(2)
u du, u ∈ [t1, t2],

X
(2)
t1

= Y
(2)
t1
.

The unique solution is given by X
(2)
u = Y

(2)
t1

gut1 . Using the definition of Y
(2)
t1

and the

fact that At2
t2
is the identity function,

X
(2)
t2

=
[

(ξ ◦ At2
0 ) E

t2
0 (gt10 ◦ At2

t1
)
]

(gt2t1 ◦ A
t2
t2
)

= (ξ ◦ At2
0 ) E

t2
0

2
∏

i=1

(gt2t1 ◦ A
t2
t2
)

It should now become obvious what the pattern is. We prove this using induction in the
following lemma.

Lemma 4.9. Let ξ ∈ Lp(Ω) for some p > 2. Consider the kth subinterval u ∈ [tk−1, tk] for
any k ∈ [n], and define

(1) the stochastic differential equation
{

dY (k)
u = σ(u) Y (k)

u dWu, u ∈ [tk−1, tk],

Y
(k)
tk−1

= X
(k−1)
tk−1

, and

(2) the ordinary differential equation
{

dX(k)
u = f(Iγ) X

(k)
u du, u ∈ [tk−1, tk],

X
(k)
tk−1

= Y
(k)
tk
.

Then there exists a set Ωk ⊆ Ω with P(Ωk) = 1 such that on Ωk, we have

X
(k)
tk

= (ξ ◦ Atk
0 ) E

tk
0

k
∏

i=1

(gtiti−1
◦ Atk

ti
).
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Proof. Base cases. This is true for k = 1 and k = 2 as shown in the computations above.
Induction step. Assume that the result holds for k = m− 1. This means that there exists

Ωm−1 with P(Ωm−1) = 1 such that on Ωm−1, we have

X
(m−1)
tm−1

= (ξ ◦ Atm−1

0 ) E
tm−1

0 ·
m−1
∏

i=1

(gtiti−1
◦Atm−1

ti
).

Using the ideas of computations on the second subinterval, we get that there exists Ωm

with P(Ωm) = 1 such that on Ωm, we have

Y
(m)
tm

= (ξ ◦Atm
0 ) Etm

0

m−1
∏

i=1

(gtiti−1
◦Atm

ti
).

Since Atm
tm is the identity function, on Ωm, we have

X
(m)
tm = Y

(m)
tm−1

gtmtm−1

= (ξ ◦ Atm
0 ) Etm

0

m
∏

i=1

(gtiti−1
◦ Atm

ti
).

The proof is now complete by mathematical induction. �

We are now able to derive a closed form solution of equation (4.1) in the Skorokhod sense.
This is the main theorem of the section.

Theorem 4.10. Suppose σ, γ ∈ L2[0, 1], f : R → R, and ξ ∈ Lp(Ω) for some p > 2. Then
the unique solution of equation (4.1) in the Skorokhod sense is given by

Zt = (ξ ◦ At
0) exp

[
∫ t

0

σ(s) dWs −
1

2

∫ t

0

σ(s)2 ds

+

∫ t

0

f

(
∫ 1

0

γu dWu −
∫ t

s

γu σ(u) du

)

ds

]

.

Remark 4.11. Note that ξ may depend on the Wiener process.

Proof. Using lemma 4.9, for any t ∈ [0, 1], we have

X
(n)
t = (ξ ◦At

0) E
t
0

k
∏

i=1

(gtiti−1
◦ At

ti
).

Now,

k
∏

i=1

(gtiti−1
◦ At

ti
) =

k
∏

i=1

exp
[

f(Iγ ◦ At
ti
) (ti − ti−1)

]

= exp

[

k
∑

i=1

f

(
∫ 1

0

γu dWu −
∫ t

0

γu σ(u) du

)

∆ti

]

.

16



Finally, taking n→ ∞, we get

Zt = lim
n→∞

X
(n)
t

= (ξ ◦ At
0) E

t
0 exp

[
∫ t

0

f

(
∫ 1

0

γu dWu −
∫ t

0

γu σ(u) du

)

ds

]

,

which exactly equals the proposed solution.
The solution exists almost surely, due to the continuity of the measure. Moreover, the

solution is unique. For if not, there are two solutions which disagree for the first time on a
particular interval, say the kth interval. Recall that the solutions obtained using Malliavin
calculus and also for ordinary differential equations are unique for each interval of time.
Therefore, such a disagreement would violate these uniqueness results. �

5. Large deviation principles

The theory of large deviation allow us to find probabilities of rare events that decay
exponentially. Our goal is to derive large deviation principles for the solutions of LSDEs
that we derived in section 4. But first, we give the formal setting for sample path large
deviations.

Definition 5.1. Let (X , d) be a Polish space and (µǫ)ǫ>0 a sequence of Borel probability
measures on X . Suppose I : X → ∞ is a lower semicontinuous functional. Then the
sequence (µǫ)ǫ>0 is said to satisfy a large deviation principle on X with rate function I if
and only if

(1) (upper bound) for every closed set F ⊆ X ,

lim
ǫ→0

ǫ logµǫ(F ) ≤ − inf
x∈F

I(x),

(2) (lower bound) and for every open set G ⊆ X ,

lim
ǫ→0

ǫ log µǫ(G) ≥ − inf
x∈G

I(x).

The next result states how large deviation principles are transferred under continuous
transformations.

Theorem 5.2 ([2, theorem 4.2.1]). Let X and Y be two polish spaces, I a rate function on
X , and f a continuous function mapping X to Y. Then the following conclusions hold.

(1) For each y ∈ Y,

J(y) = inf
{

I(x) | x ∈ f−1(y)
}

is a rate function on Y,
(2) If {Xn} satisfies large deviation principle on X with rate function I, then {f (Xn)}

satisfies large deviation principle on Y with rate function J .

When are large deviation principles are conserved? To answer this question, we introduce
the idea of superexponential closeness.
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Definition 5.3 ([2, definition 4.2.10]). For ǫ > 0, let Xǫ and Y ǫ be families of random
variables on (Ω,F , P ) that take values in X . Then the families Xǫ and Y ǫ (and their
corresponding families of laws) are said to be superexponentially close if

lim
ǫ→0

ǫ logP {d(Xǫ, Y ǫ) > δ} = −∞.

The following theorem says that large deviation principles are preserved for superexpo-
nentially close families.

Theorem 5.4 ([2, theorem 4.2.13]). Suppose Xǫ and Y ǫ be superexponentially close fami-
lies of random variables on (Ω,F , P ). Then Xǫ follows large deviation principle with rate
function I if and only if Y ǫ follows large deviation principle with the same rate function I.

Finally, we give an example of large deviation principle. Consider the family of process
(
√
ǫW )ǫ>0, where a Wiener process W is scaled down by a parameter

√
ǫ. As ǫ → 0, we have√

ǫW → 0 almost surely. But at what rate does the convergence happen? This is answered
by Schilder’s theorem.

Theorem 5.5 (Schilder [2, theorem 5.2.3]). The sequence of probability measure {pǫ} as
ǫ→ 0 follows Large Deviation Principle on C0 ([0, 1]) with rate function I(f) where

I(f) =

{

1
2

∫ 1

0
|f ′(t)|2dt if f ∈ H1

∞ otherwise.

where H1 = {f ∈ C0 ([0, 1]) | f is absolutely continuous and f ′ ∈ L2[0, 1]}.
5.1. LSDEs with constant initial conditions. Suppose σ and γ are deterministic func-
tions of bounded variation on [0, 1]. Moreover, suppose f ∈ C2(R) is Lipschitz continuous
along with f, f ′, f ′′ ∈ L1(R). For a fixed κ ∈ R, consider the family of linear stochastic
differential equations with parameter ǫ > 0 given by







dZǫ
κ(t) = f

(√
ǫ

∫ 1

0

γs dWs

)

Zǫ
κ(t) dt+

√
ǫσ(t) Zǫ

κ(t) dWt

Zǫ
κ(0) = κ,

(5.1)

Using the results from section 4, the unique solutions to equation (5.1) are given by

Zǫ
κ(t) = κ exp

[√
ǫ

∫ t

0

σ(s) dWs −
ǫ

2

∫ t

0

σ(s)2 ds

+

∫ t

0

f

(√
ǫ

∫ 1

0

γu dWu − ǫ

∫ t

s

γu σ(u) du

)

ds

]

(5.2)

In order to use the continuity principle (theorem 5.2), we need the following lemma.

Lemma 5.6. The function θ : C0 → Cκ defined by

θ(x) = κ exp

[
∫ t

0

σ(s) dx(s)− ǫ

2

∫ t

0

σ(s)2 ds

+

∫ t

0

f

(
∫ 1

0

γu dx(u)− ǫ

∫ t

s

γu σ(u) du

)

ds

]

,

is continuous in the topology induced by the canonical supremum norm.
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Proof. We can write

θ(x) = κ exp

[

φ(x)− ǫ

2

∫ t

0

σ2
s ds+ ψ(x)

]

,

where φ, ψ : C0 → C0 is given by

φ(x) =

∫ t

0

σ(s) dx(s) = σ(t)x(t)−
∫ t

0

x(s) dσ(s), and

ψ(x) =

∫ t

0

f

(
∫ 1

0

γu dx(u)− ǫ

∫ t

s

γu σ(u) du

)

ds.

Using integration by parts,

φ(x) = σ(t)x(t)−
∫ t

0

x(s) dσ(s), and

ψ(x) =

∫ t

0

f

(

γ(1)x(1)−
∫ 1

0

x(s) dγs − ǫ

∫ t

s

γu σ(u) du

)

ds.

Since multiplication by κ exp
(

− ǫ
2

∫ t

0
σ2
s ds
)

and exp are continuous transformations, conti-

nuity of θ is guaranteed if we prove continuity of φ and ψ. This is what we show below. For
φ, we have

‖φ(x)− φ(y)‖∞ =

∥

∥

∥

∥

(

σ(t)x(t)−
∫ t

0

x(s) dσ(s)

)

−
(

σ(t)y(t)−
∫ t

0

y(s) dσ(s)

)
∥

∥

∥

∥

∞

≤ ‖σ(t) (x(t)− y(t))‖∞ +

∥

∥

∥

∥

∫ t

0

(x(s)− y(s)) dσ(s)

∥

∥

∥

∥

∞

≤ ‖σ‖∞ ‖x− y‖∞ + |σ(t)− σ(0)| ‖x− y‖∞
≤ 3 ‖σ‖∞ ‖x− y‖∞ ,

so φ is continuous.
For ψ, if Lf is the Lipschitz constant for f , we get

‖ψ(x)− ψ(y)‖∞ ≤
∥

∥

∥

∥

∥

∫ t

0

Lf

[(

γ(1)x(1)−
∫ 1

0

x(s) dγs −
✟✟✟✟✟✟✟

ǫ

∫ t

s

γu σu du

)

−
(

γ(1)y(1)−
∫ 1

0

y(s) dγs −
✟✟✟✟✟✟✟

ǫ

∫ t

s

γu σu du

)]

ds

∥

∥

∥

∥

∥

∞

≤Lf

∥

∥

∥

∥

∫ t

0

(

γ(1) (x(1)− y(1))−
∫ 1

0

(x(s)− y(s)) dγs

)

ds

∥

∥

∥

∥

∞

≤Lf (‖γ‖∞ ‖x− y‖∞ + |γ(1)− γ(0)| ‖x− y‖)
∞

=3Lf ‖γ‖∞ ‖x− y‖∞ ,

which proves the continuity of ψ. �

The following result now follows directly from the continuity of θ (lemma 5.6), the conti-
nuity principle (theorem 5.2), and Schilder’s theorem (theorem 5.5).
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Theorem 5.7. The laws of the solutions Zǫ
κ given by equation (5.2) of the family of stochastic

differential equations given by equation (5.1) follow a large deviation principle on (Cκ, ‖·‖∞)
with the rate function

J(y) = inf
{

I ◦ θ−1(y)
}

, (5.3)

where θ is as defined in lemma 5.6, and I is the rate function given by theorem 5.5.

5.2. LSDEs with random initial conditions. Is it necessary for the family of linear
stochastic differential equations equation (5.1) to start at a constant point κ ∈ R in order for
it to have a large deviation principle? In this section, we generalize theorem 5.7 and show
that we can derive a similar result under a stronger version of exponential equivalence and
more restrictive conditions on the functions f , σ, and γ.

Suppose σ and γ are deterministic functions of bounded variation on [0, 1]. Moreover,
suppose f ∈ C2(R) is Lipschitz continuous along with f, f ′, f ′′ ∈ L1(R). Consider the family
of linear stochastic differential equations with parameter ǫ > 0 given by







dZǫ
ξ(t) = f

(√
ǫ

∫ 1

0

γs dWs

)

Zǫ
ξ(t) dt+

√
ǫσt Z

ǫ
ξ(t) dWt

Zǫ
ξ(0) = ξǫ,

(5.4)

where ξǫs are random variables independent of the Wiener process W . For each ǫ, just as
before, the unique solution to equation (5.4) is given by

Zǫ
ξ(t) = ξǫ exp

[√
ǫ

∫ t

0

σ(s) dWs −
ǫ

2

∫ t

0

σ(s)2 ds

+

∫ t

0

f

(√
ǫ

∫ 1

0

γu dWu − ǫ

∫ t

s

γu σ(u) du

)

ds

]

(5.5)

We now state a more general large deviation principle.

Theorem 5.8. Let κ ∈ R and consider the family of random variables ξǫ such that the
following hold

lim
ǫ→0

ǫ logE
[

(ξǫ − κ)2
]

= −∞. (5.6)

Moreover, assume that the functions f, f ′, σ, γ are all bounded. Then the laws of the solu-
tions Zǫ

ξ given by equation (5.5) of the family of stochastic differential equations given by
equation (5.4) follow a large deviation principle on (Cκ, ‖·‖∞) with the rate function given
by equation (5.3), where θ is as defined in lemma 5.6, and I is the rate function given by
theorem 5.5.

Proof. Let V ǫ = Zǫ
ξ − Zǫ

κ. Then V
ǫ satisfies the stochastic differential equation







dV ǫ
t = f

(√
ǫ

∫ 1

0

γs dWs

)

V ǫ
t dt+

√
ǫσtV

ǫ
t dWt

V ǫ
0 = ξǫ − κ,

(5.7)
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whose solution is given by

V ǫ
t = (ξǫ − κ) exp

[√
ǫ

∫ t

0

σs dWs −
ǫ

2

∫ t

0

σ2
s ds

+

∫ t

0

f

(√
ǫ

∫ 1

0

γu dWu − ǫ

∫ t

s

γu σu du

)

ds

]

.

Let φ(z) = |z|2 and let U ǫ = φ(V ǫ). From theorem 4.3, U ǫ satisfies the integral equation

U ǫ(t) = (ξǫ − κ)2 + 2
√
ǫ

∫ t

0

σs U
ǫ
s dWs

+ ǫ

∫ t

0

σ2
s U

ǫ
s ds+ f

(
∫ 1

0

√
ǫ γs dWs

)
∫ t

0

U ǫ
s ds

+ 2ǫ

∫ t

0

γs σs U
ǫ
s

∫ s

0

f ′

(
∫ 1

0

√
ǫ γv dWv − ǫ

∫ s

u

γv σv dv

)

du ds.

Fix δ > 0 and let τ = inf {t ∈ [0, 1] : |V ǫ
t | ≥ δ}. Taking expectation of the stopped process

U ǫ
t∧τ , we get

E(U ǫ
t∧τ )

= E
[

(ξǫ − κ)2
]

+ 2
√
ǫE

[
∫ t∧τ

0

σs U
ǫ
s∧τ dWs

]

+ ǫE

[
∫ t∧τ

0

σ2
s U

ǫ
s∧τ ds

]

+ E

[

f

(
∫ 1

0

√
ǫ γs dWs

)
∫ t∧τ

0

U ǫ
s∧τ ds

]

+ 2ǫE

[
∫ t∧τ

0

γs σs U
ǫ
s∧τ

∫ s

0

f ′

(
∫ 1

0

√
ǫ γv dWv − ǫ

∫ s

u

γv σv dv

)

du ds

]

.

The second integral on the right-hand side is a near-martingales by theorem 3.3. Sup-
pose f, f ′, σ, γ are all bounded by some M > 1. Using non-negativity of U ǫ and the near-
martingale optional stopping theorem (corollary 3.11), we get

E(U ǫ
t∧τ ) ≤E

[

(ξǫ − κ)2
]

+ 0

+ ǫM2
E

[
∫ t∧τ

0

U ǫ
s∧τ ds

]

+M E

[
∫ t∧τ

0

U ǫ
s∧τ ds

]

+ 2ǫM3
E

[
∫ t∧τ

0

U ǫ
s∧τ ds

]

≤E
[

(ξǫ − κ)2
]

+
(

M + 2ǫM3
)

E

[
∫ t∧τ

0

U ǫ
s∧τ ds

]

.

By Gronwall’s inequality, we get

E(U ǫ
τ ) = E(U ǫ

1∧τ ) ≤ E
[

(ξǫ − κ)2
]

eM+2ǫM3

.

Since φ(z) is a monotonically increasing non-negative function in |z|, we use Markov’s
inequality to get

P{|V ǫ
τ | ≥ δ} = P{φ(V ǫ

τ ) ≥ φ(δ)} ≤ E(φ(V ǫ
τ ))

φ(δ)
=

E(U ǫ(τ))

δ2
≤ E

[

(ξǫ − κ)2
]

δ2
eM+2ǫM3

.
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Taking log and multiplying by ǫ, we get

ǫ log P{|V ǫ
τ | ≥ δ} ≤ ǫ logE

[

(ξǫ − κ)2
]

− 2ǫ log δ + ǫ(M + 2ǫM3).

Finally, taking limit of ǫ→ 0 and using equation (5.6),

lim
ǫ→0

ǫ logP{|V ǫ
τ | ≥ δ} = −∞.

This result allows us to say that Zǫ
ξ and Z

ǫ
κ are exponentially equivalent. Since exponentially

equivalent families have the same large deviation principle due to theorem 5.4, Zǫ
ξ follows a

large deviation principle with the same rate function given by equation (5.3). �
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