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Abstract

The cycle current is a crucial quantity in stochastic thermodynamics. The absolute and net cycle currents
of a Markovian system can be defined in the loop-erased (LE) or spanning tree (ST) manner. Here we make
a comparative study between the large deviations and fluctuation theorems for LE and ST currents, i.e. cycle
currents defined in the LE and ST manners. First, we derive the exact joint distribution and large deviation rate
function for the LE currents of a system with a cyclic topology and also obtain the exact rate function for the ST
currents of a general system. The relationship between the rate functions for LE and ST currents is clarified and
the analytical results are applied to examine the fluctuations in the product rate of a three-step reversible enzyme
reaction. Furthermore, we examine various types of fluctuation theorems satisfied by LE and ST currents and
clarify their ranges of applicability. We show that both the absolute and net LE currents satisfy the strong form of
all types of fluctuation theorems. In contrast, the absolute ST currents do not satisfy fluctuation theorems, while the
net ST currents only satisfy the weak form of fluctuation theorems under the periodic boundary condition.

1 Introduction

Over the past two decades, significant progress has been made in stochastic thermodynamics [1–3], which has
grown to become an influential branch of nonequilibrium statistical physics. In this field, a thermodynamic system
is usually modelled by a Markov process. Markov chains, whose state spaces are discrete, are the most fundamental
and important dynamic model since any Markov process can always be approximated by a Markov chain. Along
this line, an equilibrium state is defined as a reversible Markov process and the deviation from equilibrium is usually
quantified by the concept of entropy production, which can be represented as a bilinear function of thermodynamic
fluxes and forces [4, 5]. It has long been noticed by Kolmogorov [6, 7] that the reversibility of a Markov chain can
be characterized by its cycle dynamics: the system is reversible if and only if the product of transition probabilities
along each cycle and that along its reversed cycle are exactly the same, which generalizes the Wegscheider condition
for detailed balanced chemical reaction networks. An incisive observation is that the entropy production can be
decomposed along cycles, with the thermodynamics fluxes being the cycle currents (also called cycle fluxes or
circulations) and with the thermodynamic forces being the cycle affinities [8].

The cycle representation theory of Markov chains has found wide applications in physics, chemistry, and
biology [9, 10]. In fact, the current of a cycle can be defined in several different ways. Two common definitions
are based on the spanning tree and loop-erased methods. Hill [11–14] and Schnakenberg [8] developed a network
theory and defined the currents for a family of fundamental cycles. In this theory, a spanning tree is associated with
the transition diagram of a Markov chain, which is a directed graph. Each edge of the graph that does not belong to
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the spanning tree, which is called a chord, will generate a fundamental cycle. The current of a fundamental cycle
is defined as the number of times that the associated chord is traversed per unit time. The Qians [15–17] further
developed the cycle representation theory and defined the currents for all simple cycles of the graph, i.e. cycles
with no repeated vertices except the beginning and ending vertices. In this theory, the trajectory of a Markovian
system is tracked. Once a cycle is formed, it is erased from the trajectory and we further keep track of the remaining
trajectory until the next cycle is formed. The current of a simple cycle then is defined as the number of times that
the cycle is formed per unit time. Recently, another type of cycle currents is proposed based on the idea of sequence
matching [18–20]. In this theory, the currents are defined for all cycles of the graph, i.e. directed paths with the
first and last vertices being equal.

All types of cycle currents can also be defined along a single stochastic trajectory. One of the major advances in
stochastic thermodynamics is the finding that a broad class of thermodynamic quantities such as entropy production
and cycle currents satisfy various types of fluctuation theorems [21–32], which provide nontrivial generalizations
of the second law of thermodynamics in terms of equalities rather than inequalities. For cycle currents defined
in the spanning tree manner, Andrieux and Gaspard [33] proved that the fluctuation theorem holds for net cycle
currents in the long-time limit. Moreover, Polettini and Esposito [34] showed that the transient fluctuation theorem
at any finite time holds if the definition of cycle currents is slightly modified. For the cycle currents defined in the
loop-erased manner, Andrieux and Gaspard [35] and Jia et al. [36] proved that all types of fluctuation theorems
and symmetric relations are satisfied for both the absolute and net cycle currents. For cycle currents defined in
the sequence matching manner, the corresponding fluctuation theorems and symmetric relations have also been
developed recently [20]. The fluctuation theorems for cycle currents have also been developed for some stochastic
processes with continuous state space, such as Langevin dynamics on circles [37].

From the mathematical perspective, another important question is whether various thermodynamic quantities
defined along single stochastic trajectories satisfy the large deviation principle [38, 39]. The large deviations are
concerned with the long-time fluctuation behavior of a stochastic process with small probability and it is closed
related to the fluctuation theorem in the long-time limit. For Markovian systems, the large deviations for empirical
measures, i.e. the number of times that each vertex of the graph is crossed per unit time, and for empirical flows, i.e.
the number of times that each edge of the graph is traversed per unit time, have been extensively studied, while the
large deviations for empirical cycle currents, i.e. the number of times that each cycle of the graph is formed per unit
time, have received comparatively little attention. For cycle currents defined in the spanning tree manner, the large
deviations have been established since in this case, the empirical cycle currents are exactly the empirical flows of
chords [40, 41]. For cycle currents defined in the loop-erased manner, the explicit expression of the large deviation
rate function is still unknown, even for systems with a simple topological structure.

In this paper, we make a comprehensive comparative study between cycle currents defined in the spanning tree
and loop-erased manners, and clarify the connections and differences between them. The structure of this paper is
organized as follows. In Section 2, we recall the definitions of the two types of cycle currents and make a brief
comparison between them. In Section 3, we investigate the large deviations for the two types of cycle currents. We
obtain the exact joint distribution and rate function for loop-erased currents of a monocyclic Markovian system
using the so-called cycle insertion method, and also obtain the exact rate function for spanning tree currents of a
general Markovian system. In Section 4, we state and compare various types of fluctuation theorems and symmetric
relations satisfied by the two types of cycle currents. We clarify the ranges of applications of these fluctuation
theorems and show that all the results for spanning tree currents can be derived naturally from the relevant results
for loop-erased currents. We conclude in Section 5.
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2 Model and two types of cycle currents

2.1 Model

Here we consider a thermodynamic system modelled by a discrete-time Markov chain ξ = (ξn)n≥0 with
state space S = {1, 2, · · · , N} and transition probability matrix P = (pij)i,j∈S , where pij denotes the transition
probability from state i to state j. The transition diagram of the Markov chain ξ is a directed graph G = (S,E),
where the vertex set S is the state space and the edge set E contains all directed edges with positive transition
probabilities (Fig. 1). In this paper, we use 〈i, j〉 to denote the edge from state i to state j. With this notation, the
edge set E can be written more clearly as

E = {〈i, j〉 ∈ S × S : pij > 0},

and we assume that |E| =M , where |E| denotes the number of elements in E. Here we assume that the Markov
chain ξ is irreducible, which means that G is a connected graph. Since the transition from a particular state to itself
is allowed for a Markov chain, the graph G may contain an edge from a state to itself, i.e. a self-loop (Fig. 1).

A special case occurs when the transition diagram G has a cyclic topology (except all self-loops), as illustrated
in Fig. 1(c). Such systems will be referred to as monocyclic Markov chains in this paper. Specifically, the Markov
chain ξ is called monocyclic if pij = 0 for any |i− j| ≥ 2, where i and j are understood to be modulo N . In fact,
monocyclic systems are of particular relevance in the biological context. Many crucial biochemical processes such
as conformational changes of enzymes and ion channels [42, 43], progression of cell cycle [44, 45], phenotypic
switching of cell types [46, 47], phosphorylation-dephosphorylation cycle [48, 49], and activation of promoters
due to chromatin remodeling and transcription factor binding [50, 51] can all be modelled as monocyclic Markov
chains. In what follows, we mainly focus on monocyclic systems, while most of the results can be extended to
general systems.

1

2

3

4 5

6

7

8

(a)
1

2

3

4

1

2

3

4

5

...

1

2

3

4

...

5

(b)

(c) (d)
p1N=0

NN

Figure 1. Transition diagrams and the associated spanning trees for various Markov chains. (a) A Markov
chain with a general transition diagram. The green arrows show the spanning tree T with root vertex 4, and the
red arrows show all the chords of T . (b) A fully connected Markov chain with four states, where each state can
transition to both itself and any other states. (c) A monocyclic Markov chain with N states. Each state can only
transition to itself and its two neighbours. (d) A monocyclic Markov chain with N states. Here the transition from
state 1 to state N is forbidden. In (b)-(d), the green arrows show the spanning tree T .
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2.2 Cycle currents defined in the loop-erased manner

In this paper, we will investigate and compare two types of cycle currents. We first recall cycle currents defined
in the loop-erased manner [17, 52]. A circuit of the Markov chain ξ is defined as a path i1 → i2 → · · · → is → i1

in the graph G from a state to itself, where i1, i2, · · · , is are distinct states in S. Let j1 → j2 → · · · → jr → j1 be
another circuit. The above two circuits are said to be equivalent if r = s and there exists an integer k such that

j1 = ik+1, j2 = ik+2, · · · , jr = ik+s,

where k+1, · · · , k+s are understood to be modulo s. The equivalence class of the circuit i1 → i2 → · · · → is → i1

under the equivalence relation described above is called a cycle and is often denoted by c = (i1, i2, · · · , is). For
example, (1, 2, 3), (2, 3, 1) and (3, 1, 2) represent the same cycle. The reversed cycle of c = (i1, i2, · · · , is) is
defined as c− = (i1, is, · · · , i2). The set of all cycles is called the cycle space and is denoted by C.

The trajectory of a Markov chain constantly forms various cycles. Intuitively, if we discard the cycles formed
by ξ and keep track of the remaining states in the trajectory, then we obtain a new Markov chain ξ̃ = (ξ̃n)n≥0

called the derived chain. For example, if the trajectory of the original chain ξ is {1, 2, 3, 3, 2, 3, 4, 1, 4, · · · }, then
the corresponding trajectory of the derived chain ξ̃ and the cycles formed are shown in Table 1.

n 0 1 2 3 4 5 6 7 8

ξn 1 2 3 3 2 3 4 1 4

ξ̃n [1] [1,2] [1,2,3] [1,2,3] [1,2] [1,2,3] [1,2,3,4] [1] [1,4]

cycles formed (3) (2,3) (1,2,3,4)

Table 1. An example of the derived chain and the cycles formed.

Moreover rigorously, a state of the derived chain ξ̃ is a finite sequence i1, i2, · · · , is of distinct states in S,
denoted by [i1, i2, · · · , is]. Suppose that ξ̃n−1 = [i1, i2, · · · , is] and ξn = is+1. If is+1 /∈ {i1, i2, · · · , is}, then ξ̃n
is defined as (see Table 1 for an illustration)

ξ̃n = [i1, i2, · · · , is, is+1].

On the other hand, if is+1 = ir for some 1 ≤ r ≤ s, then ξ̃n is defined as (see Table 1 for an illustration)

ξ̃n = [i1, i2, · · · , ir].

In this case, we say that the Markov chain ξ forms cycle c = (ir, ir+1, · · · , is) at time n. Let N c
n be the number of

times that cycle c is formed up to time n. Then the empirical (absolute) current of cycle c up to time n is defined as

Jcn =
1

n
N c
n,

and the empirical net current of cycle c up to time n is defined as J̃cn = Jcn − Jc−n . Intuitively, Jcn represents the
number of times that cycle c is formed per unit time and J̃cn represents the net number of times that cycle c is
formed per unit time.

As n→∞, the empirical cycle current Jcn → Jc and empirical net cycle current J̃cn → J̃c will both converge
with probability one. The limits Jc and J̃c are called the current and net current of cycle c, respectively. The
explicit expressions of Jc and J̃c can be found in [17]. The well-known cycle current decomposition theorem [17]
states that

πipij =
∑
c3〈i,j〉

Jc, (1)

where πi is the steady-state probability of state i and the sum on the right-hand side is taken over all cycles c which
traverses edge 〈i, j〉 (the symbol c 3 〈i, j〉 means that cycle c traverses edge 〈i, j〉). This shows that the probability
flux between any pair of states can be decomposed as the sum of cycle currents.
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2.3 Cycle currents defined in the spanning tree manner

The current of a cycle can also be defined in the spanning tree manner [8, 52]. Let T be a directed subgraph
of the transition diagram G, i.e. all the edges of T are also edges of G, and let T denote the undirected graph
associated with T . Recall that T is called a spanning tree (or maximal tree) of G if the following three conditions
are satisfied [52]:

(a) T is a covering subgraph of G, i.e. T contains all the vertices of G;

(b) T is connected;

(c) T has no circuits, where a circuit of an undirected graph is defined as an undirected path from a vertex to
itself.

In the following, we use T to represent both the spanning tree itself and its edge set. The meaning should be clear
from the context. In general, the choice of the spanning tree is not unique, which means that a graph may have
many different spanning trees. It is easy to see that any spanning tree T must contain all the vertices of G and must
have N − 1 edges (see the green arrows in Fig. 1) [52].

A directed edge l /∈ T is called a chord of T (see the red arrows in Fig. 1(a)). Since |E| =M and |T | = N−1,
any spanning tree T must have M −N + 1 chords. Since T is connected and has no circuits, if we add to T one
of its chord l, then the resulting undirected subgraph T ∪ {l} must have exactly one circuit. Let cl be the cycle
obtained from this circuit with the orientation being the same as the chord l. For example, for the system illustrated
in Fig. 1(a), if we add the chord l = 〈2, 1〉 to the spanning tree T , then we obtain the cycle cl = (2, 1, 4, 3). The
family of cycles L = {cl : l /∈ T} generated by the chords is referred to as the fundamental set. Since there is a one
to one correspondence between the chord set and the fundamental set, the number of times that cycle cl is formed is
simply defined as the number of times that chord l is traversed. Along this line, the empirical (absolute) current of
cycle cl up to time n is defined as

Qcln =
1

n

n∑
m=1

1{〈ξm−1,ξm〉=l}.

Intuitively, Qcln represents the number of times that chord l is traversed per unit time. Unlike the loop-erased
technique which can be used to define the currents of all cycles, the spanning tree technique can only be used to
define the currents of cycles in the fundamental set.

Similarly, we can define the empirical net current in the spanning tree manner. The empirical net current of
cycle cl up to time n is defined as Q̃cln = Qcln −Qcl−n . If cl is composed of one or two states, then cl = cl− and
thus Q̃cln = 0. For any chord l = 〈i, j〉, if cl is composed of three or more states and if cl− is in the fundamental
set, then l− = 〈j, i〉 must also be a chord and cl− is exactly the cycle generated by the chord l−. As n→∞, the
empirical cycle current Qcln → Qcl and empirical net cycle current Q̃cln → Q̃cl will both converge with probability
one. The limits Qcl and Q̃cl are called the current and net current of cycle cl, respectively. For any chord l = 〈i, j〉,
it follows from the ergodic theorem of Markov chains that Qcl = πipij .

We emphasize that most previous papers focused on net cycle currents defined in the loop-erased [35] and
spanning tree [8, 33] manners, and absolute cycle currents have received much less attention. Clearly, the net
currents vanish for any one-state and two-state cycles. Hence in previous papers [8, 33, 35], the net currents are
only defined for cycles with three or more states. In this paper, we focus on both absolute and net currents. Here,
following [17, 52], we extend the definition slightly to include cycles with one or two states. This extension turns
out to be useful, as can be seen in Section 3 below.

2.4 Comparisons between two types of cycle currents

Next we make a brief comparison between the two types of cycle currents. In what follows, cycle currents
defined in the loop-erased manner will be called LE currents and those defined in the spanning tree manner will be
called ST currents. We have seen that LE currents are defined for all cycles in the cycle space C, while ST currents
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are only defined for cycles in the fundamental set L. Hence LE currents provide a more complete description of the
cycle dynamics than ST currents. Moreover, since the spanning tree is in general not unique, different choices of
the spanning tree correspond to different ST currents. Clearly, LE currents are independent of the choice of the
spanning tree.

A natural question is how much the fundamental set L is smaller than the cycle space C. Since each chord
corresponds one and only one element in L, we have |L| =M−N+1. It is difficult to provide a unified expression
for |C|. To gain deeper insights, we focus on two special cases. We first consider a Markov chain whose transition
diagram is fully connected, i.e. pij > 0 for any i, j ∈ S, as illustrated in Fig. 1(b). In this case, the number of
cycles with k states is given by N(N − 1) · · · (N − k + 1)/k, and thus

|C| =
N∑
k=1

N(N − 1) · · · (N − k + 1)

k
.

In particular, when N = 4, we have |C| = 24 and the cycle space is given by

C = {(1), (2), (3), (4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),

(1, 2, 3), (1, 2, 4), (1, 3, 2), (1, 3, 4), (1, 4, 2), (1, 4, 3), (2, 3, 4), (2, 4, 3),

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)}.

If we choose the spanning tree to be T = 1→ 2→ 3→ 4, then |L| = 13 and the fundamental set is given by

L = {(1), (2), (3), (4), (1, 2), (2, 3), (3, 4)

(1, 2, 3), (1, 3, 2), (2, 3, 4), (2, 4, 3), (1, 2, 3, 4), (1, 4, 3, 2)}.

For a fully connected system, the number of ST currents is much smaller than the number of LE currents.
We next consider the monocyclic Markov chain illustrated in Fig. 1(c), where each state can only transition to

itself and its two neighbours. In this case, we have |C| = 2N + 2 and the cycle space is given by

C = {(1), · · · , (N), (1, 2), · · · , (N − 1, N), (N, 1), (1, 2, · · · , N), (1, N, · · · , 2)}. (2)

The first N cycles are one-state cycles, i.e. self-loops, the middle N cycles are two-state cycles, and the last two
cycles are N -state cycles. If we choose the spanning tree to be T = 1→ 2→ · · · → N , then |L| = 2N + 1 and
the fundamental set is given by

L = {(1), · · · , (N), (1, 2), · · · , (N − 1, N), (1, 2, · · · , N), (1, N, · · · , 2)}.

For a monocyclic system, there is only one cycle, i.e. cycle (N, 1), that is contained in C but is not contained in L.
To further understand the relationship between the LE current Jcn and the ST currentQcnn , we use the convention

of periodic boundary condition, i.e. ξ0 = ξn, which is a standard assumption in the literature [39]. With this
assumption, for any chord l, it is easy to see that

Qcln =
∑
c3l

Jcn, (3)

where the sum is taken over all cycles c that traverse chord l. Both sides of the equation represent the number of
times that chord l is formed per unit time. This shows that ST currents can be represented as the sum of LE currents.

3 Joint distribution and large deviations for cycle currents

Previous studies about cycle currents mainly focused on the fluctuation relations, i.e. the symmetry relations
satisfied by the probability distribution of cycle currents [35, 36]. However, very little is known about the explicit
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expression of the probability distribution. Here we will address this problem and then use it to study the large
deviations for cycle currents. In Section 3.1, we use methods in combinatorics and graph theory to compute
the explicit expression of the joint probability distribution for LE currents. In Section 3.2, using the exact joint
distribution and the Stirling formula, we investigate the large deviations for LE currents and give the explicit
expression of the corresponding rate function. In Section 3.3, we study the large deviations for ST currents using
the existing large deviation results for empirical flows.

3.1 Joint distribution for LE currents of monocyclic Markov chains

We first focus on the joint distribution for empirical LE currents (Jcn)c∈C . In general, it is very difficult to
obtain the explicit expression of the joint distribution for a general Markov chain. Here we focus on the monocyclic
system illustrated in Fig. 1(c). All possible cycles formed by the system are listed in (2). Without loss of generality,
we assume that the system starts from state 1. For each cycle c = (i1, i2, · · · , is), let γc = pi1i2pi2i3 · · · pisi1
denote the product of transition probabilities along this cycle. For any sequence of negative integers k = (kc)c∈C

satisfying
∑
c∈C |c|kc = n, since we have assumed the periodic boundary condition, the joint distribution of

empirical LE currents is given by

P (Jcn = νc, ∀c ∈ C) = P (N c
n = kc, ∀c ∈ C) = |Gn(k)|

∏
c∈C

(γc)
kc
,

where νc = kc/n is the frequency of occurrence of cycle c and Gn(k) denotes the set of all possible trajectories
up to time n so that each cycle c is formed kc times. Such trajectories will be called allowable trajectories in
what follows. For convenience, we write kc as ki if c = (i) is a one-state cycle, as ki,i+1 if c = (i, i + 1) is a
two-state cycle, as k+ if c = (1, 2, · · · , N) is the clockwise N -state cycle, and as k− if c = (1, N, · · · , 2) is the
counterclockwise N -state cycle (Fig. 1(c)). For example, for a three-state system, if the sequence k = (kc)c∈C is
chosen as

k3 = k12 = k23 = k− = 1, k1 = k2 = k13 = k+ = 0, (4)

then there are eight allowable trajectories up to time n = 8, and all of them are listed in Table 2. Similarly, we
write νc as νi, νi,i+1, ν+, and ν−, and write Jc as J i, J i,i+1, J+, and J−.

m 0 1 2 3 4 5 6 7 8

ξm 1 3 3 2 3 2 1 2 1

ξm 1 3 2 3 3 2 1 2 1

ξm 1 3 3 2 1 2 3 2 1

ξm 1 3 2 1 2 3 3 2 1

ξm 1 2 3 3 2 1 3 2 1

ξm 1 2 3 2 1 3 3 2 1

ξm 1 2 1 3 3 2 3 2 1

ξm 1 2 1 3 2 3 3 2 1

Table 2. An example of allowable trajectories for a monocyclic system. All the eight allowable trajectories for
a three-state system up to time n = 8 so that each one of the four cycles (3), (12), (23), and (1, 3, 2) is formed
once, while the remaining four cycles (1), (2), (13), and (1, 2, 3) are not formed, i.e. k3 = k12 = k23 = k− = 1
and k1 = k2 = k13 = k+ = 0.

We will next compute the number |Gn(k)| of allowable trajectories. The basic idea is to insert all cycles
into the trajectory in some appropriate order. The number of all possible insertions will then be the number of all
allowable trajectories. The calculation is divided into the following three steps.

7



1) Since we have assumed that the system starts from state 1, as the first step, we select all the cycles containing
the initial state 1, i.e. (1), (1, 2), (N, 1), (1, 2, · · · , N), (1, N, · · · , 2), and insert them into the trajectory. Since
each cycle c is formed kc times, the total number of possible insertions in step 1), i.e. the number of all permutations
of these cycles, are given by

A1 =

(
k1 + k12 + kN1 + k+ + k−

k1, k12, kN1, k+, k−

)
:=

(k1 + k12 + kN1 + k+ + k−)!

k1! k12! kN1! k+! k−!
.

For the example given in (4), all possible insertions in step 1) are shown in the left panel of Fig. 2.
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Figure 2. Schematic of the cycle insertion method of constructing all allowable trajectories. Here we use the
example given in (4). The cycle insertion method is divided into three steps: first we insert all the cycles containing
the initial state into the trajectory, next we insert all the remaining two-state cycles into the trajectory, and finally
we insert all the remaining one-state cycles into the trajectory. After the three-step cycle insertion, we find all the
eight allowable trajectories, which coincide exactly with those listed in Table 2.

2) We next insert the remaining two-state cycles (2, 3), (3, 4), · · · , (N − 1, N) into the trajectory. Note that
when the system forms a two-state cycle (i, i+ 1), it may be formed at state i or state i+ 1. For example, for the
trajectory {1, 3, 2, 3, · · · }, when cycle (2, 3) is formed, the derived chain becomes [1, 3]. In this case, we say that
the cycle is formed at state 3. On the contrary, for the trajectory {1, 2, 3, 2, · · · }, when cycle (2, 3) is formed, the
derived chain becomes [1, 2]. In this case, we say that the cycle is formed at state 2.

For any two-state cycle (i, i + 1), let li and mi denote the number of times that it is formed at state i and
state i+ 1, respectively. Clearly, we have li +mi = ki,i+1. When li and mi are fixed, the number of allowable
trajectories can be computed as follows. First we insert the l2 cycle (2, 3) at state 2. There are k12 + k+ possible
positions for the insertion, which correspond to state 2 in the cycles (1, 2) and (1, 2, · · · , N), which have been
arranged in step 1). Note that these positions do not include state 2 in the cycle (1, N, · · · , 2). This is because if
we insert cycle (2, 3) here, then the cycle will be formed at state 3 rather than state 2. Hence the number of possible
insertions is given by (

k12 + k+ + l2 − 1

l2

)
. (5)

Then we insert the li cycle (i, i + 1) at state i one by one for 3 ≤ i ≤ N − 1. For each i, there are li−1 + k+

possible positions for the insertion, which correspond to state i in the cycles (i − 1, i) and (1, 2, · · · , N). The
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number of possible insertions is given by(
li−1 + k+ + li − 1

li

)
, 3 ≤ i ≤ N − 1. (6)

Thus far, we have inserted the li cycle (i, i+ 1) at state i one by one for 2 ≤ i ≤ N − 1. Combining (5) and (6),
the number of possible insertions is given by

N−1∏
i=2

(
li + li−1 + k+ − 1

li

)
,

where l1 := k12.
Next we insert the mi cycle (i, i+ 1) at state i+ 1 one by one for 2 ≤ i ≤ N − 1 in a similar way, and the

number of possible insertions is given by

N−1∏
i=2

(
mi +mi+1 + k− − 1

mi

)
,

where mN := kN1. Up till now, we have inserted all the two-state cycles into the trajectory. Summing over all
choices of li and mi, the total number of possible insertions in step 2) is given by

A2 =
∑

l2+m2=k23

· · ·
∑

lN−1+mN−1=kN−1,N

N−1∏
i=2

(
li + li−1 + k+ − 1

li

)N−1∏
i=2

(
mi +mi+1 + k− − 1

mi

)
.

For the example given in (4), all possible insertions in step 2) are shown in the middle panel of Fig. 2.
3) We finally insert the remaining one-state cycles into the trajectory. Specifically, we insert cycle (i) into the

trajectory one by one for 2 ≤ i ≤ N . For each i, there are
∑
c3i k

c − ki possible positions for the insertion, which
correspond to state i in all the cycles except cycle (i). Hence the total number of possible insertions in step 3) is
given by

A3 =

N∏
i=2

(∑
c3i k

c − 1

ki

)
.

For the example given in (4), all possible insertions in step 3) are shown in the right panel of Fig. 2.
Combining the above three steps, we finally obtain the number of allowable trajectories, which is given by

|Gn(k)| = A1A2A3.

Hence the joint distribution of empirical LE currents can be computed exactly as

P (Jcn = νc, ∀c ∈ C) = A1A2A3

∏
c∈C

(γc)
kc
. (7)

We have seen that most previous papers [8, 33, 35] mainly focus on cycles with three or more states since the net
currents for all one-state and two-state cycles must vanish. Here, we extend the definition slightly to include cycles
with one and two states. This extension has the following two advantages: (i) in this paper, we not only focus
on net cycle currents but also focus on absolute cycle currents; it is clear that the absolute currents for one-state
and two-state cycles do not vanish and thus cannot be ignored; (ii) only when all one-state and two-state cycles
are taken into account, it is possible to recover all the allowable trajectories from empirical cycle currents using
the three-step cycle insertion method; in this way, the joint distribution of empirical cycle currents has a simple
closed-form expression.
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3.2 Large deviations for LE currents of monocyclic Markov chains

The large deviations are concerned with the long-time fluctuation behavior of a stochastic process with small
probability [38, 39]. We next investigate the large deviations for empirical LE currents of a monocyclic Markov
chain. Note that under the periodic boundary condition, the empirical LE currents (Jcn)c∈C must lie in the space

V =

{
(νc)c∈C : ν

c ≥ 0,
∑
c∈C
|c|νc = 1

}
,

where |c| denotes the length of cycle c, i.e. the number of states contained in cycle c. Roughly speaking, (Jcn)c∈C
are said to satisfy a large deviation principle with rate function IJ : V → [0,∞] if the joint distribution satisfies

P(Jcn = νc, ∀c ∈ C) ∝ e−nIJ (ν), n→∞, (8)

for any ν = (νc)c∈C ∈ V . Clearly, the large deviation theory can capture the long-time fluctuation behavior of
cycle currents. Next we only present the main idea of the proof. The rigorous definition and proof of the large
deviation principle can be found in Section 1 of Supplementary Material.

To obtain the explicit expression of the rate function IJ , we recall the Stirling formula

log n! = n log n− n+O(log n) = h(n)− n+O(log n),

where h(x) = x log x for any x ≥ 0. For convenience, set ki =
∑
c3i k

c and νi =
∑
c3i ν

c. Note that the
definitions of ki and ki are different. It then follows from the Stirling formula that

logA1 = log
k1!

k1! k12! kN1! k+! k−!

= h(k1)− h(k1)− h(k12)− h(kN1)− h(k+)− h(k−) +O(log n)

= n
[
h(ν1)− h(ν1)− h(ν12)− h(νN1)− h(ν+)− h(ν−)

]
+O(log n).

(9)

Similarly, we have

logA3 = log

N∏
i=2

(
ki − 1

ki

)
=

N∑
i=2

log
ki!

ki! (ki − ki)!

=

N∑
i=2

[
h(ki)− h(ki)− h(ki − ki)

]
+O(log n)

=

N∑
i=2

n
[
h(νi)− h(νi)− h(νi − νi)

]
+O(log n).

(10)

Finally, we estimate logA2. Let D = {(li,mi)2≤i≤N−1 : li,mi ∈ N, li +mi = ki,i+1} denote the set of all
possible choices of li and mi. For any L = (li,mi) ∈ D, let

BL =

N−1∏
i=2

(
li + li−1 + k+ − 1

li

)(
mi +mi+1 + k− − 1

mi

)

be the number of insertions in step 2) when li and mi are fixed. It is clear that |D| ≤ nN−2. Thus we have

max
L∈D

BL ≤ A2 ≤ nN−2 max
L∈D

BL, (11)
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where we have used the fact that A2 =
∑
L∈D BL. Similarly to (10), we have

logBL =

N−1∑
i=2

[h(li + li−1 + k+)− h(li)− h(li−1 + k+)]

+

N−1∑
i=2

[h(mi +mi+1 + k−)− h(mi)− h(mi+1 + k−)] +O(log n)

=

N−1∑
i=2

n[h(xi + xi−1 + ν+)− h(xi)− h(xi−1 + ν+)]

+

N−1∑
i=2

n[h(yi + yi+1 + ν−)− h(yi)− h(yi+1 + ν−)] +O(log n),

(12)

where xi = li/n and yi = mi/n. For any ν ∈ V , we introduce the space

V (ν) =
{(
xi, yi

)
2≤i≤N−1

: xi, yi ≥ 0, xi + yi = νi,i+1
}
,

and for any X =
(
xi, yi

)
∈ V (ν), we define the function

Fν(X) =

N−1∑
i=2

[
h
(
xi
)
+ h

(
xi−1 + ν+

)
− h

(
xi + xi−1 + ν+

)]
+

N−1∑
i=2

[
h
(
yi
)
+ h

(
yi+1 + ν−

)
− h

(
yi + yi+1 + ν−

)]
,

(13)

where x1 = ν12 and yN = νN1. It then follows from (11) that

logA2 = max
L∈D

logBL +O(log n) = n sup
X∈V (ν)

Fν(X) +O(log n). (14)

Combining (7) and (8), we obtain

IJ(ν) = − lim
n→∞

1

n
logP (Jcn = νc, ∀c ∈ C)

= − lim
n→∞

1

n

[
logA1 + logA2 + logA3 +

∑
c∈C

kc log γc

]
.

It then follows from (9), (10), and (14) that

IJ(ν) =
[
h
(
ν12
)
+ h

(
νN1

)
+ h

(
ν+
)
+ h

(
ν−
)
− h

(
ν12 + νN1 + ν+ + ν−

)]
+ inf
X∈V (ν)

Fν(X) +
∑
i∈S

[
h
(
νi − νi

)
+ h

(
νi
)
− h (νi)

]
−
∑
c∈C

νc log γc,
(15)

where h(x) = x log x and νi =
∑
c3i ν

c. This gives the expression of the rate function IJ for empirical LE
currents. Note that in (15), it is difficult to compute the term infX∈V (ν) Fν(X). A more explicit expression of this
term can be obtained using the Lagrange multiplier method. In Section 2 of Supplementary Material, we have
proved that

inf
X∈V (ν)

Fν(X) = Fν(x
i, yi),

where (xi, yi)2≤i≤N−1 is any solution (such solution must exist but may not be unique) of the following set of
algebraic equations:

xi

xi−1 + xi + ν+
· xi + ν+

xi + xi+1 + ν+
=

yi + ν−

yi−1 + yi + ν−
· yi

yi + yi+1 + ν−
,

xi + yi = νi,i+1,

(16)
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with x1 = ν12, xN = 0, y1 = 0, and yN = νN1.
Thus far, we have assumed that the system starts from state 1. A natural question is whether the rate function

will change when the system starts from other initial distributions. In fact, we can prove that the rate function
is independent of the choice of the initial distribution. Note that this is a highly non-trivial result because in the
expression (15), the status of state 1 and the status of other states are not equal. The proof is rather complicated and
is put in Section 3 of Supplementary Material.

For a general monocyclic system, the expression (15) of the rate function is very complicated. This expression
can be greatly simplified in two special cases: (i) the case where the system has only three states (any three-state
system must be monocyclic) and (ii) the case where the transition from state 1 to state N is forbidden (see Fig. 1(d)
for an illustration). For a three-state system, the rate function reduces to (see Appendix A for the proof)

IJ(ν) =
∑
i∈S

[
νi log

(
νi/νi
J i/Ji

)
+ (νi − νi) log

(
(νi − νi)/νi
(Ji − J i)/Ji

)]
+

∑
c∈C,|c|6=1

νc log

(
νc/ν̃

Jc/J̃

)
, (17)

where

ν̃ =
∑

c∈C,|c|6=1

νc = ν12 + ν13 + ν23 + ν+ + ν−,

J̃ =
∑

c∈C,|c|6=1

Jc = J12 + J13 + J23 + J+ + J−.

For an N -state monocyclic system with the transition from state 1 to state N being forbidden (Fig. 1(d)), the rate
function reduces to (see Appendix A for the proof)

IJ(ν) =
∑
i∈S

[
νi log

(
νi/νi
J i/Ji

)
+ νi,i+1 log

(
νi,i+1/νi
J i,i+1/Ji

)
+
(
νi−1,i + ν+

)
log

((
νi−1,i + ν+

)
/νi

(J i−1,i + J+) /Ji

)]
. (18)

Note that the expressions of the rate function in the two special cases are much simpler and more symmetric than
the general expression given in (15). Clearly, both expressions have a symmetric form with respect to each state and
thus is independent of the choice of the initial distribution. It is well-known that the empirical flows of a Markov
chain, i.e. the number of times that each edge is traversed per unit time, also satisfy a large deviation principle and
the associated rate function has the form of relative entropy (see Section 3.3 for details). Interestingly, we find that
the rate functions given in (17) and (18) also have a functional form similar to relative entropy.

The large deviations for empirical LE currents (Jcn)c∈C can be directly applied to establish the large deviations
for empirical net LE currents (J̃cn)c∈C . Since the empirical net LE currents vanish for any one-state and two-state
cycles and since J̃+

n = −J̃−n for the two N -state cycles (1, 2, · · · , N) and (1, N, · · · , 2), we only need to focus on
the empirical net currents J̃+

n of cycle (1, 2, · · · , N). By the contraction principle, we have

P
(
J̃+
n = x

)
= P

(
J+
n − J−n = x

)
=

∑
ν+−ν−=x

P (Jcn = νc,∀c ∈ C)

∝
∑

ν+−ν−=x

e−nIJ (ν), n→∞.

(19)

This shows that the empirical net LE current J̃+
n satisfies a large deviation principle with rate function

IJ̃(x) = inf
{ν∈V: ν+−ν−=x}

IJ(ν). (20)

3.3 Large deviations for ST currents of general Markov chains

We next focus on the large deviations for empirical ST currents of a general Markov chain. In fact, the large
deviations for empirical net ST currents have been investigated and the symmetry of the rate function has been
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obtained in [40]. Here we focus on the large deviations for empirical (absolute) ST currents. To this end, we first
recall the large deviations for empirical flows [39].

Recall that the empirical flow of edge 〈i, j〉 up to time n is defined as

Rn(i, j) =
1

n

n∑
m=1

1{ξm−1=i,ξm=j}.

Intuitively, Rn(i, j) represents the number of times that edge 〈i, j〉 is traversed per unit time. Note that under the
periodic boundary condition, the empirical flows (Rn(i, j))〈i,j〉∈E must lie in the space

M =

{
(Rn(i, j))〈i,j〉∈E : Rn(i, j) ≥ 0,

∑
i,j∈S

R(i, j) = 1,
∑
j∈S

R(i, j) =
∑
j∈S

R(j, i)

}
.

It is well known that the empirical flows (Rn(i, j))〈i,j〉∈E satisfy the following large deviation principle:

P(Rn(i, j) = R(i, j), ∀〈i, j〉 ∈ E) ∝ e−nIflow(R), n→∞,

where the rate function Iflow :M→ [0,∞] is given by

Iflow(R) =
∑
〈i,j〉∈E

R(i, j) log
R(i, j)

R(i)pij
,

with R(i) =
∑
j∈S R(i, j). Clearly, the rate function for empirical flows has the form of relative entropy. For any

chord l of a fixed spanning tree T , let Hcl be a function on E defined by

Hcl(i, j) =


1, if (i) 〈i, j〉 ∈ T and 〈i, j〉 ∈ cl or (ii) 〈i, j〉 = l,

−1, if 〈i, j〉 ∈ T, 〈i, j〉 /∈ cl, and 〈j, i〉 ∈ cl,

0, otherwise.

(21)

In fact, the empirical flow Rn(i, j) can be represented as the weighted sum of Hcl(i, j) with the weights being all
empirical ST currents [52], i.e.

Rn(i, j) =
∑
cl∈L

QclnH
cl(i, j), 〈i, j〉 ∈ E.

It was further proved in [52] that this representation is unique. In other words, if Rn =
∑
cl∈L µ

clHcl for some
coefficients µcl , then we must have µcl = Qcln for any cl ∈ L. It then follows from the uniqueness of the above
representation that

P(Qcln = µcl , ∀cl ∈ L) = P
(
Rn(i, j) =

∑
cl∈L

µclHcl(i, j), ∀〈i, j〉 ∈ E
)

∝ e−nIflow
(∑

cl∈L
µclHcl

)
, n→∞.

This shows that the empirical ST currents (Qcln )cl∈L satisfy a large deviation principle with rate function

IQ(µ) = Iflow

(∑
cl∈L

µclHcl

)
. (22)

Thus far, we have obtained the explicit expressions of the rate function for empirical LE currents of a
monocyclic system and the rate function for empirical ST currents of a general system. A natural question is what
is the relationship between the two rate functions. To see this, recall that ST currents can be represented by LE
currents as Qcln =

∑
c3l J

c
n. It thus follows from the contraction principle that

P (Qcln = µcl , ∀l ∈ L) = P

(∑
c3l

Jcn = µcl , ∀l ∈ L

)
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=
∑

∑
c3l ν

c=µcl

P (Jcn = νc, ∀c ∈ C)

∝
∑

∑
c3l ν

c=µcl

e−nIJ (ν), n→∞.

This shows that the rate functions for empirical LE and ST currents are connected by

IQ(µ) = inf
{ν∈V:

∑
c3l ν

c=µcl}
IJ(ν).

It is straightforward to prove that the rate function IQ given above coincides with the one given in (22) for
monocyclic systems.

The large deviations for empirical ST currents (Qcln )cl∈L can also be used to establish the large deviations
for empirical net ST currents (Q̃cln )cl∈L. Since the empirical net ST currents vanish for all one-state and two-state
cycles, we only need to focus on cycles with three or more states. Let cl1 , cl2 , · · · , cls be all cycles with three or
more states in the fundamental set so that any two of them are not reversed cycles of each other. By the contraction
principle, the empirical net ST currents (Q̃cli )1≤i≤s of these cycles satisfy a large deviation principle with rate
function

IQ̃(x) = inf
{µ∈M: µ

cli−µcli−=xi, ∀1≤i≤s}
IQ(µ). (23)

3.4 Applications in single-molecule enzyme kinetics

As an application of our theoretical results, we consider the following three-step mechanism of a reversible
enzymatic reaction [10, 53]:

E + S
k01


k−1

ES
k2


k−2

EP
k3


k0−3

E + P,

where E is an enzyme turning the substrate S into the product P . If there is only one enzyme molecule, then it may
convert stochastically among three conformal states: the free enzyme E, the enzyme-substrate complex ES, and
the enzyme-product complex EP . For simplicity, we assume that the enzyme reaction is in an open system with
the concentrations of S and P sustained by an external agent [48]. Then from the enzyme perspective, the kinetics
is stochastic and cyclic with pseudo-first-order rate constants k1 = k0

1[S] and k−3 = k0
−3[P ], where [S] and [P ]

are the sustained concentrations of S and P , respectively (Fig. 3(a)). Note that the time variable of the enzyme
reaction is continuous. However, in experiments, we are only able to observe the system at multiple discrete time
points. If we record the conformal state of the enzyme molecule at a series of time points with interval τ , then the
system can be modelled as a three-state discrete-time Markov chain, which coincides with the model studied in
this paper. Let Q = (qij) be the transition rate matrix of the continuous-time system shown in Fig. 3(a). Then
the transition probability matrix of the discrete-time system is given by P = (pij) = eτQ [54]. The discrete-time
system serves as a good approximation of the continuous-time system when the interval τ is small.

Note that for the cyclic kinetics illustrated in Fig. 3(a), a substrate molecule S is converted into a product
molecule P whenever the clockwise cycle C+ = (E,ES,EP ) is formed, and a product molecule P is converted
into a substrate molecule S whenever the counterclockwise cycle C− = (E,EP,ES) is formed. Thus the rate of
product formation, also called product rate, of the enzyme reaction, i.e. the net conversion of S into P per unit
time, is exactly the net LE current J̃+

n = J+
n − J−n . Previous studies [10] mainly focus on the long-time mean

product rate

lim
n→∞

J̃+
n = J̃+ =

γ+ − γ−

C
,

where γ+ = p12p23p31, γ− = p13p32p21, and

C =

3∑
i=1

[(1− pi−1,i−1)(1− pi+1,i+1)− pi−1,i+1pi+1,i−1].
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Figure 3. Three-step mechanism of a reversible enzymatic reaction. (a) Kinetic scheme of a three-step reversible
enzyme reaction. Here k0

1 and k0
−3 are second-order rate constants, and k1 = k0

1[S] and k−3 = k0
−3[P ] are pseudo-

first-order rate constants. From the perspective of a single enzyme molecule, the reaction is unimolecular and cyclic.
(b) Noise η in the product rate versus the rate constants k−1. The parameters are chosen as τ = 0.01, n = 15,
k0

1 = 2k−1, k2 = 1, k−2 = 1, k3 = 1, k0
−3 = 0.1, [P ] = 1, and [S] is tuned so that 〈J̃+

n 〉 remains invariant.
(c) Noise η in the product rate versus the rate constants k−2. The parameters are tuned as τ = 0.01, n = 15,
k0

1 = 1.2, k−1 = 0.6, k2 = k−2, k3 = 1, k0
−3 = 0.1, [P ] = 1, and [S] is tuned so that 〈J̃+

n 〉 remains invariant. (d)
Distribution of the product rate J̃+

n as time n increases. The blue squares are the ones obtained using stochastic
simulations, the red circles are the ones obtained using the exact joint distribution (7), and the black curves are the
ones obtained using the exact rate function (17) and large deviation approximation (8). The parameters are chosen
as τ = 0.1, k0

1 = 4, k−1 = 2, k2 = 5, k−2 = 1, k3 = 6, k0
−3 = 0.1, and [S] = [P ] = 1.

The analytical results derived in previous sections allow us to investigate the finite-time fluctuation behavior of the
product rate J̃+

n . In experiments, the size of fluctuations, also called noise, in the product rate is often measured by
the coefficient of variation η = σ/µ, where µ = 〈J̃+

n 〉 is the mean and σ is the standard deviation [55]. Note that
we have obtained the exact joint distribution of empirical LE currents in Section 3. Using the joint distribution, it is
easy to calculate all moments, including the mean and standard deviation, of the product rate J̃+

n .
In Fig. 3(b),(c), we illustrate noise η as a function of the rate constants k−1 and k−2. Here k−1 and k−2 are

varied while keeping k0
1/k−1 and k2/k−2 as constant, and the substrate concentration [S] is tuned so that the mean

product rate µ remains invariant (examining protein noise while fixing the protein mean is a common strategy
in molecular biology experiments [56]). From Fig. 3(b), we see that noise in the product rate becomes larger
as k0

1 and k−1 increase (while keeping their ratio as constant). Note that when k0
1 and k−1 are both large, the

reaction E + S 
 ES will reach rapid pre-equilibrium and this is widely known as rapid equilibrium assumption
in enzyme kinetics [49]. Our results show that rapid equilibrium between the enzyme states E and ES leads to
large fluctuations in the product rate. Similarly, from Fig. 3(c), we find that noise in the product rate also becomes
larger as k2 and k−2 increase (while keeping their ratio as constant). Note that when k2 and k−2 are both large,
the two enzyme states ES and EP will reach rapid pre-equilibrium and thus can be combined into a single state
[57, 58]. In this case, the three-step enzyme reaction reduces to the classical two-step Michaelis-Menten enzyme
kinetics

E + S 
 ES 
 E + P,
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This implies that compared to the two-step Michaelis-Menten kinetics, the three-step kinetics results in smaller
fluctuations in the product rate.

While the exact joint distribution for LE currents derived in Section 3.1 can be used to study the fluctuations
in the product rate, it is computationally very slow because we need to calculate a large number of factorials and
combinatorial numbers (see (7)), especially when time n and the number of states N are large. Fortunately, the
large deviations for LE currents studied in Section 3.2 can be used to provide a much more efficient computational
method of the joint distribution. Specifically, we only need to compute the rate function IJ(ν) using (17) and then
apply (8) to construct an approximation of the joint distribution. In Fig. 3(d), we compare the distribution of the
production rate J̃+

n obtained by using stochastic simulations (blue squares), the analytical solution (red circles),
and the large deviation approximation (black curves). As expected, the analytical solution coincides perfectly with
stochastic simulations. Interestingly, we find that the approximate distribution obtained based on the large deviation
theory is in good agreement with the analytical solution when n ≥ 15 and they become practically indistinguishable
when n ≥ 30. According to our simulations, when n = 30, compared with the analytical solution, the large
deviation approximation can save the computational time by over 99%. This suggests that the large deviation
principle studied in this paper is very useful because it enables a fast exploration of large swaths of parameter space.

4 Fluctuation theorems for cycle currents

Next we investigate the fluctuation relations satisfied by the two types of cycle currents. In Section 4.1, using
trajectory reversal method, we obtain a symmetric relation for LE currents of a monocyclic system that is even
stronger than the classical transient and integral fluctuation theorems. In Section 4.2, we generalize the fluctuation
relations to a general system, and reveal their connection with the second law of thermodynamics. In Section 4.3,
we explore the fluctuation relations for ST currents of a general system and compare them with the fluctuation
relations for LE currents.

4.1 Fluctuation theorems for LE currents of monocyclic Markov chains

An important question is whether empirical cycle currents satisfy various fluctuation theorems. In fact, the
transient fluctuation theorem for net LE currents has been investigated in [35, 59]. Here we will prove a symmetric
relation for a monocyclic system that is even stronger than the transient fluctuation theorem. For convenience, we
write the two N -state cycles of a monocyclic system as C+ = (1, 2, · · · , N) and C− = (1, N, · · · , 2). Let N+

n

and N−n denote the number of times that cycles C+ and C− are formed up to time n, respectively. The strong
symmetric relation for LE currents is given by

k+P
(
N+
n = k+, N−n = k− − 1, N c

n = kc, ∀c 6= C+, C−
)

=

(
γ+

γ−

)
k−P

(
N+
n = k+ − 1, N−n = k−, N c

n = kc, ∀c 6= C+, C−
)
,

(24)

where γ+ = p12p23 · · · pN1 and γ− = p21p32 · · · pN1 are the product of transition probabilities along cycles C+

and C−, respectively. In fact, a similar equality has been obtained recently for another type of cycle currents
defined in the sequence matching manner [20]. We next give the proof of (24) for LE currents. Under the periodic
boundary condition, it follows from (7) that

P
(
N+
n = k+, N−n = k− − 1, N c

n = kc, ∀c 6= C+, C−
)

= (γ+)k
+

(γ−)k
−−1

∏
c6=C+,C−

(γc)
kc ∣∣Gn(k+, k− − 1, (kc)c 6=C+,C−)

∣∣ ,
where Gn(k+, k− − 1, (kc)c6=C+,C−) is the collection of all possible trajectories up to time n so that cycle C+ is
formed k+ times, cycle C− is formed k− − 1 times, and any other cycle c 6= C+, C− is formed kc times. For
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simplicity of notation, we rewrite the above equation as

P
(
N+
n = k+, N−n = k− − 1, · · ·

)
= (γ+)k

+

(γ−)k
−−1

∏
c6=C+,C−

(γc)
kc |Gn(k+, k− − 1, · · · )|.

Similarly, replacing k+ by k+ − 1 and replacing k− − 1 by k− in the above equation, we obtain

P
(
N+
n = k+ − 1, N−n = k−, · · ·

)
= (γ+)k

+−1(γ−)k
− ∏
c6=C+,C−

(γc)
kc |Gn(k+ − 1, k−, · · · )|.

Hence, to prove (24), we only need to show that

k+|Gn(k+, k− − 1, · · · )| = k−|Gn(k+ − 1, k−, · · · )|. (25)

For any trajectory {ξ0, ξ1, · · · , ξn} lying in Gn(k+, k−− 1, · · · ), since cycle C+ is formed k+ times, there are k+

beginning times (the times that C+ begins to form) and k+ ending times (the times that C+ has been formed)
for this cycle. Let T begin

i and T end
i denote the ith beginning and ending times for cycle C+, respectively. For

example, for the trajectory given in Table 1, the first beginning time for cycle c = (1, 2, 3, 4) is n = 0 and the first
ending time is n = 7. If we reverse the trajectory {ξ0, ξ1, · · · , ξn} between T begin

i and T end
i , then we obtain a new

trajectory {ξ̃0, ξ̃1, · · · , ξ̃n}, which is given by

ξ̃m =

ξTbegin
i +T end

i −m, if T begin
i ≤ m ≤ T end

i

ξm, otherwise.

Clearly, the reversed trajectory must lie in Gn(k+ − 1, k−, · · · ). Since cycle C+ is formed k+ times, there
are k+|Gn(k+, k− − 1, · · · )| possible reversed trajectories. Among these reversed trajectories, k− trajectories
are exactly the same and are counted repetitively. For example, if C+ = (1, 2, 3) and C− = (1, 3, 2), then
the trajectories {1, 2, 3, 1, 2, 3, 1, 3, 2} and {1, 2, 3, 1, 3, 2, 1, 2, 3} in G8(2, 1, · · · ) can both be reversed to the
trajectory {1, 2, 3, 1, 3, 2, 1, 3, 2} in G8(1, 2, · · · ), and thus are counted twice. As a result, the number of possible
trajectories in Gn(k+ − 1, k−, · · · ) is given by

|Gn(k+ − 1, k−, · · · )| = k+

k−
|Gn(k+, k− − 1, · · · )|,

which is exactly (25). Thus we have proved the strong symmetric relation given by (24). Applying the symmetric
relation |k+ − k−| times, we obtain the transient fluctuation theorem for LE currents

P
(
N+
n = k+, N−n = k−, · · ·

)
= P

(
N+
n = k−, N−n = k+, · · ·

)(γ+

γ−

)k+−k−
. (26)

Thus far, we have proved the symmetric relation (24) and transient fluctuation theorem (26) under the periodic
boundary condition. Without the periodic boundary condition, these two equalities are also valid for monocyclic
systems; the proof is similar and thus is omitted.

The transient fluctuation theorem can be used to prove other two types of fluctuation theorems. To see this,
recall that the moment generating function of empirical LE currents is defined as

gn(λ
+, λ−, · · · ) =

〈
eλ

+N+
n +λ−N−n +

∑
c 6=C+,C− λ

cNcn
〉
,

where 〈A〉 denotes the mean of A. Then the following Kurchan-Lebowitz-Spohn-type fluctuation theorem holds:

gn(λ
+, λ−, · · · ) =

∑
k

e
∑
c∈C λ

ckcP
(
N+ = k+, N− = k−, · · ·

)
=
∑
k

e
∑
c∈C λ

ckcP
(
N+ = k−, N− = k+, · · ·

)(γ+

γ−

)k+−k−
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=
∑
k

e
···+

(
λ+−log γ+

γ−

)
k++

(
λ−−log γ−

γ+

)
k−P(N+ = k−, N− = k+, · · · )

=

〈
e

(
λ−−log γ+

γ−

)
N+
n +
(
λ++log γ+

γ−

)
N−n +···

〉
= gn

(
λ− − log

γ+

γ−
, λ+ + log

γ+

γ−
, · · ·

)
,

where log(γ+/γ−) is the affinity of cycle C+ [2]. We next consider the long-time limit behavior of a monocyclic
system. As n→∞, it is easy to see that

e−nIJ (ν+,ν−,··· ) ∝ P
(
J+
n = ν+, J−n = ν−, · · ·

)
= P

(
J+
n = ν−, J−n = ν+, · · ·

)(γ+

γ−

)n(ν+−ν−)

∝ e−n
[
IJ (ν−,ν+,··· )−

(
log γ+

γ−

)
(ν+−ν−)

]
.

This yields the Gallavotti-Cohen-type fluctuation theorem

IJ(ν
+, ν−, · · · ) = IJ(ν

−, ν+, · · · )−
(
log

γ+

γ−

)
(ν+ − ν−). (27)

Similarly, we can also obtain the fluctuation theorems for net LE currents. For a monocyclic system, we only
need to focus on the empirical net LE current J̃+

n of cycle C+. Let g̃n(λ) = 〈eλnJ̃
+
n 〉 be the moment generating

function of J̃+
n and let IJ̃(x) be the rate function of J̃+

n given in (20). The various fluctuation theorems for net LE
currents were first obtained in [59] and are summarized as follows. The proof is similar and thus is omitted.

1) Transient fluctuation theorem:

P(J̃+
n = x)

P(J̃+
n = −x)

=

(
γ+

γ−

)nx
.

2) Kurchan-Lebowitz-Spohn-type fluctuation theorem:

g̃n(λ) = g̃n

(
−
(
λ+ log

γ+

γ−

))
.

3) Integral fluctuation theorem: Taking λ = − log(γ+/γ−) in the above equation yields〈
eλnJ̃

+
n

〉
= 1.

4) Gallavotti-Cohen-type fluctuation theorem:

IJ̃(x) = IJ̃(−x)−
(
log

γ+

γ−

)
x.

4.2 Fluctuation theorems for LE currents of general Markov chains

We have seen that various symmetric relations and fluctuation theorems hold for LE currents of a monocyclic
system. A natural question is whether these results can be extended to a general Markov chain. Before stating the
results, we recall the definition of similar cycles [36]. Let c1 = (i1, i2, · · · , is) and c2 = (j1, j2, · · · , jr) be two
cycles. Then c1 and c2 are called similar if s = r and {i1, i2, · · · , is} = {j1, j2, · · · , jr}. In other words, two
cycles are similar if they pass through the same set of states. For example, the following six cycles:

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)

are similar. Note that any cycle C and its reversed cycle C− must be similar.
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We first focus on empirical LE currents (Jcn)c∈C , where Jcn = N c
n/n. For a general Markov chain, if cycles c1

and c2 are similar, then the following symmetric relation holds:

kc1P(N c1
n = kc1 , N c2

n = kc2 − 1, N c
n = kc, ∀c 6= c1, c2)

kc2P(N c1
n = kc1 − 1, N c2

n = kc2 , N c
n = kc, ∀c 6= c1, c2)

=
γc1

γc2
. (28)

If we choose c1 and c2 to be some cycle C+ and its revered cycle C−, then this equality reduces to

k+P(N+
n = k+, N−n = k− − 1, N c

n = kc, ∀c 6= C+, C−)

k−P(N+
n = k+ − 1, N−n = k−, N c

n = kc, ∀c 6= C+, C−)
=
γ+

γ−
.

This can be viewed as a generalization of (24) in the monocyclic case. Applying (28) repeatedly gives the following
transient fluctuation theorem for LE currents:

P(N c1
n = kc1 , N c2

n = kc2 , N c
n = kc, ∀c 6= c1, c2)

P(N c1
n = kc2 , N c2

n = kc1 , N c
n = kc, ∀c 6= c1, c2)

=

(
γc1

γc2

)kc1−kc2
. (29)

This shows that if the cycles c1 and c2 are similar, then the joint distribution of empirical LE currents satisfies a
symmetric relation under the exchange of kc1 and kc2 . Actually, the proof of (29) has been given in [36] under the
restrictions that all cycles under consideration pass through a common state i ∈ S and the Markov chain also starts
from state i. Fortunately, this technical assumption can be removed and the result holds generally (manuscript in
preparation).

We next consider empirical net LE currents (J̃cn)c∈C . Let c1, c2, · · · , cr be all cycles with three or more states
in the cycle space so that any two of them are not reversed cycles of each other (the empirical net LE currents for
one-state and two-state cycles vanish and do not need to be considered). It then follows from (29) that

P
(
J̃c1n = x1, J̃

cm
n = xm, ∀2 ≤ m ≤ r

)
= P

(
N c1
n −N c1−

n = nx1, N
cm
n −N cm−

n = nxm, ∀2 ≤ m ≤ r
)

=
∑

kci−kci−=nxi, ∀1≤i≤r

P
(
N c1
n = kc1 , N c1−

n = kc1−, N cm
n = kcm , N cm−

n = kcm−, ∀2 ≤ m ≤ r
)

=
∑

kci−kci−=nxi, ∀1≤i≤r

P
(
N c1
n = kc1−, N c1−

n = kc1 , N cm
n = kcm , N cm−

n = kcm−, ∀2 ≤ m ≤ r
)( γc1

γc1−

)nx1

= P
(
N c1
n −N c1−

n = −nx1, N
cm
n −N cm−

n = nxm, ∀2 ≤ m ≤ r
)
e
nx1 log γc1

γc1−

= P
(
J̃c1n = −x1, J̃

cm
n = xm, ∀2 ≤ m ≤ r

)
e
nx1 log γc1

γc1− .

Hence we have obtained the following transient fluctuation theorems for net LE currents:

P(J̃c1n = x1, J̃
cm
n = xm, ∀2 ≤ m ≤ r)

P(J̃c1n = −x1, J̃
cm
n = xm, ∀2 ≤ m ≤ r)

= e
nx1 log γc1

γc1− . (30)

This shows that the joint distribution of empirical net LE currents satisfies a symmetric relation when any xi is
replaced by −xi. In fact, this result which was first found in [59] for a monocyclic system and further generalized
in [35] to a general system, while the proof is not totally rigorous. If we change xi to −xi one by one for 1 ≤ i ≤ r
in the above equation, then we obtain

P
(
J̃c1n = x1, J̃

c2
n = x2, · · · , J̃crn = xr

)
P
(
J̃c1n = −x1, J̃

c2
n = −x2, · · · , J̃crn = −xr

) = e
n
∑r
i=1 xi log γci

γci− . (31)

Note that (31) is much weaker than (30). In what follows, we term (30) the strong form and term (31) the weak

form of the transient fluctuation theorem.
Other types of fluctuation theorems for absolute and net LE currents can be easily derived from the transient

fluctuation theorem and are summarized as follows. Here we only focus on the strong form of various fluctuation
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theorems; the weak form can be obtained similarly. Let gn(λ) = 〈en
∑
c∈C λiJ

ci
n 〉 and g̃n(λ) = 〈en

∑r
i=1 λiJ̃

ci
n 〉 be

the moment generating functions of (Jcin )ci∈C and (J̃cin )1≤i≤r, respectively. Moreover, let IJ(x) and IJ̃(x) be the
rate functions of (Jcin )ci∈C and (J̃cin )1≤i≤r, respectively.

1) Kurchan-Lebowitz-Spohn-type fluctuation theorem: if cycles c1 and c2 are similar, then

gn(λ1, λ2, · · · ) = gn

(
λ2 − log

γc1

γc2
, λ1 + log

γc1

γc2
, · · ·

)
.

g̃n(λ1, · · · ) = g̃n

(
−
(
λ1 + log

γc1

γc1−

)
, · · ·

)
.

2) Integral fluctuation theorem: for any subset {c1, c2, · · · , ct} ⊂ {c1, c2, · · · , cr}, we have〈
e
−n
∑t
i=1 J̃

ci
n log γci

γci−

〉
= 1. (32)

3) Gallavotti-Cohen-type fluctuation theorem: if cycles c1 and c2 are similar, then

IJ(x1, x2, · · · ) = IJ(x2, x1, · · · )−
(
log

γc1

γc2

)
(x1 − x2).

IJ̃(x1, · · · ) = IJ̃(−x1, · · · )−
(
log

γc1

γc1−

)
x1.

The fluctuation theorems for net LE currents have important physical implications. To see this, recall that the
total entropy production of a Markovian system along a single trajectory {ξ0, ξ1, · · · , ξn} is given by [29]

Stotn = log
µ0(ξ0)pξ0ξ1pξ1ξ2 · · · pξn−1ξn

µn(ξn)pξnξn−1
pξn−1ξn−2

· · · pξ1ξ0
= log

µ0(ξ0)

µn(ξn)
+

n−1∑
k=0

pξkξk+1

pξk+1ξk

,

where µ0 = (µ0(i))i∈S is the distribution of ξ0 and µn = (µn(i))i∈S is the distribution of ξn. Under the periodic
boundary condition, it is clear that µ0(ξ0) = µn(ξn). Moreover, we have

pξ0ξ1pξ1ξ2 · · · pξn−1ξn =
∏
c∈C

(γc)N
c
n , pξnξn−1

pξn−1ξn−2
· · · pξ1ξ0 =

∏
c∈C

(γc)N
c−
n .

Combining the above two equations, we obtain

Stotn = n
∑
c∈C

J̃cn log γ
c =

n

2

∑
c∈C

J̃cn log
γc

γc−
= n

r∑
i=1

J̃cin log
γci

γci−
, (33)

where we have used the fact that J̃c−n = −J̃cn in the second identity. This shows that the total entropy production
can be decomposed as the weighted sum of net LE currents with the weights being all cycle affinities, and the
quantity nJ̃cn log(γ

c/γc) can be understood as the entropy product along cycle c. It is well known as the total
entropy production of any Markovian system satisfies the integral fluctuation theorem 〈e−Stotn 〉 = 1 [29], which
implies the classical second law of thermodynamics 〈Stotn 〉 ≥ 0. Our results indicate that the integral fluctuation
theorem not only holds for the total entropy production, but also holds for the entropy production along any finite
number of cycles c1, c2, · · · , ct (see (32)). In particular, for any cycle c, we have〈

e
−nJ̃cn log γc

γc−

〉
= 1.

This much stronger than the classical result for the total entropy production. Moreover, applying Jensen’s inequality
to the integral fluctuation theorem (32), we find〈

t∑
i=1

J̃cin log
γci

γci−

〉
≥ 0. (34)
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where c1, c2, · · · , ct are any finite number of cycles. In particular, for any cycle c, we have〈
J̃cn log

γc

γc−

〉
≥ 0.

This provides a much refined version of the second law of thermodynamics, which shows that the entropy production
along any finite number of cycles has a nonnegative mean. This reveals the hidden refined structure behind the
underlying system.

4.3 Fluctuation theorems for ST currents of general Markov chains

We have seen that both absolute and net LE currents satisfy various fluctuation theorems. A natural question is
whether similar relations also hold for absolute and net ST currents. In fact, (absolute) ST currents do not satisfy
any form of fluctuation theorems, even for monocyclic systems. To see this, consider a fully connected three-state
system and let T = 1→ 2→ 3 be the spanning tree. Then the fundamental set is given by

L = {(1), (2), (3), (1, 2), (2, 3), (1, 2, 3), (1, 3, 2)}.

It then follows from (22) that the rate function for empirical ST currents is given by

IQ(µ) =
∑
〈i,j〉∈E

Rµ(i, j) log
Rµ(i, j)

Rµ(i)pij
,

where Rµ(i, j) =
∑
cl∈L µ

clHcl(i, j) and Rµ(i) =
∑
j∈S R

µ(i, j). For simplicity of notation, let µ+ = µ(1,2,3)

and let µ− = µ(1,3,2). In Fig. 4(a), we illustrate the difference between IQ(µ+, µ−, · · · ) and IQ(µ−, µ+, · · · )−
log(γ+/γ−)(µ+ − µ−) as a function of µ+ and µ− under a set of appropriately chosen parameters. It is clear that
the difference is nonzero and thus we have

IQ(µ
+, µ−, · · · ) 6= IQ(µ

−, µ+, · · · )−
(
log

γ+

γ−

)
(µ+ − µ−), (35)

which means that the Gallavotti-Cohen-type fluctuation theorem is broken. Other types of fluctuation theorems
must also be broken since the Gallavotti-Cohen-type fluctuation theorem is the weakest among all fluctuation
theorems.

While various fluctuation theorems fail for ST currents, they may hold for net ST currents [33]. To see this,
note that for a monocyclic system, we only need to consider the empirical net current Q̃+

n of cycle C+. Suppose
that the spanning tree is chosen as T = 1 → 2 → · · · → N . With the periodic boundary condition, it follows
from (3) that Q+

n = J+
n + J

(N,1)
n and Q−n = J−n + J

(N,1)
n . These two equations imply that Q̃+

n = J̃+
n , and

thus the fluctuation theorems for net ST currents naturally follow from those for net LE currents. Without the
periodic boundary condition, the Gallavotti-Cohen-type fluctuation theorem still holds since it reflects the long-time
behavior of the system and assuming the periodic boundary condition or not will not influence the large deviation
rate function, while the other three types of fluctuation theorems are all broken. It has been shown in [34] that all
the four types of fluctuation theorems are satisfied for a modified version of net ST currents.

The above results can be extended to a general system. Let cl1 , cl2 , · · · , cls be all cycles with three or more
states in the fundamental set so that any two of them are not reversed cycles of each other (the empirical net ST
currents for one-state and two-state cycles vanish and do not need to be considered). In [33], the authors have
proved the following weak form of the Gallavotti-Cohen-type fluctuation theorem for net ST currents:

IQ̃(x1, x2, · · · , xs) = IQ̃(−x1,−x2, · · · ,−xs)−
s∑
i=1

xi log
γcli

γcli−
. (36)

This shows that the joint distribution of empirical net ST currents satisfies a symmetric relation when all xi are
replaced by −xi. In fact, the above equality can be obtained directly from the fluctuation theorems for net LE
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Figure 4. Some fluctuation theorems may be broken for absolute and net ST currents. (a) Heat plot of
ρ = IQ(µ

+, µ−, · · · )− IQ(µ−, µ+, · · · ) + log(γ+/γ−)(µ+ − µ−) as a function of µ+ and µ− for a three-state
system. The fact that ρ 6≡ 0 shows that the Gallavotti-Cohen-type fluctuation theorem is broken for absolute
ST currents. The parameters are chosen as µ1 = 15, µ2 = 20, µ3 = 3, µ12 = 21, µ23 = 37, p11 = 0.28,
p12 = 0.22, p13 = 0.5, p21 = 0.1, p22 = 0.6, p23 = 0.3, p31 = 0.3, p32 = 0.3, p33 = 0.4. (b) Change of
ρ = IQ̃(x1, x2, x3) − IQ̃(−x1, x2, x3) + log(γc1/γc1−)x1 as a function of x1 for a four-state system. The fact
that ρ 6≡ 0 shows that the strong form of the Gallavotti-Cohen-type fluctuation theorem is broken for net ST
currents. The parameters are chosen as x2 = 2, x3 = 3, p11 = 0.1, p12 = 0.2, p13 = 0.3, p14 = 0.4, p21 = 0.5,
p22 = 0.15, p23 = 0.15, p24 = 0.2, p31 = 0.1, p32 = 0.4, p33 = 0.25, p34 = 0.25, p41 = 0.2, p42 = 0.2,
p43 = 0.3, p44 = 0.3.

currents. For any cycle cl ∈ L with three or more states, under the periodic boundary condition, it follows from (3)
that

Q̃cln =
∑
c3l

Jcn −
∑
c3l−

Jcn =
∑
c3l

Jcn −
∑
c3l

Jc−n =
∑
c3l

J̃cn. (37)

This indicates that empirical net ST currents can be decomposed as the sum of empirical net LE currents. It then
follows from (31) that (see Appendix B for the proof)

P
(
Q̃
cl1
n = x1, · · · , Q̃

cls
n = xs

)
P
(
Q̃
cl1
n = −x1, · · · , Q̃

cls
n = −xs

) = e
n
∑s
i=1 xi log γ

cli

γ
cli
−
. (38)

This shows that net ST currents satisfy the weak form of the transient fluctuation theorem under the periodic
boundary condition. The weak form (36) of the Gallavotti-Cohen-type fluctuation theorem holds generally since
assuming the periodic boundary condition or not will not influence the large deviation rate function.

In contrast to net LE currents, net ST currents do not satisfy the strong form of fluctuation theorems; this fact
has been found in previous papers [60–63]. To give a counterexample, we consider a fully connected four-state
system illustrated in Fig. 1(b). Suppose that the spanning tree is chosen as T = 1 → 2 → 3 → 4. In this case,
we only need to consider the net ST currents of the three cycles c1 = (1, 2, 3), c2 = (2, 3, 4), and c3 = (1, 2, 3, 4),
since other cycles in the fundamental set are either their reversed cycles or cycles with one or two states. Recall that
the rate function of empirical net ST currents (Q̃c1n , Q̃

c2
n , Q̃

c3
n ) is given by

IQ̃(x) = inf
{µ∈M:µci−µci−=xi, ∀1≤i≤3}

IQ(µ). (39)

In Fig. 4(b), we illustrate the difference between IQ̃(x1, x2, x3) and IQ̃(−x1, x2, x3) − log(γc1/γc1−)µ̃c1 as a
function of x1 under a set of appropriately chosen parameters. It is clear that the difference is nonzero and thus

IQ̃(x1, x2, x3) 6= IQ̃(−x1, x2, x3)−
(
log

γc1

γc1−

)
µ̃c1 . (40)

Hence the strong form of the Gallavotti-Cohen-type fluctuation theorem fails for net ST currents.
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We next discuss the connection between ST currents and entropy production. Similarly to (33), under the
periodic boundary condition, the total entropy product along a single trajectory can be also decomposed as the
weighted sum of net ST currents [8], i.e.

Stotn = n

s∑
i=1

Q̃
cli
n log

γcli

γcli−
. (41)

Hence within the spanning tree framework, the quantity nQ̃cln log(γcl/γcl−) can be understood as the entropy
production along fundamental cycle cl. Note that this is totally different from the quantity J̃cln log(γcl/γcl−)

investigated in Section 4.3. We have seen that within the loop-earased framework, the entropy production along
any finite number of cycles satisfies both the strong form of integral fluctuation theorem (32) and the refined
version of the second law of thermodynamics (34). Since the strong form of fluctuation theorems fails for net ST
currents, the entropy production along any fundamental cycle does not satisfy the refined version of the second law
of thermodynamics. In other words, it may occur that〈

Q̃cln log
γcl

γcl−

〉
< 0,

for some fundamental cycle cl.
The reason why the strong form of fluctuation theorems and the refined version of the second law of

thermodynamics are broken for net ST currents can be explained as follows. From (37), it is clear that the net ST
current Q̃cln of fundamental cycle cl can be decomposed as the sum of the net LE currents J̃cn of all cycles c that
traverse chord l, i.e. Q̃cln =

∑
c3l J̃

c
n. Note that these cycles c that traverse chord l have different affinities, which

may not be equal to the affinity of fundamental cycle cl. Hence even if 〈J̃cn log(γc/γc−)〉 ≥ 0 for all cycle c, we
cannot conclude that 〈Q̃cln log(γcl/γcl−)〉 ≥ 0. The weak form of fluctuation theorems holds for net ST currents
since it is essentially the fluctuation theorems for the total entropy production (see (41)).

In summary, we have seen that LE currents have much better properties than ST currents; the former satisfies
a much refined version of the second law of thermodynamics while the latter does not. This demonstrates the
advantage of LE currents in dealing with complex thermodynamic systems far from equilibrium (for simple
monocyclic systems, the net LE and ST currents are the same).

5 Conclusions and discussion

In this paper, we make a comparative study between the large deviations and fluctuation theorems for empirical
cycle currents of a Markov chain defined in the LE and ST manners. LE currents are defined for all cycles in the
cycle space, while ST currents are only defined for cycles in the fundamental set generated by the chords of an
arbitrarily chosen spanning tree. The fundamental set may be much smaller than the cycle space for a general
system. However, for a system with a cyclic topology, there is at most one cycle that is contained in the cycle space
but is missing in the fundamental set. LE currents provide a more complete and detailed description for the cycle
dynamics than ST currents. Under the periodic boundary condition, the ST current of any cycle can be represented
by the weighted sum of LE currents.

Furthermore, we establish the large deviation principle and provide the explicit expression of the associated
rate function for empirical LE currents of a monocyclic Markov chain. The proof is based on deriving the joint
distribution of empirical LE currents of all cycles in closed form. When computing the joint distribution, we
propose the method of three-step cycle insertion: (i) the first step is to insert all cycles that pass through the initial
state into the trajectory, (ii) the second step is to insert all two-state cycles that do not contain the initial state into
the trajectory, (iii) and the third step is to insert all one-state cycles that do not contain the initial state into the
trajectory. In addition, the rate function is proved to be independent of the initial distribution of the system. The
analytical expression of the rate function is complicated for a general monocyclic system. However, it can be
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greatly simplified for a three-state system and for a monocyclic system with a certain transition between adjacent
states being forbidden. Following the method proposed in [40] which only focused on empirical net ST currents,
we also give the exact rate function for empirical (absolute) ST currents of a general system. The relationship
between the rate functions of empirical LE and ST currents is clarified.

The analytical results are then applied to investigate the fluctuations in the product rate for a three-step
reversible enzyme reaction, which can be modelled as a three-state monocyclic system. A single enzyme molecule
can convert stochastically among three conformal states: the free enzyme E, the enzyme-substrate complex ES,
and the enzyme-product complex EP . The product rate of the enzyme reaction is exactly the empirical net LE
current of the monocyclic system. Using the exact joint distribution for LE currents, we find that rapid equilibrium
between the enzyme states E and ES and rapid equilibrium between the enzyme states ES and EP both result in
larger fluctuations in the product rate. Moreover, compared with the analytical solution, we show that the large
deviations for LE currents provide a much more efficient computational method of the joint distribution, and thus
enables a fast exploration of large swaths of parameter space.

Finally, we examine various types of fluctuation theorems satisfied by empirical LE and ST currents and
clarify their ranges of applicability. We first show that the empirical absolute and net LE currents satisfy all types of
fluctuation theorems and symmetric relations. In particular, we introduce the concept of similar cycles and obtain
the strong form of the transient fluctuation theorem: (i) the joint distribution of empirical LE currents satisfies
a symmetric relation when the currents of any pair of similar cycles are exchanged; (ii) the joint distribution
of empirical net LE currents satisfies a symmetry relation when the net current of any cycle is replaced by its
opposite number. Since empirical ST currents can be represented by the weight sums of empirical LE currents
under the periodic boundary condition, we further show that empirical ST currents do not satisfy any form of
fluctuation theorems, while empirical net ST currents only satisfy the weak form of the transient fluctuation theorem
under the periodic boundary condition: the joint distribution of empirical net ST currents satisfies a symmetry
relation when the net currents of all cycles in the fundamental set are replaced by their opposite numbers. As a
corollary of the integral fluctuation theorem, we show that LE currents satisfy a refined version of the second law
of thermodynamics: the entropy production along any finite number of cycles has a nonnegative mean, while it is
broken for ST currents.

In the present paper, some results are only obtained for a monocyclic Markov chain. We anticipate that these
results can be generalized to more general Markovian systems and even to semi-Markovian or non-Markovian
systems. In addition, here we only make a comparison between LE and ST currents. The relationship between
these two types of cycle currents and those defined in the sequence matching manner [18–20] is not clear. These
are under current investigation.
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Appendix A: Simplified expression of rate function IJ in two special cases

We have seen that the rate function IJ for empirical LE currents of a monocyclic system can be simplified to a
large extent in two special cases: (i) the case where the system has only three states and (ii) the case where the
transition from state 1 to state N is forbidden (see Fig. 1(d) for an illustration). Next we will give the proof.

We first prove that for a three-state system, the rate function is given by (17). When N = 3, it is easy to see
that the solution X = (x2, y2) of (16) is given by

x2 =
ν23
(
ν12 + ν+

)
ν12 + ν13 + ν+ + ν−

, y2 =
ν23
(
ν13 + ν−

)
ν12 + ν13 + ν+ + ν−

.
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Note that the solution X = (x2, y2) minimizes the function Fν . Then we have

I2(ν) = Fν(X) = ν23 log
ν23

ν̃
+
(
ν12 + ν13 + ν+ + ν−

)
log

ν̃ − ν23

ν̃
.

Straightforward calculations show that

I1(ν) + I2(ν) + I3(ν) =
∑
i∈S

[
νi log

νi

νi
+ (νi − νi) log

νi − νi

νi

]
+

∑
c∈C,|c|6=1

νc log
νc

ν̃
. (42)

Recall the following expression of the LE currents [17, Theorem.1.3.3]:

J+ = γ+ 1

C
, J− = γ−

1

C
, J i,i+1 = γi,i+1 1− pi−1,i−1

C
, 1 ≤ i ≤ 3, (43)

where C =
∑
i∈S [(1− pi−1,i−1)(1− pi+1,i+1)− pi−1,i+1pi+1,i−1]. It then follows from (1) that

pij =

∑
c3〈i,j〉 J

c∑
c3i J

c
. (44)

Combining (43) and (44), we have∑
i∈S

[
νi log

J i

Ji
+
(
νi − νi

)
log

Ji − J i

Ji

]
+

∑
c∈C,|c|6=1

νc log

(
Jc

J̃

)

=
∑
i∈S

[
νi log

J i

Ji
+ νi,i+1 log

((
1− J i

Ji

)(
1− J i+1

Ji+1

)
J i,i+1

J̃

)]

+ ν+ log

(
J+

J̃

∏
i∈C

(
1− J i

Ji

))
+ ν− log

(
J−

J̃

∏
i∈C

(
1− J i

Ji

))
=
∑
c∈C

νc log γc = −I4(ν).

(45)

Combining (42) and (45) gives the desired result.
We next prove that for a monocyclic system, if the transition from state 1 to state N is forbidden (see Fig. 1(d)

for an illustration), then the rate function is given by (18). Since pN1 = 0, the two cycles (1, N) and (1, N, · · · , 2)
cannot be formed. Hence we can take νN1 = ν− = 0 in (16) and it is easy to see that xi = νi,i+1, yi = 0 is a
solution of (16). Then we have

I2(ν) = Fν(x
i, yi) =

N−1∑
i=2

[
−λiνi,i+1 + ν+ log

νi−1,i + ν+

νi−1,i + νi,i+1 + ν+

]
+ ν12 log

ν12 + ν+

ν12 + ν23 + ν+
,

where

λi = − log

(
νi,i+1

νi−1,i + νi,i+1 + ν+

νi,i+1 + ν+

νi,i+1 + νi+1,i+2 + ν+

)
.

By the definition of νi, we have

ν1 = ν1 + ν12 + ν+,

νi = νi + νi−1,i + νi,i+1 + ν+, 2 ≤ i ≤ N − 1,

νN = νN + νN−1,N + ν+.

Straightforward calculations show that

I1(ν) = ν12 log
ν12

ν1 − ν12
+ ν+ log

ν+

ν1 − ν1
,

I2(ν) =

N∑
i=2

[
νi,i+1 log

νi,i+1

νi − νi
+ ν+ log

νi−1,i + ν+

νi − νi

]
+

N∑
i=1

νi,i+1 log
νi,i+1 + ν+

νi+1 − νi+1
, (46)
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I3(ν) =
∑
i∈S

[
νi log

νi

νi
+ ν+ log

νi − νi

νi

]
+
∑
i∈S

νi,i+1

(
log

νi − νi

νi
+ log

νi+1 − νi+1

νi+1

)
.

It then follows from (44) that∑
i∈S

[
νi log

J i

Ji
+ νi,i+1 log

J i,i+1

Ji
+ (νi−1,i + ν+) log

J i−1,i + J+

Ji

]

=
∑
i∈S

[
νi log

J i

Ji
+ νi,i+1 log

J i,i+1(J i,i+1 + J+)

Ji+1Ji

]
+ ν+ log

∏N
i=1

(
J i,i+1 + J+

)∏N
i=1 Ji

=
∑
c∈C

νc log γc = −I4(ν).

(47)

Combining (46) and (47) gives the desired result.

Appendix B: Proof of the transient fluctuation theorem for net ST currents

Here we will prove (38) under the periodic boundary condition. It follows from (37) that for any cycle cl ∈ L
with three or more states, we have

Q̃cln =

r∑
i=1

J̃cin [1{l∈ci} − 1{l∈ci−}],

where 1A is the indicator function which takes the value of 1 when A holds and takes the value of 0 when A does
not hold. Then we obtain

P
(
Q̃
cl1
n = x1, · · · , Q̃

cls
n = xs

)
= P

(
r∑
i=1

J̃cin
[
1{l1∈ci} − 1{l1∈ci−}

]
= x1, · · · ,

r∑
i=1

J̃cin
[
1{ls∈ci} − 1{ls∈ci−}

]
= xs

)
=

∑
∑r
i=1 yi[1{lm∈ci}−1{lm∈ci−}]=xm,1≤m≤s

P
(
J̃c1n = y1, · · · , J̃crn = yr

)
=

∑
∑r
i=1 yi[1{lm∈ci}−1{lm∈ci−}]=xm,1≤m≤s

P
(
J̃c1n = −y1, · · · , J̃crn = −yr

)
e
n
∑r
i=1 yi log γci

γci−

=
∑

∑r
i=1 yi[1{lm∈ci}−1{lm∈ci−}]=xm,1≤m≤s

P
(
J̃c1n = −y1, · · · , J̃crn = −yr

)
e
n
∑s
i=1 xi log γ

cli

γ
cli
−

=
∑

∑r
i=1 yi[1{lm∈ci}−1{lm∈ci−}]=−xm,1≤m≤s

P
(
J̃c1n = y1, · · · , J̃crn = yr

)
e
n
∑s
i=1 xi log γ

cli

γ
cli
−

= P

(
r∑
i=1

J̃cin
[
1{l1∈ci} − 1{l1∈ci−}

]
= −x1, · · · ,

r∑
i=1

J̃cin
[
1{ls∈ci} − 1{ls∈ci−}

]
= −xs

)
e
n
∑s
i=1 xi log γ

cli

γ
cli
−

= P
(
Q̃
cl1
n = x1, · · · , Q̃

cls
n = xs

)
e
n
∑s
i=1 xi log γ

cli

γ
cli
−
,

where we use the fact that under the constraint of
∑r
i=1 yi[1{lm∈ci} − 1{lm∈ci−}] = xm, ∀ 1 ≤ m ≤ s, we have

r∑
i=1

yi log
γci

γci−
=

s∑
j=1

xj log
γclj

γclj−
. (48)

This identity is highly nontrivial and we next prove it. For any cycle c, let Lc be a function on E defined by

Lc(i, j) =

{
1, if 〈i, j〉 ∈ c,

0, otherwise.
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By the definition of the function Hcl in (21), it can be proved that [52]

Lc =
∑
l/∈T

Lc(l)Hcl .

Let w be a function on E defined by
w(i, j) = log

pij
pji

.

For any cycle c = (i1, i2, · · · , it), we have

log
γc

γc−
=

t∑
k=1

log
pik,ik+1

pik+1,ik

= 〈w,Lc〉,

where it+1 = i1 and 〈w,Lc〉 =
∑
〈i,j〉∈E w(i, j)L

c(i, j) is the inner product. Moreover, for any cl ∈ L, it is not
difficult to prove that

log
γcl

γcl−
= 〈w,Hcl〉.

Note that log(γc/γc−) = 0 for all one-state or two-state cycles. Then for any cycle c, we have

s∑
j=1

[
Lc(lj)− Lc−(lj)

]
log

γclj

γclj−
=
∑
l/∈T

Lc(l) log
γcl

γcl−
.

Thus we finally obtain

s∑
j=1

xj log
γclj

γclj−
=

s∑
j=1

r∑
i=1

yi
[
Lci(lj)− Lci−(lj)

]
log

γclj

γclj−

=

r∑
i=1

yi

s∑
j=1

[
Lci(lj)− Lci−(lj)

]
log

γclj

γclj−

=

r∑
i=1

yi
∑
l/∈T

Lci(l) 〈w,Hcl〉

=

r∑
i=1

yi

〈
w,
∑
l/∈T

Lci(l)Hcl

〉

=

r∑
i=1

yi 〈w,Lci〉 =
r∑
i=1

yi log
γci

γci−
.

This completes the proof of (48) and thus completes the proof of the transient fluctuation theorem.
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