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ON DUNKL SCHRÖDINGER SEMIGROUPS

WITH GREEN BOUNDED POTENTIALS

JACEK DZIUBAŃSKI AND AGNIESZKA HEJNA

Abstract. On RN equipped with a normalized root system R, a multiplicity function
k(α) > 0, and the associated measure

dw(x) =
∏

α∈R

|〈x, α〉|k(α) dx,

we consider a Dunkl Schrödinger operator L = −∆k + V , where ∆k is the Dunkl Laplace

operator and V ∈ L1
loc(dw) is a non-negative potential. Let ht(x,y) and k

{V }
t (x,y) denote

the Dunkl heat kernel and the integral kernel of the semigroup generated by −L respectively.

We prove that k
{V }
t (x,y) satisfies the following heat kernel lower bounds: there are constants

C, c > 0 such that

hct(x,y) ≤ Ck
{V }
t (x,y)

if and only if

sup
x∈RN

∫ ∞

0

∫

RN

V (y)w(B(x,
√
t))−1e−‖x−y‖2/t dw(y) dt < ∞,

where B(x,
√
t) stands for the Euclidean ball centered at x ∈ RN and radius

√
t.

1. Introduction and statement of the results

Let A = −∆+V be a Schrödinger operator on R
N , N ≥ 3. It is well-known (see [19]) that

if V ≥ 0, V ∈ L1
loc(R

N(dx)), then the kernel kt(x, y) of the semigroup {e−tA}t≥0 satisfies the
Gaussian (heat kernel) lower bounds

t−N/2e−‖x−y‖2/4ct ≤ Ckt(x, y)

with certain constants C, c > 0 if and only if the potential V is Green bounded, that is,

sup
x∈RN

∫

RN

V (y)

‖x− y‖N−2
dy < ∞.

The aim of this paper is to prove similar results in the Dunkl setting.
On the Euclidean space RN equipped with a normalized root system R and a multiplicity

function k : R 7−→ (0,∞), let ∆k denote the Dunkl Laplace operator (see Section 2). Let
dw(x) = w(x) dx be the associated measure, where

(1.1) w(x) =
∏

α∈R
|〈x, α〉|k(α)
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2 JACEK DZIUBAŃSKI AND AGNIESZKA HEJNA

is its density with respect to the Lebesgue measure dx. For a Lebesgue measurable set
F ⊆ RN , we denote

w(F ) :=

∫

F

dw(x).(1.2)

It is well-known that ∆k generates a semigroup {Ht}t≥0 = {et∆k}t≥0 of linear operators on
L2(dw) which has the form

Htf(x) =

∫

RN

ht(x,y)f(y) dw(y),

where 0 < ht(x,y) is a smooth function called the Dunkl heat kernel (see Section 2.3 for
more details).
Let V ∈ L1

loc(dw) be a non-negative potential. Consider the Dunkl Schrödinger operator

L = −∆k + V.

Then −L generates a semigroup {e−tL}t≥0 of self-adjoint linear contractions on L2(dw). The
semigroup {e−tL}t≥0 has the form

e−tLf(x) =

∫

RN

k
{V }
t (x,y)f(y) dw(y),

where the integral kernel k
{V }
t (x,y) satisfies upper heat kernel bounds

(1.3) 0 ≤ k
{V }
t (x,y) ≤ ht(x,y).

The main goal of this paper is to characterize non-negative potentials V ∈ L1
loc(dw) for

which k
{V }
t (x,y) satisfies the following heat kernel lower bound

hCt(x,y) ≤ Ck
{V }
t (x,y).

In order to state the result we need to introduce some notation. For α ∈ R, let

(1.4) σα(x) := x− 2
〈x, α〉
‖α‖2 α

be the reflection with respect to the subspace perpendicular to α. Let G denote the reflection
group generated by the reflections σα, α ∈ R. We define the distance of the orbit of x to the
orbit of y by

(1.5) d(x,y) = min{‖x− σ(y)‖ : σ ∈ G}.
Obviously,

d(x,y) = d(x, σ(y)) for all x,y ∈ R
N and σ ∈ G.

Let

B(x, r) = {x′ ∈ R
N : ‖x− x′‖ ≤ r}

stands for the (closed) Euclidean ball centered at x ∈ RN and radius r > 0.
Let N = N+

∑
α∈R k(α) be the homogeneous dimension of the system (R, k). Throughout

this paper we shall assume that N > 2
Our goal is to prove the following theorem.
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Theorem 1.1. Assume that N > 2 and V : RN 7−→ [0,∞), V ∈ L1
loc(dw). Then the following

are equivalent.

(a) The kernel k
{V }
t (x,y) satisfies the following Dunkl heat kernel lower bound : there are

constants C, c > 0 such that for all x,y ∈ RN and t > 0 we have

hct(x,y) ≤ Ck
{V }
t (x,y).

(b) There is a constant δ > 0 such that for all x ∈ RN and t > 0 we have
∫

RN

k
{V }
t (x,y) dw(y) ≥ δ.

(c) The potential V is Green bounded, that is,

sup
x∈RN

∫ ∞

0

∫

RN

V (y)hs(x,y) dw(y) ds < ∞.

Remark 1.2. Condition (c) of Theorem 1.1 is equivalent to any of the following ones:

(c’)

sup
x∈RN

∫ ∞

0

∫

RN

V (y)w(B(x,
√
s))−1e−d(x,y)2/s dw(y) ds < ∞,

(c”)

sup
x∈RN

∫ ∞

0

∫

RN

V (y)w(B(x,
√
s))−1e−‖x−y‖2/s dw(y) ds < ∞.

The equivalences are proved in Proposition 7.1.

The proof of Theorem 1.1 depends very much on the upper and lower bounds for ht(x,y)
derived in [9]. We present them in Subsection 2.4.

2. Preliminaries

2.1. Basic definitions of the Dunkl theory. In this section we present basic facts concern-
ing the theory of the Dunkl operators. For more details we refer the reader to [5], [14], [16],
and [18].

We consider the Euclidean space RN with the scalar product 〈x,y〉 =
∑N

j=1 xjyj, where

x = (x1, . . . , xN), y = (y1, . . . , yN), and the norm ‖x‖2 = 〈x,x〉.
A normalized root system in R

N is a finite set R ⊂ R
N \ {0} such that R ∩ αR = {±α},

σα(R) = R, and ‖α‖ =
√
2 for all α ∈ R, where σα is defined by (1.4).

The finite group G generated by the reflections σα, α ∈ R, is called the reflection group of
the root system. Clearly, |G| ≥ |R|.
A multiplicity function is a G-invariant function k : R → C which will be fixed and > 0

throughout this paper.
Recall that N = N +

∑
α∈R k(α). Then,

w(B(tx, tr)) = tNw(B(x, r)) for all x ∈ R
N , t, r > 0,

where w is the associated measure defined in (1.2). Observe that there is a constant C > 0
such that for all x ∈ RN and r > 0 we have

(2.1) C−1w(B(x, r)) ≤ rN
∏

α∈R
(|〈x, α〉|+ r)k(α) ≤ Cw(B(x, r)),
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so dw(x) is doubling, that is, there is a constant C > 0 such that

(2.2) w(B(x, 2r)) ≤ Cw(B(x, r)) for all x ∈ R
N , r > 0.

Let us also remark the the sets of measure zero with respect to the measure dw(x) and the
Lebesgue measure dx coincide.
For ξ ∈ RN , the Dunkl operators Tξ are the following k-deformations of the directional

derivatives ∂ξ by difference operators:

Tξf(x) = ∂ξf(x) +
∑

α∈R

k(α)

2
〈α, ξ〉f(x)− f(σα(x))

〈α,x〉 .

The Dunkl operators Tξ, which were introduced in [5], commute and are skew-symmetric
with respect to the G-invariant measure dw. Let us denote Tj = Tej , where {ej}1≤j≤N is a

canonical orthonormal basis of RN .

2.2. Dunkl kernel and Dunkl transform. For fixed y ∈ RN the Dunkl kernel E(x,y) is
a unique analytic solution to the system

Tξf = 〈ξ,y〉f, f(0) = 1.

The function E(x,y), which generalizes the exponential function e〈x,y〉, has a unique extension
to a holomorphic function on CN × CN .
The Dunkl transform is defined by

(2.3) Ff(ξ) = c−1
k

∫

RN

E(−iξ,x)f(x) dw(x),

where

ck =

∫

RN

e−
‖x‖2

2 dw(x) > 0,

for f ∈ L1(dw) and ξ ∈ RN . It was introduced in [6] for k ≥ 0 and further studied in [4]. It
was proved in [6, Corollary 2.7] (see also [4, Theorem 4.26]) that it is an isometry on L2(dw),
i.e.,

(2.4) ‖f‖L2(dw) = ‖Ff‖L2(dw) for all f ∈ L2(dw).

2.3. Dunkl Laplacian and Dunkl heat semigroup. The Dunkl Laplacian associated with
R and k is the differential-difference operator ∆k =

∑N
j=1 T

2
j , which acts on C2(RN)-functions

by

∆kf(x) = ∆euclf(x) +
∑

α∈R
k(α)δαf(x), δαf(x) =

∂αf(x)

〈α,x〉 − ‖α‖2
2

f(x)− f(σα(x))

〈α,x〉2 .

The operator ∆k is essentially self-adjoint on L2(dw) (see for instance [1, Theorem 3.1]) and
generates a semigroup {Ht}t>0 of linear self-adjoint contractions on L2(dw). The semigroup
has the form

(2.5) Htf(x) =

∫

RN

ht(x,y)f(y) dw(y),

where the heat kernel

(2.6) ht(x,y) = c−1
k (2t)−N/2E

( x√
2t
,

y√
2t

)
e−(‖x‖2+‖y‖2)/(4t)
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is a C∞-function of the all variables x,y ∈ R
N , t > 0, and satisfies

(2.7) 0 < ht(x,y) = ht(y,x),

(2.8)

∫

RN

ht(x,y) dw(y) = 1.

The following specific formula for the Dunkl heat kernel was obtained by Rösler [15]:

(2.9) ht(x,y) = c−1
k 2−N/2t−N/2

∫

RN

exp(−A(x,y, η)2/4t) dµx(η) for all x,y ∈ R
N , t > 0.

Here

(2.10) A(x,y, η) =
√

‖x‖2 + ‖y‖2 − 2〈y, η〉 =
√

‖x‖2 − ‖η‖2 + ‖y− η‖2
and µx is a probability measure, which is supported in the convex hull convO(x) of the orbit
O(x) = {σ(x) : σ ∈ G}.
2.4. Upper and lower heat kernel bounds. The closures of connected components of

{x ∈ R
N : 〈x, α〉 6= 0 for all α ∈ R}

are called (closed) Weyl chambers.

Lemma 2.1. Fix x,y ∈ RN and σ ∈ G. Then d(x,y) = ‖x− σ(y)‖ if and only if σ(y) and
x belong to the same Weyl chamber.

Proof. See [11, Chapter VII, proof of Theorem 2.12]. �

For a finite sequence α = (α1, α2, . . . , αm) of elements of R, x,y ∈ RN and t > 0, let

(2.11) ℓ(α) := m

be the length of α,

(2.12) σα := σαm
◦ σαm−1 ◦ . . . ◦ σα1 ,

and
ρα(x,y, t)

:=

(
1 +

‖x− y‖√
t

)−2(
1 +

‖x− σα1(y)‖√
t

)−2(
1 +

‖x− σα2 ◦ σα1(y)‖√
t

)−2

× . . .

×
(
1 +

‖x− σαm−1 ◦ . . . ◦ σα1(y)‖√
t

)−2

.

(2.13)

For x,y ∈ RN , let n(x,y) = 0 if d(x,y) = ‖x− y‖ and

(2.14) n(x,y) = min{m ∈ Z : d(x,y) = ‖x− σαm
◦ . . . ◦ σα2 ◦ σα1(y)‖, αj ∈ R}

otherwise. In other words, n(x,y) is the smallest number of reflections σα which are needed
to move y to the (closed) Weyl chamber of x. We also allow α to be the empty sequence,
denoted by α = ∅. Then for α = ∅, we set: σα = I (the identity operator), ℓ(α) = 0, and
ρα(x,y, t) = 1 for all x,y ∈ RN and t > 0.
We say that a finite sequence α = (α1, α2, . . . , αm) of roots is admissible for the pair

(x,y) ∈ RN ×RN if n(x, σα(y)) = 0. In other words, the composition σαm
◦ σαm−1 ◦ . . . ◦ σα1

of the reflections σαj
maps y to the Weyl chamber of x. The set of the all admissible
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sequences α for the pair (x,y) will be denoted by A(x,y). Note that if n(x,y) = 0, then
α = ∅ ∈ A(x,y).
Let us define

(2.15) Λ(x,y, t) :=
∑

α∈A(x,y), ℓ(α)≤2|G|
ρα(x,y, t).

Note that for any c > 1 and for all x,y ∈ RN and t > 0 we have

(2.16) c−2|G|Λ(x,y, ct) ≤ Λ(x,y, t) ≤ Λ(x,y, ct).

The following upper and lower bounds for ht(x,y) were proved in [9].

Theorem 2.2. Assume that 0 < cu < 1/4 and cl > 1/4. There are constants Cu, Cl > 0
such that for all x,y ∈ R

N and t > 0 we have

(2.17) Clw(B(x,
√
t))−1e−cl

d(x,y)2

t Λ(x,y, t) ≤ ht(x,y),

(2.18) ht(x,y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2

t Λ(x,y, t).

Remark 2.3. In Theorem 2.2, we can replace Λ(x,y, t) by the function

(2.19) Λ̃(x,y, t) :=
∑

α∈A(x,y), ℓ(α)≤|G|
ρα(x,y, t).

Indeed, Λ̃(x,y, t) ≤ Λ(x,y, t) for all x,y ∈ RN and t > 0. We turn to prove

(2.20) Λ(x,y, t) ≤ |R|2|G|Λ̃(x,y, t).

To this end, fix x,y ∈ RN , t > 0, and take β ∈ A(x,y) of the minimal length ℓ(β) which
satisfies ℓ(β) ≤ 2|G|, and
(2.21) ρβ(x,y, t) = max

α∈A(x,y), ℓ(α)≤2|G|
ρα(x,y, t).

Obviously, Λ(x,y, t) ≤ |R|2|G|ρβ(x,y, t). If |β| ≤ |G|, then (2.20) is proved. Ifm = |β| > |G|,
then let us consider the sequence

(2.22) I, σβ1, σβ2 ◦ σβ1 , . . . , σβm−1 ◦ · · · ◦ σβ1 .

Since there are |β| > |G| elements in the sequence (2.22), at least two of them coincide.
Assume first that for some j, s ∈ {1, 2, . . . , m− 1}, j < s, we have

σβj
◦ σβj−1

◦ · · · ◦ σβ1 = σβs
◦ · · · ◦ σβj

◦ σβj−1
◦ . . . ◦ σβ1 6= I.

Set β̃ = (β1, β2, . . . , βj, βs+1, . . . , βm). Then β̃ ∈ A(x,y), ℓ(β̃) < ℓ(β), and ρβ(x,y, t) ≤
ρ
β̃
(x,y, t).

If there is s ∈ {1, 2, . . . , m− 1} such that σβs
◦ · · · ◦ σβj

◦ σβj−1
◦ . . . ◦ σβ1 = I, then we set

β̃ = (βs+1, . . . , βm) and argue as above. Thus (2.19) is established.

In order to obtain our regularity results, we will need the following theorem proved in [9].

Theorem 2.4 ([9], Theorem 6.1). There are constants C4, c4 > 0 such that for all x,y,y′ ∈
RN and t > 0 satisfying ‖y − y′‖ <

√
t

2
we have

(2.23) |ht(x,y)− ht(x,y
′)| ≤ C4

‖y− y′‖√
t

hc4t(x,y).
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We will also need some auxiliary estimates of the generalized heat kernel ht(x,y).

Lemma 2.5. Assume that c0 > 1. There is a constant C0 > 0 such that for all x,y,y′ ∈ RN

and t > 0 satisfying ‖y − y′‖ <
√
t we have

(2.24) ht(x,y) ≤ C0hc0t(x,y
′).

Proof. This is Lemma 6.2 of [9]. For the convenience of the reader, we present an alternative
proof here. Let y,y′ ∈ RN be such that ‖y − y′‖ ≤

√
t. Recall that ‖x‖ − ‖η‖ ≥ 0 for all

η ∈ convO(x). Put ε = c0 − 1. We turn to estimate A(x,y′, η) defined in (2.10):

A(x,y′, η)2 = ‖x‖2 − ‖η‖2 + ‖y′ − η‖2

≤ ‖x‖2 − ‖η‖2 + (‖y′ − y‖+ ‖y − η‖)2

≤ ‖x‖2 − ‖η‖2 + ‖y′ − y‖2 + ‖y− η‖2 + ε−1‖y′ − y‖2 + ε‖y− η‖2

≤ (1 + ε)(‖x‖2 − ‖η‖2 + ‖y − η‖2) + (1 + ε−1)t

= (1 + ε)A(x,y, η)2 + (1 + ε−1)t,

(2.25)

where in the second inequality of (2.25) we have used the inequality 2ab ≤ εa2+ε−1b2. Using
(2.25) and the Rösler formula (2.9), we get

ht(x,y) = c−1
k 2−N/2t−N/2

∫

RN

e−A(x,y,η)2/4t dµx(η)

≤ c−1
k 2−N/2t−N/2

∫

RN

e−A(x,y′,η)2/4(1+ε)te(1+ε−1)/(4(1+ε)) dµx(η)

= C0hc0t(x,y
′).

(2.26)

�

As a consequence of Lemma 2.5, we obtain the next lemma, which will be used in the proof
of the main theorem.

Lemma 2.6. There are constants C, c > 1 such that for all s, t > 0 and x,x′,y ∈ R
N we

have

∫

RN

∣∣∣hs(x, z)− hs(x
′, z)
∣∣∣ht(z,y) dw(z) ≤ C

‖x− x′‖√
s

hcs+t(x,y) + C
‖x− x′‖√

s
hcs+t(x

′,y).

(2.27)

Proof. If ‖x− x′‖ ≥
√
s
2
, then (2.27) follows by the semigroup property of ht(x,y). Assume

that ‖x− x′‖ <
√
s
2
. Theorem 2.4 asserts that there are constants C, c > 1 such that for all

s1 > 0 and x1,x
′
1, z1 ∈ R

N satisfying ‖x1 − x′
1‖ <

√
s1
2

we have

(2.28) |hs1(x1, z1)− hs1(x
′
1, z1)| ≤ C

‖x1 − x′
1‖√

s1
hcs1(x1, z1).

Hence, by the semigroup property of the generalized heat semigroup, we obtain
∫

RN

|hs(x, z)− hs(x
′, z)|ht(z,y) dw(z) ≤ C

‖x− x′‖√
s

∫

RN

hcs(x, z)ht(z,y) dw(z)

= C
‖x− x′‖√

s
hcs+t(x,y).

�
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3. Dunkl Schrödinger operators with non-negative potentials -

introductory results

For a nonnegative potential V : RN 7−→ [0,∞), V ∈ L1
loc(dw), let Vn(x) := min(V (x), n),

n = 1, 2, . . . . We consider the quadratic forms

(3.1) Q∞(f, g) :=

∫

RN

( N∑

j=1

Tjf(x)Tjg(x) + V (x)f(x)g(x)
)
dw(x),

(3.2) Qn(f, g) :=

∫

RN

( N∑

j=1

Tjf(x)Tjg(x) + Vn(x)f(x)g(x)
)
dw(x),

with the domains

D(Q∞) = {f ∈ L2(dw) : ‖x‖Ff(x) ∈ L2(dw(x)) and
√
V (x)f(x) ∈ L2(dw(x))},

D(Qn) = {f ∈ L2(dw) : ‖x‖Ff(x) ∈ L2(dw(x)) }, n = 1, 2, . . . .

Observe that C∞
c (RN) is a dense subspace of L2(dw) such that C∞

c (RN) ⊆ D(Q∞) ⊆
D(Qn). The forms Q∞ and Qn are non-negative and closed. So they define self-adjoint
non-negative operators L∞, Ln respectively:

D(Ln) = {f ∈ D(Qn) : |Qn(f, g)| ≤ Cf‖g‖L2(dw) for all g ∈ D(Qn), }, n = ∞, 1, 2, . . .

and, for f ∈ D(Ln), the operator Ln is defined by the equation
∫

RN

(Lnf)(x)ḡ(x) dw(x) = Qn(f, g) for all g ∈ D(Qn),

see e.g. [3, Theorem 4.12]. Moreover, f ∈ D(Q∞) if and only if limn→∞Qn(f, f) < ∞. Fur-
ther, Q∞(f, f) = limn→∞Qn(f, f) and, by the definition of Vn, the convergence is monotone.
Set L := L∞. The operator −Ln is the generator of a semigroup of linear contractions on
L2(dw), denoted by {e−tLn}t≥0 for n = 1, 2, . . . and {e−tL}t≥0 for L = L∞. Let a > 0.
Theorem 4.32 of [3] asserts that

(3.3) lim
n→∞

{
sup
0≤t≤a

‖e−tLnf − e−tLf‖L2(dw)

}
= 0 for all f ∈ L2(dw).

In the forthcoming sections we provide rigorous proofs of existence, regularity and bounds
for the kernels of the semigroups {e−tLn}t≥0, n = ∞, 1, 2, . . . . The main tools are the fol-
lowing product formula and Duhamel formula for semigroups generated by perturbations of
generators by bounded operators on Banach spaces which we state as the theorem.

Theorem 3.1. Let A be a generator of a semigroup {etA}t≥0 of linear operators on a Banach
space X , and let B be a bounded operator on X. Then A+B is a generator of a semigroup
of linear operators on X, denoted by {et(A+B)}t≥0, and for every x ∈ X one has

(3.4) et(A+B)x = lim
n→∞

(
etA/netB/n

)n
x,

(3.5) etAx = et(A+B)x−
∫ t

0

e(t−s)ABes(A+B)x ds.

Moreover, if the semigroup {etA}t≥0 is holomorphic, so is {et(A+B)}t≥0.
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Let us remark that under a stronger assumption, namely V ∈ L2
loc(dw), it was proved in

Amri and Hammi [1] that L is essentially self-adjoint non-negative operator, that is, L is the
closure of the operator

L∞f = −∆kf + V f,

initially defined on C∞
c (RN ). We will not use this assumption in our forthcoming considera-

tions and keep the weaker assumption V ∈ L1
loc(dw).

4. Schrödinger semigroups with bounded potentials

In this section we utilize the product formula (3.4) to get existence and regularity of the

kernel k
{V }
t (x,y) from properties of approximation kernels. In this section, we assume that

V ≥ 0 is a bounded potential.

Theorem 4.1. Assume that V : RN 7−→ [0,∞) is a bounded measurable function. Then the
semigroup {et(∆k−V )}t≥0 of linear operators generated by ∆k − V has the form

et(∆k−V )f(x) =

∫

RN

k
{V }
t (x,y)f(y) dw(y), f ∈ L2(dw),(4.1)

where RN × RN × (0,∞) ∋ (x,y, t) 7−→ k
{V }
t (x,y) is a continuous function such that there

are constants C, c > 0 such that

0 ≤ k
{V }
t (x,y) ≤ ht(x,y),

(4.2) |k{V }
t (x,y)− k

{V }
t (x′,y′)| ≤ C(1 +

√
t‖V ‖∞)

‖x− x′‖+ ‖y − y′‖√
t

h(ct,x,x′,y,y′),

for all x,x′,y,y′ ∈ R
N and t > 0, where

h(ct,x1,x2,y1,y2) :=

2∑

i=1

2∑

j=1

hct(xi,yj).

Moreover, for all x,y ∈ RN , the function (0,∞) ∋ t → k
{V }
t (x,y) is differentiable and for

any m ∈ N there is a constant Cm > 0 such that for all x,y ∈ RN and t > 0 we have

(4.3)
∣∣∣
dm

dtm
k
{V }
t (x,y)

∣∣∣ ≤ Cmt
−mw(B(x,

√
t))−1/2w(B(y,

√
t))−1/2.

The constants C, c, Cm are independent of V .

Proof. We assume that V 6≡ 0. It suffices to prove (4.2) for 0 < t ≤ ‖V ‖−1
∞ and then use the

semigroup property.
Let us consider the integral kernels Qn,t(x,y) of the operators (Ht/ne

−tV/n)n. We write

Qn,t(x,y) := qn,t(x,y)e
−tV (y)/n,(4.4)

where

0 ≤ qn,t(x,y)

:=

∫

RN

. . .

∫

RN

ht/n(x, z1)e
−tV (z1)/nht/n(z1, z2)e

−tV (z2)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z1)

≤ ht(x,y).

(4.5)
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We prove that the functions R
N × R

N ∋ (x,y) 7→ qn,t(x,y), which are clearly continuous,
are Lipschitz functions of (x,y). A uniform bound independent of n ∈ N will be given.
For z1 ∈ RN we write exp(−tV (z1)/n) = 1 − tW (z1)/n where |W (z1)| ≤ ‖V ‖∞. Thus,

thanks to the fact
∫
RN ht/n(x, z1)ht/c(z1, z2) dw(z1) = h2t/n(x, z2), we get

qn,t(x,y)

=

∫

RN

. . .

∫

RN

h2t/n(x, z2)e
−tV (z2)/nht/n(z2, z3)e

−tV (z3)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z2)

− t

n

∫

RN

. . .

∫

RN

ht/n(x, z1)W (z1)ht/n(z1, z2)e
−tV (z2)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z1)

=: J
[1]
1 (x,y)− J

[1]
2 (x,y).

Observe that by Lemma 2.6, we have

|J [1]
2 (x,y)− J

[1]
2 (x′,y)| ≤ t‖V ‖∞

n

∫

RN

|ht/n(x, z1)− ht/n(x
′, z1)|h(n−1)t/n(z1,y) dw(z1)

≤ C
t‖V ‖∞

n

‖x− x′‖√
t/n

(
hct/n+(n−1)t/n(x,y) + hct/n+(n−1)t/n(x

′,y)
)

≤ C
t‖V ‖∞√

n

‖x− x′‖√
t

(
hct/n+(n−1)t/n(x,y) + hct/n+(n−1)t/n(x

′,y)
)
.

It follows from (2.9) that hct/n+(n−1)t(x,y) ≤ C ′hct(x,y). Hence, in the first step we have got

|qn,t(x,y)− qn,t(x
′,y)| ≤ |J [1]

1 (x,y)− J
[1]
1 (x′,y)|

+ C
t‖V ‖∞√

n

‖x− x′‖√
t

(
hct(x,y) + hct(x

′,y)
)
.

(4.6)

In the second step, we deal with J
[1]
1 (·, ·). For z2 ∈ R

N we write exp(−tV (z2)/n) =

1− tW (z2)/n, where |W (z2)| ≤ ‖V ‖∞ and plug to the formula for J
[1]
1 (·, ·). Thus

J
[1]
1 (x,y)

=

∫

RN

. . .

∫

RN

h2t/n(x, z2)(1−
t

n
W (z2))ht/n(z2, z3)e

−tV (z3)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z2)

=

∫

RN

. . .

∫

RN

h3t/n(x, z3)e
−tV (z3)/nht/n(z3, z4)e

−tV (z4)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z3)

− t

n

∫

RN

. . .

∫

RN

h2t/n(x, z2)W (z2)ht/n(z2, z3)e
−tV (z3)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z2)

=: J
[2]
1 (x,y)− J

[2]
2 (x,y).

Further, by Lemma 2.6,

|J [2]
2 (x,y)− J

[2]
2 (x′,y)| ≤ Ct‖V ‖∞

n

∫

RN

|h2t/n(x, z2)− h2t/n(x
′, z2)|h(n−2)t/n(z2,y) dw(z2)

≤ Ct‖V ‖∞
n

‖x− x′‖√
2t/n

C
(
h2ct/n+(n−2)t/n(x,y) + h2ct/n+(n−2)t/n(x,y)

)

≤ Ct‖V ‖∞√
2n

‖x− x′‖√
t

(
hct(x,y) + hct(x,y)

)
.
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Thus, at the end of the second step, we have

|qn,t(x,y)− qn,t(x
′,y)| ≤ |J [2]

1 (x,y)− J
[2]
1 (x,y)|

+ Ct‖V ‖∞
‖x− x′‖√

t

( 1√
n
+

1√
2n

)(
hct(x,y) + hct(x,y)

)
.

(4.7)

We continue this procedure, obtaining at the of the m-th step, 1 ≤ m ≤ n− 1, the bound

|qn,t(x,y)− qn,t(x
′,y)| ≤ |J [m]

1 (x,y)− J
[m]
1 (x′,y)|

+ Ct‖V ‖∞
‖x− x′‖√

t

( m∑

ℓ=1

1√
ℓn

)(
hct(x,y) + hct(x,y)

)
,

(4.8)

where

J
[m]
1 (x,y) :=

∫

RN

. . .

∫

RN

h(m+1)t/n(x, zm+1)e
−tV (zm+1)ht/n(zm+1, zm+2)e

−tV (zm+2)/n × . . .

× ht/n(zn−1,y) dw(zn−1) . . . dw(zm+1).

Finally, we end up with the bound

|qn,t(x,y)− qn,t(x
′,y)| ≤ |ht(x,y)− ht(x

′,y)|

+ Ct‖V ‖∞
‖x− x′‖√

t

( n−1∑

ℓ=1

1√
ℓn

)(
hct(x,y) + hct(x

′,y)
)

≤ |ht(x,y)− ht(x
′,y)|+ Ct‖V ‖∞

‖x− x′‖√
t

(
hct(x,y) + hct(x

′,y)
)

≤ C(1 + t‖V ‖∞)
‖x− x′‖√

t

(
hct(x,y) + hct(x

′,y)
)
.

By the same argument,

|qn,t(x,y)− qn,t(x,y
′)| ≤ C(1 + t‖V ‖∞)

‖y− y′‖√
t

(
hct(x,y) + hct(x,y

′)
)
.(4.9)

Recall that 0 < t ≤ ‖V ‖−1
∞ . By the Arzelá-Ascoli theorem, there is a subsequence {nj}j∈N

such that {qnj ,t(x,y)}j∈N converges uniformly on all compact sets of RN×R
N to a continuous

function (x,y) 7−→ k
{V }
t (x,y), which satisfies:

0 ≤ k
{V }
t (x,y) ≤ ht(x,y),

|k{V }
t (x,y)− k

{V }
t (x′,y′)| ≤ C

‖x− x′‖+ ‖y− y′‖√
t

h(ct,x,y,x′,y′).
(4.10)

Observe that the sequence {Qnj ,t(x,y)}j∈N converges uniformly on compact subsets of RN ×
R

N to k
{V }
t (x,y) as well. By the product formula (3.4), for all f ∈ L2(dw), we have

(4.11) et(∆k−V )f(x) = lim
n→∞

∫

RN

Qt,n(x,y)f(y) dw(y)
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with the convergence in the L2(dw(x))-norm. Recall that Qt,n(x,y) ≤ ht(x,y) (see (4.4) and
(4.5)). Thus, by the Lebesgue dominated convergence theorem, for all x ∈ RN , one has

lim
j→∞

∫

RN

Qt,nj
(x,y)f(y) dw(y) =

∫

RN

k
{V }
t (x,y)f(y) dw(y).

Thus (4.1) is established.
We now turn to prove (4.3). The operator −∆k + V is non-negative and self-adjoint on

L2(dw). Thus, by the spectral theorem, the mapping (0,∞) ∋ t 7→ et(∆k−V ) ∈ L(L2(dw))
is a smooth function, and for any m ∈ N there is Cm > 0 such that for all measurable and
bounded V ≥ 0 and t > 0 we have∥∥∥∥

dm

dtm
et(∆k−V )

∥∥∥∥
L(L2(dw))

≤ Cmt
−m.

Here L(L2(dw)) denotes the Banach space of bounded linear operators on L2(dw). Thus,
∣∣∣
dm

dtm
〈et(∆k−V )f, g〉L2(dw)

∣∣∣ ≤ Cmt
−m‖f‖L2(dw)‖g‖L2(dw).

For t > 0, set t0 = t/4. Then for fixed x,y ∈ R
N , we have

k
{V }
t (x,y) =

〈
e(t−2t0)(∆k−V )kt0(·,y), kt0(x, ·)

〉
L2(dw)

.

Hence (4.3) follows, since ‖kt0(·,y)‖L2(dw) ≤ Cw(B(y,
√
t))−1/2, by Theorem 2.2. �

Corollary 4.2. Assume that V1, V2 : R
N 7−→ [0,∞), V1, V2 are bounded, and V1(y) ≤ V2(y)

for all y ∈ RN . Then for all x,y ∈ RN and t > 0 we have

k
{V2}
t (x,y) ≤ k

{V1}
t (x,y).

Proof. It is enough to note that the assumption V1(y) ≤ V2(y) implies

k
{V2}
t (x,y)

= lim
n→∞

∫

RN

. . .

∫

RN

ht/n(x, z1)e
−tV2(z1)/nht/n(z1, z2)e

−tV2(z2)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z1)

≤ lim
n→∞

∫

RN

. . .

∫

RN

ht/n(x, z1)e
−tV1(z1)/nht/n(z1, z2)e

−tV1(z2)/n . . . ht/n(zn−1,y) dw(zn−1) . . . dw(z1)

= k
{V1}
t (x,y).

�

5. Upper bounds for Schrödinger semigroups with non-negative potentials

Theorem 5.1. Assume that V : RN 7−→ [0,∞), V ∈ L1
loc(dw). Let Vn = min(V, n) and

Ln = −∆k + Vn, n ∈ N. Then, for all x,y ∈ R
N and t > 0 the sequence {k{Vn}

t (x,y)}n∈N
converges monotonically to the kernel of the semigroup {e−tL}t≥0, that is, for all x,y ∈ RN

and t > 0 we have
lim
n→∞

k
{Vn}
t (x,y) = k

{V }
t (x,y)

and

(5.1) e−tLf(x) =

∫

RN

k
{V }
t (x,y)f(y) dw(y).
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Moreover, for any m ∈ N there is a constant Cm > 0 such that for all (x,y) ∈ R
N × R

N the

function (0,∞) ∋ t 7→ k
{V }
t (x,y) is smooth and

(5.2)
∣∣∣
dm

dtm
k
{V }
t (x,y)

∣∣∣ ≤ Cmt
−mw(B(x,

√
t))−1/2w(B(y,

√
t))−1/2.

Proof. By the results of the previous section (see Theorem 4.1 and Corollary 4.2) the ker-

nels {k{Vn}
t (x,y)}n∈N of the semigroups {e−tLn}t≥0, form a monotonic family of continuous

functions of (t,x,y), that is,

0 ≤ k
{Vn+1}
t (x,y) ≤ k

{Vn}
t (x,y) ≤ ht(x,y).

Hence, for all (x,y) ∈ RN × RN and t > 0 the limit limn→∞ k
{Vn}
t (x,y) exists and defines a

kernel k
{V }
t (x,y) ≤ ht(x,y). Moreover, applying the Arzelà–Ascoli theorem, we deduce (5.2)

from the inequalities
∣∣∣
dm

dtm
k
{Vn}
t (x,y)

∣∣∣ ≤ Cmt
−mw(B(x,

√
t))−1/2w(B(y,

√
t))−1/2,

which hold for k
{Vn}
t (x,y) thanks to Theorem 4.1 (see (4.3)). Further, by the Lebesgue

dominated convergence theorem, for each x ∈ RN and all f ∈ L2(dw), the limit

lim
n→∞

e−tLnf(x) = lim
n→∞

∫

RN

k
{Vn}
t (x,y)f(y) dw(y)

exists and defines a bounded functional such that

lim
n→∞

e−tLnf(x) =

∫

RN

k
{V }
t (x,y)f(y) dw(y).

On the other hand, by (3.3) for each f ∈ L2(dw), the sequence {e−tLnf}n∈N converges in the
L2(dw)-norm to e−tLf , hence (5.1) follows. �

Corollary 5.2. Assume that V1, V2 : R
N 7−→ [0,∞), V1, V2 ∈ L1

loc(dw) and V1(y) ≤ V2(y)
for all y ∈ RN . Then for all x,y ∈ RN and t > 0 we have

k
{V2}
t (x,y) ≤ k

{V1}
t (x,y).

Proof. It is a consequence of Corollary 4.2 and Theorem 5.1. �

6. The Feynman-Kac formula

In this section we elaborate the Feynman-Kac formula for Dunkl Schrödinger operators
with continuous bounded potentials. Our approach is standard and uses the product formula
(3.4) (see also (4.11)). For the reader convenience, we provide some details. Then the
Feynman–Kac formula will be used in proving the implication (c) =⇒ (a) of Theorem 1.1.
Let I ⊂ R be an interval. Recall that a function I ∋ t 7−→ Xt ∈ RN is said to be càdlàg if

it is right continuous, and it has left limits.

Proposition 6.1. Assume that f : [a, b] → R is a bounded càdlàg function. Then

lim
n→∞

b− a

n

n−1∑

k=0

f

(
a +

k(b− a)

n

)
=

∫ b

a

f(t) dt.

The right-hand side of the formula above is understood as the Lebesgue integral.
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The proposition can be proved by standard arguments. For the completeness we elaborate
it in Appendix A.
Let (Xt,Ω,P

x), Xt : Ω → RN , be a Dunkl process associated with the transition probabil-
ities

Pt(x, E) =

∫

E

ht(x,y) dw(y),

that is, a Markov process with càdlàg realizations [0,∞) ∋ t 7→ Xt(ω) satisfying

P
x{ω ∈ Ω : Xt1 ∈ E1, Xt2 ∈ E2, . . . , Xtn ∈ En}

=

∫

E1

∫

E2

. . .

∫

En

ht1(x,x1)ht2−t1(x1,x2) . . . htn−tn−1(xn−1,xn) dw(xn) dw(xn−1) . . . dw(x1).

(6.1)

for any finite sequence 0 < t1 < tt < . . . < tn and any measurable sets E1, E2, . . . , En ⊆ RN

(see Rösler-Voit [17]). The formula implies that for a reasonable measurable function F
defined on (RN)n one has

E
x(F (Xt1 , Xt2 , . . . , Xtn))

=

∫

(RN )n
F (x1,x2, . . . ,xn)ht1(x,x1)ht2−t1(x1,x2) . . . htn−tn−1(xn−1,xn) dw(xn) dw(xn−1) . . . dw(x1).

(6.2)

Assume that V ≥ 0 is a bounded continuous function. Let Qn,t(x,y) be as in the proof of
Theorem 4.1 (see (4.4) and (4.5)). Let f ∈ L2(dw) and t > 0. Putting tk := k

n
t, 1 ≤ k ≤ n,

and using (6.2), we have

(Ht/ne
− t

n
V )nf(x) =

∫

RN

Qn,t(x,y)f(y) dw(y)

=

∫

(RN )n
ht/n(x,x1)ht/n(x1,x2) . . . ht/n(xn−1,xn)

× e−
t
n
(V (x1)+V (x2)+...+V (xn))f(xn)︸ ︷︷ ︸

F (x1,x2,...,xn)

dw(xn) dw(xn−1) . . . dw(x1)

= Ex(F (Xt1 , Xt2 , . . . , Xtn))

= Ex
[
exp

(
− t

n

n∑

k=1

V (Xtk)

)
f(Xt)

]
.

(6.3)

Recall that it was established in the proof of Theorem 4.1 that there is a subsequence {nj}j∈N
such that the continuous functions Qnj ,t(x,y) ≤ ht(x,y) converge uniformly on compact sub-

sets to k
{V }
t (x,y). Hence taking into account integration of càdlàg functions (see Proposition

6.1), we obtain the following corollary.

Corollary 6.2 (Feynman-Kac formula). Let V ≥ 0 be a bounded continuous function. Then
for t > 0, x ∈ RN and all f ∈ L2(dw) we have

(6.4) et(∆k−V )f(x) = Ex
[
exp

(
−
∫ t

0

V (Xs) ds
)
f(Xt)

]
.
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7. Schrödinger semigroups with Green bounded potentials

7.1. Green bounded potentials. In the proposition below we elaborate the equivalences
stated in Remark 1.2. For a measurable function V : RN 7−→ [0,∞) and x ∈ RN , let

(7.1) G(V )(x) :=

∫ ∞

0

∫

RN

w(B(x,
√
s))−1e−‖x−y‖2/sV (y) dw(y) ds,

(7.2) G1(V )(x) :=

∫ ∞

0

∫

RN

hs(x,y)V (y) dw(y) ds,

(7.3) G(V )(x) :=

∫ ∞

0

∫

RN

w(B(x,
√
s))−1e−d(x,y)2/sV (y) dw(y) ds.

Proposition 7.1. There are constants C1, C2, C3 > 0 such that for all measurable non-
negative functions V : RN 7−→ [0,∞) one has

(7.4) ‖G(V )‖L∞ ≤ C1‖G1(V )‖L∞ ≤ C2‖G(V )‖L∞ ≤ C3‖G(V )‖L∞.

Proof. It follows from Theorem 2.2 that there are constants C, c > 0 such that for all x,y ∈
RN and s > 0 we have

C−1w(B(x,
√
s))−1e−c−1‖x−y‖2/s ≤ hs(x,y) ≤ Cw(B(x,

√
s))−1e−cd(x,y)2/s(7.5)

(see also [2, Theorems 4.1 and 4.4]). Further, by the definition of d(x,y) (see (1.5)),

(7.6) w(B(x,
√
s))−1e−cd(x,y)2/s ≤

∑

σ∈G
w(B(x,

√
s))−1e−c‖σ(x)−y‖2/s.

The proposition is a direct consequence of the inequalities (7.5), (7.6), and the doubling
property of the measure dw (see (2.2)). �

In order to establish Theorem 1.1, we prove the implications: (a) =⇒ (b) (in Lemma 7.2),
then (b) =⇒ (c) (in Lemma 7.4), and finally, (c) =⇒ (a) (in Subsection 7.3). We prove
(c) =⇒ (a) in the separate subsection, because it is relatively more involving and it uses the
heat kernel estimates (2.17), (2.18), and the Feynman–Kac formula (see Section 6).

7.2. Proofs of the implications (a) =⇒ (b) and (b) =⇒ (c).

Lemma 7.2. Assume that V : RN 7−→ [0,∞), V ∈ L1
loc(dw). Assume that there are con-

stants C, c > 0 such that for all x,y ∈ RN and t > 0 we have

(7.7) hct(x,y) ≤ Ck
{V }
t (x,y).

Then there is a constant δ > 0 such for all x ∈ RN and t > 0 we have
∫

RN

k
{V }
t (x,y) dw(y) > δ.

Proof. It is enough to integrate (7.7) with respect to dw(y) and apply (2.8). �

Lemma 7.3. Assume that V : RN 7−→ [0,∞) is measurable and bounded. Then for all t > 0
and x,y ∈ RN we have

(7.8) ht(x,y) = k
{V }
t (x,y) +

∫ t

0

∫

RN

hs(x, z)V (z)k
{V }
t−s (z,y) dw(z) ds.

Proof. See Theorem 3.1. �
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Lemma 7.4. Assume that V : RN 7−→ [0,∞), V ∈ L1
loc(dw). Assume that there is δ > 0

such for all x ∈ RN and t > 0 we have

(7.9)

∫

RN

k
{V }
t (x,y) dw(y) > δ.

Then V is Green bounded.

Proof. The proof is standard. Let Vn = min(V, n), n ∈ N. Recall that k
{Vn}
t (x,y) ≥

k
{V }
t (x,y) (see Corollaries 4.2 and 5.2). By the perturbation formula (7.8) applied to

k
{Vn}
t (x,y), (2.8), and the assumption (7.9) we have

1 ≥
∫

RN

∫ t

0

∫

RN

hs(x, z)Vn(z)k
{Vn}
t−s (z,y) dw(z) ds dw(y)≥ δ

∫ t

0

∫

RN

hs(x, z)Vn(z) dw(z) ds

with δ independent of n ∈ N. Letting t → ∞, we obtain the bound ‖G1(Vn)‖L∞ ≤ δ−1. Now,
letting n → ∞, we get the lemma by applying the Lebesgue monotone convergence theorem
and Proposition 7.1. �

7.3. Implication (c) =⇒ (a). In order to prove the implication we adapt to the Dunkl
setting general patterns of proofs of lower bounds for the classical Schrödinger operators or
Bessel-Schrödinger operators (see [19], [7]). Thus, first we prove the lower bounds in the case
of continuous and bounded V with the property ‖G(V )‖ being small enough. Then we extend
the lower estimates to all non-negative Green bounded potentials V . The main difficulties
we face concern the fact that the upper and lower estimates of the Dunkl heat kernel ht(x,y)
have rather complex forms which involve both - the orbit distance d(x,y) and the Euclidean
distances ‖x− σ(α1,α2,...,αj)(y)‖ contained in the definition of the function Λ (see (2.15)). To
this end we need a preparation.
For x,y ∈ RN and t > 0 we set

(7.10) Gt(x,y) := w(B(y,
√
t))−1e−d(x,y)2/t.

Let us begin with a proposition concerning the properties of the generalized heat kernel.
In its proof, the specific generalized heat kernel bounds from Theorem 2.2 are utilized.

Proposition 7.5. There are constants C1 > 0, c1 > 1, such that for all 0 < s ≤ t/2 and all
x,y, z ∈ RN one has

(7.11) ht−s(x, z)hs(z,y) ≤ C1hc1t(x,y)Gc1s(z,y).

Proof. Let c0 > 1. By Lemma 2.5, for all z′ ∈ RN such that ‖z− z′‖ ≤ √
s ≤

√
t− s we have

(7.12) ht−s(x, z)hs(z,y) ≤ C2
0hc0(t−s)(x, z

′)hc0s(z
′,y).

Note that

e
−cu

d(z′,y)2

c0s ≤ Ce
−cu

d(z′,y)2

2c0s e
−cu

d(z,y)2

4c0s for ‖z− z′‖ ≤ √
s.
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Hence, applying (2.18), (2.16), the doubling property of dw (see (2.2)), and Theorem 2.2, we
get

hc0(t−s)(x, z
′)hc0s(z

′,y)

≤ Cw(B(z′,
√
c0(t− s)))−1w(B(z′,

√
c0s))

−1Λ(x, z′, c0(t− s))Λ(z′,y, c0s)e
−cu

d(x,z′)2

c0(t−s)
−cu

d(z′,y)2

c0s

≤ C

(
w(B(z′,

√
t− s))−1Λ(x, z′, t− s)Λ(z′,y, s)e

−cu
d(x,z′)2

2c0(t−s)
−cu

d(z′,y)2

2c0s

)(
w(B(z,

√
s))−1e

−cu
d(y,z)2

4c0s

)

≤ Cw(B(z,
√
s))Gc1s(y, z)hc1(t−s)(x, z

′)hc1s(z
′,y).

(7.13)

Since the estimates (7.12) and (7.13) are given uniformly on z′ ∈ B(z,
√
s), taking their mean

over the ball B(z,
√
s) we get

ht−s(x, z)hs(z,y) ≤ CGc1s(y, z)

∫

B(z,
√
s)

hc1(t−s)(x, z
′)hc1s(z

′,y) dw(z′)

≤ CGc1s(y, z)

∫

RN

hc1(t−s)(x, z
′)hc1s(z

′,y) dw(z′)

= CGc1s(y, z)hc1t(x,y),

where is the last step we have used the semigroup property of ht(·, ·). �

The following corollary is an consequence of Proposition 7.5.

Corollary 7.6. Assume that V : RN 7−→ [0,∞) is continuous, bounded, and Green bounded.
Then there are constants C2, c2 > 0 such that for all x,y ∈ RN we have

∫ t

0

∫

RN

ht−s(x, z)V (z)k{V }
s (z,y) dw(z) ds ≤ C2‖G(V )‖L∞hc2t(x,y).

Proof. By (1.3) we have
∫ t

0

∫

RN

ht−s(x, z)V (z)k{V }
s (z,y) dw(z) ds ≤

∫ t

0

∫

RN

ht−s(x, z)V (z)hs(z,y) dw(z) ds

=

∫ t/2

0

∫

RN

· · ·+
∫ t

t/2

∫

RN

· · · =: I1 + I2.

We will estimate I1; the case of I2 can be reduced to the case of I1 by the change of variables.
By Proposition 7.5 we get

I1 ≤ C1hc1t(x,y)

∫ t

0

∫

RN

Gc1s(z,y)V (z) dw(z) ds.

Finally, by the change of variables s1 := c1s we get
∫ t

0

∫

RN

Gc1s(z,y)V (z) dw(z) ds ≤ C‖G(V )‖L∞,

which finishes the proof. �

Corollary 7.7. Assume that V : RN 7−→ [0,∞) is bounded, continuous, and Green bounded.
Let c3 > 0. There are c̃3, ε > 0 such that if ‖G(V )‖L∞ < ε, then for all x,y ∈ RN and t > 0
such that d(x,y) < c3

√
t one has

(7.14) k
{V }
t (x,y) ≥ c̃3ht(x,y).



18 JACEK DZIUBAŃSKI AND AGNIESZKA HEJNA

Proof. From the perturbation formula (7.8) we get

ht(x,y)− k
{V }
t (x,y) =

∫ t

0

∫

RN

ht−s(x, z)V (z)k{V }
s (z,y) dw(z) ds.

Hence from Corollary 7.6, (2.18), and (2.17), we deduce that

k
{V }
t (x,y) ≥ ht(x,y)− C2‖G(V )‖L∞hc2t(x,y)

≥ Clw(B(x,
√
t))−1e−cl

d(x,y)2

t Λ(x,y, t)

− CuC2‖G(V )‖L∞w(B(x,
√
c2t))

−1Λ(x,y, c2t).

(7.15)

Note that by the fact d(x,y) ≤ c3
√
t, we have e−cl

d(x,y)2

t ≥ C > 0. Further, by the doubling
property of dw and (2.16), if ε > 0 is small enough, (7.15) implies

k
{V }
t (x,y) ≥ cw(B(x,

√
t))−1Λ(x,y, t)

for some constant c > 0. Finally, (7.14) is a consequence of (2.18). �

Proposition 7.8. Assume that V : RN 7−→ [0,∞) is continuous, bounded, and Green
bounded. There are ε, c4, C4 > 0 such that if ‖G(V )‖L∞ < ε, then for all x,y ∈ RN and
t > 0 one has

(7.16) k
{V }
t (x,y) ≥ C4hc4t(x,y).

Proof. Let c3 = 1, c̃3 and ε > 0 be as in Corollary 7.7. Without loss of generality we assume
that t = 1. Further, according to Corollary 7.7, it suffices to consider d(x,y) ≥ 1. Let σ ∈ G
be such that ‖σ(y)− x‖ = d(y,x). Set y′ = σ(y), n = 64[d(x,y)2] = 64[‖x− y′‖2], and

yj = x + j
y′ − x

n
, j = 1, 2, . . . , n− 1.

Consider the balls Bj = B (yj, (8
√
n)−1). By the semigroup property of k

{V }
1 (x,y) and the

fact that k
{V }
t1 (x1,x2) ≥ 0 for all x1,x2 ∈ RN and t1 > 0 we have

k
{V }
1 (x,y)

=

∫

RN

∫

RN

. . .

∫

RN

∫

RN

k
{V }
1
n

(x, z1)k
{V }
1
n

(z1, z2) . . . k
{V }
1
n

(zn−2, zn−1)k
{V }
1
n

(zn−1,y) dw(z1) . . . dw(zn−1)

≥
∫

B1

∫

B2

. . .

∫

Bn−2

∫

Bn−1

k
{V }
1
n

(x, z1)k
{V }
1
n

(z1, z2) . . . k
{V }
1
n

(zn−2, zn−1)k
{V }
1
n

(zn−1,y) dw(zn−1) . . . dw(z1).

(7.17)

Observe that for zj ∈ Bj and zj+1 ∈ Bj+1 we have

‖zj − zj+1‖ ≤ 4

8
√
n
.

By Corollary 7.7, Lemma 2.5, (2.17), and the doubling property of the measure dw, we get

(7.18) k
{V }
1
n

(zj , zj+1) ≥ c5w
(
B
(
yj , (

√
n)−1

))−1
.

Moreover, by the fact that d(zn−1,y) = d(zn−1,y
′) ≤ ‖zn−1 − y′‖ ≤ 4

8
√
n
, Corollary 7.7, and

Lemma 2.5 (with c0 = 2), we obtain

(7.19) k
{V }
1
n

(zn−1,y) ≥ c̃3h 1
n
(zn−1,y) ≥ c̃3C

−1
0 h1/(2n)(y,y

′).
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Recall that by the doubling property of dw and the definition of Bj we have

w(Bj)

w (B (yj , (
√
n)−1))

≥ c.

Therefore, by (7.17), (7.18), and (7.19), for a constant c6 > 0 small enough,

k
{V }
1 (x,y) ≥ cn−1

6 h1/(2n)(y,y
′).(7.20)

Then, by (2.17), doubling property of dw, (2.16), (2.1), and the fact that d(y,y′) = 0, one
gets
(7.21)

h1/(2n)(y,y
′) ≥ Clw(B(y, (

√
2n)−1)−1Λ(y,y′, (1/(2n))) ≥ Cn−N/2n−2|G|w(B(y, 1))−1Λ(y,y′, 1).

Recall that n = 64[d(x,y)2]. Hence, by (7.20), (7.21), and (2.18), we obtain

k
{V }
1 (x,y) ≥ Ccn−1

6 n−N/2n−2|G|w(B(y, 1))−1Λ(y,y′, 1) ≥ ce−c7d(x,y)2h1(y,y
′).

Further, by Proposition 7.5, we get

e−c7d(x,y)2h1(y,y
′) ≥ Ce−c7d(x,y)2w(B(x, 1))h1/c1(x,y)h1/c1(x,y

′).

Since ‖x − y′‖ = d(x,y), by Lemma 2.1 and the definition of Λ(·, ·, ·) (see (2.15)), we have
∅ ∈ A(x,y′), so Λ(x,y′, 1/c1) ≥ 1. Hence, by (2.17), one obtains

h1/c1(x,y
′) ≥ Cw(B(x, 1))−1e−c8d(x,y)2 .

Thus, using Theorem 2.2, we conclude that

k
{V }
1 (x,y) ≥ Ce−(c7+c8)d(x,y)2h1/c1(x,y) ≥ Cw(B(x,

√
1/c1))

−1e−c9d(x,y)2Λ(x,y, 1/c1).

Finally the claim follows by applying (2.16) together with Theorem 2.2. �

Let us note that implication (c) =⇒ (a) is already proved under the assumption that
‖G(V )‖L∞ is small enough and V is continuous and bounded. In Proposition 7.9, we will
make use of the Feynman–Kac formula to relax the assumption ‖G(V )‖L∞ < ε for continuous
and bounded functions V . Finally, in the further part of this subsection, we will relax the
assumption that V is continuous and bounded.

Proposition 7.9. Assume that V : RN 7−→ [0,∞) is continuous, bounded, and Green
bounded. Then there are constants CG, cG > 0, CG < 1, which depend only on the bound
of ‖G(V )‖L∞ such that for all x,y ∈ RN and t > 0 we have

(7.22) k
{V }
t (x,y) ≥ CGhcGt(x,y).

Proof. Let ε be the same as in Proposition 7.8. We may assume that ‖G(V )‖L∞ ≥ ε. Let

1 < p < ∞ be such that ‖G(1
p
V )‖L∞ = ε/2. Recall that k

{V }
t (x,y) is a continuous function

(see Theorem 4.1). By the Lebesgue differentiation theorem, for all (x0,y0) ∈ RN ×RN and
t > 0, we have

k
{ 1
p
V }

t (x0,y0) = lim
r→0+

1

w(B(y0, r))

∫

B(y0,r)

k
{ 1
p
V }

t (x0,y) dw(y)

= lim
r→0+

1

w(B(y0, r))
Ex0

[
exp

(
−
∫ t

0

1

p
V (Xs) ds

)
χB(y0,r)(Xt)

]
,

(7.23)
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where in the last equality we have used the Feynman-Kac formula (6.4). Now, we apply the
Hölder’s inequality with the exponents p+ p′ = pp′, and then Theorem 2.2 obtaining

k
{ 1
p
V }

t (x0,y0) ≤ lim
r→0+

1

w(B(y0, r))

{
Ex0

(
e−

∫ t

0 V (Xs) dsχB(y0,r)(Xt)
)}1/p{

Ex0

(
χB(y0,r)(Xt)

)}1/p′

=
{
k
{V }
t (x0,y0)

}1/p

ht(x0,y0)
1/p′

≤ C
{
k
{V }
t (x0,y0)

}1/p Λ(x0,y0, t)
1/p′

w(B(x0,
√
t))1/p′

.

(7.24)

By Proposition 7.8, (2.17), the doubling property (2.2), and (2.16), we have

k
{ 1
p
V }

t (x0,y0) ≥ C4hc4t(x0,y0) ≥ c′′w(B(x0,
√
t))−1e−c′d(x0,y0)2/4tΛ(x0,y0, t).(7.25)

Thus, combining (7.24) together with (7.25), we get

c′′w(B(x0,
√
t))−1e−c′d(x0,y0)2/4tΛ(x0,y0, t) ≤ C

{
k
{V }
t (x0,y0)

}1/p Λ(x0,y0, t)
1/p′

w(B(x0,
√
t))1/p′

.(7.26)

Finally, by Theorem 2.2,

(7.27) k
{V }
t (x0,y0) ≥

(c′′
C

)p
e−c′pd(x0,y0)2/4t

Λ(x0,y0, t)

w(B(x0,
√
t))

≥ cht/c′(x0,y0).

�

Proposition 7.10. Assume that V : RN 7−→ [0,∞) is measurable, bounded, and Green

bounded. Then there are constant C̃G, c̃G > 0, which depend only on the bound of ‖G(V )‖L∞,
such that for all x,y ∈ RN and t > 0 we have

(7.28) k
{V }
t (x,y) ≥ C̃Ghc̃Gt(x,y).

Proof. For n ∈ N we consider

Ṽn(x) =

∫

RN

h1/n(x,y)V (y) dw(y).

Then, limn→∞ Ṽn(x) = V (x) for almost all x ∈ RN (see e.g. [2, Remark 5.5]) and, by the

regularity of the heat semigroup, Ṽn are continuous functions. Moreover, by (2.8), ‖Ṽn‖L∞ ≤
‖V ‖L∞ , and, by Proposition 7.1, there is a constant C > 0 such that

‖G(Ṽn)‖L∞ ≤ C‖G(V )‖L∞ .

Recall that {e−tL̃n}t≥0 and {e−tL}t≥0 are the contraction semigroups on L2(dw) generated

by the operators −L̃n = ∆k − Ṽn and −L = ∆k − V respectively. Then, for f ∈ D(L) =

D(L̃n) = D(∆k), we have limn→∞ L̃nf = Lf . Hence Theorem 3.4.5 of [13] asserts that

(7.29) lim
n→∞

e−tL̃nf = e−tLf in L2(dw)− norm, for all f ∈ L2(dw).

Further, Proposition 7.9 and Theorem 4.1 imply that there are constants CG , cG > 0, CG < 1,
such that for all n, we have

CGhcGt(x,y) ≤ k
{Ṽn}
t (x,y) for all (t,x,y) ∈ (0,∞)× R

N × R
N .(7.30)
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Assume towards contradiction that CGhcGt(x0,y0) > k
{V }
t (x0,y0) for some (t0,x0,y0) ∈

(0,∞) × RN × RN . Then, by the fact that k
{V }
t (·, ·) and ht(·, ·) are continuous, there are

ε, δ > 0 such that CGhcGt0(x,y) > k
{V }
t0 (x,y) + ε for all (x,y) ∈ B(x0, δ)× B(y0, δ). Hence,

applying (7.29) to f = χB(y0,δ) we obtain a contradiction. �

Proof of the implication (c) =⇒ (a). Assume that V : RN 7−→ [0,∞), V ∈ L1
loc(dw), is

Green bounded. Consider the operators Ln = −∆k + Vn, Vn = min(V, n), n ∈ N. By

Proposition 7.10 there are C̃G , c̃G > 0 such that for all n ∈ N we have

k
{Vn}
t (x,y) ≥ C̃Ghc̃Gt(x,y)

for all (x,y) ∈ RN × RN . Now the required lower bound for k
{V }
t (x,y) follows from Theo-

rem 5.1.
�

Appendix A. Proof of Proposition 6.1

Lemma A.1. Assume that f : [a, b] → R is a bounded càdlàg function. Define

(A.1) Jf(t0) :=
∣∣ lim
t→t−0

f(t)− lim
t→t+0

f(t)
∣∣ =

∣∣ lim
t→t−0

f(t)− f(t0)
∣∣.

Then, for all ε > 0, one has

#{t ∈ [a, b] : Jf (t) ≥ ε} = Cε < ∞.

Proof. Aiming for a contradiction, suppose that the set A = {t ∈ [0, 1] : Jf (t) ≥ ε} is infinite.
Let t0 be a accumulation point of A. There is δ > 0 such that |f(t) − limt→t−0

f(t)| < ε/4

for t0 − δ < t < t0. Thus |f(t)− f(t′)| ≤ ε/2 for t0 − δ < t, t′ < t0. We proceed similarly to
obtain |f(t)− f(t′)| ≤ ε/2 for t0 < t, t′ < t0 + δ′. So Jf(t) ≤ ε/2 for t ∈ (t0 − δ, t0 + δ′), and
we get the contradiction. �

Proof of Proposition 6.1. We may assume that a = 0, b = 1, and |f(t)| ≤ 1. Fix ε > 0.
Consider the finite set

A = {t ∈ [0, 1] : Jf(t) ≥ ε} = {t1, t2, . . . , tm−1}
(see Lemma A.1). Let U be an open set such that {t1, t2, . . . , tm−1} ⊂ U , |U | < ε, and
[0, 1] \ U is a finite union of closed disjoint intervals I1,. . . Im. Then∫

U

|f(t)| dt < ε.

Consider Ij = [aj, bj ]. For every t ∈ [aj, bj ] there is δt > 0 such that |f(t) − f(t′)| < 4ε for
t′ ∈ [aj , bj], |t′ − t| < δt, because Jff(t) < ε. By compactness, there is δj > 0 such that
|f(t)− f(t′)| ≤ 8ε for all t, t′ ∈ [aj , bj ], |t − t′| < δj . Take δ = min{δ1, . . . , δm}. If n ∈ N is
such that 1

n
≤ δ/2 and [ k

n
, k+1

n
] ⊆ [aj , bj ], then

∣∣∣
∫ (k+1)/n

k/n

f(t) dt− 1

n
f(k/n)

∣∣∣ < 8ε/n.

So, we easily conclude that

∣∣∣
1

n

n−1∑

k=0

f(k/n)−
∫ 1

0

f(t) dt
∣∣∣ ≤ 20ε
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for n ∈ N large enough. �
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