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Abstract

A general framework of latent trait item response models for continuous re-
sponses is given. In contrast to classical test theory models, which traditionally
distinguish between true scores and error scores, the responses are clearly linked
to latent traits. It is shown that classical test theory models can be derived as
special cases but the model class is much wider. It provides, in particular, ap-
propriate modelling of responses that are restricted in some way, for example,
if responses are positive or are restricted to an interval. Restrictions of this sort
are easily incorporated in the modeling framework. Restriction to an interval is
typically ignored in common models yielding inappropriate models, for example,
when modeling Likert-type data. The model also extends common response time
models, which can be treated as special cases. Properties of the model class are
derived and the role of the total score is investigated, which leads to a modified
total score. Several applications illustrate the use of the model including an ex-
ample, in which covariates that may modify the response are taken into account.

Keywords: Thresholds model; latent trait models; item response theory; classical test
theory
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1 Introduction

The development of item response theory that clearly separates the observed response
from the underlying latent traits has been mainly driven by the consideration of binary
items, in which it is distinguished between a correct response and an incorrect one
as outlined, for example, in Rasch (1960). Items with continuous response formats
have been largely considered within the framework of classical test theory, which dis-
tinguishes between a true score, essentially the expected response, and an error score
(Lord and Novick, 2008). Although there are some approaches to modeling continu-
ous responses there seems no general framework available that considers responses as
generated by latent traits and item characteristics.

Continuous responses occur in particular in the form of time to complete a task
and responses within a line segment (e.g., responses on a visual analogue scale). Espe-
cially time response modeling, which has already been considered by Rasch (1960) has
drawn much attention (van der Linden, 2006; Roskam, 1997; Ferrando and Lorenzo-
Seva, 2007; Boeck and Wilson, 2004). Also Likert scales, which are quite common in
practice, are often modeled as continuous responses despite of an ongoing discussion
as to whether that is the right way to analyse this type of data. An overview concerning
problems and the pros and cons has been given by Harpe (2015). The controversy fo-
cuses on the problem if Likert-type categories constitute interval-level measurement or
have to be treated as ordered responses. If the measurement level is only ordinal, then
it is questionable if item sums should be used. Harpe (2015) distinguish between the
“ordinalist” and the “intervalist” view and conclude that “individual rating items with
numerical response formats at least five categories in length may generally be treated
as continuous data”. Though one has not to agree, it seems worthwhile to investigate if
there is much difference between continuous and discrete modeling given proper latent
trait models for both cases are available.

When modeling Likert-type data, the main problem is that data are confined to an
interval, which is typically ignored if one uses normal distribution models. For illustra-
tion Figure 1 shows the resulting distributions for the fears data set to be considered in
detail later (7-point Likert-type response) if one assumes the latent trait model consid-
ered here but with varying assumptions concerning the distribution of responses. The
first row shows the fitted distributions if one assumes a normal distribution in a model
that is equivalent to classical test theory. The left side shows the distributions for a low
value of the person parameter, the right side shows the distributions for a high value
of the person parameter. It is seen that the model does not yield proper distributions
since the support of the distributions is much larger than the interval (1, 7). The same
happens if one assumes a log-normal distribution (second row). Then the restriction
to positive values is fulfilled but the upper boundary is ignored, which yields improper
distributions. The third row shows the fits for a latent trait model that explicitly ac-
counts for the fact that responses are restricted to the interval (1, 7). Although we here
considered Likert-type scales the problem is more general. The same inappropriate
distributions occur in all cases in which responses are restricted to an interval if one
does not account for this restriction in a proper way.

The objective of the present paper is to propagate genuine latent trait models for
continuous responses and investigate their properties. A general framework for the
IRT-based modeling of continuous data will be presented – encompassing models for
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FIGURE 1: Estimated densities for fear data, left: low person parameter, right: high
person parameter, first row: normal distribution model corresponding to linear difficulty
functions (θlow = −2.5, θhigh = 0.5) second row: log-normal distribution correspond-
ing to logarithmic difficulty functions (θlow = −1.8, θhigh = 0.5) third row: proper
restrictions by using logit difficulty functions θlow = −1.8, θhigh = 0.5). In all cases the
response function is fixed as the normal cdf.

reaction times and visual analogue scales. Further, referring to the potential use in a
Likert scale setting, we emphasize the need to properly account for the support of the
data and show how this can be accomplished via the general modeling framework. A
special focus is on the link between the modeling class and classical test theory models.

The basic thresholds model approach has been outlined in Tutz (2021). The present
paper focuses on continuous responses and extends the approach in several ways. The
link to various versions of the classical test theory model is investigated in detail, basic
results are obtained by using quantile functions, which by itself show interesting prop-
erties of the model class, the role of total scores is examined and modified versions
are proposed. Also the embedding of response time models, the comparison of models
with differing response functions and the explicit inclusion of explanatory variables
have not been considered before.

The paper is structured as follows: we first present the general modeling frame-
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work in Section 2. As a special case, we discuss linear models in Section 3, where
we also outline relations of the proposed modeling class to classical test theory. The
practically important cases of nonlinear models (encompassing e.g. reaction time data)
will be treated in Section 4. In the latter section, we also expand on how to account
for restrictions regarding the support of the data. Also continuous approximations for
Likert scale data will be discussed in this section. Finally, we illustrate the proposed
modeling approaches via various datasets with differing response formats, including
reaction times and Likert scales. In the latter case, the threshold model should be seen
as an improvement over the default normal model which does not account for any
restrictions in the support of the data.

2 Thresholds Models: Basic Concepts

Let Ypi, p = 1, . . . , P, i = 1, . . . , I, denote the responses of person p on item i having
support Si. As is common in IRT, we assume local stochastic independence (LSI)
between the responses on different items given θp. The general threshold model (Tutz,
2021) is given by

P (Ypi > y|θp, αi, δi(.)) = F (αi(θp − δi(y))), (1)

where F (.) is a strictly monotonically increasing, fixed distribution function, θp a
person parameter, αi a strictly positive discrimination parameter, and δi(.) a non-
decreasing item-specific function, called item difficulty function, which is defined on
the support Si. The function F (.) is a response function, which in combination with
the difficulty function determines the distribution of the response. The form of the
model reminds of binary response models as the normal-ogive or the two parame-
ter logistic model, which are indeed special cases if one considers discrete responses
Ypi ∈ {0, 1}, and defines the item difficulty parameter by δi = δi(0) (and additionally
setting δi(1) = ∞). However, in the present paper we confine ourselves to metric
responses.

One of the important features of the model is that F (.) is a strictly increasing dis-
tribution function. Therefore, for fixed threshold y the probability of a response larger
than y increases with increasing person parameter θp, which makes the model a sen-
sible latent trait model – fulfilling the properties of a monotone homogeneity model
(Sijtsma and Molenaar, 2002) and thereby allowing nonparametric tests of the implied
conditional association assumption (Holland and Rosenbaum, 1986). The parameter
θp can be seen as an ability or attitude parameter, which indicates the tendency of a
person to obtain a high score. Higher values of θp are associated with a greater chance
of scoring above some threshold y for each item. For more details on the general model
see Tutz (2021).

The concrete form of the thresholds model is determined by the choice of the dif-
ficulty functions {δi(.)}i=1,...,I and the response function F . The model can be abbre-
viated by TM(F ,{δi(.)}). If all the δ- functions have the same structure, instead of
explicitly giving the functions we will use, for example, TM(normal,linear) if F (.) is
the (standard) normal distribution function, and the difficulty is linear, i.e. of the form
δi(y) = δ0i + δiy.

4



3 Linear Models

We will first consider models in which the mean of the response is a linear function
of the latent ability. This can be obtained within the framework of thresholds mod-
els by assuming that the difficulty functions are linear. An important feature is that
any strictly continuous response distribution can be obtained by combining a linear
difficulty function with a response function that is chosen according to the assumed
response.

3.1 Linking Latent Traits and Responses

Let F (.) denote a fixed, typically standardized, distribution function with support R,
for example the standardized normal distribution function, and f(y) = ∂F (y)/∂y be
the corresponding density. In addition, let the difficulty function be linear, δi(y) =
δ0i + δiy, δi > 0. Thus, we are considering threshold models of the type TM(F ,linear).

When investigating the distribution of responses it is helpful to define the distribu-
tion function F̄ (y) = 1 − F (−y). If a random variable Y has distribution function
F (.), the random variable −Y has distribution function F̄ (.). With f̄(y) = ∂F̄ (y)/∂y
denoting the density corresponding to F̄ (.) one obtains for the distribution and the
density of responses

Fpi(y) = P (Ypi ≤ y) = 1− F (αi(θp − δ0i − δiy)) = F̄ (αi(δ0i + δiy − θp))
fpi(y) = ∂Fpi(y)/∂y = f(αi(θp − δ0i − δiy))αiδi = f̄(αi(δ0i + δiy − θp))αiδi, (2)

That means the distribution function of the responses, Fpi(y), is a shifted and scaled
version of F̄ (.), with the shifting and scaling depending on the person and the item.

The expectation and variance of Ypi have the form (Proposition 7.4 in the appendix)

µpi = E(Ypi) =
θp − δ0i − µF/αi

δi
= γiθp − γ0i, (3)

σ2
pi = var(Ypi) =

varF
α2
i δ

2
i

, (4)

where γi = 1/δi, γ0i = (δ0i + µF/αi)/δi, and µF , varF are constants that are deter-
mined by the distribution function F (.). More concrete, µF =

∫
yf(y)dy is the expec-

tation corresponding to distribution function F (.) and varF = σ2
F =

∫
(y−EF )2f(y)dy

the corresponding variance. The main point is that the responses have a distribution
function which is a shifted and scaled version of F̄ (.), the means are linear functions
of θp, and the variances depend only on the items. For symmetric distribution F (.) one
has simply F (.) = F̄ (.), and µF = 0. Then responses follow the distribution function
F (.).

It is noteworthy that one can choose any fixed function F (.) (or F̄ (.)) and obtain a
model in which responses follow the distribution function F̄ (.) simply by using a linear
difficulty function. In particular, one is not restricted to normal distribution models, as
is often done in applied research, but can try alternative distributions including non-
symmetric ones. If, for example, one assumes for F̄ (.) the Gumbel distribution, also
known as maximum value distribution, F̄ (y) = exp(− exp(−y)), one obtains for the
responses a Gompertz distribution, G(y) = 1 − exp(− exp(y)), if one assumes the
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Gompertz (or minimum value) distribution one obtains for the responses the Gumbel
distribution.

For illustration Figure 2 shows the distributions obtained for a person with θ = 0.
The first row shows the densities if a normal distribution is assumed, the second row
shows the densities if F (.) is the standardized Gumbel distribution. The left picture
show the results for three items with parameters (2, 1), (0, 1), (−2, 1) (for (δ0i, δi)), in
the right picture the slopes are varying with parameters (2, 0.8), (0, 1), (−2, 1.2). In
all the pictures αi = 1. If slopes are equal (left picture) the intercepts determine the
difficulty of the item, the highest responses are to be expected for item 3, which has
the smallest intercept (δ0i). If slopes vary across items the mean as well as the variance
change. Item 3 has the smallest variance since it has the highest slope (right picture).
The second row shows the corresponding densities if a Gompertz distribution is as-
sumed for F (.), consequently the responses follow the (skewed) Gumbel distribution.

The derived results hold for all strictly continuous distribution functions F (.), not
only for functions with support R. Note however, that for distribution functions with
a smaller support, the support of the item scores typically differs for different latent
abilities. If a response function with only positive support is chosen, that is, if F (x) =
0 holds for x < 0, then for fixed y, one may always find a large enough negative θ, such
that (θ − δ(y)) < 0 and hence P (Ypi > y) = 0 holds for that value of y. Whether this
poses a practical problem depends on the probability distribution of the latent variable.
Such a dependency of the support on θ is avoided if one restricts to response functions
which are positive throughout R (as in the case of a normal or Gumbel distribution).
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FIGURE 2: Densities for three items with equal slopes and varying intercepts (first col-
umn) and for three items with varying slopes (second column). First row: normal re-
sponse function, second row: Gumbel for F̄ (.).
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3.2 Thresholds Models and Classical Test Theory

In classical test theory (CTT), the response usually is decomposed into the “true score”
and the “error score”, typically at the population level. A similar decomposition holds
for threshold models on the population level and the person level. At the person level
one has

Ypi = τpi + εpi, (5)

where the noise variable εpi has expectation E(εpi) = 0 and variance var(εpi) =
varF/(α

2
i δ

2
i ) (the full derivation is given in Propostion 7.1 in the appendix). More-

over, the true-score τpi equals the expected value of Ypi and it depends on p only via
θp, i.e. two test takers with the same latent ability possess the same true score.

One can then define – following Novick (1966) and Holland and Hoskens (2003)
– the true score random variable Ti as the true score of a randomly selected test taker
from the population and the error variable εi as the correspondingly sampled noise
variable, when testing the selected test taker. That is, on the random sampling level,
wherein Yi denotes the response of a randomly selected test taker on the i-th item, the
following equation holds

Yi = Ti + εi. (6)

Herein, Ti = Ti(θ) := E(Yi|θ) and εi = εi(θ) := Yi − Ti(θ) are functions of the
random variable θ. All central axioms of the CTT model (Novick, 1966) are implied
by the properties of a general (not necessarily linear) TM model – as shown in Propo-
sition 7.1 in the appendix. Basically, these axioms boil down to the existence of an
additive decomposition (6) for each item, with the additional properties that i) errors
on different items are uncorrelated; ii) errors and true scores are uncorrelated and iii)
the expectation of the error given the true score is zero.

This representation has several consequences. Given that a threshold model holds
a CTT model holds for randomly selected test takers. Thus, all CTT based quantities,
like reliability coefficient, may be defined appropriately and all of the derived results
for true score prediction may be applied to the TM setting (for details we refer to
Holland and Hoskens (2003)). Hence, a plethora of already established results become
applicable. Another important aspect is that the threshold model can be seen as a
latent trait model underlying the CTT model. In the CTT model, expectations of item
responses are simply considered as representing the true scores, but latent traits as the
driving force behind an individual’s responses on items are not clearly identified.

Now, assuming the special case of a linear TM model, one may derive specific
submodels of classical test theory. To this end, it is helpful to recall the following
distinction (Raykov, 1997): Measurements are called congeneric if all true scores may
be expressed as affine functions of a single true score, i.e., Ti = aiT + bi holds for
some fixed values ai, bi. This equals the notion of unidimensionality from a CTT point
of view (providing also the decomposition of the covariance matrix according to a one-
dimensional factor analysis model, albeit lacking the independence assumptions). This
property is always satisfied for a linear TM (see equation 7 below), but not necessarily
for a general TM. For the linear model one obtains from (3)

Ti(θ) = E(Yi|θ) =
θ − δ0i − µF/αi

δi
(7)
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and therefore
θ = δiTi(θ) + δ0i + µF/αi.

Thus, measurements are congeneric. As will be shown in the following, in non-linear
TMs θ is a non-linear function, and measurements are not congeneric. It should be
noted that the two notions of unidimensionality (IRT vs. CTT) do not coincide. A
TM model may be classified as a unidimensional IRT model according to common
definitions (Holland and Rosenbaum, 1986), but if it is not a linear TM model, then the
corresponding CTT model is not necessarily unidimensional (in the sense used in CTT
modeling).

The latter is caused solely by the fact, that the CTT based definition of unidimen-
sionality requires linear relationships on the level of the true scores, whereas a general
TM model provides a nonlinear relation, as the following argument shows. The de-
pendency of the i-th true score on θ is represented by Ti(θ) = E(Yi|θ). One may now
fix some item i (without loss of generality i = 1) and express the latent ability as a
function of the true score T on that item via: θ(T ) = T−11 (T ), where T denotes the
true score on the first item (note that T1 denotes the function, whereas T is used to
denote the true score variable). Substituting this expression for θ, the true score on
any other item can be expressed as a function of the true score of the reference item:
Tj(T ) := Tj(θ(T )). In general, these functions differ from linearity and hence one
does not arrive at a congeneric CTT model.

One may further subdivide the congeneric model – assuming in the following a
linear TM. Measurements are called essentially tau-equivalent if ai = 1 holds for all i
in the congeneric relationships Ti = aiT + bi (or upon redefinition of T we may just
demand ai = c for some constant c). As is seen from (7) the model is congeneric model
with ai = 1/δi and bi = − (µFα

−1
i + δi,0)/δi. This congeneric model is essentially

tau-equivalent if δi = 1 holds for all i. Two important consequences of tau-equivalency
shall be pointed out: Firstly, conditionally on θ, the expected value of the unweighted
mean of the item scores equals the latent variable plus a bias value (determined by
the intercept term). As the bias term is independent of θ, one may deduce that the
difference of means of two test takers provides an unbiased estimate of their true dif-
ference in the ability – thus justifying the usage of simple sum scores (although there
are statistically more efficient estimators). Secondly, commonly applied coefficients –
such as Cronbach’s alpha – become reasonable estimators of the test reliability when
tau-equivalency can be assumed (Jackson and Agunwamba, 1977).

The even stricter requirement of essentially parallel measurements demands in ad-
dition to tau-equivalency the equality of the error variances. From equation (4), one
obtains

Var(εi) =Var(E(εi|θ)) + E(Var(εi|θ)) = E(Var(Yi|θ)) =
varF
α2
i δ

2
i

(8)

Accordingly, if δi = 1 (which is necessary and sufficient for essentially tau-
equivalency) holds all the error variances will be equal only if the discrimination pa-
rameters are also equal.
Two consequences of parallelity are worth mentioning. Firstly, the best linear predictor
of the true score weights all item scores equally, providing further justification for the
usage of simple sum scores. Secondly, estimation of test reliability via the split-half
approach is justified.
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Taken together, these results show that:
i) on the second order level (i.e. using only conditional expectations and variances)

the general threshold model yields CTT models,
ii) the unidimensional CTT model can be motivated by an underlying linear thresh-

olds models.

3.3 Quantile Function and Further Properties

It has already been highlighted that the mean is a linear function of the latent ability
and that the variance does not depend on θ. But one may go further and examine the
dependency of quantiles and quantile-based measures of spread on the latent abiliy.

The quantile function for the response Ypi and values 0 < q < 1 is given by

QYpi(q) = inf{y|1− F (αi(θp − δi(y))) ≥ q} = inf{y|δi(y) ≥ θp − F−1(1− q)/αi}.

For strictly increasing difficulty functions δ(·) mapping onto R, which are assumed in
the following, it has the simpler form

QYpi(q) = δ−1i (θp − F−1(1− q)/αi). (9)

We now examine the case of linear difficulty functions more closely. Since difficulty
functions are linear one obtains δ−1i (x) = (x− δ0i)/δi and the quantile function re-
duces to

QYpi(q) =
θp − F−1(1− q)/αi − δ0i

δi
.

Therefore, each quantile Ypi is a linear function of θp. For any q ∈ (0, 1) the q-quantile
increases linearly with θp. A further consequence of the form of the quantile func-
tion is that common measures of spread that are based on quantiles, for example the
interquartile range QYpi(.75)−QYpi(.25), do not depend on θp.

The quantile function may be used to derive formulas for the moments of Ypi. For
the central moments one obtains

E(Ypi − µpi)k =

∫ 1

0

(
µF − F−1(1− q)

αiδi

)k
dq,

see Proposition 7.4. A consequence is that also central moments do not depend on θp.
It underlines that the person parameter just shifts the distribution of responses but does
not affect its form, which is determined by the item parameters only.

A simpler form of the density of responses may be obtained by rewriting (2) in
centered form as:

fpi(y) =f̄(αi(δ0i + δiy − θp))αiδi = f̄

(
αiδi

(
y − θp − δ0i

δi

))
αiδi. (10)

From the change of variable formula, one may deduce from (10) the following:
LetX denote a random variable with distribution function F̄ . Then the random variable
Y := aX + b with a := 1

αiδi
and b := θp−δ0i

δi
is distributed as Fpi.

A common measure for the performance of persons that is typically used is the total
score Yp+ =

∑
i Ypi. In linear models the expectation and variance are given by

E(Yp+) = θpγ+ − γ0+, var(Yp+) =
∑
i

c

α2
i δ

2
i

9



where γ+ =
∑

i γi, γ0+ =
∑

i γ0i. Thus, for linear thresholds models the expected
total score is essentially the latent score, and the variance does not depend on θp.

4 Non-linear Models

In traditional item response models like the Rasch model or the normal-ogive model
the mean response is a non-linear function of the person’s latent trait. This is sensible
because the means in binary responses are restricted to the interval [0,1] and linear
functions tend to take values outside this interval. In general, non-linear functions are
always to be expected if the response is restricted in some way. This holds also if
responses are continuous but restricted, for example to take positive values only, which
is the case in many applications.

Within the framework of thresholds models restrictions on the support of responses
are obtained in a natural way by specifying appropriate non-linear difficulty functions.
This leads to models in which the mean and other characteristics of the responses are
non-linear functions of the latent trait. In the following we consider difficulty functions
of the form δi(y) = δ0i + δig(y), where g(.) is a strictly increasing fixed function.

4.1 Responses in the Positive Domain

Let the response function F (.) be chosen as fixed. The threshold model automatically
restricts the responses to positive values, if for the difficulty function limy→0 δi(y) =
−∞ holds. One candidate is the logarithmic function g(y) = log(y) yielding δi(y) =
δ0i + δi log(y).

For illustration Figure 3 shows the response distributions for three items if the diffi-
culty function is the logarithmic function. The left picture shows the distribution if the
response function is the normal distribution, on the right side the Gompertz distribution
has been used as response function.
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FIGURE 3: Densities for three items, logarithmic difficulty functions, left: normal re-
sponse function with intercepts, slopes given by (−3, 2), (−4, 2), (−5, 2), right: Gumbel
for F̄ (.) with intercepts, slopes given by (−3, 2), (−4, 2.5), (−5, 3)

Expectations and variances of responses are no longer linear functions of the person
parameter. For the logarithmic function one obtains

E(Ypi) = ci exp

(
θp − δ0i
δi

)
,

10



where ci is a constant that depends on αi, δi (Proposition 7.4). Thus, expectations are
exponential functions of the latent ability. The same holds for the central moments,

E(Ypi − µpi)k = cii exp

(
k
θp − δ0i
δi

)
,

where cii is again a constant that depends on αi, δi (Proposition 7.4) and for the quantile
function, which has the form

QYpi(q) = exp((θp − F−1(1− q)/αi − δ0i)/δi).

Decomposition

One can again try to decompose into a true score and an error score by using the
representation

Ypi = τpi + εpi,

where τpi = E(Ypi) and εpi is implicitly defined by εpi = Ypi − τpi. However, the
decomposition is quite different from the decomposition for linear difficulties in (5)
since now the distribution of the error score depends on θp. Even the support of εpi
depends on θp since εpi ≥ −τpi.

The form of the expectation has the consequence that the total score Yp+ =
∑

i Ypi,
which is often used to measure the ability, is not appropriate. One has

E(Yp+) =
I∑
i=1

ci exp

(
θp − δ0i
δi

)
=

I∑
i=1

ci exp(−δ0i/δi) exp(θp)
1/δi ,

which is a weighted sum of exponential terms with the terms depending on the item
(Proposition 7.4). Conditions under which the total score is an appropriate measure
have been investigated in particular for catgorical responses, see, for example, Masters
(1982); Hemker et al. (1997); Sijtsma and Hemker (2000); Hemker et al. (2001). In
the present case a condition is that items are homogeneous, that is, δi = δi for all i. In
this case one obtains

E(Yp+) =
I∑
i=1

ci exp(−δ0i/δ) exp(θp/δ) = c exp(θ̃p),

where θ̃p = θp/δ is the scaled ability and c =
∑

i ci exp(−δ0i/δ). Thus, in the homo-
geneous case E(Yp+) is an exponential function of the scaled ability θ̃p. Of course, one
can also consider the transformed ability exp(θ̃p) as a measure of ability. Then, E(Yp+)
depends linearly on the (transformed) ability. Thus, in the homogeneous case, but only
then, the total score can be considered as representing the underlying ability.

Linearity

It is interesting that at the heart of all thresholds models there is a linear relationship
between abilities and expectations, however it does not relate to the expectations of the
responses itself but to transformed responses. More concise, one can derive the general
result

E(δi(Ypi)) = θp − µF/αi. (11)

11



where µF , varF are again the expectation and variance corresponding to distribution
function F (.). For the variances one obtains var(δi(Ypi)) = varF /(αiδi)

2 (Proposition
7.6).

One consequence is that the expected transformed total score Y (δ)
p+ =

∑
i δi(Ypi) is

a linear function of the ability,

E(Y
(δ)
p+ ) = Iθp −

I∑
i=1

µF/αi.

Thus, Y (δ)
p+ can be seen as an indicator of the ability. It has the form

Y
(δ)
p+ =

I∑
i=1

δ0i +
I∑
i=1

δig(Ypi),

which is a weighted sum of transformed responses. This suggests that one could also
work with the transformed responses g(Ypi) and formulate models for the transformed
responses. Let us consider the thresholds model with transformation g(.), TM(F ,
{δ0i + δig(y)}), which is given by

P (Ypi > y|θp, αi, δi(.)) = F (αi(θp − δ0i − δig(y))).

If the model holds one obtains for the transformed responses g(Ypi)

P (g(Ypi) > z|θp, αi, δi(.)) = P (Ypi > g−1(z)|θp, αi, δi(.)) = F (αi(θp − δ0i − δiz)),

which means that g(Ypi) follows the linear threshold model TM(F , {δ0i + δiy}) with
the same item parameters. Thus, one can alternatively fit the corresponding linear
model for the transformed responses.

More generally, one can establish a simple relationship between the TM and the
chosen response function F (.), if the difficulty function is fixed. It can be shown (see
Proposition 7.5 in the appendix) that

δ(Ypi) has the same distribution as θ − Y0/αi,

where Y0 follows the distribution function F (.) Hence, on the level of the transformed
variable, the latent ability θ acts as a simple location parameter, thereby shifting ex-
pectations and quantiles in a linear manner, as already described previously.

However, one has to be careful when comparing alternative models since the log-
likelihoods of TM(F , {δ0i + δig(y)}) for the original data and TM(F , {δ0i + δiy}) for
the transformed data g(yi) are not the same. As an example we use the self-regulation
data to be considered later (Section 5.1). The log-likelihood obtained when fitting a
model with normal response function and logarithmic difficulty function is -654.136,
when fitting a model with linear difficulty function to the log-transformed data one
obtains 326.531. These models should definitely not be compared via goodness-of-fit
measures based on their loglikelihoods although parameter estimates for both models
are identical.

12



Special Cases

If one assumes for F (.) the standard normal distribution and a logarithmic difficulty
function the density of responses becomes

fpi(y) = f(αi(δ0i + δi log(y)− θp))αiδi/y
= (
√

2π)−1 exp(−(αi(δ0i + δi log(y)− θp))2/2)αiδi/y

=
1

y
√

2πσ̄i
exp(−(log(y)− µ̄pi)2

2σ̄2
i

),

where µ̄pi = (θp − δ0i)/δi, σ̄i = 1/(αiδi). This is the lognormal distribution with
parameters µ̄pi, σ̄i. The homogeneous version of the model (δi = δ) is equivalent to
van der Linden’s lognormal response-time model, which is a speed model that carefully
distinguishes between time and speed (van der Linden, 2016).

The thresholds version of van der Linden’s model is a generalization allowing for
varying slope parameters. It also offers the possibility to consider alternative response
functions that replace the normal distribution and might yield better fit (see the appli-
cation in Section 5.2).

4.2 Responses in an Interval

Let again the response function F (.) be chosen as fixed. If responses are known to be
restricted to the interval (a, b), then for the difficulty function limy→a δi(y) = −∞ and
limy→b δi(y) =∞ should hold. A candidate is the logit function g(y) = log(y−a)/(b−
y) yielding δi(y) = δ0i + δi log(y − a)/(b− y). For simplicity one can also transform
the data into the interval (0, 1) and use the simpler function g(y) = log(y)/(1− y).

For illustration Figure 4 shows the distributions that are obtained for the inter-
val (0, 1) and standard normal distribution F (.). The underlying item parameters are
(3, 2), (0, 2), (−3, 2) (for (δ0i, δi)). The left picture shows the distribution of responses
if θp = 0, in the right picture θp = 1. It is seen that responses are within the interval
(0, 1). For larger values of θp the distribution is not just shifted but distinctly changes
its form.
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FIGURE 4: Distributions of responses for items with intercept, slope given by
(3, 2), (0, 2), (−3, 2) with logit difficulty function, left: θ = 0, right: θ = 1.

For the expectation and variances of responses one obtains rather complicated for-
mulae, which are not given. As in the case of logarithmic difficulty functions they
depend on the person’s ability θp. Also the simple total score depends on the ability in

13



a complex form and can not be considered an appropriate measure of the underlying
latent trait. However, one can use again the transformed total score Y (δ)

p+ =
∑

i δi(Ypi),
for which the relationship

E(Y
(δ)
p+ ) = Iθp −

∑
i

µF/αi

holds (following from the general result (11). It is noteworthy that the transformed total
score is quite different from the traditional total score since the transformation is highly
non-linear. However, it is much more appropriate as an indicator of the underlying
ability than the traditional score given by sums of responses.

The case of responses in intervals is especially important in Likert-type items,
which by definition are restricted to a fixed interval [1,m] in m-grade Likert scales.
As already shown in Figure 2 ignoring the restriction to an interval yields improper
densities, which typically are positive beyond the interval [1,m]. In addition, the total
score as a sum of responses over items is not a reliable indicator of the latent trait.

5 Applications

We illustrate the usage of the nonlinear TM models with three examples. Along with
the modeling of properly continuous data, like response times, we will in particular
focus on the practical usage of the application of these models to Likert scales, whereby
in contrast to a direct linear, unrestricted treatment, we take care of the range of the
restricted support via appropriately chosen difficulty functions.

All models are fitted using the MML-procedure and Gauss-Hermite quadrature,
whereby a centered normal distribution with unknown variance σ2

θ for the latent vari-
able is specified and wherein identifiability issues are resolved by fixing the item dis-
crimination parameter on the first item to unity. The full R-Code is provided as supple-
mentary material. We abstain from including the likelihood and score functions, which
can be found in Tutz (2021).

5.1 Self-Regulation

The data set Lakes from the R package MPsychoR (Mair, 2018) is a multi-facet G-
theory application taken from Lakes and Hoyt (2009). The authors used the response
to assess children’s self-regulation in response to a physically challenging situation.
The scale consists of three domains, cognitive, affective/motivational, and physical.
We use the physical domain only. Each of the 194 children was rated by 5 raters on
six items on his/her self-regulatory ability with ratings on a scale from 1 to 7. We use
the average rating over the five raters, which yields a response that takes values in the
interval (1, 7) but is not confined to integer values.

Table 1 shows log-likelihoods and estimates of σθ for various response and diffi-
culty functions with varying slopes in the difficulty functions. The columns on the
left show fits for fixed discrimination parameters (αi = 1), the right columns show
fits for varying discrimination parameters. It is seen that varying discrimination yield
significantly better fits. For example, the likelihood ratio test that compares the fixed
discrimination model and the varying discrimination model is 19.468 on 2 df for the
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Gumbel model with logit difficulty function. Similar results hold for the other mod-
els. For given response function F , the best fits are always obtained via logit difficulty
functions. Conversely, for a given difficulty function, the best fit is obtained by choos-
ing the Gumbel distribution as response function F . Note that the best fit is indicated
by an asterisk.

TABLE 1: Fits for self-regulation data

αi = 1 αi varying

response fct difficulty fct log-likelihood σ̂θp log-likelihood σ̂θp

NV lin -563.084 1.493 -554.421 2.596
log -654.136 1.260 -644.621 2.379
logit(c=0.10) -533.616 1.660 -516.132 2.572

Gumbel lin -525.132 1.702 -514.559 2.643
log -552.629 1.584 -549.302 2.607
logit(c=0.10) -507.9695 1.957 -497.235* 2.925

Gompertz lin -597.118 1.837 -594.366 1.955
log -694.613 2.174 -684.997 2.818
logit(c=0.10) -563.996 1.796 -554.913 1.900

Figure 5 shows the estimated response densities for the three items with varying
discrimination parameters (using as response function the Gumbel distribution). First
row shows linear difficulty functions, second row logarithmic difficulty functions, and
third row logit difficulty functions, left column shows responses for latent trait θlow = 0,
right column shows responses for latent trait θhigh = 4, which is not extreme given σ̂θp is
larger than 2.5. It is seen that linear and logistic difficulty functions yield inappropriate
densities that take values outside the interval (1, 7). The logit difficulty function, which
restricts the responses, yields much more appropriate distributions.

15



11111111111111111111111111111111111111111111111111111
1
1
1

1

1

1

1

1
1
1

1

1

1

111111111111111

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Densities

y

222222222222222222222222222222222222222222222222222222222
2
2
2

2

2

2

2

2
2
2

2

2

2

22222222222333333333333333333333333333333333333333333333333333333
3
3
3
3
3

3

3
3
33

3

3

3

3

3
333333333333 1111111111111111111111111111111111111111111111111111111111

1
1
1

1

1

1

1

1
1
1

1

1

1

1
111111111

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Densities

y

2222222222222222222222222222222222222222222222222222222222222222
2
2

2

2

2

2

2

22

2

2

2

2
222233333333333333333333333333333333333333333333333333333333333333333333

3
3
3
3

3

3

3
3
33

3

3

3

1111111111111111111111111111111111111111111111111111
1
1
1

1

1

1

1

11

1

1

1

1

1111111111111111

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Densities

y

22222222222222222222222222222222222222222222222222222222
2
2
2

2

2

2

2

2
2
2

2

2

2

2
2222222222233333333333333333333333333333333333333333333333333333

3
3
3
3

3

3

3
333

3

3

3

3

3
3333333333333 11111111111111111111111111111111111111111111111111111111

1
1
1
1

1

1

1

1
11

1

1

1

1

11111111111

1 2 3 4 5 6 7
0.

0
0.

5
1.

0
1.

5
2.

0

Densities

y

22222222222222222222222222222222222222222222222222222222222222
2
2
2

2

2

2

2

2
2
2

2

2

2

2
2222233333333333333333333333333333333333333333333333333333333333333333333

3
3
3
3
3
3
3
3333

3

3

111111111111111111111111111111111111111111111111111111
1
1
1

1

1

1

1

11

1

1

1

1
1111111111111

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Densities

y

2222222222222222222222222222222222222222222222222222222222
2
2
2

2

2

2

2

22

2

2

2

22222222223333333333333333333333333333333333333333333333333333333
3
3
3
3
3

3

3

3
33

3

3

3

3

33333333333 11111111111111111111111111111111111111111111111111111111111
1
1
1

1

1

1

1

1
1

1

1

1

111111111

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

Densities

y

2222222222222222222222222222222222222222222222222222222222222222
2
2
2

2

2

2

2

2
2

2

2

222223333333333333333333333333333333333333333333333333333333333333333333
3
3
3

3

3

3

3

33

3

3

33

FIGURE 5: Estimated densities for self-regulation, first row: linear difficulty functions,
second row: logarithmic difficulty functions, third row: logit difficulty functions, left:
θlow = 0, right: θhigh = 1.5).

5.2 Rotation Response Time

The R package diffIRTcontains response time data of 121 subjects to 10 mental rotation
items. Each item consists of a graphical display of two 3-dimensional objects. The
second object was either a rotated version of the first object, or a rotated version of a
different object. Subjects were asked whether the second object was the same as the
first object (yes/no). The degree of rotation of the second object was either 50, 100, or
150 degrees. Response times were recorded in seconds.

We fitted thresholds model with logarithmic difficulty function and fixed discrim-
ination parameter. The best fit was obtained for normal response function (loglik -
1300.378, σθ = 0.817), which outperformed the Gumbel response function (loglik
-1390.093) and the Gompertz response function (loglik -1321.674). Testing if slopes
in the difficulty functions can be modeled as constant yields the likelihood ratio statis-
tic 32.486 on 9 df, which indicates that slopes should be considered as varying across
items (see also Table 2). Thus the simple lognormal model proposed by van der Lin-
den (2016) seems inadequate. The fit of the model could additionally improved by
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allowing for varying discrimination parameter. The corresponding log-likelihood was
-1296.027, however it does not significantly improve the fit (log-likelihood test is 8.702
on 9 df). Figure 6 shows the estimated response distributions for the first five items for
θp = 0.0 (left) and θp = 1.0 (right) for the normal response function and varying
slopes.
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FIGURE 6: Response distributions for the first five items of the mental rotation dataset
for θp = 0.0 (left) and θp = 1.0 (right).

TABLE 2: Parameter estimates for response time data with varying and constant slopes

Varying slopes Common slopes
item intercept slope intercept slope

[1] -3.132322 3.196110 -2.873841 2.950614
[2] -1.866113 2.316536 -2.370173 2.950614
[3] -2.988711 2.862885 -3.067789 2.950614
[4] -3.336943 2.817903 -3.484121 2.950614
[5] -2.554667 3.276066 -2.289048 2.950614
[6] -2.995613 3.628465 -2.423716 2.950614
[7] -2.977589 3.034445 -2.883957 2.950614
[8] -1.917933 3.012964 -1.864209 2.950614
[9] -2.949433 3.124232 -2.774521 2.950614
[10] -3.699182 2.991578 -3.639867 2.950614

loglik -1300.378 -1316.621

5.3 Political Fears

We consider data from the German Longitudinal Election Study (GLES), which is a
long-term study of the German electoral process (Rattinger et al., 2014). The data we
are using originate from the pre-election survey for the German federal election in 2017
and consist of responses to various items adressing political fears. The participants
were asked: “How afraid are you due to the ...” - (1) refugee crisis? - (2) global climate
change? - (3) international terrorism? - (4) globalization? - (5) use of nuclear energy?
The answers were measured on Likert scales from 1 (not afraid at all) to 7 (very afraid).
The model is fitted under the assumption that fear is the dominating latent trait, which
is considered as unidimensional. We use 200 persons sampled randomly from the
available set of observations.
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Table 3 shows log-likelihoods and estimates of σθp for various responses and dif-
ficulty functions. The models have varying slopes in the difficulty functions and fixed
discrimination parameters since varying discrimination parameters did not improve the
fit significantly. We considered two fits, assuming that the responses are continuous or
discrete. The latter means that one assumes a multinomial distribution, which changes
the likelihood. It is seen that in both cases the logit difficulty function always fits better
than linear or logarithmic functions. The problems with the latter two have already
been illustrated in Figure 1. Again, the best fit was obtained by specifying a Gumbel
response function, which was chosen as the best model under the assumption of contin-
uously distributed responses as well as under the assumption of discrete responses. For
a further investigation of the difference between continuous and discrete modeling we
computed the posterior estimates of person parameters. Figure 7 shows the estimates
plotted against the transformed sum scores Y (δ)

p+ using logit transformed data (difficulty
function) and Gumbel response function. It is seen that the pictures for continuous and
discrete responses are virtually the same. Correspondingly the correlation between
estimated person parameters for discrete and continuous data was 0.995. The corre-
lation between transformed sum scores and estimated parameters was 0.926 in both
cases. Thus, concerning model selection as well as prediction of person parameters
there seems to be no relevant difference between assuming a continuous distribution
or a discrete distribution, although the concrete log-likelihoods differ for discrete and
continuous distributions.

TABLE 3: Thresholds models for fears data

Continuous Discrete
response fct difficulty fct log-likelihood σ̂θp log-likelihood σ̂θp

NV lin -1847.53 0.707 -1825.490 0.746
log -2046.301 0.719 -2064.723 0.758
logit(c=0.10) -1714.907 0.706 -1802.259 0.751

Gumbel lin -1817.634 0.799 -1781.461 0.806
log -1891.852 0.629 -1915.859 0.619
logit(c=0.10) -1713.209* 0.850 -1752.010* 0.817

Gompertz lin -1923.348 0.885 -1899.042 0.969
log -2178.687 1.083 -2179.356 1.174
logit(c=0.10) -1773.234 0.915 -1877.851 1.035

18



−10 −5 0 5 10

−
2

−
1

0
1

Person parameters (continuous)

Sums of transformed scores

E
st

im
at

ed
 p

ar
am

et
er

s

−10 −5 0 5 10

−
2

−
1

0
1

Person parameters (discrete)

Sums of transformed scores

E
st

im
at

ed
 p

ar
am

et
er

s

FIGURE 7: Estimated person parameters for fears data.

6 Including Covariates

The basic threshold model assumes that latent trait are unidimensional and not affected
by covariates. If one suspects that covariates may modify the response behaviour it
can be tested by including them explicitly in the explanatory term. Let xp be a person-
specific vector of covariates. In a threshold model with covariates the person parameter
θp is replaced by θp − xTp γi yielding

P (Ypi > y|θp, αi, δi(.)) = F (αi(θp − xTp γi − δi(y))), (12)

where the parameter γi is item-specific and represents the effect on the response in
item i.

Within item response theory the inclusion of covariates can be seen as investigat-
ing differential item functioning (DIF), which is the well known phenomenon that the
probability of a correct response among equally able persons may differ in subgroups,
see, for example, Millsap and Everson (1993), Zumbo (1999), Rogers (2005); Oster-
lind and Everson (2009), Magis et al. (2010). If γi is non-zero the item functions
differently in subgroups represented by covariates.

Model (12) can also be seen as a multivariate regression model with heterogeneity.
If one is primarily interested in the effects of covariates one considers θp as repre-
senting the heterogeneity needed to model the effects adequately. It can be seen as
a generalized random effects model, but with much weaker assumptions on the disri-
bution of the response variables than in the classical linear mixed model (Goldstein,
1987; Searle et al., 1992).

Let us consider the fear data with covariates gender (1: female; 0: male) and age in
years. Table 4 shows the estimates for the basic model without covariates and the model
with covariates age and gender (continuous response, αi = 1). It is seen that all items
show significant covariate effects for at least one of the covariates ( z-values given in
the last two columns). With the exception of climate change older respondents tend to
be more afraid than younger respondents, females have for all items higher fear levels
than males. The necessity of covariates is also supported by testing. The log-likelihood
test that compares the model without covariates to the model with covariates is 41.266
on 10 df. Thus, if one considers it as a DIF problem, all items show differential item
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functioning. From a regression perspective, gender and age are seen to be influential if
one accounts for the heterogeneity in the population.

TABLE 4: Parameter estimates for the fears data with logit difficulty function, Gum-
bel distribution response function without covariate and with covariates, the last two
columns show the z-values of parameter estimates of covariate parameters.

Parameters z-values

Item intercepts slopes Age Gender z-Age z-Gender

1 -0.751 1.0259
2 -1.459 1.2609
3 -2.134 1.3365
4 -0.360 1.2061
5 -1.125 1.1303

Log-lik -1713.209

1 refugee 0.072 1.028 -0.011 -0.487 -2.138 -2.548
2 climate change -1.055 1.262 -0.002 -0.642 -0.326 -3.328
3 terrorism -0.954 1.393 -0.017 -0.756 -3.379 -3.997
4 globalization 0.416 1.201 -0.010 -0.491 -2.085 -2.603
5 nuclear energy -0.385 1.131 -0.013 -0.089 -2.632 -0.474

Log-lik -1692.576

7 Concluding Remarks

The topic of latent trait modeling for continuous responses has been addressed within
the framework of thresholds models. With respect to continuous responses, the lognor-
mal and the normal-linear model (the basic building block in the factor analysis model)
have been shown to be members of the thresholds modeling class. Furthermore, a bet-
ter approximation to the handling of Likert-type data has been suggested via the usage
of appropriately chosen nonlinear difficulty functions. It has also been demonstrated
that response functions other than the normal distribution can be more appropriate.

Future research could focus on multidimensional extensions of the TM class which
would ultimately provide a latent trait model for multidimensional abilities and contin-
uous responses. Alongside these multidimensional extensions, the modeling of data for
mixed measurement levels also becomes important. For instance, response times are
usually recorded in conjunction with the accuracy of the response (correct/incorrect).
A proper approach would need to model the joint distribution of (xi, ti) (with xi de-
noting the binary indicator of a correct response) in terms of a multdimensional trait
encompassing a speed and an accuracy component. Finally, it should be emphasized
that for continuous responses, the sensitivity of parameter estimates with respect to
extreme responses becomes of extra importance. That is, when using these models for
the classification of persons, it has to be ruled out that extreme responses on single
items show large effects on the estimate of the ability parameter. The answer to this
question might depend on the choice of the difficulty function and the choice of the
response function in the TM model and is an additional topic of future research.
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Appendix

7.1 Classical test theory

In the following we show that given a general TM model holds, by appropriate defi-
nitions of the true score and error terms a CTT model can be shown to hold, see also
Holland and Hoskens (2003).

Proposition 7.1. Define a true score by Ti(θ) := E(Yi|θ) and an error score via
εi(θ) := Yi − Ti. Then the following holds for all choices of i and j:

a) E(εj|Ti) = 0,

b) E(εj) = 0,

c) Cov(εi, εj) = 0 for i 6= j,

d) Cov(εi, Tj) = 0,

e) Cov(Yi, Yj) = Cov(Ti, Tj) for i 6= j.

Proof. First note that we may in the following occasionally drop the dependency of T
and of ε on θ and simply write T and ε instead of T (θ), ε(θ).

(a) Due to the strict monotonicity of the function Tj(θ) := E(Yj|θ), Tj and θ are
in a one-to-one relationship. Therefore, we have

E(εj|Ti) = E(εj|θ) = E(Yj − Tj(θ)|θ) = E(Yj|θ)− Tj = 0

.
(b) A direct consequence of (a) and the law of iterated expectations.
(c) Due to (b) it suffices to show that E(εiεj) = 0.

E(εiεj) =E ((Yi − Ti)(Yj − Tj)) = E (E ((Yi − Ti)(Yj − Tj)|θ))
=E (E(Yi − Ti|θ)E(Yj − Tj|θ)) = E(0 · 0) = 0.

In the above factorization we used the assumption of local stochastic independence.
(d) We have

Cov(εi, Tj) =Cov (E(εi|θ),E(Tj|θ)) + E (Cov(εi, Tj|θ)) .

As Tj is constant given θ, the second term may be dropped. Likewise, since E(εi|θ) =
0 according to (a) the first term may also be dropped.

(e)

Cov(Yi, Yj) =Cov(Ti + εi, Tj + εj)

=Cov(Ti, Tj) + Cov(Ti, εj) + Cov(εi, Tj) + Cov(εi, εj)

The last three terms cancel due to (c) and (d).
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7.2 Quantile function and moments

Equation (9) provides us with a direct formula for the quantile function. Based on
this, we can use the following result (with slight changes adapted from Theorem 11a in
Widder (2015)) – which we provide here for completeness – to compute expectations
of functions of Ypi.

Proposition 7.2. Let h, F be functions from [a, b] 7→ R. Assume that h is continuous
and F is non-decreasing. Denote byQ any strictly increasing continuous function from
[c, d] onto [a, b], then the following equality holds:∫ d

c

h(Q(x))dF (Q(x)) =

∫ b

a

h(x)dF (x).

Herein, all integrals are understood as Riemann-Stieltjes integrals. Note that if F
is strictly increasing and if Q denotes the inverse of F , then we arrive at∫ d

c

h(F−1(x))dx =

∫ b

a

h(x)dF (x). (13)

Further, if F denotes a strictly increasing distribution function of a continuous random
variable Y , then the right hand side denotes the expectation of h(Y )1a<Y <b, the inverse
Q equals the quantile function and by taking limits one obtains

Proposition 7.3. Let F denote a strictly increasing continuous distribution function of
a random variable Y and let Q denote the corresponding quantile function. Then for
any continuous h such that E(|h(Y )|) <∞, we have

E(h(Y )) =

∫ 1

0

h(Q(q))dq.

In fact, the above result is only a very specialized form of a more general result
(see e.g. ch. 2 of Barndorff-Nielsen and Shiryaev (2015)). In particular, it may also be
shown that it holds for nonnegative functions h which are not necessarily continuous.

This result can be used to compute moments of the random variable Y by taking
h(x) = xk and also central moments by taking h(x) = (x−µ)k. The following propo-
sition contains the general formula for the moments as well as the specific formulas for
the two important special cases of linear and logarithmic difficulty functions.

Proposition 7.4. Means and central moments
One obtains for strictly increasing difficulty functions

E(Ypi) =

∫ 1

0

δ−1i (θ − F−1(1− q)/αi)dq, (14)

E(Ypi − µpi)k =

∫ 1

0

(δ−1i (θ − F−1(1− q)/αi)− E(Ypi))
kdq. (15)

For linear functions, δi(y) = δ0i + δi(y) with inverse δ−1(x) = (x− δ0i)/δi, one
obtains

E(Ypi) =
θp − δ0i
δi

− µF
αiδi

, E(Ypi − µpi)k =

∫ 1

0

(
µF − F−1(1− q)

αiδi

)k
dq, (16)
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where µF =
∫ 1

0
F−1(1− q)dq equals the expectation of a random variable with distri-

bution function F according to Proposition 7.3.
For logarithmic functions one obtains

E(Ypi) = ci exp

(
θp − δ0i
δi

)
, E(Ypi − µpi)k = cii exp

(
k
θp − δ0i
δi

)
, (17)

ci =
∫ 1

0
exp(−F−1(1− q)/(αiδi))dq, cii =

∫ 1

0
(exp(−F−1(1− q)/(αiδi))− ci)kdp.

Proof. Recall that the quantile function of a TM model is given by

Q(q) = δ−1i (θ − F−1(1− q)/αi)

For a continuous random variable Y with density F and quantile function QY the
expectation of a strictly transformation h(Y ) can be obtained via Proposition 7.3 by

E(h(Y )) =

∫
h(y)dF (y) =

∫ 1

0

h(QY (q))dq. (18)

Thus, for strictly increasing difficulty functions and h(y) = y one obtains

E(Y ) =

∫ 1

0

δ−1i (θp − F−1(1− q)/αi).

With h(y) = (y − E(Ypi))
k one obtains the corresponding centered moments.

The inverse of the linear difficulty function δi(y) = δ0i + δiy is given by δ−1i (x) =
(x− δ0i)/δi yielding

E(Y ) =

∫ 1

0

θp − F−1(1− q)/αi − δ0i
δi

dq =
θp − δ0i
δi

− EF
αiδi

,

where EF =
∫ 1

0
F−1(1 − q) is the expectation of a random variable with distribution

function F (.). For the central moments one has

E(Ypi − µpi)k =

∫ 1

0

(
θp − F−1(1− q)/αi − δ0i

δi
− θp − δ0i

δi
+
EF
αiδi

)k
dq

=

∫ 1

0
(µF − F−1(1− q))kdq

(αiδi)k
.

For k = 2 varF =
∫ 1

0
(µF − F−1(1− q))kdq is the variance of a random variable with

distribution function F (.).
The corresponding functions for logarithmic difficulty functions are obtained by

using the inverse function δ−1i (x) = exp((x− δ0i)δ−1i ).

Proposition 7.5. Given a TM, the transformed variable δ(Ypi) has the same distribution
as the random variable

θp −
Y0
αi

with Y0 ∼ F

25



Proof. Let A denote a Borel-measurable set in R. According to the remark following
Proposition 7.3, we can invoke the result of the proposition with nonnegative functions.
We choose h(y) := Iδ(y)∈A, wherein IB denotes the indicator function of a set B. Then
we get (abbreviating θ := θp):

P (Ypi ∈ A) =E(h(Ypi)) =

∫ 1

0

Iδ(Q(q))∈Adq =

∫ 1

0

Iθ−F−1(1−q)α−1∈Adq

=

∫ 1

0

Iθ−F−1(q)α−1∈Adq =

∫
Iθ−zα−1∈AdF (z) = P (θ − Y0α−1 ∈ A).

Using the above Proposition, we may immediately deduce the following:

Proposition 7.6. For the thresholds model P (Ypi > y|θp, αi, δi(.)) = F (αi(θp−δi(y)))
with strictly increasing continuous distribution function F (.) and corresponding den-
sity f(y) = ∂F (y)/∂y one obtains

E(δi(Ypi)) = θp − µF/αi (19)
var(δi(Ypi)) = varF /α

2
i , (20)

where µF =
∫
yf(y)dy is the expectation corresponding to distribution function F (.),

and varF = σ2
F =

∫
(y − EF )2f(y)dy is the variance linked to F (.) If the difficulty

function is parameterized by δi(y) = δ0i + δig(y), δi ≥ 0, one obtains for the expecta-
tion and the variance of g(.)

E(g(Ypi)) = (θp − δ0i − EF/αi)/δi, (21)
var(g(Ypi)) = varF/(αiδi)

2. (22)

Proof. According to Proposition 7.5, δi(Ypi) is distributed as θp − Y0
αi

. Hence, the
expecated value and the variance are given by

E(δi(Ypi)) =θp −
E(Y0)

αi
= θp −

µF
αi
,

var(δi(Ypi)) =
1

α2
i

var(Y0) =
1

α2
i

varF .

The formulas for the special case δi(y) := δ0i + δig(y) follow by using the above
formulas and by noting that

g(Ypi) =
δi(Ypi)− δ0i

δi
.
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