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Abstract

Subsampling is a popular approach to alleviating the computational burden for analyzing

massive datasets. Recent efforts have been devoted to various statistical models without explicit

regularization. In this paper, we develop an efficient subsampling procedure for the large sam-

ple linear ridge regression. In contrast to the ordinary least square estimator, the introduction

of the ridge penalty leads to a subtle trade-off between bias and variance. We first investi-

gate the asymptotic properties of the subsampling estimator and then propose to minimize the

asymptotic-mean-squared-error criterion for optimality. The resulting subsampling probability

involves both ridge leverage score and ℓ2 norm of the predictor. To further reduce the compu-

tational cost for calculating the ridge leverage scores, we propose the algorithm with efficient

approximation. We show by synthetic and real datasets that the algorithm is both statistically

accurate and computationally efficient compared with existing subsampling based methods.

Keywords: Big data; Ridge regression; Subsampling method; Ridge leverage score.

1 Introduction

Linear regression is a popular method to depict the relationship between the response variable

y ∈ Y and the covariate x ∈ X ⊂ R
p. Observing n independent and identically distributed data

Fn = {(xi, yi)}ni=1, we consider the linear model yi = x⊤
i β + ǫi, i = 1, . . . , n, where ǫi is the
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independent and identically distributed error term with mean zero and variance σ2. The model

can be written in the matrix form

y = Xβ + ǫ,

where y = (y1, . . . , yn)
⊤ is a response vector, X = (x1, . . . ,xn)

⊤ is an n × p design matrix, ǫ =

(ǫ1, . . . , ǫn)
⊤ is an error vector. The ordinary least square approach minimizes ‖y − Xβ‖2 and

leads to β̂OLS =
(
X⊤X

)−1
X⊤y provided that X⊤X is invertible. Ridge regression, proposed by

Hoerl and Kennard (1970) 50 years ago, provides a remedy for ill-conditioned X⊤X in computing

the ordinary least square estimator. The ridge regression estimator is defined by adding a ridge on

the diagonal of X⊤X, that is,

β̂ =
(
X⊤X+ λI

)−1
X⊤y, (1.1)

where λ > 0 is called the ridge parameter.

The optimization function for the ridge regression estimator can be written as

min
β

{
‖y −Xβ‖2 + λ‖β‖2

}
. (1.2)

The ridge penalty introduces bias to the estimator, while the variance is reduced at the same

time. It leads to a bias-variance trade-off when we attempt to predict at a new location, see

e.g., Hastie et al. (2009); Hastie (2020). Tuning the ridge parameter λ is critical for balancing the

bias and variance of the estimator. Typical methods for choosing the ridge parameter include the

cross-validation and the generalized cross-validation (Golub et al., 1979).

With massive data, it is often computationally prohibitive to calculate the estimator when either

the sample size or the dimension is super large. In recent years, many research efforts have been

devoted to addressing the computational issue due to the large data matrix. Kumar et al. (2012)

explored the sampling approach for the column subset selection problem by the Nyström method.

Derezinski et al. (2020) recently provided an improved theoretical guarantee for low-rank approx-

imations of large datasets. Another popular idea in machine learning is coreset, which constructs

estimators based on sub-data. Kacham and Woodruff (2020) utilized the spectral graph sparsifi-

cation result of Batson et al. (2012) and proposed to merge the coresets obtained from multiple

servers. Mahoney (2011); Woodruff (2014) studied matrix sketching to generate smaller datasets

with random projections. Wang et al. (2017) addressed the statistical and algorithmic properties
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of classical sketch and Hessian sketch. Recently, under the context of ridge regression models, ridge

leverage scores, introduced by Alaoui and Mahoney (2015), are defined as the diagonal elements of

matrix X
(
X⊤X+ λI

)−1
X⊤. Cohen et al. (2017) extended the concept and proposed a low-rank

projection-based approach via ridge leverage score sampling. Homrighausen and McDonald (2020)

provided the approximated bias and variance for ridge regression but under the special condition

that the compression matrix is of a sparse Bernoulli form.

Subsampling can be viewed as a special case of random projection or sketching. A general

subsampling procedure is basically to first select a subsample from the original dataset according

to certain subsampling probabilities and then construct an estimator via only the subsample. The

efficiency of implementation and nice interpretability make subsampling-based methods attractive.

Based on the characteristics of the sampling step, existing methods can be summarized into two cat-

egories: deterministic and randomized subsampling. For the deterministic approach, Wang et al.

(2019) proposed to select the subsample with extreme values on each dimension of X in linear

regression such that the information matrix has a well-controlled determinant value. The second

approach, the randomized subsampling, assigns subsampling probabilities to each observation and

can achieve certain optimality by minimizing various criteria from the theory of experimental design.

Drineas et al. (2011), Ma et al. (2015) and Ma et al. (2020) investigated the optimal subsampling

for large sample linear regression via leverage scores, i.e., the diagonal elements of X
(
X⊤X

)−1
X⊤.

Such strategy has inspired further studies on versatile statistical models including logistic regres-

sion (Wang et al., 2018), quantile regression (Wang and Ma, 2020) and generalized linear models

(Ai et al., 2018).

Our goal in this paper is to alleviate the computational burden for ridge regression with large-

scale datasets. In particular, we focus on the case where the full sample size n is much larger than

the dimension p. Motivated from the idea of subsampling which concerns the asymptotic result

(Ma et al., 2020, 2015), we study the bias and variance of the regression coefficient estimator from

the subsample. Taking the bias-variance trade-off into consideration, we propose to minimize the

asymptotic-mean-squared-error criterion and show that the optimal subsampling probability for

each observation depends on not only its ridge leverage score but also the ℓ2 norm of the covariate.

Unlike existing subsampling methods for large sample regression models where no penalty term is
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involved, it plays an important role to select a proper ridge parameter. Although the derived opti-

mal subsampling probabilities have explicit forms, it is unrealistic to directly apply them because

quantities include the ridge parameter and the ridge leverage scores are computationally expensive

to calculate. On the one hand, conventional methods for choosing the ridge parameter such as the

cross-validation and the generalized cross-validation are time-consuming when applied to the full

sample. However, based on the relationship between the best ridge parameter for the full sample

and that for the subsample, we can instead apply the cross-validation on the subsample and extrap-

olate it to the full sample. On the other hand, for efficient approximation, we replace individual

ridge leverage scores with their average. As a consequence, the optimal subsampling probabili-

ties are proportional to the ℓ2 norms of predictors. Based on the aforementioned adjustments,

our new method exhibits better performance with efficient computation than other sketching and

subsampling algorithms over extensive simulation studies, especially when the subsample size is

small.

The rest of the paper is organized as follows. Section 2 presents the framework of the subsam-

pling method and explains the details of ridge parameter selection and the optimal subsampling

criterion. Section 3 proposes the optimal subsampling algorithm. Section 4 and Section 5 demon-

strate the practical effectiveness of our algorithms via simulation and application, respectively.

2 Methodology

2.1 Subsampling framework

To reduce the computation when dealing with datasets of large sample size n, the key step of a

general subsampling procedure is to select a subsample of size r ≪ n from the original observations

according to subsampling probabilities. Extending the weighted estimation algorithm raised in

Ma et al. (2015) to the ridge regression, we present the following framework for the ridge regression

estimator β̃. Our proposed algorithms are based on this basic framework with its details shown in

Section 3.

Step 1. Construct the subsampling probability for each sample {πi}ni=1. Draw a subsample (X∗,y∗)

of size r ≪ n based on the probability.
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Step 2. Determine the ridge parameter λ̃ for the subsample. Calculate the ridge regression estima-

tor using the subsample, i.e.,

β̃ = argmin
β

‖Φ∗y∗ − Φ∗X∗β‖2 + λ̃‖β‖2, (2.1)

where Φ∗ = diag
{
1/
√

rπ∗
k}
}r
k=1

.

Under the above general subsampling framework, two key questions remain to be answered:

1. How to determine the ridge parameter for subsample λ̃?

2. What is the optimal subsampling probability for each sample {πi}ni=1?

2.2 Ridge parameter selection

The regularization in ridge regression plays an essential role in the prediction performance of the

estimator. The ridge parameter λ is usually unknown and requires careful tuning. Taking both

the bias and variance into consideration, we can view the mean squared error as a function of the

ridge parameter, and define the optimal ridge parameter as the one corresponding to the smallest

mean squared error. For example, when the design matrix has orthonormal columns, the mean

squared error can be derived as pσ2(1 + λ)−2 + λ2(1 + λ)−2β⊤β, and thus the optimal ridge

parameter is pσ2/β⊤β. In practice, the cross-validation and its variants are applied to obtain the

optimal ridge parameter. For K-fold cross-validation, the training data is divided into K partitions

{X(k),y(k)}Kk=1 and we denote by β̂\k(λ) the estimated coefficient based on all partitions except

the kth one. The optimal ridge parameter is

λK-fold = argmin
λ

K−1
K∑

k=1

‖y(k) −X(k)β̂\k(λ)‖2.

The repeated fitting process by using different parts of the original sample leads to a high compu-

tational cost, especially when the sample size is large. Golub et al. (1979) proposed the generalized

cross-validation to reduce the computation cost of cross-validation. Consider the leave-one-out

cross-validation, i.e., K = n. It can be shown that

λLOOCV = argmin
λ

n−1
n∑

i=1

{
yi − x⊤

i β̂(λ)

1− hii(λ)

}2

,
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where hii = x⊤
i

(
X⊤X+ λI

)−1
xi is the diagonal element of the hat matrixH = X

(
X⊤X+ λI

)−1
X⊤

where i = 1, . . . , n. Quantity hii measures the influential effect of the ith data points upon pre-

diction and is called λ-leverage score (Alaoui and Mahoney, 2015). The computational cost of

calculating the ridge leverage score is O(np2). The generalized cross-validation replaces individual

leverage scores with their average tr(H) to reduce computation, that is,

λGCV = argmin
λ

n−1
n∑

i=1

{
yi − x⊤

i β̂(λ)

1− n−1tr(H)

}2

. (2.2)

The optimal ridge parameter λ̃ for the subsample can be estimated by minimizing the cross-

validation criteria but over the subsample. We next provide the rationale of the approximation in

the main theorem.

2.3 Optimal subsampling

Once the ridge parameter is fixed, we calculate subsampling probabilities for each observation, by

which a subset of data points are selected from the full sample with replacement. We anticipate

the estimator based on the subsample can achieve some optimality. In the ridge regression, the

regularized estimator can perform much better than the ordinary least square estimator if the

bias and variances are traded off properly. Therefore, we consider the mean-squared-error type of

criterion which involves both bias and variance.

We begin by investigating the difference between the subsampling estimator and its full-sample

counterpart. For convenience of analysis, we introduce some notations here to rewrite the subsam-

pling estimator in the form concerning full data. Let Ki be the number of times the observation

xi is sampled and (K1, . . . ,Kn) thus follows a multinomial distribution. Let W = ΩK, where

K = diag{Ki}ni=1, Ω = diag{1/rπi}ni=1. Simple algebra yields that the ridge regression estimator

based on the subsample from (2.1) can be expressed as

β̃ =
(
X∗⊤Φ∗2X∗ + λ̃I

)−1
X∗⊤Φ∗2y∗ =

(
X⊤WX+ λ̃I

)−1
X⊤Wy. (2.3)

In the following lemma, we demonstrate the difference between the estimator (2.3) and the full-

sample estimator (1.1).
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Lemma 1. If 0 < πi < 1, i = 1, . . . , n, (X⊤X+λI)−1X⊤(W−I)X = Op(r
−1/2) and (λ̃−λ)(X⊤X+

λI)−1 = O(r−1/2), then

β̃ − β̂ = (X⊤X+ λI)−1X⊤We− λ̃(X⊤X+ λI)−1β̂ +Op(r
−1), (2.4)

where e = y −Xβ̂.

Proof. We first rewrite the subsampling estimator by multiplying (X⊤X+ λI)(X⊤X+ λI)−1,

β̃ =
{
(X⊤X+ λI)−1(X⊤WX+ λ̃I)

}−1 {
(X⊤X+ λI)−1X⊤Wy

}
. (2.5)

For the inverse term, we apply the Taylor series expansion,

{
(X⊤X+ λI)−1(X⊤WX+ λ̃I)

}−1
=
[
I+ (X⊤X+ λI)−1{X⊤(W − I)X+ (λ̃− λ)I}

]−1

= I− (X⊤X+ λI)−1X⊤(W − I)X− (λ̃− λ)(X⊤X+ λI)−1 +Op(r
−1).

For the other term in (2.5),

(X⊤X+ λI)−1X⊤Wy = (X⊤X+ λI)−1
{
X⊤y +X⊤(W − I)y

}

= β̂ + (X⊤X+ λI)−1X⊤(W − I)y.

Since (X⊤X+λI)−1X⊤(W−I)y and (X⊤X+λI)−1X⊤(W−I)e are of the same order as (X⊤X+

λI)−1X⊤(W − I)X,

β̃ = β̂ + (X⊤X+ λI)−1X⊤(W − I)e+ (λ− λ̃)(X⊤X+ λI)−1β̂ +Op(r
−1)

= β̂ + (X⊤X+ λI)−1X⊤We− λ̃(X⊤X+ λI)−1β̂ +Op(r
−1)

The second equation holds due to the normal equation for ridge regression.

We investigate the asymptotic mean squared error of β̃, which is used as our criterion for

determining the optimal subsampling probabilities.

Theorem 1. If the full sample size n is fixed, ‖xi‖ < ∞, i = 1, . . . , n, the sampling probabilities

{πi}ni=1 are nonzero, and λ̃− λ = O(r−1/2), then the asymptotic variance and mean are

1. AVar(β̃) = Σc − λ2r−1(X⊤X+ λI)−1β̂β̂⊤(X⊤X+ λI)−1, where

Σc = r−1(X⊤X+ λI)−1(
∑n

i=1 π
−1
i e2ixix

⊤
i )(X

⊤X+ λI)−1, ei = yi − x⊤
i β̂.
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2. AE(β̃) = β̂ + (λ− λ̃)(X⊤X+ λI)−1β̂.

The asymptotic mean squared error of β̃ is therefore

AMSE(β̃) = Σc−λ2r−1(X⊤X+λI)−1β̂β̂⊤(X⊤X+λI)−1+(λ−λ̃)2(X⊤X+λI)−1β̂β̂⊤(X⊤X+λI)−1.

Proof. We begin by the deduction of the result 1. The roadmap of the proof of this part is motivated

from the result in Ma et al. (2020) since the variance term in linear regression case is of similar

form. We use Cramer-Wold device to establish the asymptotic normality of (X⊤X+λI)−1X⊤We =

(X⊤X+ λI)−1
∑r

j=1X
⊤ΩK(j)e. Consider each term in the summation, for any non-zero constant

vector b ∈ R
p, we have

var{(b⊤X⊤X+ λI)−1X⊤ΩK(1)e} = r−1a⊤

(
n∑

i=1

e2i
πi

xix
T
i

)
a− r−1a⊤X⊤ee⊤Xa,

where a = (X⊤X+ λI)−1b. By applying the normal equation of ridge regression, we have

var{(b⊤X⊤X+ λI)−1X⊤ΩK(1)e} = b⊤
{
Σc + λ2r−1(X⊤X+ λI)−1β̂β̂⊤(X⊤X+ λI)−1

}
b.

By using Lindeberg–Lévy CLT, we have the variance of the summation,

var{(b⊤(X⊤X+ λI)−1
r∑

j=1

X⊤ΩK(j)e} = b⊤
{
Σc + λ2r−1(X⊤X+ λI)−1β̂β̂⊤(X⊤X+ λI)−1

}
b

Therefore, we have the result 1 due to the Cramer-Wold device.

Then consider the result 2. Since W = ΩK, where each element Ki in K = diag{Ki}ni=1 follows

the multinomal distribution Mult(r, {πi}ni=1), then E(Wi) = 1, where Wi is the diagonal element of

matrix W. Thus, we can calculate the expectation

E{(X⊤X+ λI)−1X⊤We} = (X⊤X+ λI)−1X⊤e

= λ(X⊤X+ λI)−1β̂,

with the second equation following the normal equation. Consequently, we have AE(β̃) = β̂+(λ−

λ̃)(X⊤X+ λI)−1β̂.

The above theorem shows that the controllable part of the criterion is included in the variance

term. Considering the expression of variance, only Σc depends on the subsampling probability

{πi}ni=1. We resort to minimize the expected trace of Σc to obtain the corresponding subsampling

probability, as shown in the following theorem.
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Theorem 2. When

πi =

√
(1− hii) ‖xi‖∑n

j=1

√
(1− hjj) ‖xj‖

,

E{tr(Σc)} attains its minimum, where hii is the ridge leverage score, i = 1, . . . , n.

Proof. Since E{tr(Σc)} = r−1
∑n

i=1 π
−1
i (1 − hii) ‖xi‖2, we can get the following result by applying

Hölder’s inequality,

r−1
n∑

i=1

1− hii
πi

‖xi‖2 = r−1
n∑

i=1

1− hii
πi

‖xi‖2
n∑

i=1

πi ≥
{

n∑

i=1

√
(1− hii) ‖xi‖2

}2

,

with the equality holds if and only if πi ∝
√

(1− hii) ‖xi‖.

In Theorem 2, we obtain the optimal subsampling probability for each observation. It involves

both the ridge leverage score and the ℓ2 norm of the predictor. Our subsampling strategy is different

from the sketching scheme for ridge regression (Cohen et al., 2017) which only utilized the ridge

leverage score. We will compare these methods on simulation and real data.

3 Algorithm

Based on the deduction in the above section, we obtain the subsampling probability and the ap-

proaching rate between the ridge parameter for subsample λ̃ and that for full sample λ. Integrating

these ingredients with the general subsampling procedure, λ̃ = λ and πi =

√
(1−hii)‖xi‖

∑n
j=1

√
(1−hjj)‖xj‖

, i =

1, . . . , n, we can calculate the subsampling estimator. However, there are two quantities whose cal-

culations are still computationally demanding. First, it requires O(np2) to compute the exact ridge

leverage scores, which amounts to the same computation as the full-sample estimator. Second, we

need to calculate λ first for calculating the ridge leverage score. The ridge parameter λ̃ is then set

as λ, which is not desirable since applying the cross-validation to choose λ is time-consuming.

To address the aforementioned issues, we propose an efficient approximation to the optimal

subsampling probabilities in Theorem 2. Similar to the idea of generalized cross-validation in

(2.2), we approximate the individual ridge leverage score with their average, i.e., n−1tr(H). It

corresponds to the scenario where ridge leverage scores are not highly heterogeneous. Therefore,

the subsampling probability reduces to πi = ‖xi‖/
∑n

j=1 ‖xj‖, i = 1, . . . , n, which involves only

the ℓ2 norm of the predictors. Moreover, such an approximation of the subsampling probability
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no longer depends on the ridge leverage score, and hence we do not need the full sample λ to

calculate πi. In this way, we can perform the cross-validation or generalized cross-validation to

directly calculate λ̃ with the selected subsample at a much lower computational cost. The optimal

subsampling ridge regression estimation we propose is summarized in Algorithm 1.

Algorithm 1. Ridge Regression with Optimal Subsampling

Step 1. Construct the subsampling probability for each sample πi = ‖xi‖/
∑n

j=1 ‖xj‖, i = 1, . . . , n.

Draw a subsample (X∗,y∗) of size r ≪ n based on the probability.

Step 2. Calculate the ridge regression estimator

β̃ = argmin
β

‖Φ∗y∗ − Φ∗X∗β‖2 + λ̃‖β‖2, (3.1)

where λ̃ is selected via cross-validation for response vector Φ∗y∗ and design matrix Φ∗X∗

and Φ∗ = diag
{
1/
√

rπ∗
k}
}r
k=1

.

Compared to calculating the exact ridge leverage score, the calculation of subsampling proba-

bilities in Step 1 of Algorithm 1 avoids accessing the full design matrix X, and hence the ℓ2 norm

of predictors can be obtained in parallel. According to the closeness between λ̃ and λ revealed in

Theorem 1, we can extrapolate λ̃ for the subsample to estimate λ for the full sample. It allows us

to confirm our theoretical findings with numerical experiments which are presented in the following

sections.

4 Simulation

In the simulation study, we begin by demonstrating the effectiveness of the approximation of the

ridge leverage score. We then compare the proposed methods with other subsampling approaches

developed for large sample ridge regression or linear regression, including the ridge leverage score

subsampling (Cohen et al., 2017), uniform subsampling for ridge regression, optimal subsampling

for linear regression (Ma et al., 2020) and the information-based optimal subdata selection for

linear regression (IBOSS) (Wang et al., 2019). Simulated data are generated in six settings. In

each simulation, we generate the full data set of size n = 105 and dimension p = 50. Subsample

10



sizes are set as r = 100, 200, 400, 800, 1600, 3200, 6400. The design matrix X is standardized before

being fed into the model. Each experiment is repeated 20 times. We use the mean squared error

(MSE) of the estimated coefficient β̃ to evaluate the performance.

The errors ǫi, i = 1, . . . , n are independently and identically generated from N(0, 9). We set

the simulations as follows. For a q < p, let Σ be the q × q covariance matrix with element

Σi,j = 0.51(i 6=j), i, j = 1, . . . , n. Consider q-dimensional xi ∼ N(0,Σ), i = 1, . . . , n for the true

linear model with β = 1q×1. An additional (p − q)-dimensional term xa is generated without

being used in the true model, since we want to test if the subsample helps identify the appropriate

relationship between the responses and the true covariates.

Case 1. q = 10, Xa
i follows a multivariate normal distribution, where columns of Xa

i are i.i.d.

samples from N(0, 1).

Case 2. q = 10, Xa
i follows a multivariate lognormal distribution, where columns of Xa

i are i.i.d.

samples from LN(0, 1).

Case 3. q = 10, Xa
i follows a multivariate t distribution with degrees of freedom 2, where columns

of Xa
i are i.i.d. samples from t2(0, 1).

Case 4. q = 25, Xa
i follows a multivariate normal distribution, where columns of Xa

i are i.i.d.

samples from N(0, 1).

Case 5. q = 25, Xa
i follows a multivariate lognormal distribution, where columns of Xa

i are i.i.d.

samples from LN(0, 1).

Case 6. q = 25, Xa
i follows a multivariate t distribution with degrees of freedom 2, where columns

of Xa
i are i.i.d. samples from t2(0, 1).

First, we show that subsampling by using the fast approximation of ridge leverage score (ROPT)

is similar to that by applying the accurate one (ROPT-acc). Figure 1 displays the comparison result

of MSE of the estimators by using the two sampling probabilities. Both methods have similar

performance in all 6 cases given different subsample sizes. Therefore, the effectiveness of the ℓ2

approximation of ridge leverage score is demonstrated.

11



2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5
ROPT
ROPT−acc

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

ROPT
ROPT−acc

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

ROPT
ROPT−acc

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5
ROPT
ROPT−acc

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

ROPT
ROPT−acc

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

log10(r)

lo
g 1

0(
M

S
E

)

2.0 2.5 3.0 3.5

−
0.

5
0.

5
1.

0
1.

5
2.

0
2.

5

ROPT
ROPT−acc

Figure 1: Comparison of different subsampling probabilities: x-axis is the logarithm of the sub-

sample size, y-axis is the logarithm of the mean squared error of β̃.

Then we compare our proposed method with the ridge leverage score subsampling (RLEV), uni-

form subsampling for ridge regression (RUNIF), optimal subsampling for linear regression (OPT),

and the information-based optimal subdata selection for linear regression (IBOSS). The first two

competitors are raised for the ridge regression while the rest two are proposed for the linear re-

gression. In Figure 2, our algorithm has the best performance among all the 6 cases when the

subsample sizes are small or moderate, while all the methods have similar performance when the

subsample sizes are large. First, our method has a great advantage when we use a small subsample.

Second, by comparing the two rows of Figure 2, we can find our model preserves its superiority over

other models for linear regression even in the cases where the true model favors less for introducing

the ridge penalty.
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Figure 2: Comparison of different subsampling estimators: x-axis is the logarithm of the subsample

size, y-axis is the logarithm of the mean squared error of the estimator β̃ compared with true β.

5 Real data example

In times of information explosion, people are surrounded by a sea of news from various sources all

day and night. For online media, it is critical for them to know what kind of news can attract the

public attention, and hence the prediction of the popularity of the news becomes a trendy research

topic. To raise the accuracy, numerical features from content, keywords, publish day and earlier

popularity of news referenced in the article are extracted and then fed into a regression model to

predict the share of the news. We use the open dataset of Online News Popularity Data Set on UC

Irvine Machine Learning Repository1, which was provided by Fernandes et al. (2015).

The data was collected from Mashable, which is one of the largest news websites, from January

7, 2013, to January 7, 2015. It contains more than 39,000 articles in around 700 days. Except for

the two non-predictable features, there is one response, the number of shares, and 58 predictive

1http://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

13



attributes concerning words, links, media, time, keywords, and natural language processing. Since

the number of observations is huge and the number of features is also relatively large, it is prohibitive

to allocate the memory for calculating the regression estimator. Therefore, we use the subsampling

method to reduce the computation cost. The dataset is randomly divided into 70% for training

and 30% for testing. Subsample sizes are set as r = 100, 200, 400, 800, 1600, 3200, 6400. The design

matrix X is standardized before being fed into the model. Each experiment is repeated 20 times.

Because the true regression coefficient β is unknown, we first compare our estimator β̃ with full-

sample estimator β̂ in terms of MSE.
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Figure 3: Comparison of different subsampling estimators: x-axis is the logarithm of the subsample

size, y-axis is the logarithm of the mean squared error of the estimator β̃ compared with full-sample

estimator β̂.

In Figure 3, we plot the MSE of the estimators calculated by different methods. Our method has

the best performance at various subsample sizes compared with the competing methods. Finally,

to better compare the performance of different methods, we report the test error under various

subsample sizes in Table 1. Our method keeps the advantage compared with other methods as the

subsample size grows.

14



r 100 200 400 800 1600 3200 6400

ROPT 0.007 0.043 0.015 0.012 0.013 0.015 0.029

RLEV 1.560 1.754 0.594 1.032 0.555 0.516 0.285

RUNIF 1.317 1.389 1.062 1.160 0.350 0.653 0.289

OPT 1.819 1.571 0.978 0.633 1.684 1.412 2.761

IBOSS 1.425 1.030 1.892 1.261 0.402 0.349 1.137

Table 1: The logarithm of the test error comparison under different subsample sizes.
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