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Abstract

Response-adaptive randomization allows the probabilities of allocating patients

to treatments in a clinical trial to change based on the previously observed response

data, in order to achieve different experimental goals. One concern over the use of

such designs in practice, particularly from a regulatory viewpoint, is controlling the

type I error rate. To address this, Robertson and Wason (Biometrics, 2019) pro-

posed methodology that guarantees familywise error rate control for a large class

of response-adaptive designs. In this paper, we propose an improvement of their

proposal that is conceptually simpler, in the specific context of block-randomised

trials with a fixed allocation to the control arm. We show the modified method

guarantees that there will never be negative weights for blocks of data, and can

also provide a substantial power advantage in practice.

Keywords: conditional invariance principle, multiple testing, type I error rate

1 Introduction

Randomized clinical trials are typically designed in such a way that a decision about

treatment efficacy is reached as quickly as possible and with a minimum number of pa-

tients exposed to inferior treatment options. Response-adaptive randomization (RAR)

can help achieve such goals by an allocation process that makes randomization of a
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newly recruited patient dependent on responses to treatment from previous study par-

ticipants. This can offer advantages in terms of the benefit for patients recruited into

the study, or the study’s power to detect treatment effects. Many different classes of

RAR procedures have been proposed for various trial contexts, and a recent review of

methodological and practical issues around the use of RAR in clinical trials can be found

in Robertson et al. Robertson et al. [2020]. However, one major concern is about the

type I error rate arising from such studies. This is particularly the case from a regula-

tory viewpoint, where control of the type I error rate is required for confirmatory studies

[U.S. Food and Drug Administration, 2019, European Medicines Agency, 2002].

Robertson and Wason [2019] proposed methodology that guarantees type I error con-

trol by iterative application of the conditional invariance (CIV) principle. For that pur-

pose, they assume the existence of an auxiliary design in which the test statistic has a

known null distribution. At interim analyses of the RAR trial (this may be after blocks

of patients, or after every patient), the randomization ratios may be changed. The test

statistic used to test for treatment efficacy, however, will be calculated in such a way that

its null distribution matches the null distribution of the test statistic from the auxiliary

design. Robertson and Wason [2019] show that this guarantees type I error control at

level α if the test in the auxiliary design is a level α test. For multi-arm trials, the testing

procedure controls the familywise error rate (FWER), which is defined as the maximum

probability of at least one type I error under any configuration of true and false null

hypotheses.

In this paper, we present an improvement of their proposal based on the CIV principle.

It is simpler in that it requires only matching the variance of the quantities that form

the final test statistic, rather than matching both variance and means. This restricts the

method to block-randomization and to a fixed randomization to the control arm. On

the other hand, by construction the method guarantees that there will never be negative

weights for blocks of data and can also provide a substantial power advantage.

The outline of the rest of the paper is as follows. In Section 2 we describe the

proposed testing procedure and its connection with existing approaches. A simulation
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study is presented in Section 3 to compare the testing strategies, and we conclude with

a discussion in Section 4.

2 Matching algorithm

Consider a trial with K > 1 experimental treatment arms and a control arm. We assume

that the control arm is not subject to any response-adaptive randomization. For the

treatment arms, there is a run-in period which allocates patients according to a predefined

randomization scheme. After the end of this run-in, randomization to the experimental

treatment arms may be modified based on previous results. The aim is to ‘reweight’

contributions to the test statistic in such a way that the FWER is controlled.

Let i = 1, . . . , n∗
0 be the patients randomized in the run-in period. Subsequently, RAR

is used for patients i = n∗
0 + 1, . . . , n∗. For simplicity, we consider only the test of the

null hypothesis H1 : µ1 = µ0, where µ1 and µ0 are the expected responses from patients

under treatment and control, respectively. Extensions to intersection hypotheses within

a closed test procedure will be discussed in Section 2.2. We assume that Xi ∼ N(µ1, σ
2)

is the response obtained from patient i randomized into treatment group 1. Without loss

of generality, we assume σ2 = 1. To keep notation simple, we will not introduce notation

and labelling of patients in the other treatment groups here. We assume that n0 patients

are randomized to treatment 1 in the run-in period.

Furthermore, we assume the existence of an auxiliary design, which can be thought

of as one of the allowed randomization lists, chosen before the beginning of the trial.

Unless there are reasons to choose otherwise, a default option would be to use fixed

(equal) randomization to reflect the uncertainty before the trial begins over which of the

treatment options will be superior. Like in Robertson and Wason [2019], Yi ∼ N(µ1, 1)

denotes the random variable for the ‘intended’ response of a patient in treatment group 1

according to the auxiliary design that foresees a total of n patients in treatment group 1.

For i ≤ n0, we have Yi = Xi. Afterwards, the two designs diverge.

In this setup, Robertson and Wason [2019] describe a method which uses the resulting
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data to calculate a test statistic T̃ for the test of H1. The test statistic is a difference

of weighted averages of the observations on treatment arm 1 and the control arm. The

weights are calculated recursively based on the number of allocations to the experimental

treatments and the control.

We now describe a simplification of the handling of the control group in this setup.

We ignore the control group in the updating steps of the algorithm described in the

Web Appendices B and D of Robertson and Wason [2019]. This implies that no interim

tests for efficacy are performed in this simplification. As the subsequent description will

show, this assumption can be relaxed for the blockwise RAR if we fix the number of

control patients obtained per block. The basic idea of the modified proposal is to use the

‘matching algorithm’ only for the variance, thereby allowing shifts in the mean. Due to

this, the CIV principle may no longer be used as a justification for the algorithm, but a

minor modification of it still applies.

Let ȳ1(n0) ∼ N(µ1,
1
n0
) be the mean response in treatment group 1 after the run-

in period. For the next block of recruited patients, the allocation rule for treatment 1

versus all other experimental treatments is changed in some way such that at the end

of this block (block 1, say), we have ñ1 patients in treatment arm 1 instead of the pre-

planned n1 from the auxiliary design. We proceed in this fashion up to a final block b.

In every block, we assume that at least one patient will be randomized to treatment 1.

The following formulae define some resulting summary statistics and their conditional

distributions given the observed sample sizes:

• Block 0: This is the run-in period. After this block, we obtain T0 = n0

n
ȳ1(n0) ∼

N
(

n0

n
µ1,

n0

n2

)

and set w0 = n.

• Block 1: We define
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T1 =
n1

w0

ȳ1(n1) ∼ N

(

n1

w0

µ1,
n1

w2
0

)

T̃1 =
ñ1

w1
x̄1(ñ1) ∼ N

(

ñ1

w1
µ1,

ñ1

w2
1

)

T(1) =
n(1)

w0
ȳ1(n(1)) ∼ N

(

n(1)

w0
µ1,

n(1)

w2
0

)

T̃(1) = T̃1 + T(2)

Here, n(k) = nk + . . . + nb denotes the sample sizes of treatment group 1 in the

blocks of the auxiliary design and T(k) the corresponding weighted sum of expected

values; ȳ1(n1) is the average response of block 1, treatment 1 in the auxiliary design;

x̄1(ñ1) the average response of actually observed observations in block 1, treatment

1. Since ñ1 is a function of the entire data from patients 1, . . . , n∗
0, the given

distributions of T̃1 and T̃(1) are conditional on the block 0 data. We now calculate

w1 in such a way that the variance of T(1) and that of T̃(1) are matched. Hence,

w1 = n ·
√

ñ1+n(2)

n1+n(2)
, leading to the conditional distribution given the run-in-phase-

data as T̃(1) ∼ N
(

ñ1+n(2)

w1
µ1,

n(1)

n2

)

.

• Block k: After every block, randomization maybe changed. For block k we define:

Tk =
nk

wk−1

ȳ1(nk) ∼ N

(

nk

wk−1

µ1,
nk

w2
k−1

)

T̃k =
ñk

wk

x̄k(ñk) ∼ N

(

ñk

wk

µ1,
ñk

w2
k

)

T(k) =
n(k)

wk−1
ȳ1(n(k)) ∼ N

(

n(k)

wk−1
µ1,

n(k)

w2
k−1

)

T̃(k) = T̃k + T(k+1)

with wk = wk−1 ·
√

ñk+n(k+1)

nk+n(k+1)
. Consequentially, the conditional distribution given

run-in-phase and blocks 1, . . . , k − 1 is: T̃(k) ∼ N
(

ñk+n(k+1)

wk
µ1,

n(k)

n2

)

.

• Final block b: We define

Tb =
nb

wb−1

ȳ1(nb) ∼ N

(

nb

wb−1

µb−1,
nb

w2
b−1

)

T̃b =
ñb

wb

x̄b(ñb) ∼ N

(

ñb

wb

µ1,
ñb

w2
b

)
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Since no additional block follows, we have wb = wb−1

√

ñb

nb
, such that T̃b ∼ N

(

ñb

wb
µ1,

nb

n2

)

.

At the end of this procedure, we obtain the statistic T̃ = T0+
∑b

k=1 T̃k. The corresponding

statistic from the auxiliary design is T =
∑b

k=0 Tk. By construction, both T and T̃ have

variance var(T ) = 1
n
. However, while E(T ) = µ1, E(T̃ ) cannot be easily derived due to

the response-adaptive modifications.

Since we did not modify the randomization to the control treatment 0, we have a

consistent estimate of µ0 from z̄(m) ∼ N(µ0,
1
m
) where m is the planned number of

control patients in the auxiliary design and z̄(m) is the final average response in the

control group across all blocks. If we had known µ0 at the time of doing the blockwise-

RAR, we could simply have subtracted µ0 from every observation xi and run the algorithm

in the described way on xi − µ0 instead of xi. Since E(xi) = µ1 = µ0 under H1, this

would have led to E(T̃k) = 0 and remove the need to match the weights on the means as

well. As we have a record of all weights w1, . . . , wb, we can do this ‘post-hoc’:

T̃ ∗ = T0 −
n0

n
z̄(m) +

b
∑

k=1

[

T̃k −
ñk

wk

z̄(m)

]

= T̃ −
b

∑

k=0

uk · z̄(m),

where uk = ñk

wk
for k = 0, . . . , b, ñ0 = n0 and w0 = n. The final test statistic is then

Ũ = T̃ ∗

std(T̃ ∗)
, where std(T̃ ∗) =

√

1
n
+ (

∑b

k=0 uk)2
1
m
. Asymptotically, Ũ is distributed as

N(0, 1) under H1 : µ1 = µ0 since z̄(m) ∼ N(µ0,
1
m
).

Hence, Ũ is independent of any modifications to the randomizations that modified the

originally planned nk within the blocks. The asymptotic condition is ‘mild’ in the sense

that for a reasonably long-running study,
√
m(z̄m − µ0) ∼ N(0, 1) will hold by standard

asymptotic theory for estimates of expected values (if either there are many blocks or

the blocks are large), such that the concern about the normal distribution assumption is

similar to concerns about estimating σ2 from the data.

The approach can be modified to allow early stopping for efficacy if the number of

control patients is fixed per block. In that case, we can setup the approach similar to a

group-sequential trial with α-spending. Rather than calculating Ũ only once at the end of

the trial, we would calculate ŨF at the end of a randomly selected block F < b by treating
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F as the last block and using z̄(mF ) instead of z̄(m). Since the number m1, . . . , mb of

control observations after block 1, . . . , b are fixed in advance, z̄(mF ) ∼ N(µ0,
1

mF
) such

that ŨF ∼ N(0, 1) still holds. If there is a sequence α1, . . . , αb such that
∑b

k=1 αi = α,

then rejecting H1 when ŨF ≥ Φ−1(1−αF ) controls the type I error rate by the Bonferroni

inequality. Unfortunately, a ‘true’ group-sequential approach is harder to implement since

the correlation between ŨF and Ũ depends on uF+1, . . . , ub which are not available at the

time of the interim analysis. The correlation could be calculated if after the interim

analysis, the auxiliary design would be strictly followed for blocks F +1, . . . , b. However,

this would defeat the purpose of RAR.

A test of ŨF at level α at a randomly selected time F would only control the type I

error rate if the selection of F were stochastically independent of Ũ1, . . . , ŨF−1 under H1.

Obviously, calculating Ũk after every block and then deciding whether to test now or

later based on the observed value would lead to a selection bias.

2.1 Connection with existing approaches

There is a close connection with the proposal of Robertson and Wason [2019] (and hence

our modified proposal) and more traditional adaptive designs. Assume that we want to

test the one-sample hypothesis H0 : µ = µ0 adaptively. Before study start, we plan a first

interim analysis after n0 patients and a weight w0 ≤ 1 for this first step. At the interim,

we calculate the test statistic t0 =
√
n0(ȳ0−µ0) which is N(0, 1) under H0. Subsequently,

we pick a new sample size ñ1 for the next stage (up to the next interim) and a weight

w1 for this stage. The weight and ñ1 may both depend on the data from stage 0, but

the restriction w2
0 + w2

1 ≤ 1 must be obeyed. At the end of the stage, we calculate t1 =
√
ñ1(x̄1−µ0) ∼ N(0, 1) given the stage 0 data and t(1) = w0t0+

√

(1− w0)2t1 ∼ N(0, 1).

The next stage then combines t2 and t(1) using w1. We continue in this fashion until at

some point we decide to call the final analysis. Then, at the penultimate analysis (the

last interim before this final one), we spend the rest of the weight such that
∑b

k=1w
2
k = 1.

Hence, the last weight wb =
√

1−∑b−1
k=1w

2
k is not selected anymore. The weights wk are

allowed to depend on all data up to interim analysis k − 1, so they can be iteratively
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reused including the previous weights. This approach was described by Brannath et al.

[2002]. The proposals described in this paper and in Robertson and Wason [2019] can be

viewed as an application of this general procedure, with a special way of calculating the

weights and a ‘time horizon’ (in terms of total recruited patients n, say) which is given

from the start.

2.2 Application within a closed test procedure

The approach described above generalizes to the application within a closed test procedure

(CTP). In the CTP (Marcus et al. [1976]), Hj, j = 1, . . . , K is rejected if and only if all

HJ , J ⊆ {1, . . . , K} with j ∈ J are rejected at level α where HJ = ∩j∈JHj . In order to

test HJ : µj = µ0 ∀j ∈ J , several approaches can be considered. For example:

• All observation of the experimental treatment arms in J are pooled and treated

as a single treatment arm to test against control treatment 0 with the approach

described in Section 2. This is called “closed z-test” in the simulations below.

• Assume that the approach from Section 2 is used on all experimental treatment

arms separately, leading to test statistics Ũj , j = 1, . . . , K. Using max(Ũj)j∈J as

the test statistic for HJ , HJ is rejected if max(Ũj)j∈J ≥ Φ−1(1 − α
|J |
). This is the

Bonferroni-Holm method in the simulations of Section 3.

In contrast, a “Dunnett-like” closed test (see Magirr et al. [2012]) is not straightforward.

The marginal null distribution Ũj is N(0, 1), but the conditional correlation of Ũj1 and

Ũj2 is not independent of the sample size modifications by the RAR.

3 Simulation studies

To investigate the operating characteristics of the suggested design, we use the set-up of

a trial with J = 3 blocks (not including the run-in), with block sizes (40, 40, 40) for all

of the experimental treatments and (20, 20, 20) for the control. In the run-in period, five

patients are allocated to each of the treatments including the control. We set the true
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control mean µ0 = 0, and α = 0.05. The auxiliary designs in all scenarios were simply

random draws from a discrete uniform distribution on {1, . . . , K} where K is the number

of experimental treatment arms.

3.1 Bayesian Adaptive Randomization

We compare the methods under a Bayesian Adaptive Randomization (BAR) scheme.

Following Robertson and Wason [2019], we use a similar block-randomized BAR scheme

to the one in Wason et al. [2014]. The randomization probabilities (π1, . . . , πK) for the

experimental treatments at the (j + 1)th stage are given by πi = P (µi>µ0|X=x)γ
∑K

k=1 P (µl>µ0|X=x)γ
,

where P (µi > µ0 | X) is the posterior probability that µi is greater than µ0 given the

observed data x, see the Supporting Information for full details. In our simulations, we

set γ = 0.5. As well, since our proposal requires there to be at least one patient allocated

to each experimental treatment per block, we ensure this is the case by allocating the

last K∗ ≥ 0 patients in each block to each of the K∗ experimental treatments that have

zero observations.

3.2 Error Inflator scheme

To assess the FWER and power in a situation where type I control is known to be violated,

we also investigate the allocation scheme presented in Section 2.3 of Robertson and Wason

[2019], adapted to block randomization. This rule keeps on allocating patients to treat-

ment 1 (apart from one patient per block to each of the other experimental treatments)

as long as the mean response of treatment 1 remains below a fixed threshold of 0.5. As

soon as the fixed threshold is crossed, all subsequent patients not randomized to control

are allocated with equal probability to the other experimental treatments (except for one

patient per block on treatment 1). Full details are given in the Supporting Information.

3.3 Examples of weights

Tables 1 and 2 show the weights from two simulations under BAR and the error inflator

scheme, respectively. Throughout, we set µ1 = 0, µ2 = 1 for the experimental treatments.
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The proposal from Robertson and Wason [2019], denoted RW, is compared with that from

Section 2.

In the BAR example, we see that there is hardly any difference between the weights

produced by the two methods. They are also very similar to the actually observed

sample sizes, as would be expected from the simulation setup with two equally efficacious

treatments and a “neutral” prior.

In the error inflator example, the weights are very different for the two methods and

also differ from both the observed sample sizes and the sample sizes in the auxiliary design.

Both weight calculations up-weight the few responses from treatment 1 and down-weight

the many from treatment 2. The weight calculation from Robertson and Wason produces

negative weights for the control group here – something that is not possible with the

calculation from Section 2.

Note that the statements refer to a single simulation run. For the error inflator

scheme, this is a case where treatment 1 crossed the threshold after block 0. Observed

sample sizes and weights are very different for other simulation runs where this does not

happen. In contrast, for the BAR scheme, simulation runs are more similar to each other

in stochastic tendency.

3.4 Simulation results

To investigate the performance of the various approaches, we conducted simulations for

both the BAR and the error inflation scheme. As a standard comparison, we also provide

simulation results for fixed (equal) randomization in the Supporting Information. The

weighing approach from Robertson and Wason [2019], the proposal from Section 2 and

the naive approach (treating observed sample sizes as if they had been fixed in advance)

were used. In all these approaches, the closed test procedure and the (Bonferroni-)Holm

procedure are applied to adjust for the multiplicity arising from the testing of experi-

mental treatments against a common control. In Tables 3 and 4, disjunctive power is the

probability to reject at least one false null hypothesis (if there is one) and error is the
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Experimental treatment 1
RW test statistic 1.11
New test statistic 1.13
RW experimental treatment weights 61.38 60.11 71.09
New experimental treatment weights 61.90 61.04 68.24
RW control weights 65.59 66.05 62.90
New control weights 65.44 65.44 65.44

Experimental treatment 2
RW test statistic 6.52
New test statistic 6.60
RW experimental treatment weights 69.63 70.80 59.92
New experimental treatment weights 68.07 68.84 62.84
RW control weights 64.51 64.16 68.39
New control weights 64.46 64.46 64.46

Table 1: Example test statistics and weights for BAR scheme with µ1 = 0 and µ2 = 1.
The standard ‘weights’ (i.e. realised sample sizes per arm) would be 65, 64 and 66 for the
control, treatment 1 and treatment 2, respectively.

Experimental treatment 1
RW test statistic -1.79
New test statistic -1.59
RW experimental treatment weights 76.48 108.29 211.48
New experimental treatment weights 69.00 86.05 130.34
RW control weights 59.90 56.32 53.57
New control weights 91.25 91.25 91.25

Experimental treatment 2
RW test statistic 2.92
New test statistic 1.66
RW experimental treatment weights 53.67 35.71 8.16
New experimental treatment weights 59.01 43.57 9.09
RW control weights 72.21 98.47 -62.83
New control weights 14.26 14.26 14.26

Table 2: Example test statistics and weights for the error inflator scheme with µ1 =
0, µ2 = 1. The standard ‘weights’ (i.e. realised sample sizes per arms) would be 65, 8 and
122 for the control, treatment 1 and treatment 2, respectively.

FWER. Nominal test levels are assumed to be 5%.

Table 3 shows the results for the BAR scheme. As is well known, the closed test

procedure has a slight power advantage if the treatments are equally effective, but is

inferior when one of the treatments is effective, but the other(s) is not. FWER inflation

did not occur in the simulations, even if the naive approach is used. The naive, the RW
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and the proposed approach lead to practically identical type I errors and power here.

The results for the error inflator scheme are shown in Table 4. We see that the error

inflator scheme indeed does not control the FWER. The inflation remains somewhat

modest, however, with a FWER not exceeding 7.5% in any of the simulation scenarios.

As expected, no FWER inflation arises when the two adaptive test methods are used.

In line with what Robertson and Wason [2019] observed, there is a price to pay for the

FWER control: both methods tend to suffer from power losses relative to their naive

counterparts. The proposed procedure, however, has higher power than the RW approach

and for some scenarios, the gain is substantial. We speculate that this has to do with

the fact that the variation of the weights is limited and cannot diverge as wildly from the

observed sample sizes as they might with the RW approach (as illustrated in Table 2).

4 Discussion

In this paper, we have proposed an improved testing strategy based on the one by Robertson and Wason

[2019], which guarantees FWER control in the context of block-randomised response-

adaptive trials with a fixed control allocation. Our proposal is simpler but is more

restrictive as it is not applicable to fully sequential RAR or having an adaptive control

allocation. However, our proposal guarantees that the weights are non-negative, and

there can be substantial power gains in some settings.

As noted in Robertson and Wason [2019], since the proposed testing procedure is

based on the CIV principle, it has the additional important flexibility of being valid when

the allocation is changed due to external information. Our proposal is also designed for

normally-distributed outcomes, although it can apply for other types of outcomes through

the use of asymptotics. However, a natural extension of this work would be to work

directly with binary endpoints (for example) and potentially apply the CIV principle to

this setting.

The use of the CIV principle to “reweight” the test statistics raises interesting ques-

tions around the design of optimal response-adaptive trials (i.e. the formulation of RAR
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procedures that optimise certain criteria). For example, some RAR procedures incor-

porate a formal power constraint, but this is based on standard test statistics. If an

alternative testing strategy such as our proposed one is used, then there is a mismatch

between the optimality criterion and the subsequent analysis of the trial.

More generally, it is important to remember that there can be trade-offs between the

different objectives in a trial. Indeed, we have seen that guaranteeing FWER control

power can lead to a substantial loss in power. As another example, more ‘extreme’ RAR

procedures (i.e. those that skew the randomization probabilities close to 0 or 1) that

perform well in terms of patient benefit metrics may conversely have low power. Hence

the question of whether to use RAR as opposed to a fixed randomisation scheme is not

a simple one, and crucially depends on the trial context and goals.
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6. δ1 = 0, δ2 = δ3 = 0.5 4.9 66.7 5.0 67.1 5.0 67.0 4.5 85.3 4.7 85.4 4.7 85.3

7. δ1 = 0, δ2 = 0.25, δ3 = 0.5 4.5 50.6 4.6 50.8 4.6 50.7 3.6 72.3 3.7 72.5 3.7 72.4

8. δ1 = δ2 = δ3 = 0.5 - 93.2 - 93.3 - 93.3 - 90.3 - 90.6 - 90.5

Table 3: Familywise error rate and disjunctive power for BAR using block randomization with a fixed control allocation. There were 105

simulated trials for each set of parameter values.
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Closed z-test RW closed test New closed test z-test (Holm) RW test (Holm) New test (Holm)

Parameter values Error Power Error Power Error Power Error Power Error Power Error Power

1. δ1 = δ2 = 0 4.8 - 4.0 - 4.3 - 6.3 - 4.8 - 5.0 -

2. δ1 = 0, δ2 = 1 7.3 26.8 5.0 24.0 4.9 25.5 7.2 81.0 4.1 44.8 4.3 57.6

3. δ1 = δ2 = 0.5 - 94.7 - 93.0 - 93.8 - 92.0 - 88.4 - 90.0

4. δ1 = δ2 = δ3 = 0 4.0 - 3.2 - 3.5 - 5.8 - 4.7 - 4.9 -

5. δ1 = δ2 = 0, δ3 = 1 4.7 19.4 3.8 16.4 4.0 18.1 6.1 76.1 4.3 46.2 4.5 56.4

6. δ1 = 0, δ2 = δ3 = 1 7.3 25.2 4.9 25.9 4.9 26.5 7.0 91.9 3.8 61.4 4.1 75.2

7. δ1 = 0, δ2 = 0.5, δ3 = 1 7.2 23.0 4.7 22.0 4.8 23.2 6.1 80.1 3.3 50.0 3.6 61.4

8. δ1 = δ2 = δ3 = 0.5 - 93.8 - 91.6 - 92.7 - 89.8 - 84.5 - 86.6

Table 4: Familywise error rate and disjunctive power for the error inflator scheme using block randomization with a fixed control allocation.
There were 105 simulated trials for each set of parameter values.
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Supporting information

A Details of RAR procedures

A.1 Bayesian Adaptive Randomization (BAR)

Recall that the efficacy outcome for the ith treatment follows a N(µi, 1) distribution. We

assign independent normal priors to the µi (i = 0, 1, . . . , K), such that µi ∼ N(µi,0, σ
2
i,0).

Let Dj denote the total number of patients allocated to the experimental treatments by

the end of the jth block, and ñi,j denote the number of patients allocated to treatment i

by the end of the jth block. At stage (j + 1), when the outcomes x = (x1, . . . , xDj
) have

been observed, the posterior for µi is as follows:

µi | X = x ∼ N





σ2
i,0

1 + ñi,jσ2
i,0

Dj
∑

k=1

1{ak=i}xk +
ñi,j

1 + ñi,jσ2
i,0

µi,0 ,
σ2
i,0

1 + ñi,jσ2
i,0



 .

In our simulations, for simplicity we set the priors µi,0 = 0 and σ2
i,0 = 1, while γ = 0.5.

A.2 Error inflator scheme

Using the same notation as above, the allocation probabilities for block j ∈ {1, . . . , J−1},

patient k = Dj + 1, . . . , Dj+1 and treatment l ∈ {2, . . . , K} are:

P (ak = 1) =















0 if
∑Dj

i=1 1{ai=1}
Xi

ñ1,j
> 0.5

1 otherwise

P (ak = l) =















1/K if
∑Dj

i=1 1{ai=1}
Xi

ñ1,j
> 0.5

0 otherwise

B Fixed randomisation simulation study

Table B1 shows the familywise error rate and disjunctive power for fixed (equal) random-

ization.
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Closed z-test RW closed test New closed test z-test (Holm) RW test (Holm) New test (Holm)

Parameter values Error Power Error Power Error Power Error Power Error Power Error Power

1. δ1 = δ2 = 0 4.7 - 4.6 - 4.6 - 4.6 - 4.6 - 4.5 -

2. δ1 = 0, δ2 = 0.5 5.0 50.0 5.0 50.0 5.0 50.0 5.0 81.5 5.0 81.4 4.9 81.2

3. δ1 = δ2 = 0.5 - 94.6 - 94.6 - 94.5 - 92.3 - 92.2 - 92.1

4. δ1 = δ2 = δ3 = 0 3.7 - 3.7 - 3.7 - 4.6 - 4.6 - 4.6 -

5. δ1 = δ2 = 0, δ3 = 0.5 4.5 27.6 4.5 27.5 4.5 27.5 4.6 67.1 4.6 66.9 4.6 66.7

6. δ1 = 0, δ2 = δ3 = 0.5 5.0 55.7 5.0 55.7 5.0 55.7 4.7 83.6 4.7 83.5 4.7 83.4

7. δ1 = 0, δ2 = 0.25, δ3 = 0.5 4.6 42.6 4.6 42.5 4.6 42.5 3.8 69.8 3.8 69.7 3.8 69.5

8. δ1 = δ2 = δ3 = 0.5 - 93.2 - 93.1 - 93.1 - 90.1 - 90.0 - 90.0

Table B1: Familywise error rate and disjunctive power for fixed (equal) randomization. There were 105 simulated trials for each set of
parameter values.
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