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Membership-Mappings for Practical Secure

Distributed Deep Learning
Mohit Kumar, Weiping Zhang, Lukas Fischer, and Bernhard Freudenthaler

Abstract—This study leverages the data representation capa-
bility of fuzzy based membership-mappings for practical secure
distributed deep learning using fully homomorphic encryption.
The impracticality issue of secure machine (deep) learning
with fully homomorphic encrypted data, arising from large
computational overhead, is addressed via applying fuzzy at-
tributes. Fuzzy attributes are induced by globally convergent
and robust variational membership-mappings based local deep
models. Fuzzy attributes combine the local deep models in a
robust and flexible manner such that the global model can
be evaluated homomorphically in an efficient manner using a
boolean circuit composed of bootstrapped binary gates. The
proposed method, while preserving privacy in a distributed
learning scenario, remains accurate, practical, and scalable. The
method is evaluated through numerous experiments including
demonstrations through MNIST dataset and Freiburg Groceries
Dataset. Further, a biomedical application related to mental stress
detection on individuals is considered.

Index Terms—Membership-mappings, fully homomorphic en-
cryption, fuzzy attributes, distributed deep learning, privacy.

I. INTRODUCTION

FULLY homomorphic encryption (FHE) is a solution to

the privacy concerns in the cloud computing scenario.

The first FHE scheme [1] is based on ideal lattices and the

bootstrapping procedure is introduced to reduce the noise

contained in a ciphertext for allowing arbitrary computations.

The bootstrapping operation is performed on a ciphertext via

evaluating the decryption function homomorphically using the

bootstrapping key (which is the encryption of the private de-

cryption key under the public encryption key). Bootstrapping

is the computationally most expensive part of a homomorphic

encryption scheme. The theoretical breakthrough of [1] was

followed by several attempts to develop more practical FHE

schemes. The scheme introduced in [2] uses only elementary

modulo arithmetic and is homomorphic with regard to both

addition and multiplication. This scheme was improved in
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[3] with reduced public key size, extended in [4] to sup-

port encrypting and homomorphically processing a vector of

plaintexts as a single ciphertext, and generalized to non-binary

messages in [5]. Schemes based on a different hard problem,

referred to as Learning With Errors (LWE) problem [6], were

constructed and many current schemes still rely on LWE or

its variants. A FHE scheme constructed in [7] is based solely

on the standard LWE assumption that is known to be at

least as hard as solving hard problems in general lattices.

In a variant of the LWE problem, called ring learning with

errors problem (RLWE) problem, the algebraic structure of

the underlying hard problem reduces the key sizes and speeds

up the homomorphic operations. A leveled fully homomor-

phic encryption scheme based on LWE or RLWE, without

bootstrapping procedure, was proposed in [8]. The ciphertexts

contain a certain amount of noise for security purposes that

grows with homomorphic operations. For a better management

of the noise growth, [8] introduced a modulus switching

technique where a complete ladder of moduli is used for

scaling down the ciphertext to the next modulus after each

multiplication. A tensoring technique for LWE-based FHE

that reduced ciphertext noise growth after multiplication from

quadratic to linear was introduced in [9]. As the scheme

of [9] does no longer require the rescaling of the ciphertext,

this scheme was called a scale-invariant fully homomorphic

encryption scheme. An RLWE version of the scale-invariant

scheme of [9] was created in [10]. A technique for building

LWE based FHE scheme called as approximate eigenvector

method in which homomorphic addition and multiplication

are just matrix addition and multiplication was proposed

in [11]. The essence of this scheme is that the secret key

is an approximate eigenvector of the ciphertext matrix and

the message is the corresponding eigenvalue. Several works

that followed the theoretical breakthrough of [1] were aimed

at improving the bootstrapping as the bootstrapping remained

the bottleneck for an efficient FHE in practice. A much faster

bootstrapping, based on a scheme similar to the type of [11]

that allows to homomorphically compute simple bit operations

and refresh (bootstrap) the resulting output in less than a

second, was devised in [12]. Finally, the TFHE scheme was

proposed in [13], [14] that features an improved bootstrapping

procedure that is considerably more efficient than the previous

state of the art. The TFHE scheme generalizes previous

structures and schemes over the torus (i.e., the reals modulo

1) and improves the bootstrapping dramatically. For practical

applications, TFHE is an open-source C/C++ library [15]

implementing the ring-variant of [11] together with the op-

timizations of [12]–[14]. TFHE library implements a very

http://arxiv.org/abs/2204.05765v1
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fast gate-by-gate bootstrapping and supports the homomorphic

evaluation of the binary gates. The library allows to evaluate

homomorphically an arbitrary boolean circuit composed of

binary gates without restriction on the number of gates or

on their composition, over encrypted data, without decrypting.

However, the bootstrapped bit operations are still several times

slower than their plaintext equivalents.

The fuzzy systems’ capability of handling uncertainties in a

rigorous mathematical manner has motivated combining fuzzy

theory with deep models [16]–[20], [20]–[23]. Deep neural

networks outperform classical machine learning techniques

in a wide range of applications but their training requires

a large amount of data. The issues, such as determining

the optimal model structure, requirement of large training

dataset, and iterative time-consuming nature of numerical

learning algorithms, are inherent to the neural networks based

parametric deep models. The nonparametric approach on the

other hand can be promising to address the issue of optimal

choice of model structure. However, an analytical solution

instead of iterative gradient-based numerical algorithms will

be still desired for the learning of deep models. These moti-

vations have led to the development of a nonparametric deep

model [24]–[26] that is learned analytically for representing

data points. The study in [24]–[26] introduces the concept of

fuzzy-mapping which is about representing mappings through

a fuzzy set such that the dimension of membership function

increases with an increasing data size. A relevant result is

that a deep autoencoder model formed via a composition of

finite number of nonparametric fuzzy-mappings can be learned

analytically via variational optimization technique. However,

[24]–[26] didn’t provide a formal mathematical framework for

the conceptualization of so-called fuzzy-mapping. The study

in [27] provides to fuzzy-mapping a measure-theoretic concep-

tualization and refers it to as membership-mapping. Further,

the membership-mapping could serve as the building block of

deep models [28]. An alternative idea of deep autoencoder,

that consists of layers such that each layer learns data repre-

sentation at certain abstraction level through a membership-

mappings based autoencoder, is introduced in [28] for data

representation learning.

The aim of this study is to develop a methodology for prac-

tical secure distributed deep learning using fully homomorphic

encryption. The machine (deep) learning with fully homomor-

phically encrypted data remains impractical due to the large

computational overhead. Thus, we address in this study the

impracticality issue of secure distributed deep learning via

1) leveraging data representation learning capability of

globally convergent and robust membership-mappings to

build local deep models,

2) using local deep models to induce fuzzy attributes such

that defined fuzzy attributes learn data representation,

3) combining local deep models in a robust and flexible

manner by means of fuzzy attributes and fuzzy rules to

define a global model,

4) defining the global model in such a way that the

global model can be evaluated homomorphically in an

efficient manner using a boolean circuit composed of

bootstrapped binary gates,

5) implementing very fast gate-by-gate bootstrapping to ho-

momorphically evaluate the global model (that combines

the distributed local models) to predict the output.

The proposed approach to secure distributed deep learning

is novel. To the best knowledge of the authors, this is the first

study to apply fuzzy attributes, which are induced by globally

convergent and robust variational membership-mappings based

local deep models, for an efficient homomorphic evaluation

of the global model. The idea of using fuzzy sets and fuzzy

rules to aggregate the local private deep models for building

the global model was also considered in [29], however, under

differential privacy framework. Differential privacy preserves

the privacy of the training dataset via adding random noise to

ensure that an adversary can not infer any single data instance

by observing model parameters or model outputs. The amount

of noise depends upon the value of privacy-loss bound. A

major limitation of the differential privacy is that a sufficiently

low value of privacy-loss bound results in a loss of accuracy.

Moreover, it is not clear how to practically choose the value

of privacy-loss bound. FHE approach on the other hand does

not lead to the loss of accuracy, however, requires a large

computational time.

The data representation learning capability of membership-

mappings is central to our methodology. Although [27] pro-

vided an algorithm for the variational learning of membership-

mappings via following the approach of [24]–[26], there

remains the following two limitations:

1) there is no mathematical proof regarding the conver-

gence of the learning algorithm, and

2) there is no mathematical analysis on the robustness of

the learning algorithm.

This study addresses these two limitations and presents a more

simple and elegant estimation algorithm for the variational

learning of membership-mappings. A convergence analysis

is carried out via deriving a sufficient condition for the

convergence of the estimation algorithm. The convergence

analysis allows to provide a globally convergent algorithm

for the variational learning of membership-mappings based

deep models. Further, it is shown that the learning algorithm

provides a robust estimation of model parameters via solving

a min-max estimation problem. The proposed method for

secure distributed deep learning is implemented using MAT-

LAB R2017b and TFHE C/C++ library [15]. Experiments

have been performed to evaluate the method (in-terms of

accuracy and computational time) on MNIST dataset, Freiburg

Groceries Dataset, and a biomedical dataset consisting of heart

rate interval measurements of different subjects. Further, the

scalability of the method as the number of parties participating

in collaborative learning increases is investigated.

The paper is organized into sections. Section II reviews the

membership-mappings from previous works. An estimation

algorithm for the variational learning of membership-mappings

is provided in Section III. The convergence and robustness

issues have been addressed in Section IV. Section V considers

the application of membership-mappings to the secure dis-

tributed deep learning problem. The experimental validation of

the method is provided in Section VI. Finally, the concluding
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remarks are stated in Section VII.

II. REVIEW OF MEMBERSHIP-MAPPINGS

This section is dedicated to the review of variational

membership-mappings from previous works [27], [28].

A. Notations and Definitions

• Let n,N, p,M ∈ N.

• Let B(RN) denote the Borel σ−algebra on RN , and let

λN denote the Lebesgue measure on B(RN).
• Let (X ,A, ρ) be a probability space with unknown prob-

ability measure ρ.

• Let us denote by S the set of finite samples of data points

drawn i.i.d. from ρ, i.e.,

S := {(xi ∼ ρ)Ni=1 | N ∈ N}. (1)

• For a sequence x = (x1, · · · , xN ) ∈ S, let |x| denote the

cardinality i.e. |x| = N .

• If x = (x1, · · · , xN ), a = (a1, · · · , aM ) ∈ S, then x ∧ a
denotes the concatenation of the sequences x and a, i.e.,

x ∧ a = (x1, . . . , xN , a1, . . . , aM ).
• Let us denote by F(X ) the set of A-B(R) measurable

functions f : X → R, i.e.,

F(X ) := {f : X → R | f is A-B(R) measurable}.(2)

• For convenience, the values of a function f ∈ F(X ) at

points in the collection x = (x1, · · · , xN ) are represented

as f(x) = (f(x1), · · · , f(xN )).
• Given two B(RN) − B(R) measurable mappings, g :

RN → R and µ : RN → R, the weighted average of g(y)
over all y ∈ RN , with µ(y) as the weighting function, is

computed as

〈g〉µ :=
1∫

RN µ(y) dλN (y)

∫

RN

g(y)µ(y) dλN (y). (3)

• For a sequence x ∈ S, assume that a membership function

ζx : R|x| → [0, 1] satisfies the following properties:

– ζx(y) > 0 for all y ∈ R|x|, i.e.,

supp[ζx] = R
|x|. (4)

– the functions ζx are absolutely continuous and

Lebesgue integrable over the whole domain such that

for all x ∈ S we have

0 <

∫

R|x|

ζx dλ|x| < ∞. (5)

– the membership function induced probability mea-

sures Pζx , defined on any A ∈ B(R|x|), as

Pζx(A) :=
1∫

R|x| ζx dλ|x|

∫

A

ζx dλ|x| (6)

are consistent in the sense that for all x, a ∈ S:

Pζx∧a
(A× R

|a|) = Pζx(A). (7)

The collection of membership functions satisfying afore-

mentioned assumptions is denoted by

Θ := {ζx : R|x| → [0, 1] | (4), (5), (7), x ∈ S}. (8)

Definition 1 (Student-t Membership-Mapping [27]): A

Student-t membership-mapping, F ∈ F(X ), is a mapping with

input space X = Rn and a membership function ζx ∈ Θ that

is Student-t like:

ζx(y) =

(
1 +

1

ν − 2
(y −my)

T
K−1

xx (y−my)

)− ν+|x|
2

(9)

where x ∈ S, y ∈ R|x|, ν ∈ R+ \ [0, 2] is the degrees of

freedom, my ∈ R|x| is the mean vector, and Kxx ∈ R|x|×|x|

is the covariance matrix with its (i, j)−th element given as

(Kxx)i,j = kr(xi, xj) (10)

where kr : Rn×Rn → R is a positive definite kernel function

defined as

kr(xi, xj) = σ2 exp

(
−0.5

n∑

k=1

wk

∣∣∣xi
k − xj

k

∣∣∣
2
)

(11)

where xi
k is the k−th element of xi, σ2 is the variance

parameter, and wk ≥ 0 (for k ∈ {1, · · · , n}).

B. Conditionally Deep Autoencoders

This subsection reviews the conditionally deep models [28]

formed by the compositions of membership-mappings.

Definition 2 (Membership-Mapping Autoencoder [28]): A

membership-mapping autoencoder, G : Rp → Rp, maps an

input vector y ∈ Rp to G(y) ∈ Rp such that

G(y)
def

= [F1(Py) · · · Fp(Py) ]
T
, (12)

where Fj (j ∈ {1, 2, · · · , p}) is a Student-t membership-

mapping, P ∈ Rn×p(n ≤ p) is a matrix such that the product

Py is a lower-dimensional encoding for y.

Definition 3 (Conditionally Deep Membership-Mapping

Autoencoder (CDMMA) [28]): A conditionally deep

membership-mapping autoencoder, D : Rp → Rp, maps a

vector y ∈ Rp to D(y) ∈ Rp through a nested composition of

finite number of membership-mapping autoencoders such that

yl = (Gl ◦ · · · ◦ G2 ◦ G1)(y), ∀l ∈ {1, 2, · · · , L} (13)

l∗ = arg min
l ∈ {1,2,··· ,L}

‖y − yl‖2 (14)

D(y) = yl
∗

, (15)

where Gl(·) is a membership-mapping autoencoder (Defini-

tion 2).

Definition 4 (A Wide CDMMA [28]): A wide CDMMA,

WD : Rp → Rp, maps a vector y ∈ Rp to WD(y) ∈ Rp

through a parallel composition of S (S ∈ Z+) number of

CDMMAs such that

WD(y) = Ds∗(y) (16)

s∗ = arg min
s∈{1,2,··· ,S}

‖y −Ds(y)‖
2, (17)

where Ds(y) is the output of s−th CDMMA.
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III. VARIATIONAL LEARNING OF MEMBERSHIP-MAPPINGS

A. A Modeling Scenario

Given a dataset {(xi, yi) | xi ∈ Rn, yi ∈ Rp, i ∈
{1, · · · , N}}, it is assumed that there exist zero-mean Student-

t membership-mappings F1, · · · ,Fp ∈ F(Rn) such that

yi ≈
[
F1(x

i) · · · Fp(x
i)
]T

. (18)

For j ∈ {1, 2, · · · , p}, define

yj =
[
y1j · · · yNj

]T
∈ R

N (19)

fj =
[
Fj(x

1) · · · Fj(x
N )
]T

∈ R
N (20)

where yij denotes the j−th element of yi. A set of auxiliary

inducing points, a = {am ∈ Rn | m ∈ {1, · · · ,M}}, is

introduced to define

uj =
[
Fj(a

1) · · · Fj(a
M )
]T

∈ R
M . (21)

B. Membership Functional Representation Approach

Definition 5 (Interpolation Based Representation): It fol-

lows from [27] that fj , based upon an interpolation on the

auxiliary-outputs uj , is represented by means of a membership

function, µfj;uj
: RN → [0, 1], as

(
µfj ;uj

(̃fj)
)− 2

ν+M+N

= 1+ (22)

(̃fj − m̄fj)
T
(

ν+(uj)
TK−1

aa uj−2
ν+M−2 K̄xx

)−1

(̃fj − m̄fj)

ν +M − 2

m̄fj = KxaK
−1
aa uj (23)

K̄xx = Kxx −KxaK
−1
aa KT

xa, (24)

where Kaa ∈ RM×M and Kxa ∈ RN×M are matrices with

their (i, j)−th elements given as

(Kaa)i,j = kr(ai, aj) (25)

(Kxa)i,j = kr(xi, aj) (26)

where kr : Rn×Rn → R is a positive definite kernel function

defined as in (11).

Definition 6 (Representation of Data yj for Given Mappings

Output fj ): yj , for given fj , is represented by means of a

membership function, µyj ;fj : RN → [0, 1], as

µyj ;fj(ỹj) = exp
(
−0.5β‖ỹj − fj‖

2
)

(27)

where β > 0 is the precision value.

Definition 7 (Representation of Data yj for Fixed Auxiliary-

Outputs uj): yj , for given uj , is represented by means of a

membership function, µyj ;uj
: RN → [0, 1], as

µyj ;uj
(ỹj) ∝ exp

(〈
log(µyj ;fj (ỹj))

〉
µfj ;uj

)
(28)

where µyj ;fj is given by (27), µfj;uj
is defined as in (22), and <

· >· is the averaging operation as defined in (3). Thus, µyj ;uj

is obtained from log(µyj ;fj ) after averaging out the variables

fj using its membership function. It can be shown that

µyj ;uj
(ỹj) ∝ exp

(
−0.5β‖ỹj‖

2 + (uj)
T K̂−1

uj
m̂uj

(ỹj) (29)

−0.5(uj)
T K̂−1

uj
uj + 0.5(uj)

TK−1
aa uj + {/(ỹj, uj)}

)

where K̂uj
, m̂uj

(ỹj) are given as

(K̂uj
)−1 = K−1

aa + βK−1
aa KT

xaKxaK
−1
aa (30)

+ β
tr(Kxx −K−1

aa KT
xaKxa)

ν +M − 2
K−1

aa

m̂uj
(ỹj) = βK̂uj

K−1
aa KT

xaỹj , (31)

and {/(ỹj, uj)} represents all those terms which are indepen-

dent of both ỹj and uj . The constant of proportionality in

(29) is chosen to exclude (ỹj , uj)−independent terms in the

expression for µyj;uj
, i.e.,

µyj ;uj
(ỹj) = exp

(
(uj)

T K̂−1
uj

m̂uj
(ỹj) (32)

−0.5(uj)
T K̂−1

uj
uj + 0.5(uj)

TK−1
aa uj − 0.5β‖ỹj‖

2
)
.

Definition 8 (Data-Model): yj is represented by means of

a membership function, µyj
: RN → [0, 1], as

µyj
(ỹj) ∝ exp

(〈
log(µyj ;uj

(ỹj))
〉
µuj

)
(33)

where µyj ;uj
is given by (32) and µuj

: RM → [0, 1] is a

membership function representing uj . Thus, µyj
is obtained

from log(µyj ;uj
) after averaging out the auxiliary-outputs uj

using membership function µuj
.

C. Variational Optimization of Data-Model

The data model (33) involves the membership function µuj
.

To determine µuj
for a given yj , log(µyj

(yj)) is maximized

w.r.t. µuj
around an initial guess. The zero-mean Gaussian

membership function with covariance as equal to Kaa is

taken as the initial guess. It follows from (33) that maxi-

mization of log(µyj
(yj)) is equivalent to the maximization

of
〈
log(µyj ;uj

(yj))
〉
µuj

.

Result 1: The solution of following maximization problem:

µ∗
uj

= arg max
µuj

[〈
log(µyj ;uj

(yj))
〉
µuj

(34)

−

〈
log(

µuj
(uj)

exp
(
−0.5(uj)TK

−1
aa uj

) )
〉

µuj




under the fixed integral constraint:∫

RM

µuj
dλM = Cuj

> 0 (35)

where the value of Cuj
is so chosen such that the maximum

possible values of µ∗
uj

remain as equal to unity, is given as

µ∗
uj
(uj) = (36)

exp
(
−0.5

(
uj − m̂uj

(yj)
)T

K̂−1
uj

(
uj − m̂uj

(yj)
))

where K̂uj
and m̂uj

are given by (30) and (31) respectively.

The solution of the optimization problem results in

µyj
(ỹj) ∝ exp ({/(yj, ỹj)} (37)

− 0.5β
{
‖ỹj‖

2 − 2
(
m̂uj

(yj)
)T

K−1
aa KT

xaỹj

+
(
m̂uj

(yj)
)T

K−1
aa KT

xaKxaK
−1
aa m̂uj

(yj)

+
tr(Kxx −K−1

aa KT
xaKxa)

ν +M − 2

(
m̂uj

(yj)
)T

K−1
aa m̂uj

(yj)

})
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where {/(yj, ỹj)} represents all (yj , ỹj)−independent terms.

Proof: The proof is similar to as that of Result 2 in [24].

The constant of proportionality in (37) is chosen to exclude

(yj , ỹj)−independent terms resulting in

µyj
(ỹj) = exp

(
−
β

2

{
‖ỹj‖

2 − 2
(
m̂uj

(yj)
)T

K−1
aa KT

xaỹj (38)

+
(
m̂uj

(yj)
)T

K−1
aa KT

xaKxaK
−1
aa m̂uj

(yj)

+
(
m̂uj

(yj)
)T tr(Kxx −K−1

aa KT
xaKxa)

ν +M − 2
K−1

aa m̂uj
(yj)

})
.

D. Estimation of Membership-Mapping Parameters

Definition 9 (Averaged Estimation of Membership-Mapping

Output): Fj(x
i) (which is the i−th element of vector fj (20))

can be estimated as

F̂j(xi) :=
〈
〈(fj)i〉µfj ;uj

〉
µ∗
uj

(39)

where (fj)i denotes the i−th element of fj , µfj ;uj
is defined

as in (22), and µ∗
uj

is the optimal membership function (36)

representing uj . That is, Fj(x
i), being a function of uj , is

averaged over uj for an estimation.

Let G(x) ∈ R1×M be a vector-valued function defined as

G(x) :=
[
kr(x, a1) · · · kr(x, aM )

]
(40)

where kr : Rn ×Rn → R is defined as in (11). It is shown in

Appendix A that

F̂j(xi) = G(xi)
(
KT

xaKxa + τKaa + β−1Kaa

)−1
KT

xayj (41)

where τ is given as

τ :=
tr(Kxx −K−1

aa KT
xaKxa)

ν +M − 2
. (42)

Define a vector αj ∈ RM as

αj(β
−1) :=

(
KT

xaKxa + τKaa + β−1Kaa

)−1
(Kxa)

T yj (43)

so that F̂j(xi) could be expressed as

F̂j(xi) =
(
G(xi)

)
αj(β

−1). (44)

It follows from (44) that estimation of the membership-

mapping outputs requires computing αj via (43) which in-

turn requires estimating the inverse precision value β−1. The

inverse precision value β−1 is iteratively estimated as the in-

verse of the mean squared error between data and membership-

mappings outputs. That is,

β−1 =
1

pN

p∑

j=1

N∑

i=1

∣∣∣yij − F̂j(xi)
∣∣∣
2

(45)

where F̂j(xi) is the estimated membership-mapping output

given as in (44). Expression (45) using (44) can be expressed

as

β−1 =
1

pN

p∑

j=1

N∑

i=1

∣∣yij −
(
G(xi)

)
αj(β

−1)
∣∣2 . (46)

As G(xi) is equal to the i−th row of matrix Kxa, (46) can be

expressed as

β−1 =
1

pN

p∑

j=1

‖yj −Kxaαj(β
−1)‖2. (47)

We suggest to estimate β−1 and αj iteratively using (47) and

(43) till the convergence.

IV. A GLOBALLY CONVERGENT LEARNING ALGORITHM

AND ROBUSTNESS ANALYSIS FOR VARIATIONAL

MEMBERSHIP-MAPPINGS

A. Convergence Analysis

In this subsection, we study the convergence of estimation

algorithm (47, 43). In particular, we derive a sufficient con-

dition for estimation algorithm (47, 43) to converge. For this,

consider the singular value decomposition of Kxa:

Kxa = U

[
S
0

]
V T (48)

where U ∈ RN×N and V ∈ RM×M are orthogonal, and S =
diag(s1, · · · , sM ) is a diagonal matrix with s1 ≥ s2 ≥ · · · ≥
sM ≥ 0 being the singular values of Kxa. The vectors b1j ∈
RM and b2j ∈ RN−M are defined as

[
b1j
b2j

]
= UTyj . (49)

The expression (43) for αj can be rewritten as

αj(β
−1) =

(
V S2V T + τKaa + β−1Kaa

)−1
V Sb1j . (50)

Consider

yj −Kxaαj(β
−1) = UUTyj (51)

− U

[
S
0

]
V T

(
V S2V T + (τ + β−1)Kaa

)−1
V Sb1j .

Using matrix inversion lemma,

yj −Kxaαj(β
−1) = (52)

U

[ (
I + 1

τ+β−1SV
TK−1

aa V S
)−1

b1j
b2j

]
,

and hence,

‖yj −Kxaαj(β
−1)‖2 = ‖b2j‖

2 (53)

+ (τ + β−1)2(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j

Using (53) in (47),

β−1 =
1

pN

p∑

j=1

‖b2j‖
2 (54)

+
(τ + β−1)2

pN

p∑

j=1

(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j .
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Result 2 (A Function in β−1): Let R be a function in β−1

defined as

R(β−1) :=
1

pN

p∑

j=1

‖b2j‖
2 (55)

+
(τ + β−1)2

pN

p∑

j=1

(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j .

We have followings:

1) R(β−1) ∈
(
β−1|low, β

−1|up
)
, ∀β−1 ∈ R>0, where

β−1|low =
1

pN

p∑

j=1

‖b2j‖
2 (56)

β−1|up =
1

pN

p∑

j=1

‖yj‖
2. (57)

2) The lower and upper bounds on the derivative of R w.r.t.

β−1 are given as

0 <
dR(β−1)

dβ−1
<

2

pN

1

τ + β−1

p∑

j=1

‖b1j‖
2. (58)

3) R(β−1) has at least one fixed point in(
β−1|low, β

−1|up
)
.

Proof: The proof is provided in Appendix B.

Result 3 (Convergence): If τ is chosen such that

τ >
2

pN

p∑

j=1

‖yj‖
2 −

1

pN

p∑

j=1

‖b2j‖
2, (59)

then the iterations

β−1|it+1 = R(β−1|it), it ∈ {0, 1, 2, · · · }, (60)

with β−1|0 ∈
(
β−1|low, β

−1|up
)
, converge to the unique fixed

point of R(β−1).
Proof: The proof is provided in Appendix C.

B. Learning Algorithm

Result 3 allows to design a globally convergent algorithm

for the variational learning of membership-mappings via en-

suring the sufficient condition (59). For this, it is observed

that τ , defined as in (42), is a function of parameters set

{M,σ2, {wi}
n
i=1, x, a, ν}. It follows from the kernel function

definition (11) that

τ(M,σ2, {wi}
n
i=1, x, a, ν) = σ2τ(M, 1, {wi}

n
i=1, x, a, ν). (61)

Using (61), the condition (59) can be rewritten as

σ2 >
1

τ(M, 1, {wi}ni=1, x, a, ν)

∑p
j=1(2‖yj‖

2 − ‖b2j‖
2)

pN
. (62)

To hold the inequality (62), the value of σ2 is adjusted as in

the following:

if τ(M, 1, {wi}
n
i=1, x, a, ν) >

∑p
j=1

(2‖yj‖
2−‖b2j‖

2)

pN then

σ2 = 1
else

σ2 = 1.1
τ(M,1,{wi}n

i=1
,x,a,ν)

∑p
j=1

(2‖yj‖
2−‖b2j‖

2)

pN .

end if

Further, some of the parameters must be prior chosen which

are suggested to be chosen as in the following:

a) Auxiliary inducing points: The auxiliary inducing

points are suggested to be chosen as the cluster centroids:

a = {am}Mm=1 = cluster centroid({xi}Ni=1,M) (63)

where cluster centroid({xi}Ni=1,M) represents the k-means

clustering on {xi}Ni=1.

b) Degrees of freedom: The degrees of freedom associ-

ated to the Student-t membership-mapping ν ∈ R+ \ [0, 2] is

chosen as

ν = 2.1 (64)

c) Parameters (w1, · · · , wn): The parameters

(w1, · · · , wn) for kernel function (11) are chosen such

that wk (for k ∈ {1, 2, · · · , n}) is given as

wk =

(
max

1≤i≤N

(
xi
k

)
− min

1≤i≤N

(
xi
k

))−2

(65)

where xi
k is the k−th element of vector xi ∈ Rn.

Finally, Algorithm 1 presents a systematic procedure for the

variational learning of membership-mappings while ensuring

the sufficient condition (59) for the convergence.

Algorithm 1 A globally convergent algorithm for the varia-

tional learning of membership-mappings

Require: Dataset
{

(xi, yi) | i ∈ {1, · · · , N}
}

and maximum possible num-
ber of auxiliary points Mmax ∈ Z+ with Mmax ≤ N .

1: Choose ν and w = (w1, · · · , wn) as in (64) and (65) respectively.
2: Set iteration count it = 0, M |0 = Mmax, and determine a|0 =

{am|0}
M|0
m=1 using (63).

3: while τ(M |it, 1, {wi}ni=1, x, a|it, ν) ≤ 0 do

4: M |it+1 = M |it − 1

5: Determine a|it+1 = {am|it+1}
M|it+1

m=1 using (63).
6: it← it+ 1
7: end while

8: Set M = M |it and compute a = {am}Mm=1 using (63).

9: Compute Kxa using (26) taking σ2 = 1 and perform singular value
decomposition of Kxa to compute orthogonal matrix U such that (48)
holds. Further compute b1j and b2j using (49) for all j ∈ {1, · · · , p}.

10: if τ(M, 1, {wi}
n
i=1, x, a, ν) >

∑p
j=1

(2‖yj‖
2−‖b2j‖

2)

pN
then

11: σ2 = 1
12: else

13: σ2 = 1.1
τ(M,1,{wi}

n
i=1

,x,a,ν)

∑p
j=1

(2‖yj‖
2−‖b2j‖

2)

pN
.

14: end if
15: Compute a = {am}Mm=1 using (63), Kxx using (10), Kaa using (25),

and Kxa using (26).
16: Compute τ using (42).
17: Set iteration count it = 0 and β−1|0 = 0.5(β−1|low+β−1|up), where

β−1|low and β−1|up are given by (56) and (57) respectively.

18: Determine the unique fixed point of R(β−1), say β̂−1, using itera-
tions (60).

19: Compute matrix α =
[

α1(β̂
−1) · · · αp(β̂

−1)
]

∈ RM×p, where

αj(β̂−1), j ∈ {1, · · · , p}, is computed using (43).

20: return the parameters set M = {α, a,M, σ, w, β̂}.

Definition 10 (Membership-Mappings Prediction): Given

the parameters set M = {α, a,M, σ, w, β̂} returned by Algo-

rithm 1, the learned membership-mappings could be used to

predict output corresponding to any arbitrary input data point

x ∈ Rn as

ŷ(x;M) =
[
F̂1(x) · · · F̂p(x)

]T
(66)
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where F̂j(x), defined as in (44), is the estimated output of

j−th membership-mapping. It follows from (44) that

ŷ(x;M) = (α(β̂))T (G(x))T (67)

where G(·) ∈ R1×M is a vector-valued function (40).

As a CDMMA consists of membership-mapping compositions,

Algorithm 1 can be directly applied for their learning as in

Algorithm 2 and Algorithm 3. For practical applications, Algo-

rithm 3 is suggested for the learning of wide CDMMA where a

computational optimization of a free parameter is performed

via minimizing the estimated variance of the mean squared

error between data and membership-mappings outputs.

Algorithm 2 A globally convergent algorithm for the varia-

tional learning of CDMMA

Require: Data set Y =
{

yi ∈ Rp | i ∈ {1, · · · , N}
}

; the subspace di-
mension n ∈ {1, 2, · · · , p}; maximum number of auxiliary points
Mmax ∈ Z+ with Mmax ≤ N ; the number of layers L ∈ Z+.

1: for l = 1 to L do

2: Set subspace dimension associated to l−th layer as nl = max(n −
l+ 1, 1).

3: Define P l ∈ Rnl×p such that i−th row of P l is equal to transpose
of eigenvector corresponding to i−th largest eigenvalue of sample
covariance matrix of data set Y.

4: Define a latent variable xl,i ∈ Rnl , for i ∈ {1, · · · , N}, as

xl,i :=

{

P lyi if l = 1,

P lŷl−1(xl−1,i;Ml−1) if l > 1
(68)

where ŷl−1 is the estimated output of the (l − 1)−th
layer computed using (67) for the parameters set
Ml−1 = {αl−1, al−1,M l−1, σl−1, wl−1}.

5: Define M l
max as

M l
max :=

{

Mmax if l = 1,

M l−1 if l > 1
(69)

6: Compute parameters set Ml = {αl, al,M l, σl, wl, β̂l}, character-
izing the membership-mappings associated to l−th layer, using Al-
gorithm 1 on data set

{

(xl,i, yi) | i ∈ {1, · · · , N}
}

with maximum

possible number of auxiliary points M l
max.

7: end for

8: return the parameters set M = {{M1, · · · ,ML}, {P 1, · · · , PL}}.

Definition 11 (CDMMA Filtering): Given a CDMMA

with its parameters being represented by a set M =
{{M1, · · · ,ML}, {P 1, · · · , PL}}, the autoencoder can be ap-

plied for filtering a given input vector y ∈ Rp as follows:

xl(y;M) =

{
P ly, l = 1

P lŷl−1(xl−1;Ml−1) l ≥ 2
(70)

Here, ŷl−1 is the output of the (l−1)−th layer estimated using

(67). Finally, CDMMA’s output, D(y;M), is given as

D̂(y;M) = ŷl
∗

(xl∗ ;Ml∗) (71)

l∗ = arg min
l ∈ {1,··· ,L}

‖y − ŷl(xl;Ml)‖2. (72)

Definition 12 (Wide CDMMA Filtering): Given a wide

CDMMA with its parameters being represented by a set

P = {Ms}Ss=1, the autoencoder can be applied for filtering a

given input vector y ∈ Rp as follows:

ŴD(y;P) = D̂(y;Ms∗) (73)

s∗ = arg min
s∈{1,2,··· ,S}

‖y − D̂(y;Ms)‖2, (74)

Algorithm 3 A globally convergent algorithm for the varia-

tional learning of wide CDMMA

Require: Data set Y =
{

yi ∈ Rp | i ∈ {1, · · · , N}
}

; the number of layers
L ∈ Z+; the subspace dimension n ∈ {1, 2, · · · , p}; an array of possible

rmax values {r1max, · · · , r
Nr
max} with 0 < r1max < r2max < · · · <

rNr
max ≤ 1.

1: Apply k-means clustering to partition Y into S subsets, {Y1, · · · ,YS},
where S = ⌈N/1000⌉.

2: for s = 1 to S do

3: for r = r1max to r = rNr
max do

4: Apply Algorithm 2 on Y
s to build a single-

layered CDMMA, Mr = {{M1,r}, {P 1,r}} where

M1,r = {α1,r , a1,r ,M1,r , σ1,r , w1,r , β̂1,r}, taking n as
the subspace dimension; maximum number of auxiliary points as
equal to r × #Y

s (where #Y
s is the number of data points in

Y
s); and L = 1.

5: end for

6: Set rmax = arg max
r∈{r1max,r

2
max,··· ,r

Nr
max}

β̂1,r .

7: Build a CDMMA, Ms, by applying Algorithm 2 on Y
s taking n

as the subspace dimension; maximum number of auxiliary points as
equal to rmax ×#Y

s (where #Y
s is the number of data points in

Y
s); and L as the number of layers.

8: end for

9: return the parameters set P = {Ms}Ss=1.

where D̂(y;Ms) is the output of s−th CDMMA estimated

using (71).

C. Robustness Analysis

Consider that the data samples {(xi, yi) | i ∈ {1, · · · , N}}
are subject to deterministic perturbations and thus matrix

Kxa (26) and vector yj (19) are subject to perturbations.

Let ∆Kxa ∈ RN×M and ∆yj ∈ RN be the unknown (but

bounded) perturbations in Kxa and yj respectively due to the

perturbations in the data samples. The data model assumes

that there exists some parameters vector α∗
j ∈ RM such that

yj +∆yj = (Kxa +∆Kxa)α
∗
j . (75)

The modeling problem is concerned with the estimation of

α∗
j in the presence of unknown perturbations ∆Kxa and ∆yj .

To show that Algorithm 1 provides a robust estimation of α∗
j ,

define

∆x := ∆Kxa(K
1/2
aa )−1 (76)

where K
1/2
aa is the unique square root of positive definite

matrix Kaa (25). The set of equations (75) can be expressed

as

yj +∆yj = (Kxa +∆xK
1/2
aa )α∗

j . (77)

The perturbation matrix [ ∆x ∆yj ] is unknown, however, is

assumed bounded. That is, there exists a scalar δm > 0 such

that ‖ [∆x ∆yj ] ‖F ≤ δm, where ‖·‖F denotes the Frobenius

norm. A robust solution to the estimation of parameters seeks

to alleviate the worst-case effect of perturbations. For example,

the worst-case residual error can be minimized via solving a

min-max estimation problem as in Result 4.
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Fig. 1. A few examples of fuzzy attributes induced by deep autoencoders. The given set of 100 two-dimensional data samples, marked as ‘+’ in the figures,
has been used to train a wide conditionally deep membership-mapping autoencoder using Algorithm 3 taking L = 5, n = 2, and possible rmax values as
{0.01, 0.02, · · · , 0.1}. The membership function associated to a fuzzy attribute has been defined by (81) taking ν = 2.001.

Result 4 (Robustness): Algorithm 1 provides a robust esti-

mation of α∗
j via solving the following min-max estimation

problem:

α̂j = arg min
α∗

j

(78)

max
‖[ ∆x ∆yj ]‖F

≤δm

∥∥∥(Kxa +∆xK
1/2
aa )α∗

j − (yj +∆yj)
∥∥∥ ,

where the upper-bound on the norm of perturbation matrix is

given as

δm = (79)√
1 + ‖K

1/2
aa (KT

xaKxa + τKaa + β̂−1Kaa)−1KT
xayj‖

2

‖((τ + β̂−1)I +KxaK
−1
aa KT

xa)
−1yj‖

,

where β̂−1 is the unique fixed point of R(β−1) to which the

iterations (60) converge.

Proof: The proof is provided in Appendix D.

V. SECURE DISTRIBUTED DEEP LEARNING

A. Fuzzy Attributes and Classification Applications

Definition 13 (A Fuzzy Attribute Induced by Deep

Membership-Mapping Autoencoder): A fuzzy attribute AP ,

associated to a wide conditionally deep membership-mapping

autoencoder P (that has been learned using dataset Y ⊂ Rp),

can be defined on a universe of discourse Rp as

AP := {(y, µAP (y)) | y ∈ R
p} (80)

where µAP (y) : Rp → [0, 1] is a p−variate membership

function such that µAP (y) is interpreted as the degree to which

a point y ∈ Rp matches to the attribute AP . Without the loss of

generality, the following Student-t type membership function

can be defined to characterize AP :

µAP (y) =

(
1 +

1

ν − 2
‖y − ŴD(y;P)‖2

)− ν+p
2

, (81)

where ŴD(y;P) is through autoencoder P filtered output

(73). Similarly, one can define Gaussian type of membership

function:

µAP (y) = exp

(
−

1

2p
‖y − ŴD(y;P)‖2

)
. (82)

A wide conditionally deep membership-mapping autoencoder

induces a fuzzy attribute as defined in Definition 13. Fig. 1

provides three different examples of fuzzy attributes induced

by the deep autoencoders. As demonstrated through color-plots

in Fig. 1, the defined fuzzy attribute (Definition 13) learns a

representation of the data samples. This motivates to define a

fuzzy classifier based on the following if-then rules:

If y is AP1
, then the class is 1;

... (83)

If y is APC
, then the class is C.

The class-label associated to a data point y is predicted based

on fuzzy rules (83) as

C(y; {Pc}
C
c=1) = arg max

1≤c≤C
µAPc

(y). (84)

The classifier (84), C : Rp → {1, 2, · · · , C}, assigns to an

input vector the label of the class to which the data point

has highest degree of matching. An example of the decision

boundary determined by a three-class classifier is provided in

Fig. 1.

B. Distributed Learning

We consider a scenario that data are distributed amongst

different parties. Assume that there are K different datasets,

{Y1, · · · ,YK}, owned locally by K different parties. We

consider the multi-class classification problem assuming that

each local dataset, say Y
k, can be partitioned into C different

classes, i.e.,

Y
k = {Yk

1 , · · · ,Y
k
C} (85)

where Yk
c refers to the c−th class labelled data samples owned

locally by the k−th party. Let Pk
c be the wide conditionally

deep membership-mapping autoencoder learned from Y
k
c and

APk
c

be the corresponding fuzzy attribute. The fuzzy classi-

fier (83) can be extended for distributed setting as follows:

If y is AP1
1

OR AP2
1

OR · · · OR APK
1
, then the class is 1;

... (86)

If y is AP1
C

OR AP2
C

OR · · · OR APK
C
, then the class is C.
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Fig. 2. A practical method for secure distributed deep learning based on membership-mappings and fully homomorphic encryption.

The class-label associated to a data point y is predicted based

on fuzzy rules (86) as

ĉ = arg max
1≤c≤C

(
max

1≤k≤K
µA

Pk
c

(y)

)
(87)

= arg min
1≤c≤C

(
min

1≤k≤K

(
1− µA

Pk
c

(y)
))

(88)

= arg min
1≤c≤C

(
min

1≤k≤K
µ̄A

Pk
c

(y)

)
, (89)

where µ̄A
Pk
c

(y) = 1− µA
Pk
c

(y).

C. Secure Homomorphic Evaluation of Global Classifier

For a secure distributed learning based on fully homomor-

phic encryption, a practical approach is suggested based on the

observation that instead of encrypting higher-dimensional vec-

tors, it is sufficient to encrypt the scalar values {µ̄A
Pk
c

(y) | c =

1, · · · , C; k = 1, · · · ,K} for the homomorphic evaluation of

classifier (86) (i.e. evaluation of (89)) in an efficient manner.

That is, the homomorphic evaluation of the “arg min” func-

tion over K×C encrypted values is required. More efficiently,

the homomorphic evaluation of the “arg min” function over

K encrypted values is sufficient for the homomorphic evalu-

ation of the classifier. For this, define cl k as the class-label

predicted by the k−th local classifier, i.e.,

cl k = C(y; {Pk
c }

C
c=1) (90)

where C(·) is defined as in (84). Now, (89) can be alternatively

expressed as

ĉ = cl k∗ (91)

k∗ = arg min
1≤k≤K

µ̄A
Pk
cl k

(y). (92)

Let δ(m1,m2) be the Kronecker delta function of two variables

m1,m2 ∈ [0, 1] defined as

δ(m1,m2) =

{
1 if m1 = m2,

0 if m1 6= m2.
(93)

It follows from (91-92) that

ĉ =

K∑

k=1

cl k δ

(
µ̄A

Pk
cl k

(y), µ̄A
Pk∗

cl k∗

(y)

)
. (94)

A practical method using TFHE scheme [13], [14] is provided

for secure distributed deep learning. For this, define the

followings:
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• For a given positive integer Nb ∈ Z>0, let ptNb
: [0, 1] →

{0, 1, · · · , 2Nb − 1} be a function defined as

ptNb
(m) := ⌈(2Nb − 1)m⌉, m ∈ [0, 1]. (95)

In our setting, ptNb
(m) is the plaintext that encodes a

message m ∈ [0, 1] as unsigned Nb−bit integer.

• Let BitDecNb
: {0, 1, · · · , 2Nb − 1} → {0, 1}Nb be the

binary representation of a Nb−bit unsigned integer. That

is,

(bt1(m), · · · , btNb
(m)) = BitDecNb

(ptNb
(m)), (96)

where btk(m) ∈ {0, 1} for all k ∈ {1, 2, · · · , Nb}.

• Let Nc be the ciphertext dimension set for a given value

of security bits, say 128 bits security.

• Let sk ∈ {0, 1}Nc be a secret key generated for TFHE

encryption.

• Let ctsk(bt) ∈ TNc+1, where T = R/Z, be the

TFHE encryption of a bit bt ∈ {0, 1}, i.e., ctsk(bt) =
TFHE.Enc(bt; sk).

• Let cpsk,Nb
: [0, 1] → TNb(Nc+1) be a function defined

as

cpsk,Nb
(m) := (ctsk (bt1(m)) , · · · , ctsk (btNb

(m))) (97)

where ctsk (btk(m)) is the TFHE encryption of bit

btk(m). Thus, cpsk,Nb
(m) homomorphically encrypts the

message m ∈ [0, 1] with Nb-bit precision.

Our approach to homomorphically evaluate the global classi-

fier (86) is shown in Fig. 2. The approach consists of following

steps:

1) A pair of secret and cloud keys is generated. The secret

key is meant for encryption and decryption. The cloud

key is exported to the cloud, and allows to operate over

encrypted data.

2) For a given input y, the outputs of local classifiers

{cpsk,Nb
(cl k), cpsk,Nb

(µ̄A
Pk
cl k

(y)) | k = 1, · · · ,K}

are sent to the cloud for performing secure homomorphic

computations.

3) The values {δ(µ̄A
Pk
cl k

(y), µ̄A
Pk∗
cl k∗

(y)) |k = 1, · · · ,K}

are homomorphically evaluated in the cloud from the

encrypted data (sent by different parties) using a boolean

circuit composed of bootstrapped binary gates.

4) The encrypted output of the global model

{cpsk,Nb
(cl k), ctsk(δ(µ̄A

Pk
cl k

(y), µ̄A
Pk∗
cl k∗

(y))) | k =

1, · · · ,K} is sent to the user.

5) The class-label associated to a data point y is predicted

using (94) after decrypting the data provided by the

cloud.

VI. EXPERIMENTS

The proposed method was implemented using MATLAB

R2017b and TFHE C/C++ library [15] on a MacBook Pro

machine with a 2.2 GHz Intel Core i7 processor and 16

GB of memory. The previous works [24], [26], [28] have

already verified the competitive performance of membership-

mappings in classification applications. In this study, our focus

is to verify the application potential of the proposed approach

and to compare the method with the alternative differentially

private distributed deep learning approach [29], [30].

TABLE I
EXPERIMENTAL RESULTS ON MNIST DATASET

Method Accuracy Time

Proposed (8-bits precision of
homomorphic computations)

0.9762 3.2251 s

Proposed (16-bits precision of
homomorphic computations)

0.9872 4.9785 s

differentially private
distributed deep learning with

privacy-loss bound ǫ = 0.1 [29]
0.0892 n/a

differentially private
distributed deep learning with
privacy-loss bound ǫ = 1 [29]

0.8994 n/a

A. Details

Under a distributed deep learning scenario, the local models

are developed using Algorithm 3 taking L = 5, n = 20, and

possible rmax values array as {0.5}. Targeting 128-bits of

security, TFHE library is used to homomorphically evaluate

the global classifier with the precision of 16-bits and also

8-bits. For a comparison, differentially private local models,

developed using Algorithm 3 on the noisy training data ob-

tained via optimal noise adding mechanism [29], [30] (taking

adjacency parameter d = 1, failure probability δ = 1e−5, and

privacy-loss bound ǫ = 0.1 and also ǫ = 1), are combined

through fuzzy rules (86) without any encryption. The test data

accuracy and average computational time required for secure

homomorphic computations in the cloud (for computing the

encrypted global output for a given input) are considered as

performance indices.

B. MNIST Dataset

The first experiment is on the widely used MNIST digits

dataset containing 28× 28 sized images divided into training

set of 60000 images and testing set of 10000 images. The im-

ages’ pixel values were divided by 255 to normalize the values

in the range from 0 to 1. The 28×28 normalized values of each

image were flattened to an equivalent 784−dimensional data

vector. A two-party scenario is considered such that Party-

A owns all the training images of odd digits while Party-B

owns the rest training images of even digits. Table I reports

the experimental results.

C. Freiburg Groceries Dataset

The second experiment is on “Freiburg Groceries Dataset”

considered previously [29] for privacy-preserving distributed

learning experiments. The dataset contains 4947 labeled im-

ages of grocery products categorized into 25 different classes.

A feature vector is created from each image by extracting

features from “AlexNet” and “VGG-16” networks which are

pre-trained Convolutional Neural Networks. The activations

of the fully connected layer “fc6” in AlexNet constitute a

4096−dimensional feature vector. Similarly, the activations of

the fully connected layer “fc6” in VGG-16 constitute another

4096−dimensional feature vector. The features extracted by

both networks are joined together to form a 8192−dimensional

vector. The feature vectors are normalized to have zero-

mean and unity-variance along each dimension. The set of
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TABLE II
EXPERIMENTAL RESULTS ON FREIBURG GROCERIES DATASET

Method Accuracy Time

Proposed (8-bits precision of
homomorphic computations)

0.8861 4.9534 s

Proposed (16-bits precision of
homomorphic computations)

0.8880 7.9240 s

differentially private
distributed deep learning with

privacy-loss bound ǫ = 0.1 [29]
0.1356 n/a

differentially private
distributed deep learning with
privacy-loss bound ǫ = 1 [29]

0.8261 n/a

normalized feature vectors is split into a training set contain-

ing around 80% of data points and a testing set containing

remaining data points. A three-party scenario is created such

that Party-A owns all the training data of first ten grocery

categories, Party-B owns all the training data of second ten

grocery categories, and Party-C owns all the training data of

rest five grocery categories. Table II reports the experimental

results.

D. A Biomedical Application

As an application example, the mental stress detection

problem is considered. The dataset from [25], consisting

of heart rate interval measurements of different subjects, is

considered for the study of individual stress detection problem.

The problem is concerned with the detection of stress on an

individual based on the analysis of recorded sequence of R-R

intervals, {RRi}i. The R-R data vector at i−th time-index, yi,
is defined as yi = [RRi RRi−1 · · · RRi−d ]

T
. That is, the

current interval and history of previous d intervals constitute

the data vector. Assuming an average heartbeat of 72 beats per

minute, d is chosen as equal to 72×3 = 216 so that R-R data

vector consists of on an average 3-minutes long R-R intervals

sequence. A dataset, say {yi}i, is built via 1) preprocessing the

R-R interval sequence {RRi}i with an impulse rejection filter

for artifacts detection, and 2) excluding the R-R data vectors

containing artifacts from the dataset. The dataset contains the

stress-score on a scale from 0 to 100. A label of either “no-

stress” or “under-stress” is assigned to each yi based on the

stress-score. Thus, we have a binary classification problem. A

two-party collaborative learning scenario is considered where

a randomly chosen subject is considered as Party-A. While

keeping Party-A fixed, the distributed learning experiments

are performed independently on every other subject being

considered as Party-B. For each subject, 50% of the data

samples serve as training data while remaining as test data.

The subjects, with data containing both the classes and at least

60 samples, are considered for experimentation. There are in

total 48 such subjects. The experimental results, averaged over

48 independent experiments, are reported in Table III.

E. Scalability

The computational time required for the homomorphic

evaluation of global model depends on the number of parties

(i.e. K) participating in collaborative learning. Therefore,

TABLE III
EXPERIMENTAL RESULTS ON HEART RATE VARIABILITY DATASET

Method Accuracy Time

Proposed (8-bits precision of
homomorphic computations)

0.8358 3.1571 s

Proposed (16-bits precision of
homomorphic computations)

0.9580 4.8610 s

differentially private
distributed deep learning with

privacy-loss bound ǫ = 0.1 [29]
0.5123 n/a

differentially private
distributed deep learning with
privacy-loss bound ǫ = 1 [29]

0.6873 n/a
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Fig. 3. Computational time vs. number of parties.

experiments are performed to study the computational time as

the number of parties is varied from K = 2 to K = 100. Fig. 3

plots the computational time required for secure homomorphic

computations on a MacBook Pro machine with a 2.2 GHz Intel

Core i7 processor and 16 GB of memory without using parallel

computing. The ratio of computational time to the number of

parties is observed to be approximately equal to 3 s for 16-bit

precision and 1.75 s for 8-bit precision.

F. Evaluation of the Proposed Approach

To evaluate the gains achieved in accuracy and computa-

tional time as a result of the proposed approach to secure

distributed deep learning (summarized in Fig. 2), a comparison

is made with a variant of the TFHE fully homomorphic

encryption scheme [31]. The study in [31] reports the exper-

iments on MNIST dataset for evaluating the neural networks

with different depths (referred to as NN-20, NN-50, and

NN-100) over TFHE fully homomorphically encrypted data.

The results of [31] are compared with the proposed method

(considering two-party scenario with Party-A owning odd-digit

images and Party-B owning even-digit images) in Table IV.

G. Main Results

Following inferences are made from the results of afore-

mentioned experiments.
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TABLE IV
GAINS ACHIEVED BY THE PROPOSED APPROACH ON MNIST DATASET

Method Security Machine Accuracy Time

Proposed 128-bits
2.2 GHz

Intel Core i7
0.987 4.98 s

NN-20 [31] 128-bits
2.6 GHz

Intel Core i7
0.971 115.52 s

NN-50 [31] 128-bits
2.6 GHz

Intel Core i7
0.947 233.55 s

NN-100 [31] 128-bits
2.6 GHz

Intel Core i7
0.830 481.61 s

• As expected, the proposed approach leads to better accu-

racy (observed in Tables I, II, III) than the differentially

private approach [29], since differential privacy requires

contaminating data with noise to preserve privacy.

• The proposed membership-mappings based approach is

capable of handling the large computational overhead

issue of fully homomorphic encryption, since the com-

putational time on a MacBook Pro machine with a 2.2

GHz Intel Core i7 processor and 16 GB of memory (as

reported in Tables I, II, III, IV) is practical.

• A linear increase of the computational time with increas-

ing number of parties, as observed in Fig. 3, indicates

that the proposed approach is scalable using parallel

computing.

• Remarkably, the computational time required for secure

homomorphic evaluation of the global model in the cloud

is independent of the dimension of the input data, and

thus the approach is practical. The computational time

depends only on the number of parties and the chosen

precision. The ratio of computational time to the number

of parties as approximately equal to 3 s for 16-bit

precision verifies the application potential.

VII. CONCLUDING REMARKS

This study has outlined a membership-mappings based

approach to secure distributed deep learning. The crux of

our methodology lies in defining fuzzy attributes (which

are induced by globally convergent and robust variational

membership-mappings based local deep models) allowing to

combine local models by means of a rule-based fuzzy system,

thus facilitating the homomorphic evaluation of the global

model efficiently. The feature, that the computational time

for secure homomorphic evaluation of the global model in

the cloud is independent of the dimension of input data, adds

to the practicality of the approach. The experimental results

verify that the proposed method, while preserving the privacy

in a distributed learning scenario using fully homomorphic

encryption, remains accurate, practical, and scalable.

APPENDIX A

MEMBERSHIP-MAPPING OUTPUT ESTIMATION

Using (22) and (23), we have

〈(fj)i〉µfj ;uj

= (KxaK
−1
aa uj)i (98)

= G(xi)K−1
aa uj . (99)

Thus,

F̂j(xi) = G(xi)K−1
aa 〈uj〉µ∗

uj

. (100)

Using (36) and (31) in (100), we have

F̂j(xi) = β
(
G(xi)

)
K−1

aa K̂uj
K−1

aa KT
xayj. (101)

Substituting K̂uj
from (30) in (101), we get (41).

APPENDIX B

PROOF OF RESULT 2

The proof is split into three parts.

a) Part 1: Since Kaa > 0, there exists the unique square

root, K
1/2
aa > 0. Thus,

SV TK−1
aa V S =

(
K−1/2

aa V S
)T (

K−1/2
aa V S

)
(102)

> 0. (103)

Since τ > 0 and β > 0,

min eigen

(
I +

1

(τ + β−1)
SV TK−1

aa V S

)
> 1 (104)

where “min eigen(·)” denotes the minimum eigenvalue. Thus,

max eigen

((
I +

1

(τ + β−1)
SV TK−1

aa V S

)−2
)

< 1 (105)

where “max eigen(·)” denotes the maximum eigenvalue. As

a result of (105),

R(β−1) <
1

pN

p∑

j=1

(‖b1j‖
2 + ‖b2j‖

2). (106)

As U is orthogonal, it follows from (49) that ‖b1j‖
2+‖b2j‖

2 =
‖yj‖

2, and thus

R(β−1) < β−1|up. (107)

It follows immediately from (55) that R(β−1) > β−1|low.

Hence, R(β−1) ∈
(
β−1|low, β

−1|up
)
.

b) Part 2: The derivative of R w.r.t. β−1 is given as

dR(β−1)

dβ−1
= (108)

2

pN

p∑

j=1

{
(τ + β−1)(b1j )

T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j

− (τ + β−1)2(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−3

b1j

}
.

Consider

(τ + β−1)2(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−3

b1j

≤ (τ + β−1)2
∥∥∥
(
(τ + β−1)I + SV TK−1

aa V S
)−1
∥∥∥
2

(109)

× (b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j

= (τ + β−1)

∥∥∥∥∥

(
I +

1

(τ + β−1)
SV TK−1

aa V S

)−1
∥∥∥∥∥
2

(110)

× (b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j

= (τ + β−1)
(b1j)

T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j

min sing
(
I + 1

(τ+β−1)SV
TK−1

aa V S
) (111)
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where “min sing(·)” denotes the minimum singular value.

Observing that τ > 0, β−1 > 0, and SV TK−1
aa V S > 0 (i.e.

(103)), we have

min sing

(
I +

1

(τ + β−1)
SV TK−1

aa V S

)

= 1 + min sing

(
1

(τ + β−1)
SV TK−1

aa V S

)

> 1. (112)

Combining (112) and (111), we have

(τ + β−1)2(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−3

b1j (113)

< (τ + β−1)(b1j )
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j .

Using (113) in (108), we get

dR(β−1)

dβ−1
> 0. (114)

Observing that τ > 0, β−1 > 0, and SV TK−1
aa V S > 0 (i.e.

(103)), we also have

(τ + β−1)2(b1j )
T
(
(τ + β−1)I + SV TK−1

aa V S
)−3

b1j > 0. (115)

Using (115) in (108), we get

dR(β−1)

dβ−1
< (116)

2

pN
(τ + β−1)

p∑

j=1

(b1j)
T
(
(τ + β−1)I + SV TK−1

aa V S
)−2

b1j .

Inequality (116), using (55), can be expressed as

dR(β−1)

dβ−1
<

2

pN

pNR(β−1)−
∑p

j=1 ‖b
2
j‖

2

τ + β−1
(117)

<
2

pN

∑p
j=1 ‖b

1
j‖

2

τ + β−1
, (118)

where (118) follows using (106). Inequalities (114) and (117)

lead to (58).

c) Part 3: Introduce h(β−1) = R(β−1) − β−1, and

observe that h(β−1|low) > 0 and h(β−1|up) < 0. By the in-

termediate value theorem, there is a β̂−1 ∈
(
β−1|low, β

−1|up
)

such that h(β̂−1) = 0, i.e., β̂−1 = R(β̂−1). Thus, β̂−1 is a

fixed point of R(β−1).

APPENDIX C

PROOF OF RESULT 3

As β−1|it > β−1|low, it follows from (59) that

τ + β−1|it >
2

pN

p∑

j=1

‖yj‖
2, (119)

and thus

dR(β−1|it)

dβ−1
<

∑p
j=1 ‖b

1
j‖

2

∑p
j=1 ‖yj‖

2
=

∑p
j=1 ‖b

1
j‖

2

∑p
j=1(‖b

1
j‖

2 + ‖b2j‖
2)
. (120)

That is, there exists a constant k such that

0 <
dR(β−1|it)

dβ−1
≤ k < 1, ∀it ∈ {0, 1, 2, · · · }. (121)

Let β̂−1 be a fixed point of R(β−1). Now, consider
∣∣∣β−1|it − β̂−1

∣∣∣ =
∣∣∣R(β−1|it−1)−R(β̂−1)

∣∣∣ (122)

≤ k
∣∣∣β−1|it−1 − β̂−1

∣∣∣ (123)

... (124)

≤ kit
∣∣∣β−1|0 − β̂−1

∣∣∣ , (125)

that leads to

lim
it→∞

∣∣∣β−1|it − β̂−1
∣∣∣ ≤ lim

it→∞
kit
∣∣∣β−1|0 − β̂−1

∣∣∣ = 0. (126)

The uniqueness of the fixed point can be seen via assuming

by contradiction that there exists another fixed point, say β̃−1.

Now consider
∣∣∣β̃−1 − β̂−1

∣∣∣ =
∣∣∣R(β̃−1)−R(β̂−1)

∣∣∣ ≤ k
∣∣∣β̃−1 − β̂−1

∣∣∣ (127)

<
∣∣∣β̃−1 − β̂−1

∣∣∣ . (128)

This implies that β̃−1 = β̂−1. Hence, the result follows.

APPENDIX D

PROOF OF RESULT 4

According to the triangle inequality,
∥∥∥(Kxa +∆xK

1/2
aa )α∗

j − (yj +∆yj)
∥∥∥

≤
∥∥Kxaα

∗
j − yj

∥∥+
∥∥∥∆xK

1/2
aa α∗

j −∆yj

∥∥∥

≤
∥∥Kxaα

∗
j − yj

∥∥+ ‖[ ∆x ∆yj ]‖F

∥∥∥∥
[
K1/2

aa α∗
j

−1

]∥∥∥∥

≤
∥∥Kxaα

∗
j − yj

∥∥+ δm

√
1 + (α∗

j )
TKaaα∗

j , (129)

and hence

α̂j =


KT

xaKxa + δm
‖Kxaα̂j − yj‖√
1 + α̂T

j Kaaα̂j

Kaa




−1

KT
xayj . (130)

Algorithm 1 estimates αj(β̂
−1) using (43). It can be seen

using (43) that

(τ + β̂−1)

√
1 + (αj(β̂−1))TKaaαj(β̂−1)

‖Kxaαj(β̂−1)− yj‖
= δm. (131)

As a result of (131), it follows from (43) that

αj(β̂
−1) =

(
KT

xaKxa (132)

+ δm
‖Kxaαj(β̂

−1)− yj‖√
1 + (αj(β̂−1))TKaaαj(β̂−1)

Kaa




−1

KT
xayj .

As equalities (132) and (130) are identical, αj(β̂
−1) (which

is the solution of (132)) must be equal to α̂j (which is the

solution of (130)), i.e.,

αj(β̂
−1) = α̂j . (133)

Hence, Algorithm 1 solves the min-max problem (78).
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