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ABSTRACT

Regression analysis based on many covariates is becoming increasingly common. However, when
the number of covariates p is of the same order as the number of observations n, maximum likelihood
regression becomes unreliable due to overfitting. This typically leads to systematic estimation biases
and increased estimator variances. It is crucial for inference and prediction to quantify these effects
correctly. Several methods have been proposed in literature to overcome overfitting bias or adjust
estimates. The vast majority of these focus on the regression parameters. But failure to estimate
correctly also the nuisance parameters may lead to significant errors in confidence statements and
outcome prediction.
In this paper we present a jacknife method for deriving a compact set of non-linear equations which
describe the statistical properties of the ML estimator in the regime where p = O(n) and under the
hypothesis of normally distributed covariates. These equations enable one to compute the overfitting
bias of maximum likelihood (ML) estimators in parametric regression models as functions of ζ =
p/n. We then use these equations to compute shrinkage factors in order to remove the overfitting
bias of maximum likelihood (ML) estimators. This new derivation offers various benefits over the
replica approach in terms of increased transparency and reduced assumptions. To illustrate the
theory we performed simulation studies for multiple regression models. In all cases we find excellent
agreement between theory and simulations.

1 Introduction

When the number of parameters included in a statistical model is large compared to the number of observations,
the noise (or residual model variance) is wrongly attributed to the deterministic part of the underlying model. This
is called overfitting [3, 4, 32]. When a model “overfits” the data, the resulting estimators are generally affected by
bias and are subject to large sample-to-sample fluctuations. This is a problem in inference, as one generally seeks
(asymptotically) unbiased estimators with small variance. It is also a problem for prediction: an overfitting model
may appear to perform well for metrics based on the training data, i.e. data used to fit the model, but will fail when
used to predict outcomes for new data. In modern applications, regression models frequently include a large number
of regression parameter; this is why correction for overfitting in regression models has become an important research
topic [4, 5, 7, 9, 29, 36].
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We consider the following setting: we are given n independent observations (T1,X1), . . . , (Tn,Xn) of response
T ∈ R and covariates X ∈ Rp. The responses are assumed to have been generated by the model

T |X ∼ f(.|X′β0,σ0), (1)

where we indicate with ′ the transpose operation and (β0 ∈ Rp, σ0 ∈ Rs) are the true parameter values. When p < n,
these parameters are usually estimated with the maximum likelihood (ML) estimators

β̂n, σ̂n := argmax
β,σ

{
ℓn(β,σ)

}
, (2)

where the log-likelihood function ℓn(β,σ) is defined as

ℓn(β,σ) :=
1

n

n∑
i=1

log f(Ti|X′
iβ,σ). (3)

In the classical regime p ≪ n, and under regularity conditions, the ML estimator (β̂n, σ̂n) concentrates around
the true values (β0,σ0). When p = O(n) this is generally no longer true and the ML estimators are typically
affected by bias and subject to large sample-to-sample fluctuations (i.e. large variance). These two features are the
fingerprints of overfitting [3]. In literature one finds various rules of thumb on the maximum number of covariates
that can be included in a regression analysis to prevent overfitting [31, 33]. But in fields like medicine, the number of
observations is often small and models may be complex, which makes such restrictions on the number of covariates
highly undesirable. Another common strategy is to fit a penalized model, i.e. add a suitable penalization function
to the log-likelihood [29, 33]. Finally, a simple post-hoc procedure to combat overfitting effects is to shrink the
regression coefficients after estimation [8,29]. The penalization parameter or the shrinking factor can be estimated via
bootstrapping, by selecting the value which minimizes a certain error measure [29]. But this must be done with care
in the setting p = O(n) as it has been shown that bootstrapping is not always reliable [24]. Furthermore, measures
of overfitting bias are practically non-trivial to compute as we do not have access to “good” estimators of the true
parameters.

A possible way out is to model the behaviour of the ML estimator as a function of the true parameters, which can be
done effectively only under hypotheses on the data generating distribution. In this paper we follow this line of thought
and study the average behaviour of the ML estimator under the hypothesis that

X ∼ N (0,Σ0), Σ0 ∈ Rp×p (4)

with positive definite covariance matrix Σ0 ≻ 0 and such that

θ0 := ∥Σ1/2
0 β0∥ = O(1). (5)

These assumptions and the fact that there exists an interesting link between statistical physics and optimization [15,
16, 27] enable tools from statistical physics to be applied to statistical inference [17, 26, 43]. Several papers have
exploited this “bridge” in the last decade, thoroughly characterizing the behaviour of the estimator β̂n for the regression
coefficients. However, to the best of our knowledge, less attention has been paid to understanding the behaviour of σ̂n,
i.e. the estimator of the nuisance parameters which do not enter in the model via a linear combination of the covariates.
These parameters must also be estimated to construct confidence intervals for the regression parameters or prediction
intervals for the outcome variable and might be meaningful in the statistical analysis of the data (see Subsection 3.2
for an example in medical statistics).

In this paper we show that the ML estimators of regression and nuisance parameters can be simultaneously corrected
for overfitting bias, in order to obtain unbiased estimators even in the proportional asymptotic regime p = O(n) < n.
In doing so, we also provide a novel and more intuitive derivation of the results of [7, 9, 10, 12], which used statistical
physics methods to estimate the statistical relation between β̂n, σ̂n and β0,σ0 for generalized linear models (GLM).
Our derivation is based on the-leave-one-observation-out approach of [11]. This procedure can be traced back to the
jacknife [13], and resembles the cavity method from statistical physics [12,22]. It offers the advantage of being based
on explicit approximations, rather than on the algebraic identity used in the replica method [7,9]. Furthermore it allows
us to understand the limitations of previous and present results [7, 9–12] that arise when β0 is not “diffuse”, i.e. when
each component of β0 is no longer scaling as 1/

√
p.

This paper is organized as follows. In Section 2 we present our theory for estimating the asymptotic bias for models
of the family (1). For those models that via a suitable transformation can be written in a form that is linear in the
regression coefficients, we show that although β̂n is always asymptotically unbiased, σ̂n is still biased. For non-linear
models, both β̂n and σ̂n are always biased. In Section 3 we illustrate the theory via application to the Log-logistic
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AFT model for time to event analysis, the Weibull Proportional Hazards Model for time to event data [28], and the
Logit regression model for binary outcome data. We confirm via numerical simulations how our theory can be used
to correct ML estimates of both regression and nuisance parameters reliably for overfitting bias. We end the paper
with a discussion of our results and future directions of investigation. Most mathematical derivations are delegated to
appendices.

2 Maximum Likelihood estimator in the overfitting regime

In Subsection 2.1 we introduce a stochastic representation for β̂n, which basically tells us that, under our hypotheses,
the distribution of β̂n is completely characterized by two scalar random variables Kn and Vn, with a precise geomet-
rical meaning. We also introduce the approximations ξi and σ̄n for the linear predictors X′

iβ̂n and σ̂n respectively.
Assuming that these approximations are sufficiently accurate, we show in Subsection 2.2 that we can derive a set of
equations for the limiting values of Kn, Vn and σ̂n, which hold when the sample size n and the number of covariates
p tend to infinity with fixed ratio ζ = p/n. These limiting values have direct interpretations and allow to quantify the
bias and more generally the behaviour of the ML estimator in the relevant asymptotic limit.

2.1 Expressions for β̂n and σ̂n

When X follows a Multivariate Normal distribution (with a non-singular covariance matrix), it has been shown [1,
12] that by the rotational invariance of the multivariate standard normal distribution and the particular conditional
dependence of the response T |X = T |X′β0, we have the representation

β̂n

(
β0,σ0, {(Ti,Xi)

n
i=1}

) d
= Knβ0 + VnΣ

−1/2
0 U, (6)

which is valid at arbitrary n and p, where

Kn = (β′
0Σ0β̂n)/∥Σ1/2

0 β0∥2 (7)

V 2
n = β̂′

nΣ0β̂n −K2
n∥Σ

1/2
0 β0∥2. (8)

and U is uniformly distributed on the unit sphere Sp−2 of Rp−1 that is orthogonal to Σ
1/2
0 β0 (for details see Appendix

A). Representation (6) is very useful: it implies that the statistical behaviour of β̂n is completely characterized by the
two random variables Kn and Vn. Virtually any statistical property of interest of the estimator β̂n can be expressed in
terms of (the moments of) Kn, Vn and Σ0. For instance, the squared bias reads

∥E[β̂n]− β0∥2 = (E[Kn]− 1)2∥β0∥2. (9)

The ML estimators (β̂n, σ̂n) are defined as

(β̂n, σ̂n) = argmax
β,σ

ℓn
(
β,σ

)
. (10)

Hence β̂n and σ̂n are the solution of the score equations:

∇βℓn(β,σ) =
1

n

n∑
i=1

Xiu̇(X
′
iβ̂n, Ti,σ) = 0 (11)

∇σℓn(β,σ) =
1

n

n∑
i=1

g(X′
iβ̂n, Ti,σ) = 0, (12)

where u(x, y, z) := log f(y|x, z), u̇(x, y, z) = ∂xu(x, y, z) and where g(x, y, z) := ∇zu(x, y, z). We henceforth
indicate with β̂n(σ) the solution of (11) at fixed σ. Note that (12) depends on β̂n(σ) only through the linear predictors
X′

iβ̂n(σ). In Appendix C.1 we show that X′
iβ̂n(σ) can be approximated as

X′
iβ̂n(σ) ≃ ξi := prox−τnu(.,Ti,σ)

(
X′

iβ̂(i)(σ)
)
. (13)

Here proxg denotes the proximal mapping of a convex function g : R → R,

proxg(x) := argmin
y

{1

2
(y − x)2 + g(y)

}
, (14)
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β̂(i)(σ) is the leave i-th out version of β̂n(σ) (the solution of (11) upon neglecting the i-th observation at fixed σ)
and τn = τn(ζ,σ) is the solution of the following equation (see Appendix C.2):

1− ζ =
1

n

n∑
i=1

1

1− τnü(ξi, Ti,σ)
, (15)

where ü(x, y, z) = ∂2
xu(x, y, z). Upon using (13) in (12), we obtain

∇σℓn(β̂n(σ),σ) ≃
1

n

n∑
i=1

g(ξi, Ti,σ). (16)

It then follows that one can obtain τn and an approximation σ̄n for σ̂n and X′
iβ̂n, by solving (15, 16) simultaneously

for σ and τ .

2.2 Asymptotic self-consistency equations

Note that Kn and Vn in (7, 8) are sums of p random variables, the components of β̂n. If these are independent, the
central limit theorem guarantees that Kn and Vn asymptotically concentrate around their means. If they are correlated,
more advanced versions of the theory of concentration of measure must be used to establish the concentration rate of
Kn and Vn. In what follows we shall assume that as n, p → ∞, any correlations present are sufficiently weak for the
variance of Kn and Vn to vanish asymptotically, i.e. that at fixed ζ and σ:

Kn = k(ζ,σ) + oP (1) (17)
Vn = v(ζ,σ) + oP (1), (18)

We will verify our assumption a posteriori via numerical simulations. Defining β̃0 = Σ
1/2
0 β0, we have

X′
iβ̂(i)

d
= X ′

i

β̃0β̃
′
0

∥β̃0∥2
Σ

1/2
0 β̂(i) +X ′

i

(
I − β̃0β̃

′
0

∥β̃0∥2
)
Σ

1/2
0 β̂(i), (19)

where we used
Xi

d
= Σ

1/2
0 X i, X i ∼ N (0, Ip×p). (20)

Since for

Z0,i :=
X ′

iβ̃0

∥β̃0∥
∼ N (0, 1) (21)

Qi :=
(
I − β̃0β̃

′
0

∥β̃0∥2
)
X i ∼ N (0, Ip−1) (22)

with Qi ⊥ Z0,i we also have that

X′
iβ̂(i)

d
=

β̃′
0Σ

1/2
0 β̂(i)

∥β̃0∥
Z0,i +Q′

i

(
I − β̃0β̃

′
0

∥β̃0∥2
)
Σ

1/2
0 β̂(i)

d
= K(i)θ0Z0,i + V(i)Qi (23)

with θ0 := ∥β̃0∥, Qi ∼ N (0, 1) and where K(i), V(i) are the leave the i-th observation out versions of (7, 8). Hence
from (17, 18) we infer that at fixed σ and ζ

X′
iβ̂(i)

d
= kθ0Z0,i + vQi. (24)

Using the approximation (24) together with (13) leads to

∇βℓn(σ,β) =
1

n

n∑
i=1

Xiu̇(X
′
iβ̂, Ti,σ) ≃

1

n

n∑
i=1

Xiu̇(ξi, Ti,σ) = 0, (25)

where
ξi := prox−τu(.,Ti,σ)(kθ0Z0,i + vQi). (26)

Projecting (25) onto β0 and using (24), we obtain

1

n

n∑
i=1

X ′
iβ̃0

∥β̃0∥2
(
ξi − kθ0Z0,i − vQi

)
= 0. (27)

4
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Similarly, projecting (25) onto β̂n, we get another equation

1

n

n∑
i=1

ξi u̇
(
ξi, Ti,σ

)
= 0. (28)

The left-hand sides of (27, 28) are both sums of i.i.d. random variables, which will converge to their mean in proba-
bility, provided both have a finite variance,

1

n

n∑
i=1

X ′
iβ̃0

∥β̃0∥2
(
ξi − (kθ0Z0,i + vQi)

)
P−→ E

[
Z0

(
ξ − kθ0Z0 − vQ

)]
(29)

1

n

n∑
i=1

ξi u̇
(
ξi, Ti,σ

)
P−→ E

[
ξu̇

(
ξ, T,σ)

)]
(30)

where
ξ := prox−τu(.,T,σ)(kθ0Z0 + vQ). (31)

The right-hand side of (16) will similarly converge at fixed σ to its expectation

1

n

n∑
i=1

g
(
ξi, Ti,σ

) P−→ E
[
g
(
prox−τu(.,T,σ)(k(σ)θ0Z0 + v(σ))Q), T,σ

)]
. (32)

The same reasoning implies that

1

n

n∑
i=1

1

1− τ ü(X′
iβ̂n, Ti,σ)

P−→ E
[ 1

1− τ ü(ξ, T,σ)

]
. (33)

After few algebraic simplifications that can be found in Appendix C.3, we see that Kn, Vn, τn and σ̄n of (16) will
converge for n → ∞ to the limiting (deterministic) values k⋆, v⋆, τ⋆ and σ⋆, that satisfy the following coupled
nonlinear equations:

Result 2.1 (Replica Symmetric equations).

ζv2 = τ2ET,Z0,Q

[(
u̇(ξ, T,σ)

)2]
(34)

1− ζ = ET,Z0,Q

[ 1

1− τ ü(ξ, T,σ)

]
(35)

kθ0 = ET,Z0,Q

[
Z0ξ

]
(36)

0 = ET,Z0,Q

[
g(ξ, T,σ)

]
(37)

Here u(x, y, z) := log f(y|x, z), g(x, y, z) := ∇zu(x, y, z), θ0 := ∥Σ1/2
0 β0∥ = On(1), Z0, Q ∼ N (0, 1), Z0 ⊥

Q, T |Z0 ∼ p(.|θ0Z0,σ0), and we use the short-hand

ξ = prox−τu(.,T,σ)(kθ0Z0 + vQ) . (38)

These equations for the quantities (k⋆, v⋆, τ⋆,σ⋆) that characterize the asymptotic quantitative features of overfitting
GLM regression models are identical to the results of the replica analysis in [9], but are now obtained in a completely
different way (without any assumptions on the distribution of β0). They are only dependent on: (i) the modulus of
the effective association θ0 := ∥Σ1/2

0 β0∥, (ii) the ratio ζ = p/n, and (iii) the true nuisance parameters σ0. Upon
inversion, they enable us to create unbiased estimators for the regression parameters and the nuisance parameters,
expressed in terms of the biased ML-inferred values.

2.3 The special case of linear models

If the model under consideration depends linearly on the covariates, i.e.

Ti = X′
iβ + ϵi, ϵ ∼ fϵ(.|σ) (39)

5
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then, as was already shown in [11], one will have Kn = 1 in (6). So the regression coefficients will be unbiased.
To see this within the present formalism one may simply introduce the short-hand ∆̂n = β̂n − β0 to write the ML
estimate

β̂n = argmax
β

{
max
σ

{ 1

n

n∑
i=1

log fϵ(Ti −X′
iβ,σ)

}}
(40)

in the alternative form

∆̂n := argmax
∆

{
max
σ

{ 1

n

n∑
i=1

log fϵ
(
ϵi −X′

i∆,σ
)}}

(41)

with ϵi = Ti −X′
iβ0 independent of Xi. The latter is a regression problem with true association vector ∆0 = 0, so

according to (6), we get
β̂n = β0 + VnΣ

−1/2
0 U (42)

where
V 2
n := ∥Σ1/2

0 (β̂n − β0)∥2 (43)

and U is uniformly distributed on the unit sphere Sp−1 of Rp. In (7) we now have Kn = 1, so β̂n is unbiased for all
n, because E[U] = 0. For the transformed problem (41) where ∆0 = 0, we can simply obtain the asymptotic value
v⋆ = limn→∞ E[Vn] from the RS equations (34–37) upon setting θ0 = ∥Σ1/2

0 β0∥ = 0. The same must then be true
for the untransformed problem. We now find that (38) is independent of Z0,

ξ = prox−τu(.,T,σ)

(
vQ

)
(44)

and hence (36) is satisfied trivially.

Linear models for which ϵ obeys a distribution in a location-scale family (see Appendix B) are of particular interest.
They are defined by the property

ϵ
d
= ϕ+ σZ, Z ∼ fZ (45)

for some fixed distribution fZ , and with σ ≥ 0. We show in Appendix B that for such models the RS equations (34-37)
can always be re-written as

ζv2/σ2 = EZ,Q

[(
ξ̃ − v/σQ− (ϕ− ϕ0)/σ + σ0/σZ

)2]
(46)

1− ζ = EZ,Q

[ 1

1− τ̃ ¨̃u(−ξ̃)

]
(47)

ϕ− ϕ0

σ
= EZ,Q

[
ξ̃
]
+ (σ0/σ)E

[
Z
]

(48)

σ

σ0
= −EZ,Q

[
Z ˙̃u(−ξ̃)

]
(49)

where Q ∼ N (0, 1) and
ξ̃ = −prox−τ̃ ũ

(
(ϕ0 − ϕ)/σ + σ0/σZ − v/σQ

)
(50)

with τ̃ := τ/σ2, ũ := log fZ . Besides a welcome simplification compared to the more general case, this important
result tells us that the four quantities (ϕ⋆−ϕ0)/σ⋆, σ⋆/σ0, v⋆/σ⋆ and τ̃⋆ are universal, i.e. they do not depend on ϕ0

or σ0, but only on ζ. Hence, to solve the RS equations we do not need to know the full generative model underlying
the data, but only the distribution fZ .

3 Application to selected regression models

In this section we test the accuracy of the following asymptotic approximation of (6), which is obtained upon replacing
(Kn, Vn) → limn→∞(Kn, Vn) = (k⋆, v⋆),

β̂n ≈ k⋆β0 + v⋆Σ
−1/2
0 U, (51)

against simulated data for regression models of interest in reliability analysis and time-to-event analysis. In particular,
we show for three different regression models how the theory can be used very effectively to compute bias correction

6
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factors for both the regression and the nuisance parameters. In Subsection 3.1 we study a linear model in the location
scale family with application in survival analysis, namely the accelerated failure time log-logistic model. Subsections
3.2 and 3.3 deal with more complicated nonlinear models (i.e. models where T depends nonlinearly on the covariates),
the Weibull and the logit regression model. Here both β̂n and σ̂n are asymptotically biased and the RS equations do
generally depend on θ0 = ∥β̃0∥ = ∥Σ1/2

0 β0∥. The Weibull model represents a very special case of a non-linear model
where the RS equations do not depend on ∥β̃0∥. The logit model presents a rich phenomenology and the behaviour of
the estimator β̂n, as well as its existence have been extensively studied in recent years [14]. We extend these previous
results by introducing an intercept term in the model and by providing a numerical routine that computes the desired
correction factors by taking as input only measurable quantities. In this case we need to estimate the true values ∥β̃0∥
and ϕ0 that appear in the RS equations. We present a strategy for the estimation of the intercept, which has been so far
not considered in previous studies on the argument. Furthermore we study by numerical simulations the distribution
of the estimators obtained by these numerical procedures.

Covariate correlations can be incorporated trivially, so we will for simplicity consider X ∼ N (0, I), i.e. Σ0 = I. Note
that global properties like the log-likelihood density, k⋆ and v⋆, depend on β0 only through θ0 = ∥β̃0∥ = ∥Σ1/2

0 β0∥.
In contrast, the distribution of the components of β̂n does depend on that of β0, not only on θ0. In all the following
examples, we will choose β0 = θ0e1. Here we expect from our theory that all components e′kβ̂n for k ≥ 2 will
asymptotically have the same zero-average distribution, but that e′1β̂n will have a non zero average and a larger
variance.

3.1 Log-Logistic AFT model

The Log-logistic regression model is one of the most commonly adopted Accelerated Failure Time (AFT) models [28]
and is defined by

T |X ∼ f(T |X) =
ρeϕ

(
T eX

′β+ϕ
)ρ−1(

1 + (T eX′β+ϕ)ρ
)2 . (52)

AFT models are often used if the proportional hazards assumption appears not to hold [28, 33], and offer advantages
over the Cox model in the interpretation of regression parameters [33]. They can be mapped to a linear model, since
on logarithmic scale the response Y = − log T can be written as

Y = − log(T ) = X′β + ϕ+ σZ, Z ∼ fZ(z) =
exp(−z)(

1 + exp(−z)
)2 . (53)

where ρ = 1/σ. Moreover, since the transformed AFT model is in the location-scale family,

ϵ := ϕ+ σZ, ϵ ∼ fϵ(ε) =
1

σ
fZ

(ε− ϕ

σ

)
, (54)

we can use the simplified RS equations (46, 47, 48). For convenience we define

χ(x) := −prox−τ̃ ũ(x)/2 =
1

2
x− 1

2
τ̃ tanh

(
χ(x)

)
. (55)

and note that both χ(.) and −prox−τ̃ ũ(.) are anti-symmetric functions of x. Since E[Z] = 0 we obtain

(ϕ− ϕ0)/σ = −EZ,Q[ξ̃]. (56)
Upon noting that

EZ,Q[ξ̃] = EZ,Q[−prox−τ̃ ũ

(
σ0/σZ − v/σQ

)
]

= EZ,Q[−prox−τ̃ ũ

(
− σ0/σZ + v/σQ

)
] = EZ,Q[−ξ̃], (57)

which implies E[ξ̃] = 0, we then find that ϕ⋆ = ϕ0 is a solution of our equations, irrespective of the values of v⋆ and
σ⋆. After some simple algebraic manipulations (see Appendix D) we obtain the following simplified expressions for
our remaining RS equations that we must solve to obtain (v⋆, σ⋆, τ̃⋆):

v2/σ2ζ = τ̃2E
[
tanh2(χ⋆)

]
(58)

τ̃ = ζ

(
E

[
1

2 cosh2(χ⋆) + τ̃

])−1

(59)

σ/σ0 = −E
[
Z tanh(χ⋆)

]
(60)

7



Correction of overfitting bias via leave one out theory A PREPRINT

where we denoted

χ⋆ = χ
(
σ0/σZ − v/σQ

)
. (61)

In Figure 1 we compare the approximate asymptotic representation (51) with the actual histogram of the estimator β̂n

for m = 500 samples, each consisting of n = 200 observations. The estimator of both components of β̂n is unbiased
and its variance equals v⋆/

√
p. This is in agreement with the representation (51), which reduces to

β̂n ≈ β0 + v⋆Σ
−1/2
0 U (62)

with U uniformly distributed on the unit sphere Sp−1 of Rp. This is a consequence of (42), due to the fact that the
model is linear.

(a) (b)

(c) (d)

Figure 1: Simulated data for the Log-logistic model (53). The histograms of m = 500 realizations of first (left) and
second (right) components of β̂n, each based on n = 200 i.i.d. samples, for two different values of ζ = 0.3 (1a,1b)
and ζ = 0.5 (1c,1d). Dashed line: true value of the parameter, β0 = θ0e1. Solid line: the density corresponding to the
representation (42), which is asymptotically β̂n ≈ N (β0, v⋆/p) .

8
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(a) (b)

(c) (d)

Figure 2: Simulated data for the Log-logistic model (53). The histograms of m = 500 realizations of ϕ̂n (left) and
σ̂n (right, light grey) together with its corrected version σ̃n (right dark grey), each based on n = 200 i.i.d. samples,
for two different values of ζ = 0.3 (2a,2b) and ζ = 0.5 (2c,2d). Dashed line: true value of the parameters ϕ0 = 0.5,
σ0 = 1.0 respectively. In this case we see that ϕ̂n is unbiased. On the other hand σ̂n is clearly biased, while σ̃n is
peaked around the true value.

The estimators for the nuisance parameters are asymptotically biased, even if β̂n is not. We can however use the fact
that σ̂n concentrates around the deterministic values σ⋆, hence the “corrected” estimator

σ̃n =
σ0

σ⋆
σ̂n (63)

where σ⋆/σ0 is the solution of the RS equations, will be approximately unbiased for σ0. In Figure 2 we compare the
histogram of the estimator σ̂n, with its corrected counterparts σ̃n. The estimator ϕ̂n is unbiased, in agreement with
the solution of the RS equations. We cannot, as yet, predict the variance of the histograms of ϕ̂n and σ̂n, but we can
already appreciate the fact that the estimates σ̃n are now centered around the true value σ0. The correction factor
σ⋆/σ0 turns out to be always positive and less than 1. This agrees with our intuition that when a model “overfits”
it mistakenly explains the noise as part of the model. In turn this implies that the estimated noise width, i.e. σ̂n, is
progressively underestimated as the model gets more complex, i.e. ζ grows towards 1. As a consequence the variance
of the corrected estimator σ̃n is larger than the one of σ̂n.

3.2 Weibull model

The Weibull model is one of the most widely known models for skewed data [28], or time to event analysis and reads

T |X ∼ f(T |X) = ρ0T
ρ0−1eX

′β0+ϕ0 exp
{
− T ρ0eX

′β0+ϕ0

}
. (64)

9
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Note that this implies
Z := T ρ0eX

′β0+ϕ0 ∼ Exp(1) (65)
or equivalenlty

T
d
= Z1/ρ0e−

ϕ0+X′β0
ρ0 . (66)

The log-likelihood associated with this model is

u(X′β, T, ϕ, ρ) = log ρ+ ρ log T +X′β + ϕ− eρ log T+X′β+ϕ (67)
d
= log ρ+ ρ/ρ0 logZ + ϕ− ρ/ρ0ϕ0 +X′(β − ρ/ρ0β0

)
−eρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+X′

(
β−ρ/ρ0β0

)
. (68)

Hence the proximal mapping of the minus log-likelihood, when viewed as a function of the linear predictor X′β,
satisfies

z(x)− x = τ − τeρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+x−ρ/ρ0X
′β0ez(x) (69)

z(.) = prox−τu(.,T,ϕ,ρ)(.) (70)

which can be formally solved by means of the Lambert W-function [41], which satisfies W0(x) exp
(
W0(x)

)
= x, as

prox−τu(.,T,ϕ,ρ)(x) = x+ τ −W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+x−ρ/ρ0X

′β0

)
. (71)

After some algebraic manipulations (see Appendix E) we obtain the following set of RS equations

v2ζ = EZ,∆,Z0,Q

[(
τ −W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

))2
]

(72)

ζ = EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)] (73)

k = ρ/ρ0 (74)

τ = EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)]
(75)

ρ0/ρ = γE +
1

τ
EZ,∆,Z0,Q

[
logZ W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)]
. (76)

Note that this system suggests, at a first glance, to treat ϕ⋆− ρ⋆/ρ0ϕ0 as the control parameter and this was indeed the
way in which these equations were first solved. However it is easy to invert numerically the equation

ζ = EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)] (77)

for instance by means of Newton’s method. Let us use the definition ϕ̃ = ϕ− ρ/ρ0ϕ0, at fixed v, ρ/ρ0, τ we have

∂ζ

∂ϕ
= EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)(
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

))3

]
(78)

and the Newton iterate can be computed relatively easily

ϕ̃t = ϕ̃t−1 −

EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 log Z+ϕ̃t−1+vQ

)(
1+W0

(
τeτ+ρ/ρ0 log Z+ϕ̃t−1+vQ

))3

]

EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 log Z+ϕ̃t−1+vQ

)
1+W0

(
τeτ+ρ/ρ0 log Z+ϕ̃t−1+vQ

)]− ζ

. (79)

We then obtain a new system of RS equations that can be solved by fixed point iteration and depends solely on ζ. In
practice we can now compute v⋆, k⋆, ϕ⋆ − ρ⋆/ρ0ϕ0 and ρ⋆/ρ0 at fixed ζ as defined by the user. Once the solution of

10
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the RS equations is obtained one can use this information to correct the estimators obtained in an actual regression.
For instance, to remove the overfitting bias from ϕ̂n, σ̂n and β̂n, one need only correct the estimators as

ϕ̃n = (ϕ̂n − ϕ̃⋆)/k⋆ =
(
ϕ̂n − ϕ⋆ − ρ⋆/ρ0ϕ0

)
/k⋆ (80)

ρ̃n = ρ̂n/k⋆ (81)

β̃n = β̂n/k⋆. (82)

(a) (b)

(c) (d)

Figure 3: Simulated data for the Weibull model (64). Histograms based on m = 500 realizations of the first (left) and
second (right) components of the estimators β̂n (light grey) and β̃n (dark grey), each based on n = 200 i.i.d. samples,
for two different values of ζ = 0.3 (3a,3b) and ζ = 0.5 (3c,3d). Solid black line: approximate asymptotic distribution
of the de-biased estimator according to (51) β̃n ≈ N (β0, v

2
⋆/k

2
⋆p). Dashed line: true value of the parameter, β0 = e1.

It can be seen clearly that: 1) the histogram of e′2β̃n is well described by the solid line 2) the histogram of e′1β̃n is
centered at the true value, as desired, and 3) V[e′1β̂n] = V[β′

0β̂n/∥β0∥2] is underestimated.

In Figure 3 we show the histograms of m = 500 realizations of β̂n and its corrected version β̃n, as explained above.
The true values are β0 = e1, ϕ0 = − log(3) and ρ0 = 1/2. We note a nice agreement between the histogram
of e′3β̃n, which is actually null, i.e. e′3β0 = 0, and the approximate asymptotic distribution N (0, v2⋆/k

2
⋆p). It is

noteworthy that the corrected estimator β̃n is approximately unbiased, as desired. Although it is also clear that the
same approximation tends to underestimate the variance of the histogram of e′1β̃n. All this phenomenology is in
agreement with the representation (51).

11
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(a) (b)

(c) (d)

Figure 4: Simulated data for the Weibull model (64). The histograms of m = 500 realizations of ϕ̂n (left, light grey)
and ρ̂n (right, light grey) together with their corrected versions ϕ̃n (left, dark grey) and ρ̃n (right, dark grey), each
based on n = 200 i.i.d. samples, for two different values of ζ = 0.3 (4a,4b) and ζ = 0.5 (4c,4d). Dashed line: true
value of the parameters ϕ0 = − log 3, ρ0 = 0.5 respectively. It is clear that the overfitting is already dangerous at
modest values of ζ. In particular ϕ̂n, ρ̂n are seen to clearly over-estimate ϕ0, ρ0, while their corrected counterparts
ϕ̃n, ρ̃n are peaked around the true values.

3.3 Logit model

The Logit regression model can be symbolically written as

T = sign
(
X′β0 + ϕ0 +

1

2
Z
)
, Z ∼ e−z(

1 + e−z
)2 . (83)

The log-likelihood function associated with this model is

u(X′β, T, ϕ) = −T (X′β + ϕ)− log cosh(X′β + ϕ)− log 2. (84)

The proximal mapping prox−τu(.,T,ϕ)(.) of the minus log-likelihood, when viewed as a function of the linear predictor
X′β, satisfies

prox−τu(.,T,ϕ)(x)− x+ τT + τ tanh(prox−τu(.,T,ϕ)(x) + ϕ) = 0. (85)

Setting χ(x+ ϕ, T ) = prox−τu(.,T,ϕ)(x) + ϕ, we get a self consistent equation defining χ(x+ ϕ, T )

χ(x+ ϕ, T ) = x+ ϕ− τT − τ tanh
(
χ(x+ ϕ, T )

)
. (86)

12
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After some algebraic manipulations that can be found in Appendix F, we obtain that the RS equations for this model
read

v2ζ = τ2ET,Z0,Q

[(
T + tanh(χ⋆)

)2]
(87)

ζ = ET,Z0,Q

[
τ

cosh2(χ⋆) + τ

]
(88)

kθ0 = ET,Z0,Q

[
Z0χ⋆

]
(89)

ϕ = ET,Z0,Q

[
χ⋆

]
(90)

where
χ⋆ := χ

(
kθ0Z0 + vQ+ ϕ, T

)
(91)

The form of the system of equations above suggests to use fixed point iteration, and regard τ as the control parameter,
rather than ζ. In practice, fixing τ will be equivalent to fixing ζ, when ϕ0 and θ0 are held fixed.

However, in applications we seldom have access to ϕ0 and θ0 = ∥Σ1/2
0 β0∥, even in the ideal case of a perfectly

specified model. Hence the fact that the RS equations depend on ϕ0, θ0 represents a practical problem and we have to
somehow estimate these quantities from the data. An additional complication is that we only have access to estimates
at fixed ζ, rather than fixed τ . So we must in turn convert the RS equations into a format where ζ is the control
parameter.

To estimate θ0 at fixed ζ, we adopt the following methodology. Define the estimator

θ̂n :=
1

n

n∑
i=1

(
X′

iβ̂n

)2

≃ 1

n

n∑
i=1

(
prox−τu(.,Ti,ϕ)(X

′
iβ̂(i))

)2

(92)

= E
[
prox2−τu(.,T,ϕ)(k⋆θ0Z0 + v⋆Q)

]
(93)

then using the RS equations we obtain

E
[
prox2−τu(.,T,ϕ)(k⋆θ0Z0 + v⋆Q)

]
= k2⋆θ

2
0 + v2⋆(1− ζ). (94)

So we obtained an approximate equation for θ0, which we solve to estimate the latter self consistently

θ̃n =

√(
θ̂n − v2⋆(1− ζ)

)
/k2⋆. (95)

This amounts to adding the equation above (95) to the RS equations and using everywhere θ̃n in stead of θ0. The
procedure to estimate ϕ0 consists in inverting the equation

ET

[
T
]
+ ET,Z0,Q

[
tanh(χ⋆)

]
= 0 (96)

which is equivalent to (90), at fixed ϕ⋆. Since ϕ⋆ is not observed, we estimate it by ϕ̂n, as they will be “close” for n
large enough. To see that (96) is an implicit equation for ϕ0 at fixed θ0, it is sufficient to note that

ET

[
T
]
= −EZ0

[
tanh

(
θ0Z0 + ϕ0

)]
(97)

then
EZ0

[
tanh

(
θ0Z0 + ϕ0

)]
= ET,Z0,Q

[
tanh(χ⋆)

]
(98)

and we numerically invert this equation by Newton method. Since in an actual experiment both ϕ̂n and θ̂n are obtained
at fixed ζ, we need first to express ζ as a function of τ . This can be performed easily without the need to explicitly
invert any of the RS equations. Just observe that

ζ = E

[
τ

cosh2(χ⋆) + τ

]
(99)

13
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can be equivalently re-written as

τ = ζ

(
E

[
1

cosh2(χ⋆) + τ

])−1

. (100)

(a) (b)

(c) (d)

Figure 5: Simulated data for the Logit model (83). The histograms of m = 500 realizations of ϕ̂n (left, light grey) and
θ̂n (right, light grey) together with their corrected versions ϕ̃n (left, dark grey) and θ̃n (right, dark grey), each based
on n = 400 i.i.d. samples, for two different values of ζ = 0.3 (5a,5b) and ζ = 0.5 (5c,5d). Dashed line: true value
of the parameters ϕ0 = −0.2, θ0 = 0.8. It is clear that the overfitting is already dangerous at modest values of ζ. In
particular ϕ̂n, θ̂n are seen to clearly over-estimate the modulus of ϕ0, θ0, respectively, already at ζ = 0.1.

In conclusion, we have obtained a different set of RS equations

θ̃n =

√(
θ̂n − v2⋆(1− ζ)

)
/k2⋆ (101)

v2ζ = τ2E
[(

T + tanh(χ⋆)
)2]

(102)

τ = ζ

(
E

[
1

cosh2(χ⋆) + τ

])−1

(103)

kθ̂0 = E
[
Z0χ⋆

]
(104)

E
[
tanh(χ⋆)

]
= EZ0

[
tanh

(
θ0Z0 + ϕ0

)]
(105)

14
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where

T |Z0 ∼ e−T (θ̃nZ0+ϕ̃n)

2 cosh(θ̃nZ0 + ϕ̃n)
(106)

and

χ⋆ = vQ+ k⋆θ̃nZ0 + ϕ̂n − τT − τ tanh(χ⋆). (107)

These equations depend only on the quantitites ζ, ϕ̂n and θ̂n, which are indeed available in an actual regression
experiment. The solution of this set of self consistent equations can be easily obtained by fixed point iteration.

It is well known that the ML estimator β̂n of the Logit regression model undergoes an asymptotically sharp phase
transition, i.e. it exists with probability one if ζ < ζc(ϕ

2
0 + θ20) and it does not exists with the same probability for

ζ > ζc (see [14] for a detailed discussion). Hence we expect to encounter convergence issues as we approach the
critical value ζc for finite n, p. We found that in our numerical simulations convergence issues arise indeed already at
values of ζ much smaller than the critical value ζc that we compute according to [14].

(a) (b)

(c) (d)

Figure 6: Simulated data for the Logit model (83). Histograms based on m = 500 realizations of the first (left) and
second (right) components of the estimators β̂n (light grey) and β̃n (dark grey), each based on n = 400 i.i.d. samples,
for two different values of ζ = 0.3 (6a,6b) and ζ = 0.5 (6c,6d). Solid black line: approximate asymptotic distribution
N (β0, v

2
⋆/k

2
⋆p) of β̃n. Dashed line: true value of the parameter, β = 0.8e1. It can be seen clearly that: 1) the

histogram of e′2β̃n is well described by the solid line 2) the histogram of e′1β̃n is centered at the true value, as wanted,
3) V[e′1β̂n] = V[β′

0β̂n/∥β0∥2] is underestimated.
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4 Discussion and conclusion

In this article we have extended the existing literature on regression with generalized linear models in the proportional
asymptotic regime (p = ζn). We showed via a novel route how to deduce the asymptotic properties of the ML
estimators of the regression parameters and the nuisance parameters in the model from a small set of equations.
The approximate asymptotic distribution of the estimator β̂n for the regression parameters is described by two non
random values k⋆ and v⋆ that can be computed by solving these equations. At fixed p, n and hence ζ, k⋆ and v⋆
have a precise geometric interpretation via the representation introduced in [12] and the hypothesis of concentration
of the overlaps, as explained in the main text. Their values can be used to: 1) obtain an approximate asymptotic
distribution of the components of β̂n and 2) to compute correction factors to simultaneously reduce the bias in β̂n

and the inflation of the variance of β̂n, which are caused by the high dimension of the model (p), compared to the
sample size (n). The estimators of the nuisance parameters σ̂n are also affected by bias, and the solution of the self
consistent equations provides a way to “de-bias” the estimates. We studied via simulations the ML estimators and their
corrected counterparts, when the true regression parameter β0 is sparse. We show that the corrected estimators are
effectively un-biased. Furthermore, we find that in general the approximate asymptotic representation (51) is accurate
in describing: 1) the distribution of the null components of β̂n (i.e. those for which the true value is zero), 2) the mode
of the histogram of σ̂n. Contrary to the case where β0 is diffuse [9,10,14], we see that when e′kβ0 = On(1), V[e′kβ̂n]
is larger than the value v⋆/

√
p obtained from the theory. At the moment, confidence statement are only possible for

β̂n, as we do not have access to any information on the finite size fluctuations (i.e. the variance) of σ̂n. It is necessary
to obtain more information, even if approximate, on the distribution of σ̂n in order to allow confidence statements on
the estimate. This is likely to be obtained from a generalization of the current theory and will be subject of future
investigations.

Our results are derived, for analytical convenience, under the assumption that X ∼ N (0,Σ0). Rotational invariance
of the density of X is the only truly necessary ingredient to reach the stochastic representation (6). Furthermore, even
if the representation might not hold for other distributions, the asymptotic bias, together with the variance of the null
components would still be given by the RS equations (34, 35, 36, 37) provided a central limit theorem applies to
X′

iβ̂(i), conditional on X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xp)
′. Hence we expect that our result should be of interest

also for cases which do not strictly fall in the setting of the present paper.

The Python implementations of the routines used in section (3) are available at
https://github.com/EmanueleMassa/Correction_of_overfitting_bias . These numerical routines take as input
only observable quantities like ζ, the ML estimators β̂n, σ̂n and eventually the data {(Ti,Xi)

n
i=1} in order to return

correction factors for the estimators as explained in the application section.
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A Representation of β̂n

We denote equality in distribution with d
=. Since for X ∼ N (0,Σ0)

X
d
= Σ

1/2
0 X , X ∼ N (0, I), (108)

it follows that
β̂n

(
β0, {(Ti,Xi)}

) d
= Σ

−1/2
0 β̃n

(
β̃0, {(Ti,X i)}

)
(109)

with

β̃n

(
β̃0, {(Ti,X i}

)
= argmax

β

(
max
σ

{ n∑
i=1

u(X ′
iβ, Ti,σ)

})
(110)

where
Ti|X i ∼ f(.|X ′β̃0,σ0), X i := Σ

−1/2
0 Xi ∼ N (0, I) (111)

with β̃0 := Σ
1/2
0 β0. Now consider any rotation R0 in Rp around β̃0. Such rotations applied to all X i leave both the

distribution of each X i and the value of each X ′
iβ̃0 invariant. Hence, since Ti|X i = Ti|X ′

iβ̃0, the joint distribution
of each pair (X i, Ti) is invariant. We therefore obtain

β̃n({(Ti,X i)}, β̃0)
d
= R0β̃n({(Ti,R0X i)}, β̃0)

d
= R0β̃n({(Ti,X i)}, β̃0) (112)

To understand the implications of (112), we decompose β̃n := β̃n{(Ti,X i)}, β̃0) into a component along β̃0 and a
component in the subspace orthogonal to β̃0

β̃n = β̃n,∥ + β̃n,⊥ β̃′
n,∥β̃n,⊥ = 0 (113)

with
β̃n,∥ := β̃0(β̃

′
0β̃n)/∥β̃0∥2 β̃n,⊥ :=

(
I − β̃0β̃

′
0/∥β̃0∥2

)
β̃n. (114)

Then equation (112) implies that

R0β̃n,⊥
d
= β̃n,⊥ (115)

Hence all the values of β̃n,⊥ that have the same length, i.e. that lie on a sphere in the subspace of Rp orthogonal to β̃0,
must have the same probability density. Conditional on its length, the direction of β̃n,⊥ is uniformly distributed over
a sphere in the above subspace. This means that, conditional on β̃n,∥, we have

β̃n,⊥ = ∥β̃n,⊥∥U, U ∼ Unif(Sp−2), U
′β̃0 = 0 (116)

Finally, using

∥β̃n,⊥∥ =

√
∥β̃n∥2 − (β̃′

0β̃n)2/∥β̃0∥2 (117)

then leads us to the following representation, in which Z ∼ N (0, Ip):

β̃n = Knβ̃0 + VnU, U =

(
I − β̃0β̃

′
0/∥β̃0∥2

)
Z∥∥∥(I − β̃0β̃′

0/∥β̃0∥2
)
Z
∥∥∥ , (118)

with

Kn = (β̃′
0β̃n)/∥β̃0∥2, V 2

n = ∥β̃n∥2 −K2
n∥β̃0∥2. (119)

Upon finally transforming (118, 119) back into the original basis, via β̃n = Σ
1
2
0 β̂n and β̃0 = Σ

1
2
0 β0, we obtain

β̂n = Knβ0 + VnΣ
− 1

2
0 U, U′Σ

1
2
0 β0 = 0 (120)

Kn =
β′
0Σ0β̂n

β′
0Σβ0

, V 2
n = β̂′

nΣ0β̂n − (β′
0Σβ̂n)

2

β′
0Σ0β0

. (121)
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B RS equations for linear models in the location-scale family

The particular class of the linear models

T = X′β + ϵ, ϵ ∼ fϵ(.|σ) (122)

in the location scale family are particularly important and widely adopted. The distribution of ϵ is in the location-scale
family if ϵ ∼ fϵ(.|σ) with σ = (ϕ, σ) and

ϵ
d
= ϕ+ σZ, Z ∼ fZ (123)

where the law fZ is standard, i.e. fZ(.) = fϵ(.|ϕ = 0, σ = 1). This means that

fϵ(x|ϕ, σ) = fZ
(x− ϕ

σ

)
/σ (124)

and
log fϵ(ϵ|ϕ, σ) = log fZ

(ϵ− ϕ

σ

)
− log(σ/σ0)− log σ0. (125)

We explained in the main text (see Subsection 3.1) that for linear models we can always set θ0 := |β0| = 0 to derive
the RS equations, as these do not depend on θ0. Hence, without loss of generality, we may take T

d
= ϕ0 + σ0Z,

obtaining

u(x, T, ϕ, σ) = log fZ
(
Z
σ0

σ
+

ϕ0 − ϕ

σ
− x

σ

)
− log(σ/σ0) + C (126)

in which C is independent of ϕ and σ. Now

ξ = argmin
y

{
1

2
(y − vQ)2 − τ log fZ

(ϕ0 − ϕ

σ
+

σ0

σ
Z − y/σ

)}
= −σ argmin

y

{
1

2

(ϕ0 − ϕ

σ
+

σ0

σ
Z − v

σ
Q− y

)2

− τ

σ2
log fZ(y)

}
+ σ

(ϕ0 − ϕ

σ
+

σ0

σ
Z
)

(127)

It is then convenient to define
ξ̃ = −prox−τ̃ ũ(.)

(ϕ0 − ϕ

σ
+

σ0

σ
Z − v

σ
Q
)

(128)

with the short-hands τ̃ := τ/σ2 and ũ := log fZ . We then have

ξ = σ
(
ξ̃ +

ϕ0 − ϕ

σ
+

σ0

σ
Z
)
. (129)

Substitution of (129) into the RS equations (34, 35), setting θ0 = 0 and k = 1 because the model is linear (see
Subsection 3.1), and with

ü(ξ, T, ϕ, σ) =
1

σ2
¨̃u(−ξ̃) (130)

then gives equations (46, 47) of subsection 3.1. The equations for the nuisance parameters (48,49) are obtained by
noticing that

∂

∂ϕ
u(ξ, ϵ, ϕ, σ) =

∂

∂ϕ
log f(ϵ− ξ|ϕ, σ) = − 1

σ
˙̃u(−ξ̃) =

=
1

στ̃
(ξ̃ + v/σQ− (ϕ− ϕ0)/σ +

σ0

σ
Z) (131)

∂

∂σ
u(ξ, ϵ, ϕ, σ) =

∂

∂σ
log f(ϵ− ξ|ϕ, σ) = − 1

σ
+

1

σ
ξ̃ ˙̃u(−ξ̃) (132)

where we used the definition of proximal operator (145). Taking the expectation of (131) and setting the result to zero
gives

(ϕ− ϕ0)/σ = E
[
ξ̃
]
+ (

σ0

σ
)E

[
Z
]

(133)

which is equation (48) in the main text. Then, taking the expectation of (132) and setting the result to zero we get

E
[
ξ̃ ˙̃u(−ξ̃)

]
= −E

[
ξ̃
(
ξ̃ + v/σQ− (ϕ− ϕ0)/σ +

σ0

σ
Z
)
/τ̃

]
= 1 (134)
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which implies, upon using (46) and (47),

−E
[
ξ̃ ˙̃u(−ξ̃)

]
= E

[(
ξ̃ + v/σQ− (ϕ− ϕ0)/σ +

σ0

σ
Z
)2]

− v/σE
[
Q
(
ξ̃ + v/σQ− (ϕ− ϕ0)/σ +

σ0

σ
Z
)]

− σ0

σ
E
[
Z
(
ξ̃ + v/σQ− (ϕ− ϕ0)/σ +

σ0

σ
Z
)]

= −σ0

σ
E
[
Z
(
ξ̃ − v/σQ− (ϕ− ϕ0)/σ − σ0

σ
Z
)]

= τ
σ0

σ
E
[
Z ˙̃u(−ξ̃)

]
. (135)

Hence we obtain equation (49) in the main text:

σ/σ0 = −E[Zu̇(−ξ̃)]. (136)

C Leave-one-out method approximations

C.1 Approximation of the linear predictor

For fixed σ, the value of β that maximizes the log-likelihood satisfies

1

n

n∑
i=1

Xiu̇(X
′
iβ̂n, Ti,σ) = 0 (137)

where we used the notation u̇(x, T,σ) = ∂xu(x, T,σ). Similarly, upon excluding the i-th observation, the resulting
leave-one-out estimator β̂(i) satisfies

1

n

∑
j ̸=i

Xj u̇(X
′
jβ̂(i), Tj ,σ) = 0. (138)

We use a first order Taylor expansion around X′
jβ̂ and after simplifying and rearranging the terms we get

β̂n − β̂(i) =
1

n
I−1
(i) (β̄i)Xiu̇(X

′
iβ̂, Ti,σ) (139)

where, with ü(x, Tj ,σ) = ∂2
xu(x, T,σ),

I(i)(β̄i) := − 1

n

∑
j ̸=i

XjX
′
j ü(X

′
jβ̄i, Tj ,σ). (140)

with
β̄i := sβ̂n + (1− s)β̂(i), s ∈ (0, 1). (141)

If we then take the scalar product of (139) with Xi we obtain an equation relating the leave-one-out linear predictor to
the actual one

X′
i(β̂n − β̂(i)) = τiu̇(X

′
iβ̂n, Ti,σ) (142)

where
τi :=

1

n
X′

i

(
I(i)(β̄i)

)−1

Xi. (143)

We recognize (142) to be the equation defining the proximal mapping of
−τiu(., Ti,σ), thus

X′
iβ̂n = prox−τiu(.,Ti,σ)(X

′
iβ̂(i)), (144)

where the proximal mapping of a convex function f : R → R is defined as

proxf (x) := argmin
y

{1

2
(y − x)2 + f(y)

}
. (145)

The problem with (144) is that we do not know β̄i. On the other hand β̄i will be “close” to β̂(i), as β̂(i) is in turn
expected to be close to β̂n. This motivates the introduction of the following approximation for the linear predictor
X′

iβ̂n

ξi = prox−τnu(.,Ti,σ)

(
X′

iβ̂(i)

)
(146)
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with

τn :=
1

n
X′

iI
−1
(i) (β̂(i))Xi =

1

n
Tr

(
I−1
(i) (β̂(i))

)
+ oP (1) (147)

because of the standard concentration properties of quadratic forms of normal random vectors as I−1
(i) (β̂(i)) ⊥ Xi.

C.2 The equation for τn

In the previous section we implicitly assumed that I(i)(β̂(i)) is invertible. On the other hand, assuming that also I(β̂n)
is invertible, we have

p = Tr
(
I(β̂n)I

−1(β̂n)
)
= − 1

n

n∑
j=1

ü(X′
jβ̂n, Tj ,σ)X

′
jI

−1(β̂n)Xj

=

n∑
i=1

(
1− 1

1− 1
n ü(X

′
iβ̂n, Ti,σ)X′

iI
−1
(i) (β̂n)Xi

)
(148)

where we used the Sherman-Morrison-Woodbury formula

v′(A+ vv′)−1v = 1− 1

1 + v′A−1v
(149)

with v =
√
−ü(X′

iβ̂n, Ti,σ)Xi and A = I−1
(i) (β̂n). If the approximation (146) of Xiβ̂n is accurate and we can

approximate
X′

iI
−1
(i) (β̂n)Xi ≃ X′

iI
−1
(i) (β̂(i))Xi = τn + oP (1) (150)

then

p ≃
n∑

i=1

(
1− 1

1− τnü(X′
iβ̂n, Ti,σ)

)
. (151)

For the approximation above to be fully rigorous one would have to bound the reminders, which has been indeed done
for some particular u (see the excellent references [23] for robust regression and [14] for logit regression). This is
not easily shown for general non-linear models, so here we instead verify these assumptions a posteriori. After some
straightforward algebraic simplifications, using ζ = p/n, we get

1− ζ ≃ 1

n

n∑
i=1

1

1− τnü(X′
iβ̂n, Ti,σ)

. (152)

Note that using
d

dx
proxf (x) = ˙proxf (x) =

1

1 + f̈
(
proxf (x)

) (153)

we can also re-write (151) as

1− ζ =
1

n

n∑
i=1

˙prox−τnu(.,Ti,σ)(X
′
iβ̂n, Ti,σ). (154)

C.3 Self consistent equations

As a consequence of (29, 30, 33, 32) in the main text, we established the following set of equations

E
[
Z0

(
ξ − kθ0Z0 − vQ

)
/τ

]
= 0 (155)

E
[
ξu̇

(
ξ, T,σ)

)]
= 0 (156)

E
[
g
(
ξ, T,σ

)]
= 0 (157)

E
[ 1

1− τ ü(ξ, T,σ)

]
= τ. (158)
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First of all note that (157, 158) are exactly the equations (37, 35) in the main text. Then, since Z0 ⊥ Q and E[Z2
0 ] = 1,

we get
E
[
Z0

(
ξ − kθ0Z0 − vQ

)]
= τE

[
Z0u̇(ξ, T,σ)

]
= 0 =⇒ kθ0 = E

[
Z0ξ

]
(159)

which is equation (36) in the main text. Now observe that by (154) and integration by parts we have

τ = E
[

˙prox−τu(.,T,σ)(ξ, T,σ)
]
= E

[
Qξ

]
. (160)

and also

E
[
ξ2
]
− E

[
(kθ0Z0 + vQ)ξ

]
(161)

= E
[(

ξ − (kθ0Z0 + vQ)
)2]

+ E
[(

ξ − (kθ0Z0 + vQ)
)
(kθ0Z0 + vQ)

]
.

hence by (159, 160) we conclude that

E
[(

ξ − (kθ0Z0 + vQ)
)2]

= τ2E
[(

u̇(ξ, T,σ)
)2]

= v2ζ. (162)

which is equation (34) in the main text.

D Details for the Log-logistic AFT model

Substitution of ξ̃ = 2χ⋆ into (35) as given in the main text, and using the self consistent equation for χ⋆ we obtain

v(1− ζ) = E

[
2 cosh2(χ⋆)

2 cosh2(χ⋆) + u2

]
(163)

where we used that
¨̃u(x) = − 1

2 cosh(x/2)
(164)

in (47). Hence we get that

ζ = E

[
τ̃

2 cosh2(χ⋆) + τ̃

]
. (165)

Since we want to solve the RS equations with ζ as control parameter, we can as well re-write the equation above as

τ̃ = ζ

(
E

[
1

2 cosh2(χ⋆) + τ̃

])−1

(166)

Using the definition of ξ̃, we obtain by substitution in (34) that

v2ζ = τ2E
[(

ξ̃ − v/σQ)
)2

] = τ2/σ2E
[
tanh2(χ⋆)

]
(167)

hence
v2

σ2
ζ = τ̃2E

[
tanh2(χ⋆)

]
. (168)

Equations (49) and (50) can be easily obtained by substitution, using E[Z] = 0 and

˙̃u(x) = − tanh(x). (169)

E Details for the Weibull model

Since
X′β0

d
= θ0Z0, θ0 := ∥Σ1/2

0 β0∥, Z0 ∼ N (0, 1). (170)
we have that

ξ = prox−τu(.,T,ϕ,ρ)(kθ0Z0 + vQ)

= kθ0Z0 + vQ+ τ −W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+(k−ρ/ρ0)θ0Z0+vQ

)
.
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Substitution of ξ in (36) gives

kθ0 = kθ0 − EZ,∆,Z0,Q

[
Z0W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+(k−ρ/ρ0)θ0Z0+vQ

)]
(171)

using

EZ,∆,Z0,Q

[
Z0W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+(k−ρ/ρ0)θ0Z0+vQ

)]
(172)

= (k − ρ/ρ0)θ0EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+(k−ρ/ρ0)θ0Z0+vQ

)
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+(k−ρ/ρ0)θ0Z0+vQ

)]

we obtain
k = ρ/ρ0 (173)

which in turn simplifies greatly the following equations, because it causes Z0 to disappear. By substituting ξ⋆ into (34)
we have

v2ζ = EZ,∆,Z0,Q

[(
τ −W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

))2
]
. (174)

Substitution of ξ⋆ into (35), followed by (Gaussian) integration by parts (also known as Stein’s lemma), gives

ζ = EZ,∆,Z0,Q

[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)] (175)

where we used

∂

∂Q
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)
=

W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)
1 +W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

) (176)

which can be verified by the definition of W0.

The equations for the nuisance parameters are obtained by solving the maximisation condition, i.e.. by setting the
expectation of the partial derivatives with respect to ϕ− ρ/ρ0ϕ0 and ρ/ρ0 to zero. Since the partial derivative of (67)
with respect to ϕ is

∂

∂ϕ
u(ξ⋆, ϕ) = 1− eρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+ξ⋆−θ0Z0 (177)

taking the expectation and setting the result to zero gives

τ = E
[
W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)]
. (178)

Doing the same for ρ/ρ0 gives

ρ0/ρ = γE +
1

τ
E
[
logZ W0

(
τeτ+ρ/ρ0 logZ+ϕ−ρ/ρ0ϕ0+vQ

)]
(179)

where the Euler-Mascheroni constant γE is defined as

γE := E
[
− logZ

]
. (180)

F Details for the Logit regression model

Substitution of ξ = prox−τu(.,T,)(vQ+ kθ0Z0) = χ⋆ − ϕ into (35) as given in the main text leads to

v(1− ζ) = E

[
cosh2(χ⋆)

cosh2(χ⋆) + τ

]
(181)

where we used
ü(x, T, ϕ) =

1

cosh(x+ ϕ)
. (182)
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Hence

ζ = E

[
τ

cosh2(χ⋆) + τ

]
. (183)

By the definition of χ, we obtain from (34) that

v2ζ = τ2E
[(

u̇(ξ⋆)
)2]

= τ2E
[(

T + tanh(χ⋆)
)2]

(184)

where we used
u̇(x, T, ϕ) = −T − tanh(x+ ϕ). (185)

Similarly we obtain that
∂

∂ϕ
u(ξ + ϕ) = −T − tanh(χ⋆) (186)

so taking the expectation and setting the result to zero we get

E
[
T
]
+ E

[
tanh(χ⋆)

]
= 0 (187)

which in turn implies
ϕ = E

[
χ⋆

]
. (188)
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